SlideShare a Scribd company logo
1 of 7
Download to read offline
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 4 (May. - Jun. 2013), PP 59-65
www.iosrjournals.org
www.iosrjournals.org 59 | Page
Strongly Unique Best Simultaneous Coapproximation
in Linear 2-Normed Spaces
R.Vijayaragavan
School of Advanced Sciences V I T University Vellore-632014, Tamilnadu, India.
Abstract: This paper deals with some fundamental properties of the set of strongly unique best
simultaneous coapproximation in a linear 2-normed space.
AMS Subject classification: 41A50,41A52,41A99, 41A28.
Keywords: Linear 2-normed space, strongly unique best coapproximation, best
Simultaneous coapproximation and strongly unique best simultaneous coapproximation.
I. Introduction
The problem of simultaneous approximation was studied by several authors. Diaz and
Mclaughlin [2,3], Dunham [4] and Ling, et al. [12] have discussed the simultaneous approximation
of two real-valued functions defined on a closed interval. Many results on best simultaneous
approximation in the context of normed linear space under different norms were obtained by Goel, et
al. [9,10], Phillips, et al. [16], Dunham [4], Ling, et al. [12] and Geetha S. Rao, et al. [5,6,7].
Strongly unique best simultaneous approximation are investigated by Laurent, et al. [11]. D.V.Pai, et
al. [13,14] studied the characterization and unicity of strongly unique best simultaneous approximation
in normed linear spaces. The problem of best simultaneous coapproximation in a normed linear space
was introduced by Geetha S.Rao, et al. [8]. The notion of strongly unique best simultaneous
coapproximation in the context of linear 2-normed space is introduced in this paper. Section 2 provides
some important definitions and results that are used in the sequel. Some fundamental properties of the
set of strongly unique best simultaneous coapproximation with respect to 2-norm are established in
Section 3.
II. Preliminaries
Definition 2.1. [1] Let X be a linear space over real numbers with dimension greater than one and let
║k ., . k║ be a real-valued function on X × X satisfying the following properties for every x, y, z in
X .
(i) ║x, y║= 0 if and only if x and y are linearly dependent, (ii) ║ x, y║=║ y, x ║,
(iii) ║ αx, y ║= |α| ║ x, y ║ , where α is a real number,
(iv) ║ x, y + z ║≤║ x, y ║ + ║ x, z ║ .
Then ║., . ║ is called a 2-norm and the linear space X equipped with the 2-norm is called a linear 2-
normed space. It is clear that 2-norm is non negative.
The following important property of 2-norm was established by Cho [ 1 ].
Theorem 2.2. [ 1 ] For any points a, b ∈ X and any α ∈ R , ║ a, b ║=║ a, b + αa ║ .
Definition 2.3. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is
called a strongly unique best coapproximation to x ∈ X from G, if there exists a constant t > 0 such
that for every g ∈ G ,
║ g − g0, k ║≤║ x − g, k ║ −t ║ x − g0, k ║, for every k ∈ X  [G, x].
Definition 2.4. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is
called a best simultaneous coapproximation to x1 , · · · , xn ∈ X from G, if for every g ∈ G ,
║ g − g0 , k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} , for every k ∈ X  [G, x1 , · · · , xn].
The definition of strongly unique best simultaneous coapproximation in the context of linear
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 60 | Page
2-normed space is introduced for the first time as follows:
Definition 2.5. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is
called a strongly unique best simultaneous coapproximation to x1 , · · · , xn ∈ X from G, if there
exists a constant t > 0 such that for every g ∈ G ,
║ g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} − t max{║ x1 − g0, k ║,
║ xn − g0 , k ║}, for every k ∈ X  [G, x1 , · · · , xn],
where [G, x1 , · · · , xn ] represents a linear space spanned by elements of G and x1 , · · · , xn . The set
of all elements of strongly unique best simultaneous coapproximations to x1 , · · · , xn ∈ X
from G is denoted by WG (x1 , · · · , xn) .
The subset G is called an existence set if WG (x1 , · · · , xn ) contains at least one element for
every x ∈ X . G is called a uniqueness set if WG (x1 , · · · , xn ) contains at most one element
for every x ∈ X . G is called an existence and uniqueness set if WG (x1 , · · · , xn ) contains
exactly one element for every x ∈ X .
For the sake of brevity, the terminology subspace is used instead of a linear 2-normed subspace. Unless
otherwise stated all linear 2-normed spaces considered in this paper are real linear 2-normed spaces
and all subsets and subspaces considered in this paper are existence subsets and existence subspaces
with respect to strongly unique best simultaneous coapproximation.
III. Some Fundamental Properties Of Wg (X1 , · · · , Xn)
Some basic pr operties of strongly unique b e s t simultaneous coapproximation are
obtained in the following Theorems.
Theorem 3.1. Let G b e a subset of a linear 2-normed space X and x1 , · · · , xn ∈ X . Then the
following statements hold.
(i) WG (x1 , · · · , xn) is closed if G is closed. (ii) WG (x1 , · · · , xn) is convex if G is convex. (iii)
WG (x1 , · · · , xn) is bounded.
Proof. (i). Let G b e closed.
Let { gm} be a sequence in WG (x1 , · · · , xn) such that gm → g˜ .
To show that WG (x1 , · · · , xn) is closed, it is sufficient to show that
WG (x1 , · · · , xn) .
g˜ ∈Since G is closed, {gm} ∈ G and gm →
g˜ , we haveg˜ ∈ G. Since {gm} ∈
WG (x1 , · · · , xn) , we have for all k ∈ X [G, x1 , · · · , xn] , g ∈ G and for some t > 0 that
║ g − gm, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max{║ x1 − gm, k ║,· · · , ║ xn − gm, k ║}
⇒ ║ g − g˜, k ║ − ║ gm − g˜, k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║}
−t max{║ x1 − g˜, k ║ − ║ gm − g˜, k ║,· · · , ║ xn − g˜, k ║ − ║ gm − g˜, k ║}. (3.1)
Since gm → g˜ , gm − g˜ → 0 . So ║gm − g˜, k ║→ 0, as 0 and k ar e linearly dependent.
Therefore, it follows from (3.1) that
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 61 | Page
1 + t
║ g − g˜, k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║}
−t max{║ x1 − g˜, k ║, · · · , ║ xn − g˜, k ║},
for all g ∈ G , k ∈ X [G, x1 , · · · , xn] and for some t > 0 , when m → ∞ . Thus
g˜ ∈ WG (x1 , · · · , xn) . Hence WG (x1 , · · · , xn) is closed.
(ii). Let G b e a convex set, g1 , g2 ∈ WG (x1 , · · · , xn) and α ∈ (0, 1) .
To show that αg1 + (1 − α)g2 ∈ WG (x1 , · · · , xn) , let k ∈ X  [G, x1 , · · · , xn] . Then
║ g − (αg1 + (1 − α)g2), k ║
≤ α ║ g − g1, k ║ +(1 − α) ║ g − g2, k ║
≤ α (max {║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max{║ x1 − g1, k ║,· · · , ║ xn − g1, k ║})
+(1 − α) max {║ x1 − g, k ║, · · · , ║ xn − g, k ║}
−t max{║ x1 − g2, k ║,· · · , ║ xn − g2, k ║})
= max {║ x1 − g, k ║,· · · , ║xn − g, k ║}
−t max{║ αx1 − αg1 , k ║ · · · ║ αxn − αg1 , k ║}
+ max {║ (1 − α)x1 − (1 − α)g2 , k ║,· · · , ║ (1 − α)xn − (1 − α)g2 , k║})
= max {║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max{║ x1 − (αg1 + (1 − α)g2 ), k ║,· · · , ║ xn − (αg1 + (1 − α)g2 , k ║} .
Thus αg1 + (1 − α)g2 ∈ WG (x1 , · · · , xn) . Hence WG (x1 , · · · , xn) is convex.
(iii). To show that WG (x1 , · · · , xn) is bounded, it is sufficient to show for arbitrary g0, g˜0 ∈
WG (x1 , · · · , xn) that ║ g0 − g˜0, k ║< c for some c > 0 , since ║ g0 − g˜0, k ║< c implies
that sup
g0 ,g˜0 ∈WG (x1 ,··· ,xn )
finite.║ g0 − g˜0, k ║ is finite and hence the diameter of WG (x1 , · · · , xn ) is
Let g0, g˜0 ∈ WG (x1 , · · · , xn) . Then there exists a constant t > 0 such that for every
g ∈ G and k ∈ X  [G, x1 , · · · , xn],
║ g − g0, k ║≤ max{║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}
and
║ g − g˜0, k ║≤ max{║ x1 − g, k ║,· · · , ║xn − g, k ║}
−t max{║ x1 − g˜0, k ║,· · · , ║ xn − g˜0, k ║}.
Now,
║ x1 − g0, k ║ ≤ ║ x1 − g, k ║ + ║ g − g0, k ║
≤ 2 max {║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max {║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}.
2
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 62 | Page
⇒║ x1 − g0, k ║ ≤
max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} , for all g ∈ G.
Hence ║ x1 − g0, k
║
≤
1 + t
d,
where d = inf max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} .
g∈G
2
Similarly,
║
x1 − g˜0, k
║
≤
1 + t
d .
Therefore, it follows that
║ g0 − g˜0, k ║ ≤ ║ g0 − x1 , k ║ + ║ x1 − g˜0, k ║
4
≤
1 + t
d
= C .
Whence WG (x1 , · · · , xn) is bounded.
Let X be a linear2-normed space, x ∈ X and [x] denote the set of all scalar multiplications of
x .
i.e., [x] = {αx : α ∈ R} .
Theorem 3.2. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and
k ∈ X  [G, x1 , · · · , xn] . Then the following statements are equivalent for every y ∈ [k].
(i) g0 ∈ WG (x1 , · · · , xn) .
(ii) g0 ∈ WG (x1 + y, · · · , xn + y) . (iii) g0 ∈ WG (x1 − y, · · · , xn − y) .
(iv) g0 + y ∈ WG (x1 + y, · · · , xn + y) . (v) g0 + y ∈ WG (x1 − y, · · · , xn − y) . (vi) g0 − y ∈ WG
(x1 + y, · · · , xn + y) . (vii) g0 − y ∈ WG (x1 − y, · · · , xn − y) . (viii) g0 + y ∈ WG (x1 , · · · , xn) .
(ix) g0 − y ∈ WG (x1 , · · · , xn ) .
Proof. The proof follows immediately by using Theorem 2.2.
Theorem 3.3. Let G be a subspace of a linear 2-normed space X , x1 , · · · , xn ∈ X and
k ∈ X  [G, x1 , · · · , xn] . Then
g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG (αmx1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ),
for all α ∈ R and m = 0, 1, 2, · · · .
Proof. Claim:
g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ), for all α ∈ R.
Let g0 ∈ WG (x1 , · · · , xn) . Then
║g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} − t max{║ x1 − g0, k ║,· · · , k║xn − g0, k ║},
for all g ∈ G and for some t > 0 .
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 63 | Page
⇒ ║ αg − αg0 , k ║≤ max {║ αx1 − αg, k ║,· · · , ║ αxn − αg, k ║}
−t max{║ αx1 − αg0 , k║,· · · , ║ αxn − αg0 , k ║}, for every g ∈ G.
0
0
( 1)
,
g g
g k

 

  
  
 
0 0
1
( 1) ( 1)
max , ,..., ,n
g g g g
x k x k
 
   
 
       
      
    
−t max{║ αx1 − αg0 , k ║,· · · , ║ αxn − αg0 , k ║},
(α − 1)g0 + g
for all g ∈ G and α = 0, since
α
∈ G.
⇒ ║ g − g0 , k ║≤ max {║ αx1 + (1 − α)g0 − g, k ║,· · · , ║αxn + (1 − α)g0 − g, k ║}
−t max{║ αx1 + (1 − α)g0 − g0, k ║,· · · , ║ αxn + (1 − α)g0 − g0, k ║}
⇒ g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ), when α ≠ 0.
If α = 0 , then it is clear that g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ) .
The converse is obvious by taking α = 1 . Hence the claim is true. By repeated application of the
claim the result follows.
Corollary 3.4. Let G be a subspace of a linear 2-normed space X, x1 , · · · , xn ∈ X
and k ∈ X  [G, x1 , · · · , xn] . Then t h e foll owin g statements are equivalent for every
y ∈ [k], α ∈ R and m = 0, 1, 2, · · ·
(i) g0 ∈ WG (x1 , · · · , xn) .
(ii) g0 ∈ WG (αmx1 + (1 − αm )g0 + y, · · · , αmxn + (1 − αm)g0 + y) . (iii) g0 ∈ WG (αmx1 +
(1 − αm)g0 − y, · · · , αmxn + (1 − αm)g0 − y) .
(iv) g0 + y ∈ WG (αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (v) g0 + y ∈ WG
(αm x1 + (1 − αm )g0 − y, · · · , αm xn + (1 − αm )g0 − y) . (vi) g0 − y ∈ WG (αm x1 + (1 − αm
)g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (vii) g0 − y ∈ WG (αm x1 + (1 − αm )g0 − y, · · · , αm xn
+ (1 − αm)g0 − y) . (viii) g0 + y ∈ WG (αmx1 + (1 − αm )g0 , · · · , αmxn + (1 − αm)g0 ) .
(ix) g0 − y ∈ WG (αmx1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ) .
Proof. The proof follows from simple application of Theorem 2.2 and the Theorem 3.3.
Theorem 3.5. Let G b e a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and
k ∈ X  [G, x1 , · · · , xn] . Then
g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG+[k](x1 , · · · , xn).
Proof. The proof follows from simple application of Theorem 3.2.
A corollary similar to that of Corollary 3.4 is established next as follows:
Corollary 3.6. Let G be a subspace of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 64 | Page
X  [G, x1 , · · · , xn ] . Then t h e foll owin g statements are equivalent for every y ∈ [k], α ∈ R and
m = 0, 1, 2, · · ·
(i) g0 ∈ WG+[k](x1 , · · · , xn) .
(ii) g0 ∈ WG+[k](αm x1 + (1 − αm)g0 + y, · · · , αmxn + (1 − αm)g0 + y) . (iii) g0 ∈ WG+[k]
(αm x1 + (1 − αm)g0 − y, · · · , αm xn + (1 − αm)g0 − y) .
(iv) g0 + y ∈ WG+[k] (αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (v) g0 + y ∈
WG+[k](αm x1 + (1 − αm)g0 − y, · · · , αm xn + (1 − αm )g0 − y) . (vi) g0 − y ∈ WG+[k](αm x1
+ (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (vii) g0 − y ∈ WG+[k] (αm x1 + (1 − αm )g0
− y, · · · , αm xn + (1 − αm )g0 − y) . (viii) g0 + y ∈ WG+[k](αm x1 + (1 − αm )g0 , · · · , αm xn +
(1 − αm)g0 ) .
(ix) g0 − y ∈ WG+[k](αm x1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ) .
Proof. The proof easily follows from Theorem 3.5 and Corollary 3.4.
Proposition 3.7. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X 
[G, x1 , · · · , xn] and 0 ∈ G . If g0 ∈ WG (x1 , · · · , xn), then there exists a constant t > 0 such that
║ g0 , k ║≤ max {║ x1 , k ║,· · · , ║ xn, k ║} − t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}.
Proof. The proof is obvious.
Proposition 3.8. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X 
[G, x1 , · · · , xn] . If g0 ∈ WG (x1 , · · · , xn ) , then there exists a constant t > 0 such that for every g
∈ G,
||xi − g0, k|| ≤ 2 max{||x1 − g, k||, · · · , ||xn − g, k||} − t max{║x1 − g0, k ║,· · · ,
║ xn − g0 , k ║}, for i = 1, 2, · · · , n.
Proof. The proof is obvious.
Theorem 3.9. Let G be a subspace of a linear 2-normed space X and x1 , · · · , xn ∈ X . Then the
following statements hold.
(i) WG (x1 + g, · · · , xn + g) = WG (x1 , · · · , xn) + g, for every g ∈ G . (ii) WG (αx1, · · · , αxn) =
αWG (x1 , · · · , xn), for every α ∈ R .
Proof. (i). Let
g˜ be an arbitrary but fixed element of G .
Let g0 ∈ WG (x1 , · · · , xn ) . It is clear that g0 + g˜ ∈ WG (x1 , · · · , xn) + g˜ .
To show that WG (x1 , · · · , xn) + g˜ ⊆ WG (x1 + g˜, · · · , xn + g˜) , it is sufficient to show that g0 + g˜
∈ WG (x1 + g˜, · · · , xn + g˜) .
Now,
║ g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║}
−t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}
for every g ∈ G and for some t > 0.
⇒ ║ g − (g0 + g˜), k ║≤ max {║ x1 + g˜ − g, k ║, · · · , ║ xn + g˜ − g, k ║}
Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space
www.iosrjournals.org 65 | Page
−t max{║ x1 + g˜ − (g0 + g˜), k ║,· · · , ║ xn + g˜ − (g0 + g˜), k ║},
for every g ∈ G and for some t > 0, since g − g˜ ∈ G.
Thus g0 + g˜ ∈ WG (x1 + g˜, · · · , xn + g˜).
Conversely, let g0 + g˜ ∈ WG (x1 + g˜,· · · , xn + g˜) . To show that
WG (x1 + g˜, · · · , xn + g˜) ⊆ WG (x1 , · · · , xn) + g˜,
it is sufficient to show that g0 ∈ WG (x1 , · · · , xn) . Let k ∈ X  [G, x1 , · · · , xn] . Then
║ g − g0, k ║ = ║ g + g˜ − (g0 + g˜), k ║
≤ max {║ x1 + g˜ − (g + g˜), k ║,· · · , ║ xn + g˜ − (g + g˜), k ║}
−t max{║ x1 + g˜ − (g0 + g˜), k ║,· · · , ║ xn + g˜ − (g0 + g˜), k ║},
for all g ∈ G and for some t > 0, since g + g˜ ∈ G.
⇒ g0 ∈ WG (x1 , · · · , xn). Thus the result follows. (ii). The proof is similar to that of (i).
Remark 3.10. Theorem 3.9 can be restated as
WG (αx1 + g, · · · , αxn + g) = αWG (x1 , · · · , xn) + g, for all g ∈ G.
References
[1] Y.J.Cho, “Theory of 2-inner product spaces”, Nova Science Publications, New York, 1994.
[2] J.B.Diaz and H.W.McLaughlin, On simultaneous Chebyshev approximation of a set of bounded complex-valued
functions, J.Approx Theory, 2 (1969), 419-432.
[3] J.B.Diaz and H.W.McLaughlin, On simultaneous Chebyshev approximation and Chebyshev approximation with an
additive weight function, J. Approx. Theory, 6 (1972), 68-72.
[4] C.B.Dunham, Simultaneous Chebyshev a p p r o x i ma t i o n of functions on interval, Proc.Amer.Math.Soc., 18 (1967),
472-477.
[5] Geetha S.Rao, Best coapproximation in normed linear spaces in Approximation Theory, V.C.K.Chui,
L.L.Schumaker and J.D.Ward (eds.), Academic Press, New York, 1986,535-538.
[6] Geetha S.Rao and K.R.Chandrasekaran, Best coapproximation in normed linear spaces with property (Λ) ,
Math. Today, 2 (1984), 33-40.
[7] Geetha S.Rao and K.R.Chandrasekaran, Characterizations of elements of best coapproximation in normed linear
spaces, Pure Appl. Math. Sci., 26(1987), 139-147.
[8] Geetha S.Rao and R.Sa ra va na n, Best simultaneous coapproximation, Indian J. Math., 40 No.3, (1998), 353-362.
[9] D.S.Goel, A.S.B.Holland, C.Nasim and B.N.Sahney, On best simultaneous approximation in normed linear
spaces. Canad. Math. Bull., 17 (No. 4) (1974), 523-527.
[10] D.S.Goel, A.S.B.Holland, C.Nasim, and B.N.Sahney, Characterization of an element of best Lp -simultaneous
approximation, S.R.Ramanujan memorial volume, Madras, 1974, 10-14.
[11] P.J.Laurent and D.V.Pai, Simultaneous approximation of vector valued functions, Research Report, MRR03-97,
Department of Mathematics, IIT, Bombay, 1997.
[12] W.H.Ling, H.W.McLaughlin a n d M.L.Smith, Approximation of random functions, AMS Notices, 22
(1975), A-161.
[13] D.V.Pai, Characterization of strong uniqueness of best simultaneous approximation, in “Proceedings of the Fifth Annual
Conference of Indian Society of Industrial and Applied Mathematics (ISIAM)”, Bhopal, 1998.
[14] D.V.Pai a n d K.Indira, Strong unicity in simultaneous approximation, in v“Proceedings of the Conference
on Analysis, Wavelets and Applications”, Feb. 12-14, 2000, being edited by H.P.Dikshit.
[15] P.L.Papini and I. Singer, Best coapproximation in normed linear spaces, Mh. Math.88 (1979), 27-44.
[16] G.H.Phillips and B.N.Sahney, Best simultaneous approximation in the L1 and L2 norms, in “Proceeding of
conference on theory of Approximation at University of Calgary (1975),” Academic Press, New York.

More Related Content

What's hot

Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...esasancpe
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final reportJamesMa54
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...JamesMa54
 
Iterative Compression
Iterative CompressionIterative Compression
Iterative CompressionASPAK2014
 
Bidimensionality
BidimensionalityBidimensionality
BidimensionalityASPAK2014
 
Fixed point theorem in fuzzy metric space with e.a property
Fixed point theorem in fuzzy metric space with e.a propertyFixed point theorem in fuzzy metric space with e.a property
Fixed point theorem in fuzzy metric space with e.a propertyAlexander Decker
 
Important Cuts
Important CutsImportant Cuts
Important CutsASPAK2014
 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Rene Kotze
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theoremJamesMa54
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Alexander Decker
 
Formulas
FormulasFormulas
FormulasZHERILL
 
Important Cuts and (p,q)-clustering
Important Cuts and (p,q)-clusteringImportant Cuts and (p,q)-clustering
Important Cuts and (p,q)-clusteringASPAK2014
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusMatthew Leingang
 
Applications of Hoffman Algebra for the Multiple Gamma Functions
Applications of Hoffman Algebra for the Multiple Gamma FunctionsApplications of Hoffman Algebra for the Multiple Gamma Functions
Applications of Hoffman Algebra for the Multiple Gamma FunctionsHanamichi Kawamura
 
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali Övgün
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali ÖvgünHidden gates in universe: Wormholes UCEN 2017 by Dr. Ali Övgün
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali ÖvgünEastern Mediterranean University
 
Bayesian Criteria based on Universal Measures
Bayesian Criteria based on Universal MeasuresBayesian Criteria based on Universal Measures
Bayesian Criteria based on Universal MeasuresJoe Suzuki
 

What's hot (19)

Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...Dominación y extensiones óptimas de operadores con rango esencial compacto en...
Dominación y extensiones óptimas de operadores con rango esencial compacto en...
 
Double integration
Double integrationDouble integration
Double integration
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
 
draft5
draft5draft5
draft5
 
Iterative Compression
Iterative CompressionIterative Compression
Iterative Compression
 
Bidimensionality
BidimensionalityBidimensionality
Bidimensionality
 
Fixed point theorem in fuzzy metric space with e.a property
Fixed point theorem in fuzzy metric space with e.a propertyFixed point theorem in fuzzy metric space with e.a property
Fixed point theorem in fuzzy metric space with e.a property
 
Important Cuts
Important CutsImportant Cuts
Important Cuts
 
The Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal FunctionThe Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal Function
 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theorem
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
 
Formulas
FormulasFormulas
Formulas
 
Important Cuts and (p,q)-clustering
Important Cuts and (p,q)-clusteringImportant Cuts and (p,q)-clustering
Important Cuts and (p,q)-clustering
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of Calculus
 
Applications of Hoffman Algebra for the Multiple Gamma Functions
Applications of Hoffman Algebra for the Multiple Gamma FunctionsApplications of Hoffman Algebra for the Multiple Gamma Functions
Applications of Hoffman Algebra for the Multiple Gamma Functions
 
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali Övgün
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali ÖvgünHidden gates in universe: Wormholes UCEN 2017 by Dr. Ali Övgün
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali Övgün
 
Bayesian Criteria based on Universal Measures
Bayesian Criteria based on Universal MeasuresBayesian Criteria based on Universal Measures
Bayesian Criteria based on Universal Measures
 

Viewers also liked

A preliminary study on the toxic potentials of shea butter effluent using Cla...
A preliminary study on the toxic potentials of shea butter effluent using Cla...A preliminary study on the toxic potentials of shea butter effluent using Cla...
A preliminary study on the toxic potentials of shea butter effluent using Cla...IOSR Journals
 
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk Test
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk TestA Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk Test
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk TestIOSR Journals
 
Low Power FPGA Based Elliptical Curve Cryptography
Low Power FPGA Based Elliptical Curve CryptographyLow Power FPGA Based Elliptical Curve Cryptography
Low Power FPGA Based Elliptical Curve CryptographyIOSR Journals
 
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...IOSR Journals
 
Hepatoprotective Activity of Chara Parpam in Ccl4 Induced Rats
Hepatoprotective Activity of Chara Parpam in Ccl4 Induced RatsHepatoprotective Activity of Chara Parpam in Ccl4 Induced Rats
Hepatoprotective Activity of Chara Parpam in Ccl4 Induced RatsIOSR Journals
 
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...IOSR Journals
 
A Comparative Study of Certain Administrative and Academic Aspects of Minorit...
A Comparative Study of Certain Administrative and Academic Aspects of Minorit...A Comparative Study of Certain Administrative and Academic Aspects of Minorit...
A Comparative Study of Certain Administrative and Academic Aspects of Minorit...IOSR Journals
 
The Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma Treatment
The Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma TreatmentThe Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma Treatment
The Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma TreatmentIOSR Journals
 
An Overview on Security Issues in Cloud Computing
An Overview on Security Issues in Cloud ComputingAn Overview on Security Issues in Cloud Computing
An Overview on Security Issues in Cloud ComputingIOSR Journals
 
A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...
A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...
A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...IOSR Journals
 
Estimation of G6pd Status in the Rajbangshi Population of Sushrutanagar
Estimation of G6pd Status in the Rajbangshi Population of SushrutanagarEstimation of G6pd Status in the Rajbangshi Population of Sushrutanagar
Estimation of G6pd Status in the Rajbangshi Population of SushrutanagarIOSR Journals
 
The Evaluation of p-type doping in ZnO taking Co as dopant
The Evaluation of p-type doping in ZnO taking Co as dopantThe Evaluation of p-type doping in ZnO taking Co as dopant
The Evaluation of p-type doping in ZnO taking Co as dopantIOSR Journals
 
A Survey of Fuzzy Logic Based Congestion Estimation Techniques in Wireless S...
A Survey of Fuzzy Logic Based Congestion Estimation  Techniques in Wireless S...A Survey of Fuzzy Logic Based Congestion Estimation  Techniques in Wireless S...
A Survey of Fuzzy Logic Based Congestion Estimation Techniques in Wireless S...IOSR Journals
 
Implementation of error correcting methods to the asynchronous Delay Insensit...
Implementation of error correcting methods to the asynchronous Delay Insensit...Implementation of error correcting methods to the asynchronous Delay Insensit...
Implementation of error correcting methods to the asynchronous Delay Insensit...IOSR Journals
 
Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...
Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...
Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...IOSR Journals
 

Viewers also liked (20)

C0431923
C0431923C0431923
C0431923
 
A preliminary study on the toxic potentials of shea butter effluent using Cla...
A preliminary study on the toxic potentials of shea butter effluent using Cla...A preliminary study on the toxic potentials of shea butter effluent using Cla...
A preliminary study on the toxic potentials of shea butter effluent using Cla...
 
B0220609
B0220609B0220609
B0220609
 
G0444246
G0444246G0444246
G0444246
 
I0557277
I0557277I0557277
I0557277
 
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk Test
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk TestA Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk Test
A Comparative Study on Recovery Pulse Rate after 12 Minute Run and Walk Test
 
Low Power FPGA Based Elliptical Curve Cryptography
Low Power FPGA Based Elliptical Curve CryptographyLow Power FPGA Based Elliptical Curve Cryptography
Low Power FPGA Based Elliptical Curve Cryptography
 
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...
Self-Medication of Anti-Biotics amongst University Students of Islamabad: Pre...
 
D0321624
D0321624D0321624
D0321624
 
Hepatoprotective Activity of Chara Parpam in Ccl4 Induced Rats
Hepatoprotective Activity of Chara Parpam in Ccl4 Induced RatsHepatoprotective Activity of Chara Parpam in Ccl4 Induced Rats
Hepatoprotective Activity of Chara Parpam in Ccl4 Induced Rats
 
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...
 
A Comparative Study of Certain Administrative and Academic Aspects of Minorit...
A Comparative Study of Certain Administrative and Academic Aspects of Minorit...A Comparative Study of Certain Administrative and Academic Aspects of Minorit...
A Comparative Study of Certain Administrative and Academic Aspects of Minorit...
 
The Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma Treatment
The Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma TreatmentThe Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma Treatment
The Advantages of Two Dimensional Techniques (2D) in Pituitary Adenoma Treatment
 
An Overview on Security Issues in Cloud Computing
An Overview on Security Issues in Cloud ComputingAn Overview on Security Issues in Cloud Computing
An Overview on Security Issues in Cloud Computing
 
A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...
A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...
A Primer on Cointegration: Application to Nigerian Gross Domestic Product and...
 
Estimation of G6pd Status in the Rajbangshi Population of Sushrutanagar
Estimation of G6pd Status in the Rajbangshi Population of SushrutanagarEstimation of G6pd Status in the Rajbangshi Population of Sushrutanagar
Estimation of G6pd Status in the Rajbangshi Population of Sushrutanagar
 
The Evaluation of p-type doping in ZnO taking Co as dopant
The Evaluation of p-type doping in ZnO taking Co as dopantThe Evaluation of p-type doping in ZnO taking Co as dopant
The Evaluation of p-type doping in ZnO taking Co as dopant
 
A Survey of Fuzzy Logic Based Congestion Estimation Techniques in Wireless S...
A Survey of Fuzzy Logic Based Congestion Estimation  Techniques in Wireless S...A Survey of Fuzzy Logic Based Congestion Estimation  Techniques in Wireless S...
A Survey of Fuzzy Logic Based Congestion Estimation Techniques in Wireless S...
 
Implementation of error correcting methods to the asynchronous Delay Insensit...
Implementation of error correcting methods to the asynchronous Delay Insensit...Implementation of error correcting methods to the asynchronous Delay Insensit...
Implementation of error correcting methods to the asynchronous Delay Insensit...
 
Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...
Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...
Energy saving in P2P oriented Wireless Sensor Network (WSN) using the approac...
 

Similar to Strongly Unique Best Simultaneous Coapproximation in Linear 2-Normed Spaces

Best Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesBest Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesIOSR Journals
 
A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...Alexander Decker
 
D242228
D242228D242228
D242228irjes
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesRene Kotze
 
On uniformly continuous uniform space
On uniformly continuous uniform spaceOn uniformly continuous uniform space
On uniformly continuous uniform spacetheijes
 
Some Fixed Point Theorems in b G -cone Metric Space
Some Fixed Point Theorems in b G -cone Metric Space Some Fixed Point Theorems in b G -cone Metric Space
Some Fixed Point Theorems in b G -cone Metric Space Komal Goyal
 
Bayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process modelsBayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process modelsTommaso Rigon
 
Convexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdfConvexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdfPeterEsnayderBarranz
 
Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)nitishguptamaps
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theoremWathna
 
Nies cuny describing_finite_groups
Nies cuny describing_finite_groupsNies cuny describing_finite_groups
Nies cuny describing_finite_groupsAndre Nies
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrationsitutor
 
On the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCAOn the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCADmitrii Ignatov
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11DAVID GIKUNJU
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and transDr Fereidoun Dejahang
 

Similar to Strongly Unique Best Simultaneous Coapproximation in Linear 2-Normed Spaces (20)

Best Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesBest Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed Spaces
 
A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...
 
D242228
D242228D242228
D242228
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat Spacetimes
 
Pmath 351 note
Pmath 351 notePmath 351 note
Pmath 351 note
 
On uniformly continuous uniform space
On uniformly continuous uniform spaceOn uniformly continuous uniform space
On uniformly continuous uniform space
 
Some Fixed Point Theorems in b G -cone Metric Space
Some Fixed Point Theorems in b G -cone Metric Space Some Fixed Point Theorems in b G -cone Metric Space
Some Fixed Point Theorems in b G -cone Metric Space
 
Bayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process modelsBayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process models
 
Convexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdfConvexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdf
 
Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 
Nies cuny describing_finite_groups
Nies cuny describing_finite_groupsNies cuny describing_finite_groups
Nies cuny describing_finite_groups
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
 
On the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCAOn the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCA
 
QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...
QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...
QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...
 
1452 86301000013 m
1452 86301000013 m1452 86301000013 m
1452 86301000013 m
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
The Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravityThe Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravitySubhadipsau21168
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 

Recently uploaded (20)

Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
The Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravityThe Black hole shadow in Modified Gravity
The Black hole shadow in Modified Gravity
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 

Strongly Unique Best Simultaneous Coapproximation in Linear 2-Normed Spaces

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 4 (May. - Jun. 2013), PP 59-65 www.iosrjournals.org www.iosrjournals.org 59 | Page Strongly Unique Best Simultaneous Coapproximation in Linear 2-Normed Spaces R.Vijayaragavan School of Advanced Sciences V I T University Vellore-632014, Tamilnadu, India. Abstract: This paper deals with some fundamental properties of the set of strongly unique best simultaneous coapproximation in a linear 2-normed space. AMS Subject classification: 41A50,41A52,41A99, 41A28. Keywords: Linear 2-normed space, strongly unique best coapproximation, best Simultaneous coapproximation and strongly unique best simultaneous coapproximation. I. Introduction The problem of simultaneous approximation was studied by several authors. Diaz and Mclaughlin [2,3], Dunham [4] and Ling, et al. [12] have discussed the simultaneous approximation of two real-valued functions defined on a closed interval. Many results on best simultaneous approximation in the context of normed linear space under different norms were obtained by Goel, et al. [9,10], Phillips, et al. [16], Dunham [4], Ling, et al. [12] and Geetha S. Rao, et al. [5,6,7]. Strongly unique best simultaneous approximation are investigated by Laurent, et al. [11]. D.V.Pai, et al. [13,14] studied the characterization and unicity of strongly unique best simultaneous approximation in normed linear spaces. The problem of best simultaneous coapproximation in a normed linear space was introduced by Geetha S.Rao, et al. [8]. The notion of strongly unique best simultaneous coapproximation in the context of linear 2-normed space is introduced in this paper. Section 2 provides some important definitions and results that are used in the sequel. Some fundamental properties of the set of strongly unique best simultaneous coapproximation with respect to 2-norm are established in Section 3. II. Preliminaries Definition 2.1. [1] Let X be a linear space over real numbers with dimension greater than one and let ║k ., . k║ be a real-valued function on X × X satisfying the following properties for every x, y, z in X . (i) ║x, y║= 0 if and only if x and y are linearly dependent, (ii) ║ x, y║=║ y, x ║, (iii) ║ αx, y ║= |α| ║ x, y ║ , where α is a real number, (iv) ║ x, y + z ║≤║ x, y ║ + ║ x, z ║ . Then ║., . ║ is called a 2-norm and the linear space X equipped with the 2-norm is called a linear 2- normed space. It is clear that 2-norm is non negative. The following important property of 2-norm was established by Cho [ 1 ]. Theorem 2.2. [ 1 ] For any points a, b ∈ X and any α ∈ R , ║ a, b ║=║ a, b + αa ║ . Definition 2.3. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is called a strongly unique best coapproximation to x ∈ X from G, if there exists a constant t > 0 such that for every g ∈ G , ║ g − g0, k ║≤║ x − g, k ║ −t ║ x − g0, k ║, for every k ∈ X [G, x]. Definition 2.4. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is called a best simultaneous coapproximation to x1 , · · · , xn ∈ X from G, if for every g ∈ G , ║ g − g0 , k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} , for every k ∈ X [G, x1 , · · · , xn]. The definition of strongly unique best simultaneous coapproximation in the context of linear
  • 2. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 60 | Page 2-normed space is introduced for the first time as follows: Definition 2.5. Let G be a non-empty subset of a linear 2-normed space X . An element g0 ∈ G is called a strongly unique best simultaneous coapproximation to x1 , · · · , xn ∈ X from G, if there exists a constant t > 0 such that for every g ∈ G , ║ g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} − t max{║ x1 − g0, k ║, ║ xn − g0 , k ║}, for every k ∈ X [G, x1 , · · · , xn], where [G, x1 , · · · , xn ] represents a linear space spanned by elements of G and x1 , · · · , xn . The set of all elements of strongly unique best simultaneous coapproximations to x1 , · · · , xn ∈ X from G is denoted by WG (x1 , · · · , xn) . The subset G is called an existence set if WG (x1 , · · · , xn ) contains at least one element for every x ∈ X . G is called a uniqueness set if WG (x1 , · · · , xn ) contains at most one element for every x ∈ X . G is called an existence and uniqueness set if WG (x1 , · · · , xn ) contains exactly one element for every x ∈ X . For the sake of brevity, the terminology subspace is used instead of a linear 2-normed subspace. Unless otherwise stated all linear 2-normed spaces considered in this paper are real linear 2-normed spaces and all subsets and subspaces considered in this paper are existence subsets and existence subspaces with respect to strongly unique best simultaneous coapproximation. III. Some Fundamental Properties Of Wg (X1 , · · · , Xn) Some basic pr operties of strongly unique b e s t simultaneous coapproximation are obtained in the following Theorems. Theorem 3.1. Let G b e a subset of a linear 2-normed space X and x1 , · · · , xn ∈ X . Then the following statements hold. (i) WG (x1 , · · · , xn) is closed if G is closed. (ii) WG (x1 , · · · , xn) is convex if G is convex. (iii) WG (x1 , · · · , xn) is bounded. Proof. (i). Let G b e closed. Let { gm} be a sequence in WG (x1 , · · · , xn) such that gm → g˜ . To show that WG (x1 , · · · , xn) is closed, it is sufficient to show that WG (x1 , · · · , xn) . g˜ ∈Since G is closed, {gm} ∈ G and gm → g˜ , we haveg˜ ∈ G. Since {gm} ∈ WG (x1 , · · · , xn) , we have for all k ∈ X [G, x1 , · · · , xn] , g ∈ G and for some t > 0 that ║ g − gm, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max{║ x1 − gm, k ║,· · · , ║ xn − gm, k ║} ⇒ ║ g − g˜, k ║ − ║ gm − g˜, k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} −t max{║ x1 − g˜, k ║ − ║ gm − g˜, k ║,· · · , ║ xn − g˜, k ║ − ║ gm − g˜, k ║}. (3.1) Since gm → g˜ , gm − g˜ → 0 . So ║gm − g˜, k ║→ 0, as 0 and k ar e linearly dependent. Therefore, it follows from (3.1) that
  • 3. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 61 | Page 1 + t ║ g − g˜, k ║≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} −t max{║ x1 − g˜, k ║, · · · , ║ xn − g˜, k ║}, for all g ∈ G , k ∈ X [G, x1 , · · · , xn] and for some t > 0 , when m → ∞ . Thus g˜ ∈ WG (x1 , · · · , xn) . Hence WG (x1 , · · · , xn) is closed. (ii). Let G b e a convex set, g1 , g2 ∈ WG (x1 , · · · , xn) and α ∈ (0, 1) . To show that αg1 + (1 − α)g2 ∈ WG (x1 , · · · , xn) , let k ∈ X [G, x1 , · · · , xn] . Then ║ g − (αg1 + (1 − α)g2), k ║ ≤ α ║ g − g1, k ║ +(1 − α) ║ g − g2, k ║ ≤ α (max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max{║ x1 − g1, k ║,· · · , ║ xn − g1, k ║}) +(1 − α) max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} −t max{║ x1 − g2, k ║,· · · , ║ xn − g2, k ║}) = max {║ x1 − g, k ║,· · · , ║xn − g, k ║} −t max{║ αx1 − αg1 , k ║ · · · ║ αxn − αg1 , k ║} + max {║ (1 − α)x1 − (1 − α)g2 , k ║,· · · , ║ (1 − α)xn − (1 − α)g2 , k║}) = max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max{║ x1 − (αg1 + (1 − α)g2 ), k ║,· · · , ║ xn − (αg1 + (1 − α)g2 , k ║} . Thus αg1 + (1 − α)g2 ∈ WG (x1 , · · · , xn) . Hence WG (x1 , · · · , xn) is convex. (iii). To show that WG (x1 , · · · , xn) is bounded, it is sufficient to show for arbitrary g0, g˜0 ∈ WG (x1 , · · · , xn) that ║ g0 − g˜0, k ║< c for some c > 0 , since ║ g0 − g˜0, k ║< c implies that sup g0 ,g˜0 ∈WG (x1 ,··· ,xn ) finite.║ g0 − g˜0, k ║ is finite and hence the diameter of WG (x1 , · · · , xn ) is Let g0, g˜0 ∈ WG (x1 , · · · , xn) . Then there exists a constant t > 0 such that for every g ∈ G and k ∈ X [G, x1 , · · · , xn], ║ g − g0, k ║≤ max{║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║} and ║ g − g˜0, k ║≤ max{║ x1 − g, k ║,· · · , ║xn − g, k ║} −t max{║ x1 − g˜0, k ║,· · · , ║ xn − g˜0, k ║}. Now, ║ x1 − g0, k ║ ≤ ║ x1 − g, k ║ + ║ g − g0, k ║ ≤ 2 max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max {║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}. 2
  • 4. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 62 | Page ⇒║ x1 − g0, k ║ ≤ max {║ x1 − g, k ║, · · · , ║ xn − g, k ║} , for all g ∈ G. Hence ║ x1 − g0, k ║ ≤ 1 + t d, where d = inf max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} . g∈G 2 Similarly, ║ x1 − g˜0, k ║ ≤ 1 + t d . Therefore, it follows that ║ g0 − g˜0, k ║ ≤ ║ g0 − x1 , k ║ + ║ x1 − g˜0, k ║ 4 ≤ 1 + t d = C . Whence WG (x1 , · · · , xn) is bounded. Let X be a linear2-normed space, x ∈ X and [x] denote the set of all scalar multiplications of x . i.e., [x] = {αx : α ∈ R} . Theorem 3.2. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] . Then the following statements are equivalent for every y ∈ [k]. (i) g0 ∈ WG (x1 , · · · , xn) . (ii) g0 ∈ WG (x1 + y, · · · , xn + y) . (iii) g0 ∈ WG (x1 − y, · · · , xn − y) . (iv) g0 + y ∈ WG (x1 + y, · · · , xn + y) . (v) g0 + y ∈ WG (x1 − y, · · · , xn − y) . (vi) g0 − y ∈ WG (x1 + y, · · · , xn + y) . (vii) g0 − y ∈ WG (x1 − y, · · · , xn − y) . (viii) g0 + y ∈ WG (x1 , · · · , xn) . (ix) g0 − y ∈ WG (x1 , · · · , xn ) . Proof. The proof follows immediately by using Theorem 2.2. Theorem 3.3. Let G be a subspace of a linear 2-normed space X , x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] . Then g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG (αmx1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ), for all α ∈ R and m = 0, 1, 2, · · · . Proof. Claim: g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ), for all α ∈ R. Let g0 ∈ WG (x1 , · · · , xn) . Then ║g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} − t max{║ x1 − g0, k ║,· · · , k║xn − g0, k ║}, for all g ∈ G and for some t > 0 .
  • 5. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 63 | Page ⇒ ║ αg − αg0 , k ║≤ max {║ αx1 − αg, k ║,· · · , ║ αxn − αg, k ║} −t max{║ αx1 − αg0 , k║,· · · , ║ αxn − αg0 , k ║}, for every g ∈ G. 0 0 ( 1) , g g g k             0 0 1 ( 1) ( 1) max , ,..., ,n g g g g x k x k                             −t max{║ αx1 − αg0 , k ║,· · · , ║ αxn − αg0 , k ║}, (α − 1)g0 + g for all g ∈ G and α = 0, since α ∈ G. ⇒ ║ g − g0 , k ║≤ max {║ αx1 + (1 − α)g0 − g, k ║,· · · , ║αxn + (1 − α)g0 − g, k ║} −t max{║ αx1 + (1 − α)g0 − g0, k ║,· · · , ║ αxn + (1 − α)g0 − g0, k ║} ⇒ g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ), when α ≠ 0. If α = 0 , then it is clear that g0 ∈ WG (αx1 + (1 − α)g0 , · · · , αxn + (1 − α)g0 ) . The converse is obvious by taking α = 1 . Hence the claim is true. By repeated application of the claim the result follows. Corollary 3.4. Let G be a subspace of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] . Then t h e foll owin g statements are equivalent for every y ∈ [k], α ∈ R and m = 0, 1, 2, · · · (i) g0 ∈ WG (x1 , · · · , xn) . (ii) g0 ∈ WG (αmx1 + (1 − αm )g0 + y, · · · , αmxn + (1 − αm)g0 + y) . (iii) g0 ∈ WG (αmx1 + (1 − αm)g0 − y, · · · , αmxn + (1 − αm)g0 − y) . (iv) g0 + y ∈ WG (αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (v) g0 + y ∈ WG (αm x1 + (1 − αm )g0 − y, · · · , αm xn + (1 − αm )g0 − y) . (vi) g0 − y ∈ WG (αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (vii) g0 − y ∈ WG (αm x1 + (1 − αm )g0 − y, · · · , αm xn + (1 − αm)g0 − y) . (viii) g0 + y ∈ WG (αmx1 + (1 − αm )g0 , · · · , αmxn + (1 − αm)g0 ) . (ix) g0 − y ∈ WG (αmx1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ) . Proof. The proof follows from simple application of Theorem 2.2 and the Theorem 3.3. Theorem 3.5. Let G b e a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] . Then g0 ∈ WG (x1 , · · · , xn ) ⇔ g0 ∈ WG+[k](x1 , · · · , xn). Proof. The proof follows from simple application of Theorem 3.2. A corollary similar to that of Corollary 3.4 is established next as follows: Corollary 3.6. Let G be a subspace of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈
  • 6. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 64 | Page X [G, x1 , · · · , xn ] . Then t h e foll owin g statements are equivalent for every y ∈ [k], α ∈ R and m = 0, 1, 2, · · · (i) g0 ∈ WG+[k](x1 , · · · , xn) . (ii) g0 ∈ WG+[k](αm x1 + (1 − αm)g0 + y, · · · , αmxn + (1 − αm)g0 + y) . (iii) g0 ∈ WG+[k] (αm x1 + (1 − αm)g0 − y, · · · , αm xn + (1 − αm)g0 − y) . (iv) g0 + y ∈ WG+[k] (αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (v) g0 + y ∈ WG+[k](αm x1 + (1 − αm)g0 − y, · · · , αm xn + (1 − αm )g0 − y) . (vi) g0 − y ∈ WG+[k](αm x1 + (1 − αm )g0 + y, · · · , αm xn + (1 − αm )g0 + y) . (vii) g0 − y ∈ WG+[k] (αm x1 + (1 − αm )g0 − y, · · · , αm xn + (1 − αm )g0 − y) . (viii) g0 + y ∈ WG+[k](αm x1 + (1 − αm )g0 , · · · , αm xn + (1 − αm)g0 ) . (ix) g0 − y ∈ WG+[k](αm x1 + (1 − αm)g0 , · · · , αmxn + (1 − αm)g0 ) . Proof. The proof easily follows from Theorem 3.5 and Corollary 3.4. Proposition 3.7. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] and 0 ∈ G . If g0 ∈ WG (x1 , · · · , xn), then there exists a constant t > 0 such that ║ g0 , k ║≤ max {║ x1 , k ║,· · · , ║ xn, k ║} − t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║}. Proof. The proof is obvious. Proposition 3.8. Let G be a subset of a linear 2-normed space X, x1 , · · · , xn ∈ X and k ∈ X [G, x1 , · · · , xn] . If g0 ∈ WG (x1 , · · · , xn ) , then there exists a constant t > 0 such that for every g ∈ G, ||xi − g0, k|| ≤ 2 max{||x1 − g, k||, · · · , ||xn − g, k||} − t max{║x1 − g0, k ║,· · · , ║ xn − g0 , k ║}, for i = 1, 2, · · · , n. Proof. The proof is obvious. Theorem 3.9. Let G be a subspace of a linear 2-normed space X and x1 , · · · , xn ∈ X . Then the following statements hold. (i) WG (x1 + g, · · · , xn + g) = WG (x1 , · · · , xn) + g, for every g ∈ G . (ii) WG (αx1, · · · , αxn) = αWG (x1 , · · · , xn), for every α ∈ R . Proof. (i). Let g˜ be an arbitrary but fixed element of G . Let g0 ∈ WG (x1 , · · · , xn ) . It is clear that g0 + g˜ ∈ WG (x1 , · · · , xn) + g˜ . To show that WG (x1 , · · · , xn) + g˜ ⊆ WG (x1 + g˜, · · · , xn + g˜) , it is sufficient to show that g0 + g˜ ∈ WG (x1 + g˜, · · · , xn + g˜) . Now, ║ g − g0, k ║≤ max {║ x1 − g, k ║,· · · , ║ xn − g, k ║} −t max{║ x1 − g0, k ║,· · · , ║ xn − g0, k ║} for every g ∈ G and for some t > 0. ⇒ ║ g − (g0 + g˜), k ║≤ max {║ x1 + g˜ − g, k ║, · · · , ║ xn + g˜ − g, k ║}
  • 7. Strongly Unique Best Simultaneous Coapproximation In Linear 2-Normed Space www.iosrjournals.org 65 | Page −t max{║ x1 + g˜ − (g0 + g˜), k ║,· · · , ║ xn + g˜ − (g0 + g˜), k ║}, for every g ∈ G and for some t > 0, since g − g˜ ∈ G. Thus g0 + g˜ ∈ WG (x1 + g˜, · · · , xn + g˜). Conversely, let g0 + g˜ ∈ WG (x1 + g˜,· · · , xn + g˜) . To show that WG (x1 + g˜, · · · , xn + g˜) ⊆ WG (x1 , · · · , xn) + g˜, it is sufficient to show that g0 ∈ WG (x1 , · · · , xn) . Let k ∈ X [G, x1 , · · · , xn] . Then ║ g − g0, k ║ = ║ g + g˜ − (g0 + g˜), k ║ ≤ max {║ x1 + g˜ − (g + g˜), k ║,· · · , ║ xn + g˜ − (g + g˜), k ║} −t max{║ x1 + g˜ − (g0 + g˜), k ║,· · · , ║ xn + g˜ − (g0 + g˜), k ║}, for all g ∈ G and for some t > 0, since g + g˜ ∈ G. ⇒ g0 ∈ WG (x1 , · · · , xn). Thus the result follows. (ii). The proof is similar to that of (i). Remark 3.10. Theorem 3.9 can be restated as WG (αx1 + g, · · · , αxn + g) = αWG (x1 , · · · , xn) + g, for all g ∈ G. References [1] Y.J.Cho, “Theory of 2-inner product spaces”, Nova Science Publications, New York, 1994. [2] J.B.Diaz and H.W.McLaughlin, On simultaneous Chebyshev approximation of a set of bounded complex-valued functions, J.Approx Theory, 2 (1969), 419-432. [3] J.B.Diaz and H.W.McLaughlin, On simultaneous Chebyshev approximation and Chebyshev approximation with an additive weight function, J. Approx. Theory, 6 (1972), 68-72. [4] C.B.Dunham, Simultaneous Chebyshev a p p r o x i ma t i o n of functions on interval, Proc.Amer.Math.Soc., 18 (1967), 472-477. [5] Geetha S.Rao, Best coapproximation in normed linear spaces in Approximation Theory, V.C.K.Chui, L.L.Schumaker and J.D.Ward (eds.), Academic Press, New York, 1986,535-538. [6] Geetha S.Rao and K.R.Chandrasekaran, Best coapproximation in normed linear spaces with property (Λ) , Math. Today, 2 (1984), 33-40. [7] Geetha S.Rao and K.R.Chandrasekaran, Characterizations of elements of best coapproximation in normed linear spaces, Pure Appl. Math. Sci., 26(1987), 139-147. [8] Geetha S.Rao and R.Sa ra va na n, Best simultaneous coapproximation, Indian J. Math., 40 No.3, (1998), 353-362. [9] D.S.Goel, A.S.B.Holland, C.Nasim and B.N.Sahney, On best simultaneous approximation in normed linear spaces. Canad. Math. Bull., 17 (No. 4) (1974), 523-527. [10] D.S.Goel, A.S.B.Holland, C.Nasim, and B.N.Sahney, Characterization of an element of best Lp -simultaneous approximation, S.R.Ramanujan memorial volume, Madras, 1974, 10-14. [11] P.J.Laurent and D.V.Pai, Simultaneous approximation of vector valued functions, Research Report, MRR03-97, Department of Mathematics, IIT, Bombay, 1997. [12] W.H.Ling, H.W.McLaughlin a n d M.L.Smith, Approximation of random functions, AMS Notices, 22 (1975), A-161. [13] D.V.Pai, Characterization of strong uniqueness of best simultaneous approximation, in “Proceedings of the Fifth Annual Conference of Indian Society of Industrial and Applied Mathematics (ISIAM)”, Bhopal, 1998. [14] D.V.Pai a n d K.Indira, Strong unicity in simultaneous approximation, in v“Proceedings of the Conference on Analysis, Wavelets and Applications”, Feb. 12-14, 2000, being edited by H.P.Dikshit. [15] P.L.Papini and I. Singer, Best coapproximation in normed linear spaces, Mh. Math.88 (1979), 27-44. [16] G.H.Phillips and B.N.Sahney, Best simultaneous approximation in the L1 and L2 norms, in “Proceeding of conference on theory of Approximation at University of Calgary (1975),” Academic Press, New York.