SlideShare a Scribd company logo
1 of 8
Download to read offline
International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016]
Page | 150
Effect of Temperature and Moisture on Degradation of Herbicide
Atrazine in Agricultural Soil
Xinfeng Dong1
, Hanwen Sun2
1,2
College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
1
Shijiazhuang Center for Disease Control and Prevention of Hebei Province, Shijiazhuang, China
Corresponding authors:- hanwen@hbu.edu.cn
Abstract— Degradation rate and degraded products, deethylatrazine (DEA), deisopropylatrazine (DIA) and atrazine-2-
hydroxy (HA), of herbicide atrazine in agricultural soil were determined by ultra-performance liquid chromatography–mass
spectrometry. When treating soils for 60d at 25°C, the degradation rate of atrazine increased with the moisture from 5 to
20%. The degradation was fitted one-order kinetic equation and degradation rate constant (k) and Half-life (T1/2) were
obtained. T1/2 decreased by 3–4 folds with the increasing temperature from 5 to 35°C and moisture from 5 to 20%. The
species and content of the degraded products increased with the temperature and moisture. When treating soil for 60d, the
sum content of three degraded products, DEA, DIA and HA is 3–6.8 times greater than atrazine residue. An updated
metabolism pathway of atrazine in soil was presented.
Keywords— Atrazine, Degradation kinetics, Degradation products, Metabolism pathways, Soil.
I. INTRODUCTION
Modern agricultural practices often require extensive use of herbicides for production of corn, soybeans, sorghum, and other
row crops. Due to the continuous use of herbicides in agriculture, appreciable quantities of herbicides and their degraded
products may accumulate in the ecosystem leading to serious problem to man and the environment. Herbicides, which enter
the soil environment, are subject to a variety of degradation processes. The overall degradation of a pesticide from soil results
from a combination of mechanisms such as microbial degradation, chemical hydrolysis, photolysis, volatility, leaching and
surface runoff. The degree to which each mechanism will contribute to the overall degradation of the pesticide is in turn
dependent on the physicochemical properties of the pesticide, characteristics of the soil, environmental conditions and
management practices.1
Therefore, it is essential to study the residue and degradation pattern of herbicides in soil, crops and
water systematically in order to generate meaningful data from the point of view of plant protection, public health and
environmental safety.
Atrazine is one of the most widely used herbicides all over the world. It is a pollutant of environmental concern due to its low
biodegradability and its high potential to contaminate the surface waters and ground water. Several epidemiological cancer
studies concerning atrazine and its possible association with carcinogenic effects in humans are being reviewed by the US
EPA.2
The acute toxicity of atrazine’s metabolites such as deethyl- and deisopropylatrazine was found to be twice as that of
atrazine.3
Although several countries gave up the use of atrazine because of its toxicity, it is still one of the most popular
herbicide in many countries.4
Therefore, the development of ecological farming is encouraged.
The factors influencing the degradation of pesticides in soil were reviewed.1)
An updated overview of atrazine degradation by
microorganisms under different ecosystems was presented.5
Some microbial consortia were reported for their metabolic
cooperative actions by investigating the individual’s contribution in atrazine degradation.6,7
The degradation of atrazine in
plant and water was reported by using biotic or abiotic method.8-10
Biodegradation of atrazine in different soils using various
bioprocessed material were investigated.11
The best studied atrazine-degrading bacterium is Pseudomonas sp. strain ADP
which was isolated from a herbicide spill site.12
Dependence of accelerated degradation of atrazine on soil pH in French and
Canadian soils was investigated, where both hydroxylated and dealkylated atrazine metabolites were detected, but no clear
pattern of metabolite production could be determined.13
Different environmental conditions obviously influence on the
degradation of atrazine. The effects of temperature and moisture on the soil net nitrogen mineralization was investigated
based on N content change,14
but without degradation information before mineralization process. The degradation rates of
atrazine in the control soil at three temperatures were measured by quantification with high performance liquid
chromatography (HPLC).15
This study showed that its degradation was faster in the unsterilized soil than in sterilized soil and
illustrated that microbial degradation contributed to the overall degradation, but without any information for the degraded
products.
International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016]
Page | 151
Currently, no information is available concerning the combined effect of temperature and moisture on the degradation rate
and its degraded products of atrazine in agricultural soil. The primary objective of this study was to assess simultaneously the
effects of temperature and moisture upon atrazine degradation in loam soil with an ultra-performance liquid
chromatography–electrospray ionization–mass spectrometry (UPLC‒ESI‒MS). This information will be useful in
understanding the behavior of atrazine in soil in a temperature- and moisture-controlled environment, and in selecting the
conditions needed for achieving optimal degradation, as well as in evaluating the potential impact of its degraded products.
II. MATERIALS AND METHODS
2.1 Chemicals and Materials
Atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and atrazine-2-hydroxy (HA) (>98.5% for all) were purchased
from Dr. Ehrenstorfer Chemical Industries (Augsburg, Germany). The methanol, acetonitrile, ammonium acetate and formic
acid (liquid chromatography grade for each) were purchased from Dikma Science and Technology Co., Ltd (Beijing, China).
2.2 Instrumentation
UPLC-ESI-MS/MS analysis of soil samples were performed on a Xevo Triple Quadrupole (TQ) system (Waters, USA). This
system consisted of an autosampler, a binary pump, a solvent degasser, a BEH C18 stainless steel cartridge column (100 mm
×1 mm i.d., 1.7μm; Waters) equipped with a guard column at 40°C, and a TQ mass spectrometer. A HZ-9202S water bath
temperature oscillator(Equipment Factory of Science and Education, Taichang, China), a centrifuge TGL-16M (Xiangyi
Centrifuge Co. Hunan, China), a RE-2000A rotary evaporator (Shanghai Yarong Biochemistry Instrument Co.), and a PHS-
3C pH meter (Shanghai Precision & Scientific Instrument Co., Shanghai, China) were used in sample treatment.
2.3 Treatment of Soil Samples
The soil (sandy loam) used in this study was taken from a field in Zanhuang county, Xingtang county, and Shijiazhuang
countryside, which was marked as soil 1#, soil 2#, and soil 3#. The fresh surface soil samples (0‒20cm) were treated by
removing gravel, grass root, beaten leaf followed by over 40 mesh sieve for use in the test. The soil had a pH of 7.5‒8.1 and
contained 20‒24 g/kg of organic matter. After the fresh soil samples were dried at ambient temperature (20°C), a volume of
0.8 mL atrazine standard in acetonitrile (1.000 mg/mL) was added in an 80 g of the dried soil sample. The initial
concentrations of atrazine for the temperature and moisture studies were 10 mg/kg. After evaporated acetonitrile in fume
hood, the test soil samples contained with 10% of water were prepared with sterile deionized water. After stir to mix well, the
soil samples were placed in a constant temperature incubator to investigate the degradation within 60d under treatment at 5,
25, and 35°C, respectively. The content of atrazine residue was determined in triplicate by UPLC-MS method at different
treatment times.
The soil sample was brought to the desired moisture content by addition of sterile deionized water. Soil moisture content was
maintained constant throughout the incubation by weighing and correcting for any weight loss by adding sterile deionized
water. The soil samples were placed in a constant temperature incubator to investigate the degradation within 60d under
treatment at 25°C and moisture content of 5, 10, and 20%, respectively. The content of atrazine residue was determined in
triplicate by above method.
2.4 Analysis of Atrazine and Degraded Product in Soil Samples
A portion of 3 g test sample was accurately weighed and added into a 50 mL centrifuge tube. After vortex-mixing for 1 min,
atrazine and three degraded products were extracted for 10minusing 12 mL of acetonitrile. The extracts were centrifuged at
9980×g for 6 min. Then, the supernatant was transferred into a heart-shaped bottle and the residue was again extracted. The
extracts were concentrated to just dryness by a rotator evaporator at 35°C. The dried residue was re-dissolved into 0.5 mL
acetonitrile/water (20: 80, v/v). The final solutions were filtered through a 0.22 μm filter membrane before LC–MS analysis.
Waters ACQUITY UPLCTM BEH C18 column (100 mm ×1 mm i.d., 1.7μm) was used for separation with a mobile phase
consisted of aqueous solution containing 0.05% v/v formic acid (A) and acetonitrile (B), anda column temperature of 40°C.
Sample injection volume was 5 μL. Separation was performed using gradient elution at a flow of 1 mL/min. Initial conditions
were 20% acetonitrile and 80% formic acid solution (0.05%) with a linear gradient to 50% of acetonitrile within 6 min. After
that, the initial conditions were reached within 2 min, and the system was equilibrated for 8 min.
The mass spectrometer used was a triple quadruple equipped with an ESI interface operating in the positive mode.
Quantification was carried out by using matrix matched standards with the external calibration. The TQ parameters, retention
International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016]
Page | 152
times, parent ions and daughter ions as well as collision energy for atrazine and its degraded products were presented in our
last work.16
III. RESULTS AND DISCUSSION
3.1 Analytical Performance of the Method
For atrazine, DIA, DEA, and HA, positive mode was found to offer higher parent ion signal intensities and better
fragmentation patterns than negative mode. The matrix effect was observed, showing enhancing effect (15%), so
quantification was performed using matrix matched standards with the external calibration. Further test showed no
significant differences in the mass accuracies obtained in the matrix-matched standards compared to those prepared with pure
solution. The results demonstrated that the quantification using a matrix-matched standard calibration curve is the most
effective method of reducing indirect matrix effects present in this method. The response was linear over two orders of
magnitude with correlation coefficients (r2
) of 0.9975. The limits of quantification for atrazine and its degraded products
were 0.4 µg/kg. The intra-day precision (RSD) was measured by determining a set of spiked soil samples at 0.4, 2.0, and 4
μg kg‒1
for seven times within a day and the inter-day precision was determined by analyzing the spiked samples for a time
per a day within seven days. They were 2.2–9.3%, and 5.7–17.1%, respectively. The average recovery varied from 87.1 to
99.4 % with the RSD of 1.6–11.8%. It is indicated the method has high sensitivity, repeatability, and accuracy for the
quantification of atrazine and its degraded products.
3.2 Effect of Soil Temperature on Degradation Rate
In this work, three kinds of unsterilized soils (3 samples for each kind) containing 10% water were treated for 2h–60d at
temperature of 5, 25, and 35°C, respectively. The content of atrazine in the control soil was determined in triplicate at
different times for investigating its degradation dynamics. The degradation curves are shown in Figure 1.
FIG. 1. DEGRADATION OF ATRAZINE IN UNSTERILIZED SOIL AT 5, 25 AND 35°C RSDS FOR EACH
DEGRADATION RATE POINT LESS THAN 5%
In general, residual quantity of atrazine decreased with the increase in temperature. Degradation was faster at all three
temperatures in the unsterilized soil. Among them, degradation was slowest at 5°C and fastest at 35°C with 25°C being
intermediate. At treatment temperature at 5. 25, and 35 °C for 60d, the degradation rate of atrazine was 59.8, 86.4,and
95.6% for soil 1#, 62.2, 87.3, and 96.3% for soil 2# sample, and 63.1, 87.1, and 95.9% for soil 3#.The dissipation data
determined for atrazine were treated by statistical analysis with SPSS software. In all cases, dissipation of atrazine was
International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016]
Page | 153
fitted to the first-order kinetic equation: C = C0 e−kt
, with correlation coefficient (r2
) ranged from 0.938 to 0.986, where C0
is the concentration of atrazine in soil at time zero (mg/kg), k is the first-order rate constant (day−1
) and t is time (day).
Half-life (T1/2) values for atrazine in soil were calculated from the equation: T1/2= ln2/k. Kinetic parameters are listed in
Table 1.
TABLE 1
KINETIC PARAMETERS OF ATRAZINE IN SOIL AT DIFFERENT TEMPERATURES
Kinetic
parameter
Soil 1# Soil 2# Soil 3#
5°C 25°C 35°C 5°C 25°C 35°C 5°C 25°C 35°C
C0 10.54 10.64 12.06 10.57 10.56 11.88 10.63 10.40 11.614
r2
0.961 0.984 0.956 0.950 0.986 0.962 0.938 0.983 0.959
k 0.015 0.036 0.057 0.015 0.033 0.060 0.016 0.036 0.058
T1/2(d) 46.2 19.3 12.2 46.2 20.7 11.6 43.3 19.3 12.0
As adsorption process is exothermic and desorption process is endothermic, it is expected that adsorption reduced and
herbicide solubility increased with increase in temperature. Chemical degradation of a herbicide through hydrolytic
reactions is dependent on the nature of the chemical and the characteristics of the soil. The climate can directly influence
the rate of hydrolysis through modulation of the temperature and moisture of the soil. Soil microorganisms play an
important role in the intermediate degradation and subsequent mineralization of atrazine.17,18
Temperature influences obviously constant (k) of degradation rate, resulting both k and T1/2 increased by 3‒4 fold for 5 to
35°C. This is due to that the increase in temperature enhanced the solubility and hydrolysis of atrazine and stimulated
microbial activity. Under 25 and 35°C, T1/2 was less than 13d. There was no obvious difference for T1/2 between the three
kinds of soil samples due to that the soil has similar organic matter content (20‒24 g/kg).Since soil microbial activities are
strongly modulated by temperature, atrazine degradation would be expected to be greater in tropical soils.
3.3 Effect of Soil Temperature on Degraded Product
The catabolites of atrazine were confirmed and their contents in the soil with 10% moisture were determined in triplicate
under different treatment time at 5, 25, and 35°C. In general, there was no obvious difference of degradation product
content for the selected three soils under same temperature and treatment time. When treatment at 5°C, degradation
product DEA was jet observed up to 15d, the content of which was a little more than its LOQ. The content of DEA
increased with treatment time. DEA was firstly found in atrazine degradation products, it is due to higher deethyl rate of
microorganism to atrazine than deisopropyl.19
When up to 45d, degradation product DIA was detected, while no HA was
detected up to 60d. Three degraded products, DEA, DIA, and HA, were detected when treatment at 25°C for 5d, 15d, and
20d, and when treatment at 35°C for 5d, 10d, and 15d, respectively. This indicated that the species and concentrations of
the degraded products increased with the increasing temperature. Figure 2 shows chromatograms of atrazine and its
degradation products in the soils with 10% moisture for different treatment times at 35°C.
FIG. 2. CHROMATOGRAMS OF ATRAZINE AND ITS DEGRADED PRODUCTS IN SOIL 1# WITH 10% MOISTURE FOR DIFFERENT
TREATMENT TIMES AT 35 °C. A―2h, B―10d, C―30d, D―60d
International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016]
Page | 154
When treatment for 60d at 35°C, the content of atrazine, DEA, DIA, and HA was 0.44, 0.39, 0.60, and 0.34 mg/kg for soil
1#; 0.37, 0.41.1.43, and 0.53 mg/ kg for soil 2#; 0.37, 0.39, 1.42, and 0.69 mg/kg for soil 3#. In the cases for three soils, the
sum content of three degraded products is 3, 6.4, and 6.8 times greater than atrazine residue, respectively. This should be
caused for more concern due to that these degraded products have similar or higher toxicity than atrazine residue.
3.4 Effect of Soil Moisture on Degradation Rate
Water acts as solvent for herbicide movement and diffusion and is essential for microbial functioning. Herbicide degradation
is slow in dry soils. The rate of herbicide transformation generally increases with water content. In very wet soils such as rice
paddies, the rate of diffusion of atmospheric oxygen into the soil is limited and anaerobic herbicide transformation can
prevail over aerobic degradation. Poor oxygen transfer at high moisture content can, however, accelerate or retard the
degradation of pesticides. Atrazine disappeared more transformation rapidly under anaerobic conditions than under aerobic
conditions.1
Three kinds of soil samples containing 5%, 10%, and 20% water were placed for 2h‒60d at temperature of 25°C.
The content of atrazine in the control soil was determined in triplicate at different times for investigating its degradation
dynamics. The degradation curves are shown in Figure 3.
FIG. 3. DEGRADATION OF ATRAZINE IN UNSTERILIZED SOIL WITH DIFFERENT MOISTURE CONTENTS AT 35°C
Our experiments indicated that degradation rate increased with moisture content in the unsterilized soil. Among them
degradation of atrazine was slowest at 5% and fastest at 20% with 10% being intermediate. For treating soil 1#, soil 2#, and
soil 3# for 60 d, the degradation rate of atrazine was 79.2, 82.1, and 78.7% for 5% moisture, 86.4, 87.3, and 87.1% for 10%
moisture content, and 95.7, 93.1, and 93.9% for 20% moisture content, respectively.
The dissipation data determined for atrazine were treated by statistical analysis with SPSS software. In all cases, dissipation
of atrazine was fitted to the first-order kinetic equation, with correlation coefficient ranged from 0.936 to 0.980. Kinetic
parameters are listed in Table 2.
TABLE 2
KINETIC PARAMETERS OF ATRAZINE IN SOIL WITH 5%, 10%, AND 20% MOISTURE CONTENT
kinetic
parameter
Soil 1# Soil 2# Soil 3#
5 % 10% 20% 5 % 10% 20% 5 % 10% 20%
C0 10.85 10.64 11.39 10.85 10.56 10.49 10.69 10.40 10.83
r2
0.965 0.971 0.953 0.950 0.981 0.972 0.936 0.980 0.960
k 0.026 0.036 0.050 0.027 0.033 0.044 0.026 0.036 0.047
T1/2(d) 26.7 19.3 13.7 25.7 20.7 15.8 26.7 19.3 14.8
International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016]
Page | 155
Soil moisture content influences obviously degradation rate constant (k), resulting T1/2 decreased by 3‒4 fold when soil
moisture content increased from 5% to 20%. This is due to that moisture content increased microbial mobility, atrazine
diffusion, and chemical availability.20
Since soil microbial activities are also strongly modulated by moisture content,
atrazine degradation would be expected to be greater in wet soils within rainy season.
3.5 Effect of Soil Moisture on Degraded Product
The degraded products were confirmed, and their contents in soil with different moisture content were determined in
triplicate under different treatment times at 25°C. In general, there was a difference of degraded product content for the three
soils with different moistures and same treatment time. For the soil with the three moisture contents, when treatment for 5d,
low content DEA was detected, and the content in the three soils was same (8 μg/kg). The content of DEA increased with
treatment time. After treated for 15d, DIA was detected for the three soils with 20% moisture content, and for two soils with
10% moisture content; After treated for 20d, HA was detected for the three soil with 10 and 20% moisture content, while no
HA was detected for the three soils with 5% moisture content after treated for up to 60d. This change is similar with that of
degradation rate with moisture content. Figure 4 shows the relative contents of atrazine and its degraded species in the soils
with different moistures for treatment 60d at 25°C.
FIG. 4. THE RELATIVE CONTENT OF ATRAZINE'S DEGRADED PRODUCTS IN SOIL 1# WITH DIFFERENT
MOISTURES FOR TREATMENT 60d at 25 °C.
When treatment for 60d, test results showed the content of atrazine, DEA, DIA, and HA was as follows: for the soils with
5% moisture content, 2.08, 0.3317, 0.5691 and 0 mg/kg for soil1#, 1.79, 0.3437, 0.5694, and 0 mg/kg for soil2#, and 2.13,
0.3451, 0.6013, and 0 mg/kg for soil3#; for the soils with 10% moisture content, 1.36, 0.3415, 0.5413, and 0.1218 mg/kg
for soil 1#; 1.27, 0.3766, 0.7684, and 0.1731 mg/kg for soil 2#; 1.29, 0.3709, 0.6332, and 0.1122 mg/kg for soil 3#; and
for the soils with 20% moisture content, 0.43, 0.3491, 0.8884, and 0.2808 mg/kg for soil 1#, 0.69, 0.3966, 1.2073, and
0.4833 mg/kg for soil 2#; and 0.61, 0.3699, 0.8421, and 0.3642 mg/kg for soil 3#. It can be seen from above data that the
sum content of degraded products increased with moisture content. It is due to that moisture content increased microbial
mobility, atrazine diffusion, and hydrolysis efficiency.20,21
For the soils with 20 % moisture content, the sum content of
degraded products was 3.5, 3.0, and 2.6 times greater than atrazine residue for soils 1#, 2# and 3#, respectively. This
should be caused for more concern due to that these degradation products have similar or higher toxicity than atrazine
residue.
3.6 Metabolism Pathways of Atrazine in Soil
Metabolism of atrazine in soil is a very complicated process, consisting four main steps: dehalogenation, N-dealkylation,
deamination, and ring cleavage. Based on the mass spectra16
and some relative reports,2,6,22,23
this study summary and
presents an updated metabolism pathway of atrazine in soil (Figure 5).
International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016]
Page | 156
FIG. 5. METABOLISM PATHWAYS OF ATRAZINE IN SOIL
Atrazine degrades in soil through both biotic and abiotic reactions to the hydroxylated metabolite and dealkylated
metabolites. The atrazine degrading bacteria generally initiate the degradation through a hydrolytic dechlorination, to
hydroxyatrazine (HA) through a hydrolytic dechlorination catalysed by the enzyme atrazine chlorohydrolase (atzA). Atrazine
may degrade to deethylatrazine (DEA) through a hydrolytic deethylnation catalysed by hydroxy-atrazine ethylamino-
hydrolase (atzB), and to deisopropylatrazine (DIA) through N-isopropyl-ammelide isopropyl-amino-hydrolase (atzC). HA
may degrade to dealkylated HDIA and HDEA.24
DEA may further degrade to the dealkylated hydroxymetabolitesof
didealkylatrazine (DDA) and hydroxydeethylatrazine (HDEA), DIA may further degrade to the hydroxymetabolites of DDA
and HDIA. The three degraded products, DDA, HDIA, and HDEA, may further degrade to ammeline through hydrolytic
dechlorinationc atalysed by atzA, through hydrolytic deethylnationcatalysed by at zB, and through hydrolytic
deisopropylnation catalysed by atzC, respectively. Ammeline may further degrade to ammelide through
hydrolyticdeamination, and ammelide further to cyanuric acid through hydrolyticdeamination. The ring of cyanuric acid was
opened by cyanuric acid amidohydrolase (atzD), produced biuret, which may degrade by biuret amidohydrolase (atzE) to
allophanate and urea. Allophanate may mineralize by allophanatehydrolase (atzF) to carbon dioxide and ammonia,6 and urea
may mineralize to carbon dioxide and nitrogen gas.25
IV. CONCLUSIONS
The ultra-performance liquid chromatography–mass spectrometric method proposed can be used to investigate the
degradation rate and degraded products, deethylatrazine (DEA), deisopropylatrazine (DIA) and atrazine-2-hydroxy (HA) of
atrazine in soil. Atrazine degradation can be accelerated by regulating soil temperature and soil moisture, fitted one-order
kinetic equation. When treating soil for 60d, the sum content of above three degraded products is 3–6.8 times greater than
International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016]
Page | 157
atrazine residue. The information for its metabolism pathway in soil will be useful in understanding the behavior of atrazine
in soil in a temperature- and moisture-controlled environment, and in selecting the conditions needed for achieving optimal
degradation, as well as in evaluating the potential impact of its degraded products.
ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China (No. 21375032).
REFERENCES
[1] Pal, R., Chakrabarti, K., Chakraborty, A. and Chowdhury, A. 2006. Degradation and effects of pesticides on soil microbiological
parameters‒A Review.Int. J. Agric. Res., 1: 240‒258.
[2] Sene, L., Converti, A. G., Secchi A. R. and Simão, R. D. C. G. 2010. New aspects on atrazine biodegradation. Braz. Arch. Biol.
Techn. 53: 487‒496.
[3] Stevens, J. T. and Sumner, D. D.1991. Herbicides, in Handbook of pesticide technology, by Hayes, W. R. Jr. and Laws, E. R. Jr.
(Eds.) Academic Press, New York.
[4] Jin, R. and Ke, J. 2002. Impact of atrazine disposal on the water resources of the Yang river in Zhangjiakou area in China. Bull.
Environ. Contam Tox. 68: 893–900.
[5] Evy Alice Abigail, M. and Nilanjana, D. 2012. Microbial degradation of atrazine, commonly used herbicide. Int. J. Adv. Biol. Res. 2:
16‒23.
[6] De Souza, M. L., Newcombe, D., Alvey, S., Crowley, D. E., Hay, A., Sadowsky, M. J. and Wackett, L. P. 1998. Molecular basis of a
bacterial consortium interspecies catabolism of atrazine. Appl. Environ. Microbiol. 64: 178 –184.
[7] Smith, D., Alvey, S. and Crowley, D. E. 2005. Cooperative catabolic pathways within an atrazine degrading enrichment culture
isolated from soil. FEMS Microbiol. Ecol. 51: 265–273.
[8] Raveton, M., Ravanel, P., Serre, A. M., Nurit, F. andTissut, M. 1997. Kinetics of uptake and metabolism of atrazine in model plant
systems. Pestic. Sci. 49: 157–163.
[9] Pearson, R., Godley, A. and Cartmell, E. 2006. Investigating the in situ degradation of atrazine in groundwater.. Pest Manag. Sci. 62:
299–306.
[10] Acero, J., Stemmler, K. and von Gunten, U. 2000. Degradation kinetics of atrazine and its degradation products with ozone and OH
radicals: A predictive tool for drinking water treatment. Environ. Sci. Technol. 34: 591‒597.
[11] Kadian, N., Gupta, A., Satya, S., Mehta, R. K. and Malik, A. 2008. Biodegradation of herbicide (atrazine) in contaminated soil using
various bioprocessed materials. Bioresour. Technol. 99: 4642‒4647.
[12] Mandelbaum, R. T., Allan, D. L. and P.Wackett, L.1995. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-
triazine herbicide atrazine. Appl. Environ. Microbiol. 61: 1451–1457.
[13] Houot, S., Topp, E. and Yassir, A. 2000. Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils.
Soil Biol. Biochem. 32: 615‒625.
[14] Wang, C. H., Xing, X. R. and Han, X. G. 2004. The effects of temperature and moisture on the soil net nitrogen mineralization in an
Aneulolepidium chinensis grassland, Inner Mongolia. China Acta Ecologica Sinica 24: 2472‒2476.
[15] James, T. K., Rahman, A., Trolove, M. R. and Parker, M. D. 2010.Enhanced degradation of atrazine in soils with a history of repeated
use Seventeenth Australasian Weeds Conference, Christchurch, New Zealand, pp.23‒27.
[16] Dong, X. F., Liang, S.X. and Sun, H.W., 2016. Analysis of herbicide atrazine and its degradation products in agricultural soil by ultra-
performance liquid chromatography‒mass spectrometry. Int. J. Environ. Agric. Res. 2016, 2: 29‒35.
[17] Cook, A. and Hutter, R. 1984. Dethylsimazine, bacterial dechlorination, deamination and complete degradation. J. Agric. Food Chem.
32: 581‒585.
[18] Mandelbaum, R.T., Wackett, I.P. and Allan, D.T. 1993. Mineralization of s-trazing ring of atrazine by stable bacterial mixed cultures.
Appl. Environ. Microbiol. 59: 1695‒1710.
[19] Mills, M.S. and Thurman, E.M.1994. Preferential dealkylation reactions of s-triazine herbicides in the unsaturated zone. Environ. Sci.
Technol. 28: 600–605.
[20] Sommers, L. E., Gilmour, C. M., Wildung, R. E. and Beck, S. M. 1981. The effect of water potential on decomposition processes in
soils. In Water Potential Relations in Soil Microbiology (J. E. Parr, Ed.), Soil Science Society of America Special Publication Number
9, pp. 97‒117.
[21] Madison, W. I., Ingerslev, F., Toräng, L., Loke, M.L., Halling-Serensen, B.and Nyholm, N.2001. Primary biodegradation of
veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44: 865‒872.
[22] Topp, E., Mulbry, W.M., Zhu, H., Nour, S.M. and Cuppels, D. 2000. Characterization of s-triazine herbicide metabolism by a
Nocardioides sp. isolated from agricultural soils. Appl. Environ. Microbiol. 66: 3134‒3141.
[23] Komang Ralebitso, T., Senior, E. and van Verseveld, H. W. 2002. Microbial aspects of atrazine degradation in natural environments.
Biodegradation 13: 11‒19.
[24] Lerch, R.N., Blanchard, P.E. and Thurman, E.M.1998. Contribution of hydroxylated atrazine degradation products to the total
atrazine load in Midwestern streams. Environ. Sci. Technol. 32: 40–48.
[25] Gunther, F.A. and Gunther, J.D. 1970. The triazine herbicides—residue reviews, volume 32: New York, Springer-Verlag, p.413

More Related Content

What's hot

Lemna Minor Yousaf Riaz
Lemna Minor Yousaf RiazLemna Minor Yousaf Riaz
Lemna Minor Yousaf RiazYousaf Riaz
 
Studies the Effects of Imidacloprid on Enzymatic Activities in Clay Loam Soil
Studies the Effects of Imidacloprid on Enzymatic Activities in Clay Loam SoilStudies the Effects of Imidacloprid on Enzymatic Activities in Clay Loam Soil
Studies the Effects of Imidacloprid on Enzymatic Activities in Clay Loam Soilijtsrd
 
41.Effect of organic amendments on the Biochemical transformations under diff...
41.Effect of organic amendments on the Biochemical transformations under diff...41.Effect of organic amendments on the Biochemical transformations under diff...
41.Effect of organic amendments on the Biochemical transformations under diff...Annadurai B
 
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...IJEAB
 
Plant growth promoting characterization of soil bacteria isolated from petrol...
Plant growth promoting characterization of soil bacteria isolated from petrol...Plant growth promoting characterization of soil bacteria isolated from petrol...
Plant growth promoting characterization of soil bacteria isolated from petrol...Agriculture Journal IJOEAR
 
Isolation and Growth Kinetic Studies Of Bacillus Methylotrophicus P10 & P11 ...
	Isolation and Growth Kinetic Studies Of Bacillus Methylotrophicus P10 & P11 ...	Isolation and Growth Kinetic Studies Of Bacillus Methylotrophicus P10 & P11 ...
Isolation and Growth Kinetic Studies Of Bacillus Methylotrophicus P10 & P11 ...theijes
 
M0333063067
M0333063067M0333063067
M0333063067theijes
 
2006 Caravaca et al liquid organic amendments and retama
2006 Caravaca et al liquid organic amendments and retama2006 Caravaca et al liquid organic amendments and retama
2006 Caravaca et al liquid organic amendments and retamaGermán Tortosa
 
Investigation into Effect of Soil Moisture Depletion on Vegetable Crop Uptake...
Investigation into Effect of Soil Moisture Depletion on Vegetable Crop Uptake...Investigation into Effect of Soil Moisture Depletion on Vegetable Crop Uptake...
Investigation into Effect of Soil Moisture Depletion on Vegetable Crop Uptake...National Institute of Food and Agriculture
 
Effect of gas flaring on some phytochemicals and trace metals of fluted pumpk...
Effect of gas flaring on some phytochemicals and trace metals of fluted pumpk...Effect of gas flaring on some phytochemicals and trace metals of fluted pumpk...
Effect of gas flaring on some phytochemicals and trace metals of fluted pumpk...Alexander Decker
 
4. optimization of culture condition for enhanced decolorization of reactive ...
4. optimization of culture condition for enhanced decolorization of reactive ...4. optimization of culture condition for enhanced decolorization of reactive ...
4. optimization of culture condition for enhanced decolorization of reactive ...Darshan Rudakiya
 
Triclosan Persistence in Environment and Its Potential Toxic Effects on Algae
Triclosan Persistence in Environment and Its Potential Toxic Effects on AlgaeTriclosan Persistence in Environment and Its Potential Toxic Effects on Algae
Triclosan Persistence in Environment and Its Potential Toxic Effects on AlgaeAJASTJournal
 

What's hot (19)

Lemna Minor Yousaf Riaz
Lemna Minor Yousaf RiazLemna Minor Yousaf Riaz
Lemna Minor Yousaf Riaz
 
Studies the Effects of Imidacloprid on Enzymatic Activities in Clay Loam Soil
Studies the Effects of Imidacloprid on Enzymatic Activities in Clay Loam SoilStudies the Effects of Imidacloprid on Enzymatic Activities in Clay Loam Soil
Studies the Effects of Imidacloprid on Enzymatic Activities in Clay Loam Soil
 
Bioremediation of soils polluted by petroleum hydrocarbons by Pseudomonas putida
Bioremediation of soils polluted by petroleum hydrocarbons by Pseudomonas putidaBioremediation of soils polluted by petroleum hydrocarbons by Pseudomonas putida
Bioremediation of soils polluted by petroleum hydrocarbons by Pseudomonas putida
 
51899
5189951899
51899
 
41.Effect of organic amendments on the Biochemical transformations under diff...
41.Effect of organic amendments on the Biochemical transformations under diff...41.Effect of organic amendments on the Biochemical transformations under diff...
41.Effect of organic amendments on the Biochemical transformations under diff...
 
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
 
Plant growth promoting characterization of soil bacteria isolated from petrol...
Plant growth promoting characterization of soil bacteria isolated from petrol...Plant growth promoting characterization of soil bacteria isolated from petrol...
Plant growth promoting characterization of soil bacteria isolated from petrol...
 
16
1616
16
 
IJACSmajid
IJACSmajidIJACSmajid
IJACSmajid
 
Isolation and Growth Kinetic Studies Of Bacillus Methylotrophicus P10 & P11 ...
	Isolation and Growth Kinetic Studies Of Bacillus Methylotrophicus P10 & P11 ...	Isolation and Growth Kinetic Studies Of Bacillus Methylotrophicus P10 & P11 ...
Isolation and Growth Kinetic Studies Of Bacillus Methylotrophicus P10 & P11 ...
 
M0333063067
M0333063067M0333063067
M0333063067
 
2006 Caravaca et al liquid organic amendments and retama
2006 Caravaca et al liquid organic amendments and retama2006 Caravaca et al liquid organic amendments and retama
2006 Caravaca et al liquid organic amendments and retama
 
Hematological and Biochemical Changes Induced by Water Pollutants in Fishes C...
Hematological and Biochemical Changes Induced by Water Pollutants in Fishes C...Hematological and Biochemical Changes Induced by Water Pollutants in Fishes C...
Hematological and Biochemical Changes Induced by Water Pollutants in Fishes C...
 
Investigation into Effect of Soil Moisture Depletion on Vegetable Crop Uptake...
Investigation into Effect of Soil Moisture Depletion on Vegetable Crop Uptake...Investigation into Effect of Soil Moisture Depletion on Vegetable Crop Uptake...
Investigation into Effect of Soil Moisture Depletion on Vegetable Crop Uptake...
 
Effect of gas flaring on some phytochemicals and trace metals of fluted pumpk...
Effect of gas flaring on some phytochemicals and trace metals of fluted pumpk...Effect of gas flaring on some phytochemicals and trace metals of fluted pumpk...
Effect of gas flaring on some phytochemicals and trace metals of fluted pumpk...
 
bijeh et al
bijeh et albijeh et al
bijeh et al
 
4. optimization of culture condition for enhanced decolorization of reactive ...
4. optimization of culture condition for enhanced decolorization of reactive ...4. optimization of culture condition for enhanced decolorization of reactive ...
4. optimization of culture condition for enhanced decolorization of reactive ...
 
sonicatin presentation
sonicatin presentationsonicatin presentation
sonicatin presentation
 
Triclosan Persistence in Environment and Its Potential Toxic Effects on Algae
Triclosan Persistence in Environment and Its Potential Toxic Effects on AlgaeTriclosan Persistence in Environment and Its Potential Toxic Effects on Algae
Triclosan Persistence in Environment and Its Potential Toxic Effects on Algae
 

Viewers also liked

Seed Moisture Meter by ACMAS Technologies Pvt Ltd.
Seed Moisture Meter by ACMAS Technologies Pvt Ltd.Seed Moisture Meter by ACMAS Technologies Pvt Ltd.
Seed Moisture Meter by ACMAS Technologies Pvt Ltd.Acmas Technologies Pvt. Ltd.
 
Crops drying to a safe moisture content and handling: challenges facing Afric...
Crops drying to a safe moisture content and handling: challenges facing Afric...Crops drying to a safe moisture content and handling: challenges facing Afric...
Crops drying to a safe moisture content and handling: challenges facing Afric...Francois Stepman
 
10. influence of accelerated ageing on total soluble seed protein profiles of...
10. influence of accelerated ageing on total soluble seed protein profiles of...10. influence of accelerated ageing on total soluble seed protein profiles of...
10. influence of accelerated ageing on total soluble seed protein profiles of...Vishwanath Koti
 
Post-Harvest Handling of Seed Collections
Post-Harvest Handling of Seed CollectionsPost-Harvest Handling of Seed Collections
Post-Harvest Handling of Seed CollectionsSeeds
 
Small-Scale Seed Drying Methods
Small-Scale Seed Drying MethodsSmall-Scale Seed Drying Methods
Small-Scale Seed Drying MethodsSeeds
 
Genetic Resources, The role of the egyptian deserts gene bank to Conservation...
Genetic Resources, The role of the egyptian deserts gene bank to Conservation...Genetic Resources, The role of the egyptian deserts gene bank to Conservation...
Genetic Resources, The role of the egyptian deserts gene bank to Conservation...Dr.Elsayed Elazazi
 
Current status and future prospects of mungbean research in India”
Current status and future prospects of mungbean research in India” Current status and future prospects of mungbean research in India”
Current status and future prospects of mungbean research in India” Pradeep Yadav
 
Seed germination and crop establishment in relation to moisture content
Seed germination and crop establishment in relation to moisture contentSeed germination and crop establishment in relation to moisture content
Seed germination and crop establishment in relation to moisture contentBiswanath Behera
 
Knowledge sharing on best practices to manage crop genebanks
Knowledge sharing on best practices to manage crop genebanksKnowledge sharing on best practices to manage crop genebanks
Knowledge sharing on best practices to manage crop genebanksIAALD Community
 
Seed Quality Course, Pakistan
Seed Quality Course, PakistanSeed Quality Course, Pakistan
Seed Quality Course, PakistanUC Davis
 
Standards and best practices for genebank management
Standards and best practices for genebank managementStandards and best practices for genebank management
Standards and best practices for genebank managementBioversity International
 
Silica Gel Desiccants | Moisture Abosrber | Sorbead India
Silica Gel Desiccants | Moisture Abosrber | Sorbead IndiaSilica Gel Desiccants | Moisture Abosrber | Sorbead India
Silica Gel Desiccants | Moisture Abosrber | Sorbead IndiaSORBEAD INDIA
 
Drugs containing lipids
Drugs containing lipidsDrugs containing lipids
Drugs containing lipidsDavid David
 
seed storability and viability
seed storability and viability seed storability and viability
seed storability and viability Sangram Singh
 
Seed deterioration and enhancement
Seed deterioration and enhancement Seed deterioration and enhancement
Seed deterioration and enhancement Sakil Ahmed
 
Factors affecting seed deteriaration
Factors affecting seed deteriarationFactors affecting seed deteriaration
Factors affecting seed deteriarationkartoori sai santhosh
 
Biodivarsity ppt
Biodivarsity pptBiodivarsity ppt
Biodivarsity pptPawan Nagar
 
Sunflower cultivation
Sunflower cultivationSunflower cultivation
Sunflower cultivationPrince Verma
 
seed viability dormancy and storage
seed viability dormancy and storage seed viability dormancy and storage
seed viability dormancy and storage susheel kumar
 

Viewers also liked (20)

Seed Moisture Meter by ACMAS Technologies Pvt Ltd.
Seed Moisture Meter by ACMAS Technologies Pvt Ltd.Seed Moisture Meter by ACMAS Technologies Pvt Ltd.
Seed Moisture Meter by ACMAS Technologies Pvt Ltd.
 
Crops drying to a safe moisture content and handling: challenges facing Afric...
Crops drying to a safe moisture content and handling: challenges facing Afric...Crops drying to a safe moisture content and handling: challenges facing Afric...
Crops drying to a safe moisture content and handling: challenges facing Afric...
 
10. influence of accelerated ageing on total soluble seed protein profiles of...
10. influence of accelerated ageing on total soluble seed protein profiles of...10. influence of accelerated ageing on total soluble seed protein profiles of...
10. influence of accelerated ageing on total soluble seed protein profiles of...
 
Post-Harvest Handling of Seed Collections
Post-Harvest Handling of Seed CollectionsPost-Harvest Handling of Seed Collections
Post-Harvest Handling of Seed Collections
 
Small-Scale Seed Drying Methods
Small-Scale Seed Drying MethodsSmall-Scale Seed Drying Methods
Small-Scale Seed Drying Methods
 
Genetic Resources, The role of the egyptian deserts gene bank to Conservation...
Genetic Resources, The role of the egyptian deserts gene bank to Conservation...Genetic Resources, The role of the egyptian deserts gene bank to Conservation...
Genetic Resources, The role of the egyptian deserts gene bank to Conservation...
 
Current status and future prospects of mungbean research in India”
Current status and future prospects of mungbean research in India” Current status and future prospects of mungbean research in India”
Current status and future prospects of mungbean research in India”
 
Seed germination and crop establishment in relation to moisture content
Seed germination and crop establishment in relation to moisture contentSeed germination and crop establishment in relation to moisture content
Seed germination and crop establishment in relation to moisture content
 
Knowledge sharing on best practices to manage crop genebanks
Knowledge sharing on best practices to manage crop genebanksKnowledge sharing on best practices to manage crop genebanks
Knowledge sharing on best practices to manage crop genebanks
 
Seed Quality Course, Pakistan
Seed Quality Course, PakistanSeed Quality Course, Pakistan
Seed Quality Course, Pakistan
 
Standards and best practices for genebank management
Standards and best practices for genebank managementStandards and best practices for genebank management
Standards and best practices for genebank management
 
Silica Gel Desiccants | Moisture Abosrber | Sorbead India
Silica Gel Desiccants | Moisture Abosrber | Sorbead IndiaSilica Gel Desiccants | Moisture Abosrber | Sorbead India
Silica Gel Desiccants | Moisture Abosrber | Sorbead India
 
Factors affecting seed vigour
Factors affecting seed vigourFactors affecting seed vigour
Factors affecting seed vigour
 
Drugs containing lipids
Drugs containing lipidsDrugs containing lipids
Drugs containing lipids
 
seed storability and viability
seed storability and viability seed storability and viability
seed storability and viability
 
Seed deterioration and enhancement
Seed deterioration and enhancement Seed deterioration and enhancement
Seed deterioration and enhancement
 
Factors affecting seed deteriaration
Factors affecting seed deteriarationFactors affecting seed deteriaration
Factors affecting seed deteriaration
 
Biodivarsity ppt
Biodivarsity pptBiodivarsity ppt
Biodivarsity ppt
 
Sunflower cultivation
Sunflower cultivationSunflower cultivation
Sunflower cultivation
 
seed viability dormancy and storage
seed viability dormancy and storage seed viability dormancy and storage
seed viability dormancy and storage
 

Similar to Effect of Temperature and Moisture on Degradation of Herbicide Atrazine in Agricultural Soil

Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...Agriculture Journal IJOEAR
 
Removal of anionic surfactant from grey water and its comparison with chemica...
Removal of anionic surfactant from grey water and its comparison with chemica...Removal of anionic surfactant from grey water and its comparison with chemica...
Removal of anionic surfactant from grey water and its comparison with chemica...Alexander Decker
 
Removal of anionic surfactant from grey water and its comparison with chemica...
Removal of anionic surfactant from grey water and its comparison with chemica...Removal of anionic surfactant from grey water and its comparison with chemica...
Removal of anionic surfactant from grey water and its comparison with chemica...Alexander Decker
 
Photolysis of alphacypermethrin as thin film
Photolysis of alphacypermethrin as thin filmPhotolysis of alphacypermethrin as thin film
Photolysis of alphacypermethrin as thin filmDr. Mukesh Raikwar
 
Modeling the influence of floriculture effluent on soil quality and dry matte...
Modeling the influence of floriculture effluent on soil quality and dry matte...Modeling the influence of floriculture effluent on soil quality and dry matte...
Modeling the influence of floriculture effluent on soil quality and dry matte...Alexander Decker
 
Influence of diluted seawater irrigation on the Physiological and biochemical...
Influence of diluted seawater irrigation on the Physiological and biochemical...Influence of diluted seawater irrigation on the Physiological and biochemical...
Influence of diluted seawater irrigation on the Physiological and biochemical...Premier Publishers
 
Bioremediation of Soil Contaminated with Tannery Effluent by Combined Treatme...
Bioremediation of Soil Contaminated with Tannery Effluent by Combined Treatme...Bioremediation of Soil Contaminated with Tannery Effluent by Combined Treatme...
Bioremediation of Soil Contaminated with Tannery Effluent by Combined Treatme...Shadab Ali
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Endophyte Assisted Phytoremediation of TCE and Derivatives Using Hybrid Popla...
Endophyte Assisted Phytoremediation of TCE and Derivatives Using Hybrid Popla...Endophyte Assisted Phytoremediation of TCE and Derivatives Using Hybrid Popla...
Endophyte Assisted Phytoremediation of TCE and Derivatives Using Hybrid Popla...Steve Williams
 
Assessment of Natural Radioactivity in Soil and Water Samples from Aden Gover...
Assessment of Natural Radioactivity in Soil and Water Samples from Aden Gover...Assessment of Natural Radioactivity in Soil and Water Samples from Aden Gover...
Assessment of Natural Radioactivity in Soil and Water Samples from Aden Gover...paperpublications3
 
Physico chemical characterisation of brewery effluent and its degradation usi...
Physico chemical characterisation of brewery effluent and its degradation usi...Physico chemical characterisation of brewery effluent and its degradation usi...
Physico chemical characterisation of brewery effluent and its degradation usi...Alexander Decker
 
alphamethrin mukesh research paper
alphamethrin mukesh research paperalphamethrin mukesh research paper
alphamethrin mukesh research paperDr. Mukesh Raikwar
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...Effect of Aloe Vera wastes on physico-chemical properties and microbiological...
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...IJEABJ
 
Tabitha Mensah presentation ppt
Tabitha Mensah presentation pptTabitha Mensah presentation ppt
Tabitha Mensah presentation pptVincent opoku
 

Similar to Effect of Temperature and Moisture on Degradation of Herbicide Atrazine in Agricultural Soil (20)

Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
 
Removal of anionic surfactant from grey water and its comparison with chemica...
Removal of anionic surfactant from grey water and its comparison with chemica...Removal of anionic surfactant from grey water and its comparison with chemica...
Removal of anionic surfactant from grey water and its comparison with chemica...
 
Removal of anionic surfactant from grey water and its comparison with chemica...
Removal of anionic surfactant from grey water and its comparison with chemica...Removal of anionic surfactant from grey water and its comparison with chemica...
Removal of anionic surfactant from grey water and its comparison with chemica...
 
Photolysis of alphacypermethrin as thin film
Photolysis of alphacypermethrin as thin filmPhotolysis of alphacypermethrin as thin film
Photolysis of alphacypermethrin as thin film
 
Modeling the influence of floriculture effluent on soil quality and dry matte...
Modeling the influence of floriculture effluent on soil quality and dry matte...Modeling the influence of floriculture effluent on soil quality and dry matte...
Modeling the influence of floriculture effluent on soil quality and dry matte...
 
imidoclopid jmes
imidoclopid jmesimidoclopid jmes
imidoclopid jmes
 
Influence of diluted seawater irrigation on the Physiological and biochemical...
Influence of diluted seawater irrigation on the Physiological and biochemical...Influence of diluted seawater irrigation on the Physiological and biochemical...
Influence of diluted seawater irrigation on the Physiological and biochemical...
 
F031201034039
F031201034039F031201034039
F031201034039
 
Bioremediation of Soil Contaminated with Tannery Effluent by Combined Treatme...
Bioremediation of Soil Contaminated with Tannery Effluent by Combined Treatme...Bioremediation of Soil Contaminated with Tannery Effluent by Combined Treatme...
Bioremediation of Soil Contaminated with Tannery Effluent by Combined Treatme...
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Endophyte Assisted Phytoremediation of TCE and Derivatives Using Hybrid Popla...
Endophyte Assisted Phytoremediation of TCE and Derivatives Using Hybrid Popla...Endophyte Assisted Phytoremediation of TCE and Derivatives Using Hybrid Popla...
Endophyte Assisted Phytoremediation of TCE and Derivatives Using Hybrid Popla...
 
Assessment of Natural Radioactivity in Soil and Water Samples from Aden Gover...
Assessment of Natural Radioactivity in Soil and Water Samples from Aden Gover...Assessment of Natural Radioactivity in Soil and Water Samples from Aden Gover...
Assessment of Natural Radioactivity in Soil and Water Samples from Aden Gover...
 
Physico chemical characterisation of brewery effluent and its degradation usi...
Physico chemical characterisation of brewery effluent and its degradation usi...Physico chemical characterisation of brewery effluent and its degradation usi...
Physico chemical characterisation of brewery effluent and its degradation usi...
 
Art 1
Art 1Art 1
Art 1
 
alphamethrin mukesh research paper
alphamethrin mukesh research paperalphamethrin mukesh research paper
alphamethrin mukesh research paper
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...Effect of Aloe Vera wastes on physico-chemical properties and microbiological...
Effect of Aloe Vera wastes on physico-chemical properties and microbiological...
 
B2100712
B2100712B2100712
B2100712
 
Tabitha Mensah presentation ppt
Tabitha Mensah presentation pptTabitha Mensah presentation ppt
Tabitha Mensah presentation ppt
 

Recently uploaded

Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Open Access Research Paper
 
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999Tina Ji
 
Soil pollution causes effects remedial measures
Soil pollution causes effects remedial measuresSoil pollution causes effects remedial measures
Soil pollution causes effects remedial measuresvasubhanot1234
 
ENVIRONMENTAL LAW ppt on laws of environmental law
ENVIRONMENTAL LAW ppt on laws of environmental lawENVIRONMENTAL LAW ppt on laws of environmental law
ENVIRONMENTAL LAW ppt on laws of environmental lawnitinraj1000000
 
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full NightCall Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
 
Determination of antibacterial activity of various broad spectrum antibiotics...
Determination of antibacterial activity of various broad spectrum antibiotics...Determination of antibacterial activity of various broad spectrum antibiotics...
Determination of antibacterial activity of various broad spectrum antibiotics...Open Access Research Paper
 
VIP Call Girls Saharanpur Aaradhya 8250192130 Independent Escort Service Saha...
VIP Call Girls Saharanpur Aaradhya 8250192130 Independent Escort Service Saha...VIP Call Girls Saharanpur Aaradhya 8250192130 Independent Escort Service Saha...
VIP Call Girls Saharanpur Aaradhya 8250192130 Independent Escort Service Saha...Suhani Kapoor
 
Sustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesSustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesDr. Salem Baidas
 
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call GirlsHi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girlsssuser7cb4ff
 
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...Cluster TWEED
 
VIP Call Girls Moti Ganpur ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With R...
VIP Call Girls Moti Ganpur ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With R...VIP Call Girls Moti Ganpur ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With R...
VIP Call Girls Moti Ganpur ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With R...Suhani Kapoor
 
Environmental Management System - ISO 14001:2015-
Environmental Management System      - ISO 14001:2015-Environmental Management System      - ISO 14001:2015-
Environmental Management System - ISO 14001:2015-Kawther MEKNI
 
NO1 Famous Kala Jadu specialist Expert in Pakistan kala ilam specialist Exper...
NO1 Famous Kala Jadu specialist Expert in Pakistan kala ilam specialist Exper...NO1 Famous Kala Jadu specialist Expert in Pakistan kala ilam specialist Exper...
NO1 Famous Kala Jadu specialist Expert in Pakistan kala ilam specialist Exper...Amil baba
 
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一F dds
 

Recently uploaded (20)

Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...
 
FULL ENJOY Call Girls In kashmiri gate (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In  kashmiri gate (Delhi) Call Us 9953056974FULL ENJOY Call Girls In  kashmiri gate (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In kashmiri gate (Delhi) Call Us 9953056974
 
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
(ANIKA) Call Girls Wagholi ( 7001035870 ) HI-Fi Pune Escorts Service
 
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999
Call Girls In Faridabad(Ballabgarh) Book ☎ 8168257667, @4999
 
Soil pollution causes effects remedial measures
Soil pollution causes effects remedial measuresSoil pollution causes effects remedial measures
Soil pollution causes effects remedial measures
 
ENVIRONMENTAL LAW ppt on laws of environmental law
ENVIRONMENTAL LAW ppt on laws of environmental lawENVIRONMENTAL LAW ppt on laws of environmental law
ENVIRONMENTAL LAW ppt on laws of environmental law
 
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full NightCall Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
Call Girls Ahmedabad 7397865700 Ridhima Hire Me Full Night
 
Determination of antibacterial activity of various broad spectrum antibiotics...
Determination of antibacterial activity of various broad spectrum antibiotics...Determination of antibacterial activity of various broad spectrum antibiotics...
Determination of antibacterial activity of various broad spectrum antibiotics...
 
Green Banking
Green Banking Green Banking
Green Banking
 
Sustainable Packaging
Sustainable PackagingSustainable Packaging
Sustainable Packaging
 
VIP Call Girls Saharanpur Aaradhya 8250192130 Independent Escort Service Saha...
VIP Call Girls Saharanpur Aaradhya 8250192130 Independent Escort Service Saha...VIP Call Girls Saharanpur Aaradhya 8250192130 Independent Escort Service Saha...
VIP Call Girls Saharanpur Aaradhya 8250192130 Independent Escort Service Saha...
 
Sustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and ChallengesSustainable Clothing Strategies and Challenges
Sustainable Clothing Strategies and Challenges
 
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call GirlsHi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
Hi FI Call Girl Ahmedabad 7397865700 Independent Call Girls
 
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
Sexy Call Girls Patel Nagar New Delhi +918448380779 Call Girls Service in Del...
 
Escort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCR
Escort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCREscort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCR
Escort Service Call Girls In Shakti Nagar, 99530°56974 Delhi NCR
 
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
webinaire-green-mirror-episode-2-Smart contracts and virtual purchase agreeme...
 
VIP Call Girls Moti Ganpur ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With R...
VIP Call Girls Moti Ganpur ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With R...VIP Call Girls Moti Ganpur ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With R...
VIP Call Girls Moti Ganpur ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With R...
 
Environmental Management System - ISO 14001:2015-
Environmental Management System      - ISO 14001:2015-Environmental Management System      - ISO 14001:2015-
Environmental Management System - ISO 14001:2015-
 
NO1 Famous Kala Jadu specialist Expert in Pakistan kala ilam specialist Exper...
NO1 Famous Kala Jadu specialist Expert in Pakistan kala ilam specialist Exper...NO1 Famous Kala Jadu specialist Expert in Pakistan kala ilam specialist Exper...
NO1 Famous Kala Jadu specialist Expert in Pakistan kala ilam specialist Exper...
 
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
办理学位证(KU证书)堪萨斯大学毕业证成绩单原版一比一
 

Effect of Temperature and Moisture on Degradation of Herbicide Atrazine in Agricultural Soil

  • 1. International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016] Page | 150 Effect of Temperature and Moisture on Degradation of Herbicide Atrazine in Agricultural Soil Xinfeng Dong1 , Hanwen Sun2 1,2 College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China 1 Shijiazhuang Center for Disease Control and Prevention of Hebei Province, Shijiazhuang, China Corresponding authors:- hanwen@hbu.edu.cn Abstract— Degradation rate and degraded products, deethylatrazine (DEA), deisopropylatrazine (DIA) and atrazine-2- hydroxy (HA), of herbicide atrazine in agricultural soil were determined by ultra-performance liquid chromatography–mass spectrometry. When treating soils for 60d at 25°C, the degradation rate of atrazine increased with the moisture from 5 to 20%. The degradation was fitted one-order kinetic equation and degradation rate constant (k) and Half-life (T1/2) were obtained. T1/2 decreased by 3–4 folds with the increasing temperature from 5 to 35°C and moisture from 5 to 20%. The species and content of the degraded products increased with the temperature and moisture. When treating soil for 60d, the sum content of three degraded products, DEA, DIA and HA is 3–6.8 times greater than atrazine residue. An updated metabolism pathway of atrazine in soil was presented. Keywords— Atrazine, Degradation kinetics, Degradation products, Metabolism pathways, Soil. I. INTRODUCTION Modern agricultural practices often require extensive use of herbicides for production of corn, soybeans, sorghum, and other row crops. Due to the continuous use of herbicides in agriculture, appreciable quantities of herbicides and their degraded products may accumulate in the ecosystem leading to serious problem to man and the environment. Herbicides, which enter the soil environment, are subject to a variety of degradation processes. The overall degradation of a pesticide from soil results from a combination of mechanisms such as microbial degradation, chemical hydrolysis, photolysis, volatility, leaching and surface runoff. The degree to which each mechanism will contribute to the overall degradation of the pesticide is in turn dependent on the physicochemical properties of the pesticide, characteristics of the soil, environmental conditions and management practices.1 Therefore, it is essential to study the residue and degradation pattern of herbicides in soil, crops and water systematically in order to generate meaningful data from the point of view of plant protection, public health and environmental safety. Atrazine is one of the most widely used herbicides all over the world. It is a pollutant of environmental concern due to its low biodegradability and its high potential to contaminate the surface waters and ground water. Several epidemiological cancer studies concerning atrazine and its possible association with carcinogenic effects in humans are being reviewed by the US EPA.2 The acute toxicity of atrazine’s metabolites such as deethyl- and deisopropylatrazine was found to be twice as that of atrazine.3 Although several countries gave up the use of atrazine because of its toxicity, it is still one of the most popular herbicide in many countries.4 Therefore, the development of ecological farming is encouraged. The factors influencing the degradation of pesticides in soil were reviewed.1) An updated overview of atrazine degradation by microorganisms under different ecosystems was presented.5 Some microbial consortia were reported for their metabolic cooperative actions by investigating the individual’s contribution in atrazine degradation.6,7 The degradation of atrazine in plant and water was reported by using biotic or abiotic method.8-10 Biodegradation of atrazine in different soils using various bioprocessed material were investigated.11 The best studied atrazine-degrading bacterium is Pseudomonas sp. strain ADP which was isolated from a herbicide spill site.12 Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils was investigated, where both hydroxylated and dealkylated atrazine metabolites were detected, but no clear pattern of metabolite production could be determined.13 Different environmental conditions obviously influence on the degradation of atrazine. The effects of temperature and moisture on the soil net nitrogen mineralization was investigated based on N content change,14 but without degradation information before mineralization process. The degradation rates of atrazine in the control soil at three temperatures were measured by quantification with high performance liquid chromatography (HPLC).15 This study showed that its degradation was faster in the unsterilized soil than in sterilized soil and illustrated that microbial degradation contributed to the overall degradation, but without any information for the degraded products.
  • 2. International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016] Page | 151 Currently, no information is available concerning the combined effect of temperature and moisture on the degradation rate and its degraded products of atrazine in agricultural soil. The primary objective of this study was to assess simultaneously the effects of temperature and moisture upon atrazine degradation in loam soil with an ultra-performance liquid chromatography–electrospray ionization–mass spectrometry (UPLC‒ESI‒MS). This information will be useful in understanding the behavior of atrazine in soil in a temperature- and moisture-controlled environment, and in selecting the conditions needed for achieving optimal degradation, as well as in evaluating the potential impact of its degraded products. II. MATERIALS AND METHODS 2.1 Chemicals and Materials Atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and atrazine-2-hydroxy (HA) (>98.5% for all) were purchased from Dr. Ehrenstorfer Chemical Industries (Augsburg, Germany). The methanol, acetonitrile, ammonium acetate and formic acid (liquid chromatography grade for each) were purchased from Dikma Science and Technology Co., Ltd (Beijing, China). 2.2 Instrumentation UPLC-ESI-MS/MS analysis of soil samples were performed on a Xevo Triple Quadrupole (TQ) system (Waters, USA). This system consisted of an autosampler, a binary pump, a solvent degasser, a BEH C18 stainless steel cartridge column (100 mm ×1 mm i.d., 1.7μm; Waters) equipped with a guard column at 40°C, and a TQ mass spectrometer. A HZ-9202S water bath temperature oscillator(Equipment Factory of Science and Education, Taichang, China), a centrifuge TGL-16M (Xiangyi Centrifuge Co. Hunan, China), a RE-2000A rotary evaporator (Shanghai Yarong Biochemistry Instrument Co.), and a PHS- 3C pH meter (Shanghai Precision & Scientific Instrument Co., Shanghai, China) were used in sample treatment. 2.3 Treatment of Soil Samples The soil (sandy loam) used in this study was taken from a field in Zanhuang county, Xingtang county, and Shijiazhuang countryside, which was marked as soil 1#, soil 2#, and soil 3#. The fresh surface soil samples (0‒20cm) were treated by removing gravel, grass root, beaten leaf followed by over 40 mesh sieve for use in the test. The soil had a pH of 7.5‒8.1 and contained 20‒24 g/kg of organic matter. After the fresh soil samples were dried at ambient temperature (20°C), a volume of 0.8 mL atrazine standard in acetonitrile (1.000 mg/mL) was added in an 80 g of the dried soil sample. The initial concentrations of atrazine for the temperature and moisture studies were 10 mg/kg. After evaporated acetonitrile in fume hood, the test soil samples contained with 10% of water were prepared with sterile deionized water. After stir to mix well, the soil samples were placed in a constant temperature incubator to investigate the degradation within 60d under treatment at 5, 25, and 35°C, respectively. The content of atrazine residue was determined in triplicate by UPLC-MS method at different treatment times. The soil sample was brought to the desired moisture content by addition of sterile deionized water. Soil moisture content was maintained constant throughout the incubation by weighing and correcting for any weight loss by adding sterile deionized water. The soil samples were placed in a constant temperature incubator to investigate the degradation within 60d under treatment at 25°C and moisture content of 5, 10, and 20%, respectively. The content of atrazine residue was determined in triplicate by above method. 2.4 Analysis of Atrazine and Degraded Product in Soil Samples A portion of 3 g test sample was accurately weighed and added into a 50 mL centrifuge tube. After vortex-mixing for 1 min, atrazine and three degraded products were extracted for 10minusing 12 mL of acetonitrile. The extracts were centrifuged at 9980×g for 6 min. Then, the supernatant was transferred into a heart-shaped bottle and the residue was again extracted. The extracts were concentrated to just dryness by a rotator evaporator at 35°C. The dried residue was re-dissolved into 0.5 mL acetonitrile/water (20: 80, v/v). The final solutions were filtered through a 0.22 μm filter membrane before LC–MS analysis. Waters ACQUITY UPLCTM BEH C18 column (100 mm ×1 mm i.d., 1.7μm) was used for separation with a mobile phase consisted of aqueous solution containing 0.05% v/v formic acid (A) and acetonitrile (B), anda column temperature of 40°C. Sample injection volume was 5 μL. Separation was performed using gradient elution at a flow of 1 mL/min. Initial conditions were 20% acetonitrile and 80% formic acid solution (0.05%) with a linear gradient to 50% of acetonitrile within 6 min. After that, the initial conditions were reached within 2 min, and the system was equilibrated for 8 min. The mass spectrometer used was a triple quadruple equipped with an ESI interface operating in the positive mode. Quantification was carried out by using matrix matched standards with the external calibration. The TQ parameters, retention
  • 3. International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016] Page | 152 times, parent ions and daughter ions as well as collision energy for atrazine and its degraded products were presented in our last work.16 III. RESULTS AND DISCUSSION 3.1 Analytical Performance of the Method For atrazine, DIA, DEA, and HA, positive mode was found to offer higher parent ion signal intensities and better fragmentation patterns than negative mode. The matrix effect was observed, showing enhancing effect (15%), so quantification was performed using matrix matched standards with the external calibration. Further test showed no significant differences in the mass accuracies obtained in the matrix-matched standards compared to those prepared with pure solution. The results demonstrated that the quantification using a matrix-matched standard calibration curve is the most effective method of reducing indirect matrix effects present in this method. The response was linear over two orders of magnitude with correlation coefficients (r2 ) of 0.9975. The limits of quantification for atrazine and its degraded products were 0.4 µg/kg. The intra-day precision (RSD) was measured by determining a set of spiked soil samples at 0.4, 2.0, and 4 μg kg‒1 for seven times within a day and the inter-day precision was determined by analyzing the spiked samples for a time per a day within seven days. They were 2.2–9.3%, and 5.7–17.1%, respectively. The average recovery varied from 87.1 to 99.4 % with the RSD of 1.6–11.8%. It is indicated the method has high sensitivity, repeatability, and accuracy for the quantification of atrazine and its degraded products. 3.2 Effect of Soil Temperature on Degradation Rate In this work, three kinds of unsterilized soils (3 samples for each kind) containing 10% water were treated for 2h–60d at temperature of 5, 25, and 35°C, respectively. The content of atrazine in the control soil was determined in triplicate at different times for investigating its degradation dynamics. The degradation curves are shown in Figure 1. FIG. 1. DEGRADATION OF ATRAZINE IN UNSTERILIZED SOIL AT 5, 25 AND 35°C RSDS FOR EACH DEGRADATION RATE POINT LESS THAN 5% In general, residual quantity of atrazine decreased with the increase in temperature. Degradation was faster at all three temperatures in the unsterilized soil. Among them, degradation was slowest at 5°C and fastest at 35°C with 25°C being intermediate. At treatment temperature at 5. 25, and 35 °C for 60d, the degradation rate of atrazine was 59.8, 86.4,and 95.6% for soil 1#, 62.2, 87.3, and 96.3% for soil 2# sample, and 63.1, 87.1, and 95.9% for soil 3#.The dissipation data determined for atrazine were treated by statistical analysis with SPSS software. In all cases, dissipation of atrazine was
  • 4. International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016] Page | 153 fitted to the first-order kinetic equation: C = C0 e−kt , with correlation coefficient (r2 ) ranged from 0.938 to 0.986, where C0 is the concentration of atrazine in soil at time zero (mg/kg), k is the first-order rate constant (day−1 ) and t is time (day). Half-life (T1/2) values for atrazine in soil were calculated from the equation: T1/2= ln2/k. Kinetic parameters are listed in Table 1. TABLE 1 KINETIC PARAMETERS OF ATRAZINE IN SOIL AT DIFFERENT TEMPERATURES Kinetic parameter Soil 1# Soil 2# Soil 3# 5°C 25°C 35°C 5°C 25°C 35°C 5°C 25°C 35°C C0 10.54 10.64 12.06 10.57 10.56 11.88 10.63 10.40 11.614 r2 0.961 0.984 0.956 0.950 0.986 0.962 0.938 0.983 0.959 k 0.015 0.036 0.057 0.015 0.033 0.060 0.016 0.036 0.058 T1/2(d) 46.2 19.3 12.2 46.2 20.7 11.6 43.3 19.3 12.0 As adsorption process is exothermic and desorption process is endothermic, it is expected that adsorption reduced and herbicide solubility increased with increase in temperature. Chemical degradation of a herbicide through hydrolytic reactions is dependent on the nature of the chemical and the characteristics of the soil. The climate can directly influence the rate of hydrolysis through modulation of the temperature and moisture of the soil. Soil microorganisms play an important role in the intermediate degradation and subsequent mineralization of atrazine.17,18 Temperature influences obviously constant (k) of degradation rate, resulting both k and T1/2 increased by 3‒4 fold for 5 to 35°C. This is due to that the increase in temperature enhanced the solubility and hydrolysis of atrazine and stimulated microbial activity. Under 25 and 35°C, T1/2 was less than 13d. There was no obvious difference for T1/2 between the three kinds of soil samples due to that the soil has similar organic matter content (20‒24 g/kg).Since soil microbial activities are strongly modulated by temperature, atrazine degradation would be expected to be greater in tropical soils. 3.3 Effect of Soil Temperature on Degraded Product The catabolites of atrazine were confirmed and their contents in the soil with 10% moisture were determined in triplicate under different treatment time at 5, 25, and 35°C. In general, there was no obvious difference of degradation product content for the selected three soils under same temperature and treatment time. When treatment at 5°C, degradation product DEA was jet observed up to 15d, the content of which was a little more than its LOQ. The content of DEA increased with treatment time. DEA was firstly found in atrazine degradation products, it is due to higher deethyl rate of microorganism to atrazine than deisopropyl.19 When up to 45d, degradation product DIA was detected, while no HA was detected up to 60d. Three degraded products, DEA, DIA, and HA, were detected when treatment at 25°C for 5d, 15d, and 20d, and when treatment at 35°C for 5d, 10d, and 15d, respectively. This indicated that the species and concentrations of the degraded products increased with the increasing temperature. Figure 2 shows chromatograms of atrazine and its degradation products in the soils with 10% moisture for different treatment times at 35°C. FIG. 2. CHROMATOGRAMS OF ATRAZINE AND ITS DEGRADED PRODUCTS IN SOIL 1# WITH 10% MOISTURE FOR DIFFERENT TREATMENT TIMES AT 35 °C. A―2h, B―10d, C―30d, D―60d
  • 5. International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016] Page | 154 When treatment for 60d at 35°C, the content of atrazine, DEA, DIA, and HA was 0.44, 0.39, 0.60, and 0.34 mg/kg for soil 1#; 0.37, 0.41.1.43, and 0.53 mg/ kg for soil 2#; 0.37, 0.39, 1.42, and 0.69 mg/kg for soil 3#. In the cases for three soils, the sum content of three degraded products is 3, 6.4, and 6.8 times greater than atrazine residue, respectively. This should be caused for more concern due to that these degraded products have similar or higher toxicity than atrazine residue. 3.4 Effect of Soil Moisture on Degradation Rate Water acts as solvent for herbicide movement and diffusion and is essential for microbial functioning. Herbicide degradation is slow in dry soils. The rate of herbicide transformation generally increases with water content. In very wet soils such as rice paddies, the rate of diffusion of atmospheric oxygen into the soil is limited and anaerobic herbicide transformation can prevail over aerobic degradation. Poor oxygen transfer at high moisture content can, however, accelerate or retard the degradation of pesticides. Atrazine disappeared more transformation rapidly under anaerobic conditions than under aerobic conditions.1 Three kinds of soil samples containing 5%, 10%, and 20% water were placed for 2h‒60d at temperature of 25°C. The content of atrazine in the control soil was determined in triplicate at different times for investigating its degradation dynamics. The degradation curves are shown in Figure 3. FIG. 3. DEGRADATION OF ATRAZINE IN UNSTERILIZED SOIL WITH DIFFERENT MOISTURE CONTENTS AT 35°C Our experiments indicated that degradation rate increased with moisture content in the unsterilized soil. Among them degradation of atrazine was slowest at 5% and fastest at 20% with 10% being intermediate. For treating soil 1#, soil 2#, and soil 3# for 60 d, the degradation rate of atrazine was 79.2, 82.1, and 78.7% for 5% moisture, 86.4, 87.3, and 87.1% for 10% moisture content, and 95.7, 93.1, and 93.9% for 20% moisture content, respectively. The dissipation data determined for atrazine were treated by statistical analysis with SPSS software. In all cases, dissipation of atrazine was fitted to the first-order kinetic equation, with correlation coefficient ranged from 0.936 to 0.980. Kinetic parameters are listed in Table 2. TABLE 2 KINETIC PARAMETERS OF ATRAZINE IN SOIL WITH 5%, 10%, AND 20% MOISTURE CONTENT kinetic parameter Soil 1# Soil 2# Soil 3# 5 % 10% 20% 5 % 10% 20% 5 % 10% 20% C0 10.85 10.64 11.39 10.85 10.56 10.49 10.69 10.40 10.83 r2 0.965 0.971 0.953 0.950 0.981 0.972 0.936 0.980 0.960 k 0.026 0.036 0.050 0.027 0.033 0.044 0.026 0.036 0.047 T1/2(d) 26.7 19.3 13.7 25.7 20.7 15.8 26.7 19.3 14.8
  • 6. International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016] Page | 155 Soil moisture content influences obviously degradation rate constant (k), resulting T1/2 decreased by 3‒4 fold when soil moisture content increased from 5% to 20%. This is due to that moisture content increased microbial mobility, atrazine diffusion, and chemical availability.20 Since soil microbial activities are also strongly modulated by moisture content, atrazine degradation would be expected to be greater in wet soils within rainy season. 3.5 Effect of Soil Moisture on Degraded Product The degraded products were confirmed, and their contents in soil with different moisture content were determined in triplicate under different treatment times at 25°C. In general, there was a difference of degraded product content for the three soils with different moistures and same treatment time. For the soil with the three moisture contents, when treatment for 5d, low content DEA was detected, and the content in the three soils was same (8 μg/kg). The content of DEA increased with treatment time. After treated for 15d, DIA was detected for the three soils with 20% moisture content, and for two soils with 10% moisture content; After treated for 20d, HA was detected for the three soil with 10 and 20% moisture content, while no HA was detected for the three soils with 5% moisture content after treated for up to 60d. This change is similar with that of degradation rate with moisture content. Figure 4 shows the relative contents of atrazine and its degraded species in the soils with different moistures for treatment 60d at 25°C. FIG. 4. THE RELATIVE CONTENT OF ATRAZINE'S DEGRADED PRODUCTS IN SOIL 1# WITH DIFFERENT MOISTURES FOR TREATMENT 60d at 25 °C. When treatment for 60d, test results showed the content of atrazine, DEA, DIA, and HA was as follows: for the soils with 5% moisture content, 2.08, 0.3317, 0.5691 and 0 mg/kg for soil1#, 1.79, 0.3437, 0.5694, and 0 mg/kg for soil2#, and 2.13, 0.3451, 0.6013, and 0 mg/kg for soil3#; for the soils with 10% moisture content, 1.36, 0.3415, 0.5413, and 0.1218 mg/kg for soil 1#; 1.27, 0.3766, 0.7684, and 0.1731 mg/kg for soil 2#; 1.29, 0.3709, 0.6332, and 0.1122 mg/kg for soil 3#; and for the soils with 20% moisture content, 0.43, 0.3491, 0.8884, and 0.2808 mg/kg for soil 1#, 0.69, 0.3966, 1.2073, and 0.4833 mg/kg for soil 2#; and 0.61, 0.3699, 0.8421, and 0.3642 mg/kg for soil 3#. It can be seen from above data that the sum content of degraded products increased with moisture content. It is due to that moisture content increased microbial mobility, atrazine diffusion, and hydrolysis efficiency.20,21 For the soils with 20 % moisture content, the sum content of degraded products was 3.5, 3.0, and 2.6 times greater than atrazine residue for soils 1#, 2# and 3#, respectively. This should be caused for more concern due to that these degradation products have similar or higher toxicity than atrazine residue. 3.6 Metabolism Pathways of Atrazine in Soil Metabolism of atrazine in soil is a very complicated process, consisting four main steps: dehalogenation, N-dealkylation, deamination, and ring cleavage. Based on the mass spectra16 and some relative reports,2,6,22,23 this study summary and presents an updated metabolism pathway of atrazine in soil (Figure 5).
  • 7. International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016] Page | 156 FIG. 5. METABOLISM PATHWAYS OF ATRAZINE IN SOIL Atrazine degrades in soil through both biotic and abiotic reactions to the hydroxylated metabolite and dealkylated metabolites. The atrazine degrading bacteria generally initiate the degradation through a hydrolytic dechlorination, to hydroxyatrazine (HA) through a hydrolytic dechlorination catalysed by the enzyme atrazine chlorohydrolase (atzA). Atrazine may degrade to deethylatrazine (DEA) through a hydrolytic deethylnation catalysed by hydroxy-atrazine ethylamino- hydrolase (atzB), and to deisopropylatrazine (DIA) through N-isopropyl-ammelide isopropyl-amino-hydrolase (atzC). HA may degrade to dealkylated HDIA and HDEA.24 DEA may further degrade to the dealkylated hydroxymetabolitesof didealkylatrazine (DDA) and hydroxydeethylatrazine (HDEA), DIA may further degrade to the hydroxymetabolites of DDA and HDIA. The three degraded products, DDA, HDIA, and HDEA, may further degrade to ammeline through hydrolytic dechlorinationc atalysed by atzA, through hydrolytic deethylnationcatalysed by at zB, and through hydrolytic deisopropylnation catalysed by atzC, respectively. Ammeline may further degrade to ammelide through hydrolyticdeamination, and ammelide further to cyanuric acid through hydrolyticdeamination. The ring of cyanuric acid was opened by cyanuric acid amidohydrolase (atzD), produced biuret, which may degrade by biuret amidohydrolase (atzE) to allophanate and urea. Allophanate may mineralize by allophanatehydrolase (atzF) to carbon dioxide and ammonia,6 and urea may mineralize to carbon dioxide and nitrogen gas.25 IV. CONCLUSIONS The ultra-performance liquid chromatography–mass spectrometric method proposed can be used to investigate the degradation rate and degraded products, deethylatrazine (DEA), deisopropylatrazine (DIA) and atrazine-2-hydroxy (HA) of atrazine in soil. Atrazine degradation can be accelerated by regulating soil temperature and soil moisture, fitted one-order kinetic equation. When treating soil for 60d, the sum content of above three degraded products is 3–6.8 times greater than
  • 8. International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-2, Issue-7, July- 2016] Page | 157 atrazine residue. The information for its metabolism pathway in soil will be useful in understanding the behavior of atrazine in soil in a temperature- and moisture-controlled environment, and in selecting the conditions needed for achieving optimal degradation, as well as in evaluating the potential impact of its degraded products. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No. 21375032). REFERENCES [1] Pal, R., Chakrabarti, K., Chakraborty, A. and Chowdhury, A. 2006. Degradation and effects of pesticides on soil microbiological parameters‒A Review.Int. J. Agric. Res., 1: 240‒258. [2] Sene, L., Converti, A. G., Secchi A. R. and Simão, R. D. C. G. 2010. New aspects on atrazine biodegradation. Braz. Arch. Biol. Techn. 53: 487‒496. [3] Stevens, J. T. and Sumner, D. D.1991. Herbicides, in Handbook of pesticide technology, by Hayes, W. R. Jr. and Laws, E. R. Jr. (Eds.) Academic Press, New York. [4] Jin, R. and Ke, J. 2002. Impact of atrazine disposal on the water resources of the Yang river in Zhangjiakou area in China. Bull. Environ. Contam Tox. 68: 893–900. [5] Evy Alice Abigail, M. and Nilanjana, D. 2012. Microbial degradation of atrazine, commonly used herbicide. Int. J. Adv. Biol. Res. 2: 16‒23. [6] De Souza, M. L., Newcombe, D., Alvey, S., Crowley, D. E., Hay, A., Sadowsky, M. J. and Wackett, L. P. 1998. Molecular basis of a bacterial consortium interspecies catabolism of atrazine. Appl. Environ. Microbiol. 64: 178 –184. [7] Smith, D., Alvey, S. and Crowley, D. E. 2005. Cooperative catabolic pathways within an atrazine degrading enrichment culture isolated from soil. FEMS Microbiol. Ecol. 51: 265–273. [8] Raveton, M., Ravanel, P., Serre, A. M., Nurit, F. andTissut, M. 1997. Kinetics of uptake and metabolism of atrazine in model plant systems. Pestic. Sci. 49: 157–163. [9] Pearson, R., Godley, A. and Cartmell, E. 2006. Investigating the in situ degradation of atrazine in groundwater.. Pest Manag. Sci. 62: 299–306. [10] Acero, J., Stemmler, K. and von Gunten, U. 2000. Degradation kinetics of atrazine and its degradation products with ozone and OH radicals: A predictive tool for drinking water treatment. Environ. Sci. Technol. 34: 591‒597. [11] Kadian, N., Gupta, A., Satya, S., Mehta, R. K. and Malik, A. 2008. Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresour. Technol. 99: 4642‒4647. [12] Mandelbaum, R. T., Allan, D. L. and P.Wackett, L.1995. Isolation and characterization of a Pseudomonas sp. that mineralizes the s- triazine herbicide atrazine. Appl. Environ. Microbiol. 61: 1451–1457. [13] Houot, S., Topp, E. and Yassir, A. 2000. Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol. Biochem. 32: 615‒625. [14] Wang, C. H., Xing, X. R. and Han, X. G. 2004. The effects of temperature and moisture on the soil net nitrogen mineralization in an Aneulolepidium chinensis grassland, Inner Mongolia. China Acta Ecologica Sinica 24: 2472‒2476. [15] James, T. K., Rahman, A., Trolove, M. R. and Parker, M. D. 2010.Enhanced degradation of atrazine in soils with a history of repeated use Seventeenth Australasian Weeds Conference, Christchurch, New Zealand, pp.23‒27. [16] Dong, X. F., Liang, S.X. and Sun, H.W., 2016. Analysis of herbicide atrazine and its degradation products in agricultural soil by ultra- performance liquid chromatography‒mass spectrometry. Int. J. Environ. Agric. Res. 2016, 2: 29‒35. [17] Cook, A. and Hutter, R. 1984. Dethylsimazine, bacterial dechlorination, deamination and complete degradation. J. Agric. Food Chem. 32: 581‒585. [18] Mandelbaum, R.T., Wackett, I.P. and Allan, D.T. 1993. Mineralization of s-trazing ring of atrazine by stable bacterial mixed cultures. Appl. Environ. Microbiol. 59: 1695‒1710. [19] Mills, M.S. and Thurman, E.M.1994. Preferential dealkylation reactions of s-triazine herbicides in the unsaturated zone. Environ. Sci. Technol. 28: 600–605. [20] Sommers, L. E., Gilmour, C. M., Wildung, R. E. and Beck, S. M. 1981. The effect of water potential on decomposition processes in soils. In Water Potential Relations in Soil Microbiology (J. E. Parr, Ed.), Soil Science Society of America Special Publication Number 9, pp. 97‒117. [21] Madison, W. I., Ingerslev, F., Toräng, L., Loke, M.L., Halling-Serensen, B.and Nyholm, N.2001. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44: 865‒872. [22] Topp, E., Mulbry, W.M., Zhu, H., Nour, S.M. and Cuppels, D. 2000. Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Appl. Environ. Microbiol. 66: 3134‒3141. [23] Komang Ralebitso, T., Senior, E. and van Verseveld, H. W. 2002. Microbial aspects of atrazine degradation in natural environments. Biodegradation 13: 11‒19. [24] Lerch, R.N., Blanchard, P.E. and Thurman, E.M.1998. Contribution of hydroxylated atrazine degradation products to the total atrazine load in Midwestern streams. Environ. Sci. Technol. 32: 40–48. [25] Gunther, F.A. and Gunther, J.D. 1970. The triazine herbicides—residue reviews, volume 32: New York, Springer-Verlag, p.413