Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

The role of Direct Air Capture and Carbon Dioxide Removal in well below 2C scenarios in ETSAP-TIAM

45 views

Published on

The role of Direct Air Capture and Carbon Dioxide Removal in well below 2C scenarios in ETSAP-TIAM

Published in: Environment
  • Be the first to comment

  • Be the first to like this

The role of Direct Air Capture and Carbon Dioxide Removal in well below 2C scenarios in ETSAP-TIAM

  1. 1. The role of Direct Air Capture and Carbon Dioxide Removal in Well below 2°C scenarios in ETSAP-TIAM James Glynn1, Niall Mac Dowell2, Giulia Realmonte3, Brian Ó Gallachóir1 1.MaREI-UCC, 2. CEP-ICL, 3. Grantham-ICL Corresponding Author: *james.glynn@ucc.ie | @james_glynn ETSAP Workshop | 18th June 2018 | Gothenburg, SWEDEN.
  2. 2. Research Question & Motivation • Does Direct Air Capture have a role to play in achieving the 1.5°C temperature target? • We explore overshoot and return to a 1.5C temperature increase by 2100, • or an upper 1.5C temperature increase threshold limit for all century. • We explore the uncertainties and hard constraints between carbon budget limits and Carbon Dioxide Removal (CDR) potential from BECCS and DAC. (heat potentials & bioenergy potentials) • What is the change in Primary Energy Demand and Mix from 2°C to 1.5°C with and without DAC? • Can DAC & CDR reduce energy system cost increases when moving from Baseline 2°C to 1.5°C?
  3. 3. First, what is CDR? & What is DAC? • CDR stands for Carbon Dioxide Removal – by technological or biological means • Carbon Capture, and Storage (CCS) – EOR at Statoil Sleipner field since 1996, Petra Nova Coal-CCS (EOR) • Negative Emissions Technologies (NETS) • BIOENERGY with CCS (BECCS) – ADM BECCS (bioethanol) plant Illinois, USA • Direct Air Capture (DAC) and Sequestration (DACCS) (CLIMEWORKS – Iceland geothermal Pilot plant) • Direct Air Capture (DAC) and synthetic liquid fuels. (Carbon Engineering – USA pilot plant (Keith et al. (2018))
  4. 4. CDR context in SSPx-RCP2.6 IAM scenarios CumulativeMtCO2 emissionsfrom2010 GlobalmeanWarming abovepre-industrial°C Susta inable BIO? Paris Agreement Paris Agreement
  5. 5. Method: ETSAP-TIAM model outline • 15 Region linear programming bottom-up energy system model of IEA-ETSAP • Integrated model of the entire energy system • Prospective analysis on medium to long term horizon (2100) • Demand driven by exogenous energy service demands • SSP2 from OECD Env-LINKS CGE model • Regional Structural detail of the economy • Partial and dynamic equilibrium • Price-elastic demands • General Equilibrium with MACRO • Minimizes the total system cost • Or Maximises Consumption/Utility • Hybrid General Equilibrium MSA • Optimal technology selection • Environmental constraints • GHG, Local Air Pollution & Damages • Integrated Simple Climate Model • Myopic and Stochastic run options
  6. 6. Direct Air Capture (DAC) Specification • American Physical Society (2011) – Direct Air Capture of CO2 with Chemicals. • Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule (2018). doi:10.1016/j.joule.2018.05.006 • Capture Capacity • 1 MtCO2/yr • Electricity Requirement • 0GJ/tCO2 - 1.78 GJ/tCO2 • Heat requirement • Low Temp ~100C • 8.1 GJ/tCO2 - 5.25 GJ/tCO2 • CAPEX • $1,140/tCO2/yr ~ $160/tCO2 • OPEX • $200/tCO2 - $23t/CO2 • Lifespan • 40-20 years
  7. 7. Scenarios [1] • Base – Drivers are calibrated to SSP2 drivers from the OECD ENV-LINKS. • Population, GDP, sectoral GVA, Households (still need to fix AEEI & DrvESD coeff) • All Climate Policy runs are fixed to the Base run to 2020. • Combinations of the following • 2°C, and 1.5°C temperature limits with Climate Model controlling for Non- CO2 GHGs and Exoforcing • Carbon Budgets applied from 2020-2100 • 1000GtCO2 – 2°C • 600GtCO2, 400GtCO2, 200GtCO2 – 1.5°C • Constraints on CO2 sequestration sinks limits • Full potential (11PtCO2), 1660GtCO2 total horizon, 30GtCO2/yr, linear growth to 30GtCO2/yr by 2100, 10GtCO2/yr, Growth to 10GtCO2/yr • Direct Air Capture • Investment Costs – $1,140/tCO2 - $160/tCO2 • Fixed operation and Maintenance Costs - $42/tCO2 - $23/tCO2 • ELC & HET or Gas only, or Gas & Elec
  8. 8. Scenarios [2] Scenario Code Name Description Carbon Budget (2020-2100) DAC Costs BASE_SSP2_11p Reference base case n/a Not available 2C_SSP2_CB1000_CDR1660 2C temperature change limit, with 1660GtCO2 limit on sequestration 1000GtCO2 2C_SSP2_CB1000_CDR1660_DAC Same as above with DAC 1000GtCO2 InvCost $2900/tCO2 VAROM $200/tCO2 2C_SSP2_CB1000_CDR1660_DACloCst Same as above with Low Cost DAC 1000GtCO2 InvCost $100/tCO2 VAROM $50/tCO2 15C_CM21_SSP2_CB600_CDR1660_DAC Overshoot and return to 1.5C by 2100, with 1660GtCO2 limit on sequestration, with DAC an option 600GtCO2 InvCost $2900/tCO2 VAROM $200/tCO2 15C_CM21_SSP2_CB400_CDR1660_DACl oCst Same as above with Low Cost DAC an option 400GtCO2 InvCost $100/tCO2 VAROM $50/tCO2 15C_CMUP_SSP2_CB600_CDR1660_DAC Stay below 1.5C temperature ceiling, with 1660GtCO2 limit on sequestration, with DAC an option 600GtCO2 InvCost $2900/tCO2 VAROM $200/tCO2 15C_CMUP_SSP2_CB400_CDR1660DACl oCst Stay below 1.5C temperature ceiling, with 1660GtCO2 limit on sequestration, with Low Cost DAC 400GtCO2 InvCost $100/tCO2 VAROM $50/tCO2
  9. 9. BASE Scenario • Base –calibrated to SSP2 drivers from the OECD ENV-LINKS. • Population, GDP, sectoral GVA, Households • No Climate control policies • Fossil fuel dominates Primary energy, with a growing share of renewables in Elec Generation 0 200 400 600 800 1000 1200 1400 1600 1800 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 PrimaryEnergy(ExaJoules) Primary Energy (EJ) Renewables Hydro Nuclear Biomass Gas Oil Coal 0 50 100 150 200 250 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 ElectricityGeneration(Exajoules) Electricity Generation (EJ) Geo, Tidal and Wave Solar Thermal Solar PV Wind Hydro Nuclear CH4 Options Biomass Gas and Oil Coal
  10. 10. DAC Penetration from 2C to 1.5C scenarios • DAC is deployed when Low Cost DAC is available at <$250/tCO2 • Medium-term (2040-50) CO2 capture of 200-300 MtCO2/yr for 1.5C threshold • Long Term Capture up to 1.6GtCO2/yr with up to 12 EJ in energy input 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2040 2050 2080 2090 2100 GtCO2 CO2 Captured with Direct Air Capture (GtCO2) 0 2 4 6 8 10 12 Elec Heat Elec Heat Elec Heat Elec Heat 2040 2050 2090 2100 Exajoules DAC Energy Input Requirements (EJ) 15C_SSP2_CM21_CB400_CDR16600_DAChilocst 15C_SSP2_CM21_CB400_CDR16600_DAClocst 15C_SSP2_CM21_CB600_CDR16600_DAChilocst 15C_SSP2_CM21_CB600_CDR16600_DAClocst 15C_SSP2_CMUP_CB400_CDR16600_DAChilocst 15C_SSP2_CMUP_CB400_CDR16600_DAClocst 15C_SSP2_CMUP_CB600_CDR16600_DAChilocst 15C_SSP2_CMUP_CB600_CDR16600_DAClocst 2C_SSP2_CM_CB1000_CDR16600_DAChilocst 2C_SSP2_CM_CB1000_CDR16600_DAClocst No 1.5C temperature Overshoot allowed
  11. 11. 2C and 1.5C emissions with & without DAC • Rapid near term CO2 emissions reductions required to remain below a 1.5C threshold. • Near term deployment of CDR in the form of DAC and BECC forces abatement costs above $200/tCO2 by 2030 • Overshoot and return to 1.5C follows an accelerated mitigation pathway when compared to 2C. -20 0 20 40 60 80 100 2000 2020 2040 2060 2080 2100 2120 FossilFuelandIndustryCO2emissions-(GtCO2) Fossil Fuel and Industry CO2 Emissions (GtCO2) 0 500 1000 1500 2000 2500 3000 3500 2030 2050 2070 2090 MarginalAbatementCostofCO2($/tCO2) Marginal Abatement Cost of CO2 ($/tCO2) 15C_SSP2_CM21_CB400_CDR16600 15C_SSP2_CM21_CB400_CDR16600_DAClocst 15C_SSP2_CM21_CB600_CDR16600 15C_SSP2_CM21_CB600_CDR16600_DAClocst 15C_SSP2_CMUP_CB400_CDR16600 15C_SSP2_CMUP_CB400_CDR16600_DAClocst 15C_SSP2_CMUP_CB600_CDR16600 15C_SSP2_CMUP_CB600_CDR16600_DAClocst 2C_SSP2_CM_CB1000_CDR16600 2C_SSP2_CM_CB1000_CDR16600_DAClocst BASE_SSP2_11p
  12. 12. Difference in cumulative CDR • Low Cost DAC cumulative Capture of CO2 ranges from 11 GtCO2 in the 2C case, • 17GtCO2 for the 1.5C threshold case • 25GtCO2 in the overshoot and return to 1.5C case. • The 1.5C threshold scenario with Low Cost DAC captures and additional 49GtCO2 compared to the without DAC scenario • The 1.5C threshold scenario with DAC has 168GtCO2 less CDR than the 2C case. • Coal consumption in electricity is replaced is phased out more rapidly in this case. 1 - -49 1 -13 168 -11 -25 -17 -11 -25 -17 -100 -50 - 50 100 150 200 2C 1.5C 2100 1.5C UP 2C 1.5C 2100 1.5C UP Difference with and without Low Cost DAC . Difference from a Low Cost DAC to 2C without DAC ChangeinCumulativeCO2Emissionsfrom2C (GtCO22020-2100) Difference in Total CDR Difference in Direct Air Capture
  13. 13. Key Messages • Staying below a 1.5°C ceiling seems unlikely with current demand outlook understanding and technology specifications, even with optimistic CDR costs in the form of Direct Air Capture. • Negative Emissions technologies and CDR seem to be required to stay well below 2C. • While DAC may have a near term CDR role to play, BECCS which also provides energy service requirements (biofuel & electricity), captures and removes more CO2 in our scenario analysis. • However, it is likely that there are heat & electricity constraints on DAC deployment in TIAM. • Future Work with MaREI-UCC, Centre for environmental Policy and Grantham at Imperial College London • The costs of achieving ambitious decarbonisation scenarios are highly sensitive to the volume of CO2 removal & Storage • Carbon Capture and Storage, and other negative emissions technologies require accelerated development as well as likely demand side measures. • Some regions may have significantly reduced abatement costs due to their ability to sequester CO2 in conjunction with considerable renewables potentials and large geological storage for BECCs & CDR.
  14. 14. ETSAP-TIAM waste HET sources for DAC? • Detailed Bottom Up energy System Model • From Energy Reserves, extraction, transformation, trade, renewable energy potentials, electricity generation, conversion to end use fuels, multiple energy service demands per sector. • Integrated Climate Module • Integrated Macroeconomic model for price demand general equilibrium. Climate Module Atm. Conc. ΔForcing ΔTemp Used for reporting & setting targets Biomass Potential Renewable Potential Nuclear Fossil Fuel Reserves (oil, coal, gas) Extraction Upstream Fuels Trade Secondary Transformation OPEC/ NON-OPEC regrouping Electricity Fuels Electricity Cogeneration Heat Hydrogen production and distribution End Use Fuels Industrial Service Composition Auto Production Cogeneration Carbon capture CH4 options Carbon sequestration Terrestrial sequestration Landfills Manure Bio burning, rice, enteric ferm Wastewater CH4 options N2O options CH4 options OI**** GA**** CO**** Trade ELC*** WIN SOL GEO TDL BIO*** NUC HYD BIO*** HETHET ELC ELC SYNH2 BIO*** CO2 ELC GAS*** COA*** Industrial Tech. Commercial Tech. Transport Tech. Residential Tech. Agriculture Tech. I*** I** (6) T** (16)R** (11)C** (8)A** (1) INDELC INDELC IS** Demands IND*** COM***AGR*** TRA***RES*** Non-energy sectors (CH4) OIL*** Low Temp Waste Heat?
  15. 15. References Energy Input Electricity [GJ/ton] Heat [GJ/ton] DAC 1 Strong Base Sorbents APS; Mazzotti, 2012 [1] Keith, 2013 and 2018 [2] Carbon Engineering 1.8 (centralized elec) 8.1 (Natural Gas) DAC2 Solid Adsorbents Amine-based Goeppert, 2012 Climeworks [3] Global Thermostat [4] 1.1 (centralized elec) 7.2 (Waste Heat) DAC21 Solid Adsorbents Amine-based Goeppert, 2012 Climeworks [3] Global Thermostat [4] 1.1 (centralized elec) 7.2 (low-T heat) Technology AnalyzedNext Steps - DAC Diagnostics @Grantham
  16. 16. Energy Input Cost Estimates [$/ton] Transport Cost Electricity [GJ/ton] Heat [GJ/ton] Investment O&M (no energy) [$/ton] DAC 1 Strong Base Sorbents HIGH LOW 1.8 1.6 8.1 6 220 [1] 160 [2] 76 [1] 60 [2] 1-10 DAC2 Solid Adsorbents Amine-based HIGH LOW 1.1 0.7 7.2 5.4 90 50 [3] 260 150 [3] 10 DAC21 Solid Adsorbents Amine-based HIGH LOW 1.1 0.7 7.2 5.4 90 50 [3] 260 150 [3] 1-10 Energy and Cost AssumptionsNext Steps - DAC Diagnostics @Grantham
  17. 17. Energy Input Cost Estimates Transport Cost HIGH LOW HIGH LOW BASE X constant X 10 Low Cost X constant X 10 Low Energy X constant X 10 Exogenous Cost Reduction 6% annual cost reduction X 10 Low Transport X constant X 1 ScenariosNext Steps - DAC Diagnostics @Grantham
  18. 18. Next Steps - DAC diagnostics @Grantham 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1.ExogenousCostRed 2.LowCost(constant) 3.LowEnergy 4.LowTransportCost 5.BASE 1.ExogenousCostRed 2.LowCost(constant) 3.LowEnergy 4.LowTransportCost 5.BASE 1.ExogenousCostRed 2.LowCost(constant) 3.LowEnergy 4.LowTransportCost 5.BASE 1.ExogenousCostRed 2.LowCost(constant) 3.LowEnergy 4.LowTransportCost 5.BASE 1.ExogenousCostRed 2.LowCost(constant) 3.LowEnergy 4.LowTransportCost 5.BASE 1.ExogenousCostRed 2.LowCost(constant) 3.LowEnergy 4.LowTransportCost 5.BASE 1.ExogenousCostRed 2.LowCost(constant) 3.LowEnergy 4.LowTransportCost 5.BASE 1.ExogenousCostRed 2.LowCost(constant) 3.LowEnergy 4.LowTransportCost 5.BASE 1.ExogenousCostRed 2.LowCost(constant) DAC1 DAC2 DAC21 DAC1 DAC2 DAC21 DAC1 DAC2 DAC21 2080 2090 2100 CO2Captured[Gt/yr] EnergyNeed[EJ/yr] Energy Requirements for DAC [EJ/yr] Electricity Heat CO2 captured [Gt/yr]
  19. 19. Next Steps - DAC diagnostics @Grantham 0 20 40 60 80 100 120 140 2050 2060 2070 2080 2090 2100 CO2 Captured [Gt/yr] DAC1 1. Exogenous Cost Red DAC1 2. Low Cost (constant) DAC1 3. Low Energy DAC1 4. Low Transport Cost DAC1 5. BASE (High Cost - constant) DAC2 1. Exogenous Cost Red DAC2 2. Low Cost (constant) DAC2 3. Low Energy DAC2 4. Low Transport Cost DAC2 5. BASE (High Cost - constant) DAC21 1. Exogenous Cost Red DAC21 2. Low Cost (constant) DAC21 3. Low Energy DAC21 4. Low Transport Cost DAC21 5. BASE (High Cost - constant)
  20. 20. Thank You QUESTIONS?
  21. 21. “Unlocking the potential of our marine and renewable energy resources through the power of research and innovation”
  22. 22. Environmental Research Institute Instiúd Taighde Comshaoil Energy Policy and Modelling Group www.ucc.ie/energypolicy
  23. 23. Q&A Backup Slides
  24. 24. Scenario Temperature profiles
  25. 25. Shared Socioeconomic Pathways drivers
  26. 26. 2C & 1.5C Electricity Generation w/wo DAC 0 20 40 60 80 100 120 140 160 180 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2C_SSP2_CM_CB1000_CDR16600 15C_SSP2_CM21_CB600_CDR16600 15C_SSP2_CMUP_CB400_CDR16600 Exajoules Electricity Generation (EJ) Geo, Tidal and Wave Solar Thermal Solar PV Wind Hydro Nuclear Biomass CCS Biomass CH4 Options Gas CCS Gas and Oil Coal 0 20 40 60 80 100 120 140 160 180 200 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2C_SSP2_CM_CB1000_CDR16600_DAClocst 15C_SSP2_CM21_CB600_CDR16600_DAClocst 15C_SSP2_CMUP_CB400_CDR16600_DAClocst Exajoules Electricity Generation (EJ) Geo, Tidal and Wave Solar Thermal Solar PV Wind Hydro Nuclear Biomass CCS Biomass CH4 Options Gas CCS Gas and Oil Coal WithoutDACWithLowCostDAC
  27. 27. 2C & 1.5C Primary Energy Supply w/wo DAC 0 200 400 600 800 1000 1200 1400 1600 1800 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2C_SSP2_CM_CB1000_CDR16600 15C_SSP2_CM21_CB600_CDR16600 15C_SSP2_CMUP_CB400_CDR16600 PrimaryEnergy(Exajoules) Primary Energy Requirement (EJ) - Climate Scenarios 2C-1.5C Renewables Hydro Nuclear Biomass Gas Oil Coal 0 200 400 600 800 1000 1200 1400 1600 1800 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2C_SSP2_CM_CB1000_CDR16600_DAClocst 15C_SSP2_CM21_CB600_CDR16600_DAClocst 15C_SSP2_CMUP_CB400_CDR16600_DAClocst PrimaryEnergy(Exajoules) Primary Energy Requirement (EJ) - Climate Scenarios 2C-1.5C-DAC low Cost Renewables Hydro Nuclear Biomass Gas Oil Coal WithoutDACWithLowCostDAC

×