Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Evaluation of the French Energy Transition for Green Growth Law with Times-FR

99 views

Published on

Evaluation of the French Energy Transition for Green Growth Law with Times-FR

Published in: Data & Analytics
  • Be the first to comment

  • Be the first to like this

Evaluation of the French Energy Transition for Green Growth Law with Times-FR

  1. 1. EVALUATION OF THE FRENCH ENERGY TRANSITION FOR GREEN GROWTH LAW WITH TIMES-FR Ariane Millot Mines ParisTech, PSL Research University, Centre for Applied Mathematics ETSAP - 10 July 2017
  2. 2. INTRODUCTION • Targets of the energy transition law for green growth (2015): – 40% less greenhouse gas emissions in 2030 et 75% in 2050 compared to 1990 – 30% less fossil fuel consumption in 2030 compared to 2012 – Increase the share of renewable energy sources to 32% of the final energy consumption and 40% of the electricity production – Reduce final energy consumption by 50% in 2050 compared to 2012 – Reduce the share of nuclear power in electricity production to 50% by 2025 • Tools associated: – National low carbon strategy: • Overarching and sectoral policies orientation • Carbon budgets – Multi-annual energy planning A. Millot ETSAP 10 July 2017
  3. 3. EVALUATION OF UNDERLYING PATHWAYS • New base year for the calibration : 2014 • Main hypothesis : provided by the prospective scenarios of the French ministry of ecology that were used for the reference scenario of the low carbon national strategy – Discount rate 4% – Carbon tax : 56€/tCO2 in 2020 and 100€/tCO2 in 2030 (excluding the ETS sectors) – Demand scenario : same assumptions until 2035 A. Millot ETSAP 10 July 2017
  4. 4. SCENARIOS • Reference scenario: AME_Times – Based on the hypothesis mentioned previously • Scenario with the 5 goals of the french law: LTECV • Variations with the different goals: – ScenCO2: constraint CO2 – ScenCO2_ENR: constraint CO2 and ENR – ScenCO2_ENR_Nuc: constraint CO2 and ENR and Nuclear – Etc… A. Millot ETSAP 10 July 2017
  5. 5. IS THE EVOLUTION OF THE DEMAND CONSISTENT WITH THE TARGETS? • Without elasticity, the system is overconstrained (dummy imports)  significance of reducing the demand to meet the CO2 target 0 200000 400000 600000 800000 1000000 1200000 1400000 ScenLTECV ScenLTECV_elas ScenLTECV ScenLTECV_elas ScenLTECV ScenLTECV_elas ScenLTECV ScenLTECV_elas ScenLTECV ScenLTECV_elas ScenLTECV ScenLTECV_elas ScenLTECV ScenLTECV_elas ScenLTECV ScenLTECV_elas 2015 2020 2025 2030 2035 2040 2045 2050 MillionPKm Passenger demand mobility Rail Bus Motorcycle Car Short Distance Car Long Distance
  6. 6. FINAL ENERGY CONSUMPTION A. Millot ETSAP 10 July 2017
  7. 7. HOW EVOLVES THE ENERGY MIX ? 0 20 40 60 80 100 120 140 160 2015 2020 2025 2030 2035 2040 2045 2050 2015 2020 2025 2030 2035 2040 2045 2050 ScenAME_Times ScenLTECV_elas Mtep Heat Waste Biomass Solar Geothermal Oil Coal Electricity Gas A. Millot ETSAP 10 July 2017
  8. 8. FINAL ENERGY CONSUMPTION 0 20 40 60 80 100 120 140 160 2015 2020 2025 2030 2035 2040 2045 2050 2015 2020 2025 2030 2035 2040 2045 2050 ScenAME_Times ScenLTECV_elas Mtep Agriculture Residential Services Transport Industry A. Millot ETSAP 10 July 2017
  9. 9. WHAT SAYS THE REFERENCE SCENARIO OF THE SNBC ? Variation between 2010 and 2030 (%) Sector AMS2 DGEC LTECV Times Industry -11.7% -10.2% Building -28.8% -37.8% Agriculture -30.1% 3.2% Transport -17.8% -18.1% Total -21.7% -25.3% Scenario Mtep Sector AMS2 DGEC LTECV Times Industry -3.9 -2.9 Building -19.5 -27.5 Agriculture -1.3 0.1 Transport -8.8 -8.9 Total -33.5 -39.2 Scenario A. Millot ETSAP 10 July 2017
  10. 10. REDUCING BY 50% THE FINAL ENERGY CONSUMPTION IN 2050 IS THE MOST CONSTRAINING • This target can not be achieved by the model without elasticity  Should be consistent with a reduction of the demand • French national debate (DNTE) : 4 scenarios – At the moment : no sobriety considered  inconsistency SOBriety EFFiciency DIVersity DECarbonization Priority to Nuclear Energy Diversifi- cation Priority to Renewable En. Transition to “Factor 4” Low demand (-20% in 2050) Diversifi- cation Very low demand (-50% in 2050) NégaWatt ADEME ANCREdiv Négatep Greenpeace GRDF RTEnouvmix RTEmed WWF ANCREsob DGECams-o ANCREele Global Chance ENCILOCARBrenf UFE Source: groupe de travailGT2 « Scénarios et mix énergétique » du DNTE, juillet 2013
  11. 11. FINAL ENERGY CONSUMPTION 0 20 40 60 80 100 120 140 160 2015 2020 2025 2030 2035 2040 2045 2050 2015 2020 2025 2030 2035 2040 2045 2050 ScenLTECV_elas ScenCO2_ENR_Nuc_elas Mtep Agriculture Residential Services Transport Industry A. Millot ETSAP 10 July 2017
  12. 12. FOCUS ON THE TRANSPORT SECTOR 0 10 20 30 40 50 60 2015 2020 2025 2030 2035 2040 2045 2050 2015 2020 2025 2030 2035 2040 2045 2050 ScenAME_Times ScenLTECV_elas Mtep Oil int LPG Biofuel Electricity Gas Oil A. Millot ETSAP 10 July 2017
  13. 13. CO2 EMISSIONS A. Millot ETSAP 10 July 2017
  14. 14. EMISSIONS CO2 -50000 0 50000 100000 150000 200000 250000 300000 350000 2014 2020 2025 2030 2035 2040 2045 2050 2014 2020 2025 2030 2035 2040 2045 2050 ScenAME_Times ScenLTECV_elas kt Electricity and Heat Supply CCS Industry Agriculture Residential Services Transport Industry A. Millot ETSAP 10 July 2017
  15. 15. WHAT SAYS THE REFERENCE SCENARIO OF THE SNBC ? Variation between 2035 and 2010 (%) Sector AMS2 DGEC LTECV Times Transport -43% -39% Energy industries -52% -74% Building & Agriculture -73% -67% Industry -47% -23% Total -54% -50% kt Sector AMS2 DGEC LTECV Times Transport 55079 51475 Energy industries 28236 44298 Building & Agriculture 73842 70599 Industry 31462 14045 Total 188620 180418 Scenario Scenario A. Millot ETSAP 10 July 2017
  16. 16. MARGINAL COST OF CO2 1 10 100 1000 10000 2020 2025 2030 2035 2040 2045 2050 €/tCO2 ScenCO2_elas ScenCO2_ENR_Efin_elas ScenCO2_ENR_elas ScenCO2_ENR_Nuc_elas ScenCO2_Nuc_elas ScenLTECV_elas A. Millot ETSAP 10 July 2017
  17. 17. ELECTRICITY SECTOR A. Millot ETSAP 10 July 2017
  18. 18. CAPACITY IN THE ELECTRICITY SECTOR 0 20 40 60 80 100 120 140 2015202020252030203520402045205020152020202520302035204020452050 ScenAME_Times ScenLTECV_elas GW Waste Wind Solar Geothermal Biomass Gas Oil Coal Hydro Nuclear A. Millot ETSAP 10 July 2017
  19. 19. PRODUCTION 0 100 200 300 400 500 600 700 800 2015202020252030203520402045205020152020202520302035204020452050 ScenAME_Times ScenLTECV_elas TWh Import Waste Wind Solar Geothermal Biomass Gas Oil Coal Hydro Nuclear A. Millot ETSAP 10 July 2017
  20. 20. IF WE PUT 2 CONSTRAINTS ON CO2 EMISSIONS AND NUCLEAR CAPACITY, THEN… • Share of ENR in electricity production : 49% in 2030 > 40% (target of the law) 0 100 200 300 400 500 600 700 800 2014 2030 2050 2014 2030 2050 ScenLTECV_elas ScenCO2_Nuc_elas TWh Import Waste Wind Solar Geothermal Biomass Gas Oil Coal Hydro Nuclear
  21. 21. CAPACITY 0 20 40 60 80 100 120 140 160 180 200 2015 2020 2025 2030 2035 2040 2045 2050 2015 2020 2025 2030 2035 2040 2045 2050 ScenLTECV_elas ScenCO2_Nuc_elas GW Geothermal Waste Wind Solar Biomass Gas Oil Coal Hydro Nuclear A. Millot ETSAP 10 July 2017
  22. 22. WHAT HAPPENS IF THE NUCLEAR COST IS HIGH ? 0 100 200 300 400 500 600 700 800 900 1000 2050 2050 2050 2050 ScenLTECV_elas ScenLTECV_NucCostHigh_elas ScenCO2_Nuc_NucCostHigh_elas ScenCO2_NucCostHigh_elas TWh Electricity production Import Wind Solar Geotherm Biomass Gas Hydro Nuclear
  23. 23. CONCLUSION A. Millot ETSAP 10 July 2017
  24. 24. CONCLUSION • Main findings : – Projection of the demand should be lower than expected if we want to meet the targets of the law – The target or reducing by 50% the final energy consumption is very constraining  Lack of consistency in the long term between the targets of the law and the associated vision that was underlying the prospective modelling • Limits of this evaluation and further work : – Projection of the demand until 2050 – Updating of the scenarios by the french ministry of ecology  new assumptions ? A. Millot ETSAP 10 July 2017

×