SlideShare a Scribd company logo
1 of 40
Download to read offline
Applied Probability Models
in Marketing Research: Introduction
Bruce G. S. Hardie
London Business School
bhardie@london.edu
Peter S. Fader
University of Pennsylvania
faderp@wharton.upenn.edu
12th Annual Advanced Research Techniques Forum
June 24ā€“27, 2001
Ā©2001 Bruce G. S. Hardie and Peter S. Fader
1
Problem 1:
Predicting New Product Trial
(Modeling Timing Data)
2
Background
Ace Snackfoods, Inc. has developed a new snack product
called Krunchy Bits. Before deciding whether or not to ā€œgo
nationalā€ with the new product, the marketing manager for
Krunchy Bits has decided to commission a year-long test market
using IRIā€™s BehaviorScan service, with a view to getting a clearer
picture of the productā€™s potential.
The product has now been under test for 24 weeks. On
hand is a dataset documenting the number of households that
have made a trial purchase by the end of each week. (The total
size of the panel is 1499 households.)
The marketing manager for Krunchy Bits would like a
forecast of the productā€™s year-end performance in the test
market. First, she wants a forecast of the percentage of
households that will have made a trial purchase by week 52.
3
Krunchy Bits Cumulative Trial
Week # Households Week # Households
1 8 13 68
2 14 14 72
3 16 15 75
4 32 16 81
5 40 17 90
6 47 18 94
7 50 19 96
8 52 20 96
9 57 21 96
10 60 22 97
11 65 23 97
12 67 24 101
4
Krunchy Bits Cumulative Trial
0 4 8 12 16 20 24 28 32 36 40 44 48 52
Week
0
5
10
Cum.
%
Households
Trying
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5
Approaches to Forecasting Trial
ā€¢ French curve
ā€¢ ā€œCurve fittingā€ ā€” specify a flexible functional form,
fit it to the data, and project into the future.
ā€¢ Probability model
6
Developing a Model of Trial Purchasing
ā€¢ Start at the individual-level then aggregate.
Q: What is the individual-level behavior of
interest?
A: Time (since new product launch) of trial
purchase.
ā€¢ We donā€™t know exactly what is driving the behavior
ā‡’ treat it as a random variable.
7
The Individual-Level Model
ā€¢ Let T denote the random variable of interest, and t
denote a particular realization.
ā€¢ Assume time-to-trial is distributed exponentially.
ā€¢ The probability that an individual has tried by
time t is given by:
F(t) = P(T ā‰¤ t) = 1 āˆ’ eāˆ’Ī»t
ā€¢ Ī» represents the individualā€™s trial rate.
8
The Market-Level Model
Assume two segments of consumers:
Segment Description Size Ī»
1 ever triers p Īø
2 never triers 1 āˆ’ p 0
P(T ā‰¤ t) = P(T ā‰¤ t|ever trier) Ɨ P(ever trier) +
P(T ā‰¤ t|never trier) Ɨ P(never trier)
= pF(t|Ī» = Īø) + (1 āˆ’ p)F(t|Ī» = 0)
= p(1 āˆ’ eāˆ’Īøt
)
ā†’ the ā€œexponential w/ never triersā€ model
9
Estimating Model Parameters
The log-likelihood function is defined as:
LL(p, Īø|data) = 8 Ɨ ln[P(0 < T ā‰¤ 1)] +
6 Ɨ ln[P(1 < T ā‰¤ 2)] +
. . . +
4 Ɨ ln[P(23 < T ā‰¤ 24)] +
(1499 āˆ’ 101) Ɨ ln[P(T > 24)]
The maximum value of the log-likelihood function is
LL = āˆ’680.9, which occurs at pĢ‚ = 0.085 and
ĪøĢ‚ = 0.066.
10
Forecasting Trial
ā€¢ F(t) represents the probability that a randomly
chosen household has made a trial purchase by
time t, where t = 0 corresponds to the launch of
the new product.
ā€¢ Let T(t) = cumulative # households that have
made a trial purchase by time t:
E[T(t)] = N Ɨ FĢ‚(t)
= NpĢ‚(1 āˆ’ eāˆ’ĪøĢ‚t
), t = 1, 2, . . .
where N is the panel size.
ā€¢ Use projection factors for market-level estimates.
11
Cumulative Trial Forecast
0 4 8 12 16 20 24 28 32 36 40 44 48 52
Week
0
50
100
150
Cum.
#
Households
Trying
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Actual
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
Predicted
12
Extending the Basic Model
ā€¢ The ā€œexponential w/ never triersā€ model assumes
all triers have the same underlying trial rate Īø ā€” a
bit simplistic.
ā€¢ Allow for multiple trier ā€œsegmentsā€ each with a
different (latent) trial rate:
F(t) =
S

s=1
psF(t|Ī»s), Ī»1 = 0,
S

s=1
ps = 1
ā€¢ Replace the discrete distribution with a
continuous distribution.
13
Distribution of Trial Rates
Ī»
g(Ī»)
0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
14
Distribution of Trial Rates
ā€¢ Assume trial rates are distributed across the
population according to a gamma distribution:
g(Ī») =
Ī±r
Ī»rāˆ’1
eāˆ’Ī±Ī»
Ī“(r)
where r is the ā€œshapeā€ parameter and Ī± is the
ā€œscaleā€ parameter.
ā€¢ The gamma distribution is a flexible (unimodal)
distribution . . . and is mathematically convenient.
15
Illustrative Gamma Density Functions
0 1 2 3
Ī»
0.0
0.5
1.0
1.5
g(Ī»)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
r = 0.5, Ī± = 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
r = 1, Ī± = 1
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
r = 2, Ī± = 1
0 1 2 3
Ī»
0.0
0.5
1.0
1.5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
r = 2, Ī± = 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
r = 2, Ī± = 2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
r = 2, Ī± = 4
16
Alternative Market-Level Model
The cumulative distribution of time-to-trial at the
market-level is given by:
P(T ā‰¤ t) =
 āˆž
0
P(T ā‰¤ t|Ī») g(Ī») dĪ»
= 1 āˆ’

Ī±
Ī± + t
r
We call this the ā€œexponential-gammaā€ model.
17
Estimating Model Parameters
The log-likelihood function is defined as:
LL(r, Ī±|data) = 8 Ɨ ln[P(0  T ā‰¤ 1)] +
6 Ɨ ln[P(1  T ā‰¤ 2)] +
. . . +
4 Ɨ ln[P(23  T ā‰¤ 24)] +
(1499 āˆ’ 101) Ɨ ln[P(T  24)]
The maximum value of the log-likelihood function is
LL = āˆ’681.4, which occurs at rĢ‚ = 0.050 and
Ī±Ģ‚ = 7.973.
18
Estimated Distribution of Ī»
0.0
0.5
1.0
1.5
2.0
g(Ī»)
0.0 0.5 1.0
Ī»
exponential w/ never triers
(pĢ‚ = 0.085, ĪøĢ‚ = 0.066)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
exponential-gamma
(rĢ‚ = 0.050, Ī±Ģ‚ = 7.973)
19
Cumulative Trial Forecast
0 4 8 12 16 20 24 28 32 36 40 44 48 52
Week
0
50
100
150
Cum.
#
Households
Trying
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Actual
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
Predicted
20
Further Model Extensions
ā€¢ Combine a ā€œnever triersā€ term with the
ā€œexponential-gammaā€ model.
ā€¢ Incorporate the effects of marketing covariates.
ā€¢ Model repeat sales using a ā€œdepth of repeatā€
formulation, where transitions from one repeat
class to the next are modeled using an
ā€œexponential-gammaā€-type model.
21
Concepts and Tools Introduced
ā€¢ Probability models
ā€¢ (Single-event) timing processes
ā€¢ Models of new product trial/adoption
22
Further Reading
Hardie, Bruce G. S., Peter S. Fader, and Michael Wisniewski
(1998), ā€œAn Empirical Comparison of New Product Trial
Forecasting Models,ā€ Journal of Forecasting, 17 (Juneā€“July),
209ā€“29.
Fader, Peter S., Bruce G. S. Hardie, and Robert Zeithammer
(1998), ā€œWhat are the Ingredients of a ā€˜Goodā€™ New Product
Forecasting Model?ā€ Wharton Marketing Department
Working Paper #98-021.
Kalbfleisch, John D. and Ross L. Prentice (1980), The
Statistical Analysis of Failure Time Data, New York: Wiley.
Lawless, J. F. (1982), Statistical Models and Methods for
Lifetime Data, New York: Wiley.
23
Introduction to Probability Models
24
The Logic of Probability Models
ā€¢ Many researchers attempt to describe/predict
behavior using observed variables.
ā€¢ However, they still use random components in
recognition that not all factors are included in the
model.
ā€¢ We treat behavior as if it were ā€œrandomā€
(probabilistic, stochastic).
ā€¢ We propose a model of individual-level behavior
which is ā€œsummedā€ across individuals (taking
individual differences into account) to obtain a
model of aggregate behavior.
25
Uses of Probability Models
ā€¢ Understanding market-level behavior patterns
ā€¢ Prediction
ā€“ To settings (e.g., time periods) beyond the
observation period
ā€“ Conditional on past behavior
ā€¢ Profiling behavioral propensities of individuals
ā€¢ Benchmarks/norms
26
Building a Probability Model
(i) Determine the marketing decision problem/
information needed.
(ii) Identify the observable individual-level
behavior of interest.
ā€¢ We denote this by x.
(iii) Select a probability distribution that
characterizes this individual-level behavior.
ā€¢ This is denoted by f (x|Īø).
ā€¢ We view the parameters of this distribution
as individual-level latent traits.
27
Building a Probability Model
(iv) Specify a distribution to characterize the
distribution of the latent trait variable(s)
across the population.
ā€¢ We denote this by g(Īø).
ā€¢ This is often called the mixing distribution.
(v) Derive the corresponding aggregate or
observed distribution for the behavior of
interest:
f (x) =

f (x|Īø)g(Īø) dĪø
28
Building a Probability Model
(vi) Estimate the parameters (of the mixing
distribution) by fitting the aggregate
distribution to the observed data.
(vii) Use the model to solve the marketing decision
problem/provide the required information.
29
Outline
ā€¢ Problem 1: Predicting New Product Trial
(Modeling Timing Data)
ā€¢ Problem 2: Estimating Billboard Exposures
(Modeling Count Data)
ā€¢ Problem 3: Test/Roll Decisions in Segmentation-
based Direct Marketing
(Modeling ā€œChoiceā€ Data)
ā€¢ Further applications and tools/modeling issues
30
Problem 2:
Estimating Billboard Exposures
(Modeling Count Data)
31
Background
One advertising medium at the marketerā€™s disposal is the
outdoor billboard. The unit of purchase for this medium is
usually a ā€œmonthly showing,ā€ which comprises a specific set of
billboards carrying the advertiserā€™s message in a given market.
The effectiveness of a monthly showing is evaluated in
terms of three measures: reach, (average) frequency, and gross
rating points (GRPs). These measures are determined using data
collected from a sample of people in the market.
Respondents record their daily travel on maps. From each
respondentā€™s travel map, the total frequency of exposure to the
showing over the survey period is counted. An ā€œexposureā€ is
deemed to occur each time the respondent travels by a
billboard in the showing, on the street or road closest to that
billboard, going towards the billboardā€™s face.
32
Background
The standard approach to data collection requires each
respondent to fill out daily travel maps for an entire month. The
problem with this is that it is difficult and expensive to get a
high proportion of respondents to do this accurately.
BP Research is interested in developing a means by which
it can generate effectiveness measures for a monthly showing
from a survey in which respondents fill out travel maps for only
one week.
Data have been collected from a sample of 250 residents
who completed daily travel maps for one week. The sampling
process is such that approximately one quarter of the
respondents fill out travel maps during each of the four weeks
in the target month.
33
Effectiveness Measures
The effectiveness of a monthly showing is evaluated in
terms of three measures:
ā€¢ Reach: the proportion of the population exposed
to the billboard message at least once in the
month.
ā€¢ Average Frequency: the average number of
exposures (per month) among those people
reached.
ā€¢ Gross Rating Points (GRPs): the mean number of
exposures per 100 people.
34
Distribution of Billboard Exposures (1 week)
# Exposures # People # Exposures # People
0 48 12 5
1 37 13 3
2 30 14 3
3 24 15 2
4 20 16 2
5 16 17 2
6 13 18 1
7 11 19 1
8 9 20 2
9 7 21 1
10 6 22 1
11 5 23 1
35
Modeling Objective
Develop a model that enables us to estimate a
billboard showingā€™s reach, average frequency,
and GRPs for the month using the one-week
data.
36
Modeling Issues
ā€¢ Modeling the exposures to showing in a week.
ā€¢ Estimating summary statistics of the exposure
distribution for a longer period of time (i.e., one
month).
37
Modeling One Week Exposures
ā€¢ Let the random variable X denote the number of
exposures to the showing in a week.
ā€¢ At the individual-level, X is assumed to be Poisson
distributed with (exposure) rate parameter Ī»:
P(X = x|Ī») =
Ī»x
eāˆ’Ī»
x!
ā€¢ Exposure rates (Ī») are distributed across the
population according to a gamma distribution:
g(Ī») =
Ī±r
Ī»rāˆ’1
eāˆ’Ī±Ī»
Ī“(r)
38
Modeling One Week Exposures
ā€¢ The distribution of exposures at the population-
level is given by:
P(X = x) =
 āˆž
0
P(X = x|Ī») g(Ī») dĪ»
=
Ī“(r + x)
Ī“(r)x!

Ī±
Ī± + 1
r 
1
Ī± + 1
x
This is called the Negative Binomial Distribution,
or NBD model.
ā€¢ The mean of the NBD is given by E(X) = r/Ī±.
39
Computing NBD Probabilities
ā€¢ Note that
P(X = x)
P(X = x āˆ’ 1)
=
r + x āˆ’ 1
x(Ī± + 1)
ā€¢ We can therefore compute NBD probabilities using
the following forward recursion formula:
P(X = x) =
ļ£±
ļ£“
ļ£“
ļ£“
ļ£“
ļ£“
ļ£²
ļ£“
ļ£“
ļ£“
ļ£“
ļ£“
ļ£³

Ī±
Ī± + 1
r
x = 0
r + x āˆ’ 1
x(Ī± + 1)
Ɨ P(X = x āˆ’ 1) x ā‰„ 1
40
Estimating Model Parameters
The log-likelihood function is defined as:
LL(r, Ī±|data) = 48 Ɨ ln[P(X = 0)] +
37 Ɨ ln[P(X = 1)] +
30 Ɨ ln[P(X = 2)] +
. . . +
1 Ɨ ln[P(X = 23)]
The maximum value of the log-likelihood function is
LL = āˆ’649.7, which occurs at rĢ‚ = 0.969 and
Ī±Ģ‚ = 0.218.
41
Estimated Distribution of Ī»
0.0
0.1
0.2
0.3
0.4
0.5
g(Ī»)
0 2 4 6 8 10
Ī»
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
rĢ‚ = 0.969, Ī±Ģ‚ = 0.218
42
NBD for a Non-Unit Time Period
ā€¢ Let X(t) be the number of exposures occuring in
an observation period of length t time units.
ā€¢ If, for a unit time period, the distribution of
exposures at the individual-level is distributed
Poisson with rate parameter Ī», then X(t) has a
Poisson distribution with rate parameter Ī»t:
P(X(t) = x|Ī») =
(Ī»t)x
eāˆ’Ī»t
x!
43
NBD for a Non-Unit Time Period
ā€¢ The distribution of exposures at the population-
level is given by:
P(X(t) = x) =
 āˆž
0
P(X(t) = x|Ī») g(Ī») dĪ»
=
Ī“(r + x)
Ī“(r)x!

Ī±
Ī± + t
r 
t
Ī± + t
x
ā€¢ The mean of this distribution is given by
E[X(t)] = rt/Ī±.
44
Exposure Distributions: 1 week vs. 4 week
0
40
80
120
160
#
People
# Exposures
0ā€“4 5ā€“9 10ā€“14 15ā€“19 20+
1 week
4 week
45
Effectiveness of Monthly Showing
ā€¢ For t = 4, we have:
ā€“ P(X(t) = 0) = 0.056, and
ā€“ E X(t) = 17.82
ā€¢ It follows that:
ā€“ Reach = 1 āˆ’ P(X(t) = 0)
= 94.4%
ā€“ Frequency = E X(t) 1 āˆ’ P(X(t) = 0)
= 18.9
ā€“ GRPs = 100 Ɨ E[X(t)]
= 1782
46
Concepts and Tools Introduced
ā€¢ Counting processes
ā€¢ The NBD model
ā€¢ Extrapolating an observed histogram over time
ā€¢ Using models to estimate ā€œexposure distributionsā€
for media vehicles
47
Further Reading
Greene, Jerome D. (1982), Consumer Behavior Models for
Non-Statisticians, New York: Praeger.
Morrison, Donald G. and David C. Schmittlein (1988),
ā€œGeneralizing the NBD Model for Customer Purchases: What
Are the Implications and Is It Worth the Effort?ā€ Journal of
Business and Economic Statistics, 6 (April), 145ā€“59.
Ehrenberg, A. S. C. (1988), Repeat-Buying, 2nd edn., London:
Charles Griffin  Company, Ltd. (Available online at
http://www.empgens.com/ehrenberg.html#repeat.)
48
Problem 3:
Test/Roll Decisions in
Segmentation-based Direct Marketing
(Modeling ā€œChoiceā€ Data)
49
The ā€œSegmentationā€ Approach
1. Divide the customer list into a set of
(homogeneous) segments.
2. Test customer response by mailing to a random
sample of each segment.
3. Rollout to segments with a response rate (RR)
above some cut-off point,
e.g., RR 
cost of each mailing
unit margin
50
Benā€™s Knick Knacks, Inc.
ā€¢ A consumer durable product (unit margin =
$161.50, mailing cost per 10,000 = $3343)
ā€¢ 126 segments formed from customer database on
the basis of past purchase history information
ā€¢ Test mailing to 3.24% of database
51
Benā€™s Knick Knacks, Inc.
Standard approach:
ā€¢ Rollout to all segments with
Test RR 
3343/10, 000
161.50
= 0.00207
ā€¢ 51 segments pass this hurdle
52
Test vs. Actual Response Rate
0 1 2 3 4 5 6 7 8
Test RR (%)
0
1
2
3
4
5
6
7
8
Rollout
RR
(%)
ā‹„ ā‹„
ā‹„ ā‹„
ā‹„
ā‹„
ā‹„
ā‹„
ā‹„
ā‹„
ā‹„
ā‹„ā‹„ ā‹„
ā‹„
ā‹„ ā‹„
ā‹„
ā‹„ ā‹„
ā‹„ ā‹„
ā‹„
ā‹„ ā‹„
ā‹„
ā‹„
ā‹„
ā‹„
ā‹„
ā‹„ā‹„
ā‹„ ā‹„
ā‹„
ā‹„ ā‹„
ā‹„ā‹„
ā‹„ ā‹„
ā‹„
ā‹„ā‹„ ā‹„
ā‹„
ā‹„
ā‹„ā‹„
ā‹„
ā‹„ ā‹„
ā‹„ ā‹„
ā‹„
ā‹„
ā‹„ ā‹„
ā‹„
ā‹„
ā‹„ ā‹„
ā‹„
ā‹„ā‹„
ā‹„ ā‹„
ā‹„
ā‹„
ā‹„
ā‹„
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
53
Modeling Objective
Develop a model that leverages the whole data
set to make better informed decisions.
54
Model Development
Notation:
Ns = size of segment s (s = 1, . . . , S)
ms = # members of segment s tested
Xs = # responses to test in segment s
Assume: All members of segment s have the same
(unknown) response probability ps ā‡’ Xs
is a binomial random variable
P(Xs = xs|ms, ps) =

ms
xs

p
xs
s (1 āˆ’ ps)msāˆ’xs
55
Distribution of Response Probabilities
ā€¢ Heterogeneity in ps is captured using a beta
distribution:
g(ps) =
1
B(Ī±, Ī²)
pĪ±āˆ’1
s (1 āˆ’ ps)Ī²āˆ’1
ā€¢ The beta function, B(Ī±, Ī²), can be expressed as
B(Ī±, Ī²) =
Ī“(Ī±)Ī“(Ī²)
Ī“(Ī± + Ī²)
ā€¢ The mean of the beta distribution is given by
E(ps) =
Ī±
Ī± + Ī²
56
Illustrative Beta Density Functions
0.0 0.5 1.0
p
0
1
2
3
g(p)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Ī± = 5, Ī² = 5
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
Ī± = 1, Ī² = 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Ī± = 0.5, Ī² = 0.5
0.0 0.5 1.0
p
0
2
4
6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Ī± = 1.5, Ī² = 0.5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
Ī± = 0.5, Ī² = 1.5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
Ī± = 2, Ī² = 4
57
Shape of the Beta Density
āœ²
āœ»
Ī±
Ī²
1
1
U-shaped J-shaped
Reverse
J-shaped
Mode at
Ī±āˆ’1
Ī±+Ī²āˆ’2
58
The Beta Binomial Model
The aggregate distribution of responses to a mailing
of size ms is given by
P(Xs = xs|ms) =
 1
0
P(Xs = xs|ms, ps) g(ps) dps
=

ms
xs

B(Ī± + xs, Ī² + ms āˆ’ xs)
B(Ī±, Ī²)
59
Estimating Model Parameters
The log-likelihood function is defined as:
LL(Ī±, Ī²|data) =
126

s=1
ln[P(Xs = xs|ms)]
=
126

s=1
ln

ms!
(ms āˆ’ xs)! xs!
Ī“(Ī± + xs)Ī“(Ī² + ms āˆ’ xs)
Ī“(Ī± + Ī² + ms)
  
B(Ī±+xs ,Ī²+ms āˆ’xs )
Ī“(Ī± + Ī²)
Ī“(Ī±)Ī“(Ī²)
  
1/B(Ī±,Ī²)

The maximum value of the log-likelihood function is
LL = āˆ’200.5, which occurs at Ī±Ģ‚ = 0.439 and
Ī²Ģ‚ = 95.411.
60
Estimated Distribution of p
0
5
10
15
20
g(p)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Ī±Ģ‚ = 0.439, Ī²Ģ‚ = 95.411, pĢ„ = 0.0046
61
Applying the Model
What is our best guess of ps given a response
of xs to a test mailing of size ms?
Intuitively, we would expect
E(ps|xs, ms) ā‰ˆ Ļ‰
Ī±
Ī± + Ī²
+ (1 āˆ’ Ļ‰)
xs
ms
62
Bayes Theorem
ā€¢ The prior distribution g(p) captures the possible
values p can take on, prior to collecting any
information about the specific individual.
ā€¢ The posterior distribution g(p|x) is the conditional
distribution of p, given the observed data x. It
represents our updated opinion about the possible
values p can take on, now that we have some
information x about the specific individual.
ā€¢ According to Bayes theorem:
g(p|x) =
f (x|p)g(p)

f (x|p)g(p) dp
63
Bayes Theorem
For the beta-binomial model, we have:
g(ps|Xs = xs, ms) =
binomial
  
P(Xs = xs|ms, ps)
beta
  
g(ps)
 1
0
P(Xs = xs|ms, ps) g(ps) dps
  
beta-binomial
=
1
B(Ī± + xs, Ī² + ms āˆ’ xs)
p
Ī±+xsāˆ’1
s (1 āˆ’ ps)Ī²+msāˆ’xsāˆ’1
which is a beta distribution with parameters Ī± + xs
and Ī² + ms āˆ’ xs.
64
Distribution of p
0
50
100
150
g(p)
0 0.1 1
p
āˆ¼
āˆ¼
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
prior (Ī±Ģ‚ = 0.439, Ī²Ģ‚ = 95.411)
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
posterior with xs = 80, ms = 1235
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
.
posterior with xs = 0, ms = 171
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
pĢ„ = 0.0604
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
pĢ„ = 0.0016
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
pĢ„ = 0.0046
65
Applying the Model
Recall that the mean of the beta distribution is
Ī±/(Ī± + Ī²). Therefore
E(ps|Xs = xs, ms) =
Ī± + xs
Ī± + Ī² + ms
which can be written as

Ī± + Ī²
Ī± + Ī² + ms

Ī±
Ī± + Ī²
+

ms
Ī± + Ī² + ms

xs
ms
ā€¢ a weighted average of the test RR (xs/ms) and the
population mean (Ī±/(Ī± + Ī²)).
ā€¢ ā€œRegressing the test RR to the meanā€
66
Model-Based Decision Rule
ā€¢ Rollout to segments with:
E(ps|Xs = xs, ms) 
3343/10, 000
161.5
= 0.00207
ā€¢ 66 segments pass this hurdle
ā€¢ To test this model, we compare model predictions
with managersā€™ actions. (We also examine the
performance of the ā€œstandardā€ approach.)
67
Results
Standard Manager Model
# Segments (Rule) 51 66
# Segments (Act.) 46 71 53
Contacts 682,392 858,728 732,675
Responses 4,463 4,804 4,582
Profit $492,651 $488,773 $495,060
Use of model results in a profit increase of $6287;
126,053 fewer contacts, saved for another offering.
68
Concepts and Tools Introduced
ā€¢ ā€œChoiceā€ processes
ā€¢ The Beta Binomial model
ā€¢ ā€œRegression-to-the-meanā€ and the use of models to
capture such an effect
ā€¢ Bayes theorem (and ā€œempirical Bayesā€ methods)
ā€¢ Using ā€œempirical Bayesā€ methods in the
development of targeted marketing campaigns
69
Further Reading
Colombo, Richard and Donald G. Morrison (1988),
ā€œBlacklisting Social Science Departments with Poor Ph.D.
Submission Rates,ā€ Management Science, 34 (June),
696ā€“706.
Morwitz, Vicki G. and David C. Schmittlein (1998), ā€œTesting
New Direct Marketing Offerings: The Interplay of
Management Judgment and Statistical Models,ā€
Management Science, 44 (May), 610ā€“28.
Sabavala, Darius J. and Donald G. Morrison (1977), ā€œA
Model of TV Show Loyalty,ā€ Journal of Advertising
Research, 17 (December), 35ā€“43.
70
Further Applications and Tools/
Modeling Issues
71
Recap
ā€¢ The preceding three problems introduce simple
models for three behavioral processes:
ā€“ Timing ā†’ ā€œwhenā€
ā€“ Counting ā†’ ā€œhow manyā€
ā€“ ā€œChoiceā€ ā†’ ā€œwhether/whichā€
ā€¢ Each of these simple models has multiple
applications.
ā€¢ More complex behavioral phenomena can be
captured by combining models from each of these
processes.
72
Further Applications: Timing Models
ā€¢ Repeat purchasing of new products
ā€¢ Response times:
ā€“ Coupon redemptions
ā€“ Survey response
ā€“ Direct mail (response, returns, repeat sales)
ā€¢ Customer retention/attrition
ā€¢ Other durations:
ā€“ Salesforce job tenure
ā€“ Length of web site browsing session
73
Further Applications: Count Models
ā€¢ Repeat purchasing
ā€¢ Customer concentration (ā€œ80/20ā€ rules)
ā€¢ Salesforce productivity/allocation
ā€¢ Number of page views during a web site browsing
session
74
Further Applications: ā€œChoiceā€ Models
ā€¢ Brand choice
HH #1 āœ²
Ɨ
A
Ɨ
B
Ɨ
A
Ɨ
A
HH #2 āœ²
Ɨ
B
HH #3 āœ²
Ɨ
B
Ɨ
A
.
.
.
HH #h āœ²
Ɨ
A
Ɨ
B
Ɨ
B
Ɨ
B
ā€¢ Media exposure
ā€¢ Multibrand choice (BB ā†’ Dirichlet Multinomial)
ā€¢ Taste tests (discrimination tests)
ā€¢ ā€œClick-throughā€ behavior
75
Integrated Models
ā€¢ Counting + Timing
ā€“ catalog purchases (purchasing | ā€œaliveā€  ā€œdeathā€ process)
ā€“ ā€œstickinessā€ (# visits  duration/visit)
ā€¢ Counting + Counting
ā€“ purchase volume (# transactions  units/transaction)
ā€“ page views/month (# visits  pages/visit)
ā€¢ Counting + Choice
ā€“ brand purchasing (category purchasing  brand choice)
ā€“ ā€œconversionā€ behavior (# visits  buy/not-buy)
76
Further Issues
Relaxing usual assumptions:
ā€¢ Non-exponential purchasing (greater regularity)
ā†’ non-Poisson counts
ā€¢ Non-gamma/beta heterogeneity (e.g., ā€œhard
coreā€ nonbuyers, ā€œhard coreā€ loyals)
ā€¢ Nonstationarity ā€” latent traits vary over time
The basic models are quite robust to these
departures.
77
Extensions
ā€¢ Latent class/finite mixture models
ā€¢ Introducing covariate effects
ā€¢ Hierarchical Bayes methods
78
The Excel spreadsheets associated with this tutorial,
along with electronic copies of the tutorial materials,
can be found at:
http://brucehardie.com/talks.html
79

More Related Content

Similar to Applied Probability Models In Marketing Research

Ch5 - Forecasting in marketing engineering
Ch5 - Forecasting in marketing engineeringCh5 - Forecasting in marketing engineering
Ch5 - Forecasting in marketing engineeringGerman Jordanian University
Ā 
Lecture 1: NBERMetrics
Lecture 1: NBERMetricsLecture 1: NBERMetrics
Lecture 1: NBERMetricsNBER
Ā 
Optimal Learning for Fun and Profit with MOE
Optimal Learning for Fun and Profit with MOEOptimal Learning for Fun and Profit with MOE
Optimal Learning for Fun and Profit with MOEYelp Engineering
Ā 
Simulation technique in OR
Simulation technique in ORSimulation technique in OR
Simulation technique in ORSarabjeet Kaur
Ā 
Survey analytics conjointanalysis_1
Survey analytics conjointanalysis_1Survey analytics conjointanalysis_1
Survey analytics conjointanalysis_1QuestionPro
Ā 
OR Ndejje Univ (1).pptx
OR Ndejje Univ (1).pptxOR Ndejje Univ (1).pptx
OR Ndejje Univ (1).pptxChandigaRichard1
Ā 
Experimental design
Experimental designExperimental design
Experimental designDan Toma
Ā 
Project #4 Due 121015 by 500pm Upload one PowerPoint and .docx
Project #4 Due 121015 by 500pm Upload one PowerPoint and .docxProject #4 Due 121015 by 500pm Upload one PowerPoint and .docx
Project #4 Due 121015 by 500pm Upload one PowerPoint and .docxwkyra78
Ā 
Economics and Business Enviroment
Economics and Business EnviromentEconomics and Business Enviroment
Economics and Business EnviromentBdb Bhatt
Ā 
Why learn Six Sigma, 4,28,15
Why learn Six Sigma, 4,28,15Why learn Six Sigma, 4,28,15
Why learn Six Sigma, 4,28,15James F. McCarthy
Ā 
Demo.pptx
Demo.pptxDemo.pptx
Demo.pptxMeXXIX
Ā 
Scott Clark, Software Engineer, Yelp at MLconf SF
Scott Clark, Software Engineer, Yelp at MLconf SFScott Clark, Software Engineer, Yelp at MLconf SF
Scott Clark, Software Engineer, Yelp at MLconf SFMLconf
Ā 
1. intro. to or &amp; lp
1. intro. to or &amp; lp1. intro. to or &amp; lp
1. intro. to or &amp; lpHakeem-Ur- Rehman
Ā 
Business Research Methods Unit V
Business Research Methods Unit VBusiness Research Methods Unit V
Business Research Methods Unit VKartikeya Singh
Ā 
Sample Size Calculation One Sample Case.pdf
Sample Size Calculation One Sample Case.pdfSample Size Calculation One Sample Case.pdf
Sample Size Calculation One Sample Case.pdfRajJirel
Ā 
Marketing Experiment - Part II: Analysis
Marketing Experiment - Part II: Analysis Marketing Experiment - Part II: Analysis
Marketing Experiment - Part II: Analysis Minha Hwang
Ā 

Similar to Applied Probability Models In Marketing Research (20)

Ch5 - Forecasting in marketing engineering
Ch5 - Forecasting in marketing engineeringCh5 - Forecasting in marketing engineering
Ch5 - Forecasting in marketing engineering
Ā 
1-introduction.ppt
1-introduction.ppt1-introduction.ppt
1-introduction.ppt
Ā 
Lecture 1: NBERMetrics
Lecture 1: NBERMetricsLecture 1: NBERMetrics
Lecture 1: NBERMetrics
Ā 
Optimal Learning for Fun and Profit with MOE
Optimal Learning for Fun and Profit with MOEOptimal Learning for Fun and Profit with MOE
Optimal Learning for Fun and Profit with MOE
Ā 
STATISTIC ESTIMATION
STATISTIC ESTIMATIONSTATISTIC ESTIMATION
STATISTIC ESTIMATION
Ā 
Simulation technique in OR
Simulation technique in ORSimulation technique in OR
Simulation technique in OR
Ā 
OR Ndejje Univ.pptx
OR Ndejje Univ.pptxOR Ndejje Univ.pptx
OR Ndejje Univ.pptx
Ā 
Survey analytics conjointanalysis_1
Survey analytics conjointanalysis_1Survey analytics conjointanalysis_1
Survey analytics conjointanalysis_1
Ā 
OR Ndejje Univ (1).pptx
OR Ndejje Univ (1).pptxOR Ndejje Univ (1).pptx
OR Ndejje Univ (1).pptx
Ā 
Experimental design
Experimental designExperimental design
Experimental design
Ā 
Project #4 Due 121015 by 500pm Upload one PowerPoint and .docx
Project #4 Due 121015 by 500pm Upload one PowerPoint and .docxProject #4 Due 121015 by 500pm Upload one PowerPoint and .docx
Project #4 Due 121015 by 500pm Upload one PowerPoint and .docx
Ā 
Economics and Business Enviroment
Economics and Business EnviromentEconomics and Business Enviroment
Economics and Business Enviroment
Ā 
Why learn Six Sigma, 4,28,15
Why learn Six Sigma, 4,28,15Why learn Six Sigma, 4,28,15
Why learn Six Sigma, 4,28,15
Ā 
Demo.pptx
Demo.pptxDemo.pptx
Demo.pptx
Ā 
Scott Clark, Software Engineer, Yelp at MLconf SF
Scott Clark, Software Engineer, Yelp at MLconf SFScott Clark, Software Engineer, Yelp at MLconf SF
Scott Clark, Software Engineer, Yelp at MLconf SF
Ā 
1. intro. to or &amp; lp
1. intro. to or &amp; lp1. intro. to or &amp; lp
1. intro. to or &amp; lp
Ā 
Business Research Methods Unit V
Business Research Methods Unit VBusiness Research Methods Unit V
Business Research Methods Unit V
Ā 
Dan Toma Presentation on IWMC 2015
Dan Toma Presentation on IWMC 2015Dan Toma Presentation on IWMC 2015
Dan Toma Presentation on IWMC 2015
Ā 
Sample Size Calculation One Sample Case.pdf
Sample Size Calculation One Sample Case.pdfSample Size Calculation One Sample Case.pdf
Sample Size Calculation One Sample Case.pdf
Ā 
Marketing Experiment - Part II: Analysis
Marketing Experiment - Part II: Analysis Marketing Experiment - Part II: Analysis
Marketing Experiment - Part II: Analysis
Ā 

More from Heather Strinden

53 Best Technical Report Example RedlineSP
53 Best Technical Report Example RedlineSP53 Best Technical Report Example RedlineSP
53 Best Technical Report Example RedlineSPHeather Strinden
Ā 
Empathy Answer - PHDessay.Com. Online assignment writing service.
Empathy Answer - PHDessay.Com. Online assignment writing service.Empathy Answer - PHDessay.Com. Online assignment writing service.
Empathy Answer - PHDessay.Com. Online assignment writing service.Heather Strinden
Ā 
Argumentative Essay Topics Dealing With Children - 10
Argumentative Essay Topics Dealing With Children - 10Argumentative Essay Topics Dealing With Children - 10
Argumentative Essay Topics Dealing With Children - 10Heather Strinden
Ā 
TEEL Paragraph Sentence Starters Word Mat
TEEL Paragraph Sentence Starters Word MatTEEL Paragraph Sentence Starters Word Mat
TEEL Paragraph Sentence Starters Word MatHeather Strinden
Ā 
Can Money Buy Happiness Essay - The Writing Center.
Can Money Buy Happiness Essay - The Writing Center.Can Money Buy Happiness Essay - The Writing Center.
Can Money Buy Happiness Essay - The Writing Center.Heather Strinden
Ā 
College Essay Essentials A Step-By-Step Guide To Writ
College Essay Essentials A Step-By-Step Guide To WritCollege Essay Essentials A Step-By-Step Guide To Writ
College Essay Essentials A Step-By-Step Guide To WritHeather Strinden
Ā 
How To Write A Presentation Us. Online assignment writing service.
How To Write A Presentation  Us. Online assignment writing service.How To Write A Presentation  Us. Online assignment writing service.
How To Write A Presentation Us. Online assignment writing service.Heather Strinden
Ā 
Narrative Essay Writing PPT. Online assignment writing service.
Narrative Essay Writing  PPT. Online assignment writing service.Narrative Essay Writing  PPT. Online assignment writing service.
Narrative Essay Writing PPT. Online assignment writing service.Heather Strinden
Ā 
Expository Story. Exposition In A Story Why Background Infor
Expository Story. Exposition In A Story Why Background InforExpository Story. Exposition In A Story Why Background Infor
Expository Story. Exposition In A Story Why Background InforHeather Strinden
Ā 
How To Make Fun Cursive N. Online assignment writing service.
How To Make Fun Cursive N. Online assignment writing service.How To Make Fun Cursive N. Online assignment writing service.
How To Make Fun Cursive N. Online assignment writing service.Heather Strinden
Ā 
All You Need To Know About Sociology Essay Writing Ser
All You Need To Know About Sociology Essay Writing SerAll You Need To Know About Sociology Essay Writing Ser
All You Need To Know About Sociology Essay Writing SerHeather Strinden
Ā 
Annotating Musical Theatre Plots On Narrative Structure And Emotional Content
Annotating Musical Theatre Plots On Narrative Structure And Emotional ContentAnnotating Musical Theatre Plots On Narrative Structure And Emotional Content
Annotating Musical Theatre Plots On Narrative Structure And Emotional ContentHeather Strinden
Ā 
Aristotle S Topics And Informal Reasoning
Aristotle S Topics And Informal ReasoningAristotle S Topics And Informal Reasoning
Aristotle S Topics And Informal ReasoningHeather Strinden
Ā 
Activity-Based Rail Freight Costing A Model For Calculating Transport Costs I...
Activity-Based Rail Freight Costing A Model For Calculating Transport Costs I...Activity-Based Rail Freight Costing A Model For Calculating Transport Costs I...
Activity-Based Rail Freight Costing A Model For Calculating Transport Costs I...Heather Strinden
Ā 
3 Th Stage 2Nd Course
3 Th Stage 2Nd Course3 Th Stage 2Nd Course
3 Th Stage 2Nd CourseHeather Strinden
Ā 
A LITERATURE REVIEW ON PHISHING EMAIL DETECTION USING DATA MINING
A LITERATURE REVIEW ON PHISHING EMAIL DETECTION USING DATA MININGA LITERATURE REVIEW ON PHISHING EMAIL DETECTION USING DATA MINING
A LITERATURE REVIEW ON PHISHING EMAIL DETECTION USING DATA MININGHeather Strinden
Ā 
5 Important Deep Learning Research Papers You Must Read In 2020
5 Important Deep Learning Research Papers You Must Read In 20205 Important Deep Learning Research Papers You Must Read In 2020
5 Important Deep Learning Research Papers You Must Read In 2020Heather Strinden
Ā 
Arabic Writing Challenges Faced By Students In Collegiate 1 Of Al
Arabic Writing Challenges Faced By Students In Collegiate 1 Of AlArabic Writing Challenges Faced By Students In Collegiate 1 Of Al
Arabic Writing Challenges Faced By Students In Collegiate 1 Of AlHeather Strinden
Ā 
An Inquiry-Based Case Study For Conservation Biology
An Inquiry-Based Case Study For Conservation BiologyAn Inquiry-Based Case Study For Conservation Biology
An Inquiry-Based Case Study For Conservation BiologyHeather Strinden
Ā 
An Introduction To Environmental Auditing
An Introduction To Environmental AuditingAn Introduction To Environmental Auditing
An Introduction To Environmental AuditingHeather Strinden
Ā 

More from Heather Strinden (20)

53 Best Technical Report Example RedlineSP
53 Best Technical Report Example RedlineSP53 Best Technical Report Example RedlineSP
53 Best Technical Report Example RedlineSP
Ā 
Empathy Answer - PHDessay.Com. Online assignment writing service.
Empathy Answer - PHDessay.Com. Online assignment writing service.Empathy Answer - PHDessay.Com. Online assignment writing service.
Empathy Answer - PHDessay.Com. Online assignment writing service.
Ā 
Argumentative Essay Topics Dealing With Children - 10
Argumentative Essay Topics Dealing With Children - 10Argumentative Essay Topics Dealing With Children - 10
Argumentative Essay Topics Dealing With Children - 10
Ā 
TEEL Paragraph Sentence Starters Word Mat
TEEL Paragraph Sentence Starters Word MatTEEL Paragraph Sentence Starters Word Mat
TEEL Paragraph Sentence Starters Word Mat
Ā 
Can Money Buy Happiness Essay - The Writing Center.
Can Money Buy Happiness Essay - The Writing Center.Can Money Buy Happiness Essay - The Writing Center.
Can Money Buy Happiness Essay - The Writing Center.
Ā 
College Essay Essentials A Step-By-Step Guide To Writ
College Essay Essentials A Step-By-Step Guide To WritCollege Essay Essentials A Step-By-Step Guide To Writ
College Essay Essentials A Step-By-Step Guide To Writ
Ā 
How To Write A Presentation Us. Online assignment writing service.
How To Write A Presentation  Us. Online assignment writing service.How To Write A Presentation  Us. Online assignment writing service.
How To Write A Presentation Us. Online assignment writing service.
Ā 
Narrative Essay Writing PPT. Online assignment writing service.
Narrative Essay Writing  PPT. Online assignment writing service.Narrative Essay Writing  PPT. Online assignment writing service.
Narrative Essay Writing PPT. Online assignment writing service.
Ā 
Expository Story. Exposition In A Story Why Background Infor
Expository Story. Exposition In A Story Why Background InforExpository Story. Exposition In A Story Why Background Infor
Expository Story. Exposition In A Story Why Background Infor
Ā 
How To Make Fun Cursive N. Online assignment writing service.
How To Make Fun Cursive N. Online assignment writing service.How To Make Fun Cursive N. Online assignment writing service.
How To Make Fun Cursive N. Online assignment writing service.
Ā 
All You Need To Know About Sociology Essay Writing Ser
All You Need To Know About Sociology Essay Writing SerAll You Need To Know About Sociology Essay Writing Ser
All You Need To Know About Sociology Essay Writing Ser
Ā 
Annotating Musical Theatre Plots On Narrative Structure And Emotional Content
Annotating Musical Theatre Plots On Narrative Structure And Emotional ContentAnnotating Musical Theatre Plots On Narrative Structure And Emotional Content
Annotating Musical Theatre Plots On Narrative Structure And Emotional Content
Ā 
Aristotle S Topics And Informal Reasoning
Aristotle S Topics And Informal ReasoningAristotle S Topics And Informal Reasoning
Aristotle S Topics And Informal Reasoning
Ā 
Activity-Based Rail Freight Costing A Model For Calculating Transport Costs I...
Activity-Based Rail Freight Costing A Model For Calculating Transport Costs I...Activity-Based Rail Freight Costing A Model For Calculating Transport Costs I...
Activity-Based Rail Freight Costing A Model For Calculating Transport Costs I...
Ā 
3 Th Stage 2Nd Course
3 Th Stage 2Nd Course3 Th Stage 2Nd Course
3 Th Stage 2Nd Course
Ā 
A LITERATURE REVIEW ON PHISHING EMAIL DETECTION USING DATA MINING
A LITERATURE REVIEW ON PHISHING EMAIL DETECTION USING DATA MININGA LITERATURE REVIEW ON PHISHING EMAIL DETECTION USING DATA MINING
A LITERATURE REVIEW ON PHISHING EMAIL DETECTION USING DATA MINING
Ā 
5 Important Deep Learning Research Papers You Must Read In 2020
5 Important Deep Learning Research Papers You Must Read In 20205 Important Deep Learning Research Papers You Must Read In 2020
5 Important Deep Learning Research Papers You Must Read In 2020
Ā 
Arabic Writing Challenges Faced By Students In Collegiate 1 Of Al
Arabic Writing Challenges Faced By Students In Collegiate 1 Of AlArabic Writing Challenges Faced By Students In Collegiate 1 Of Al
Arabic Writing Challenges Faced By Students In Collegiate 1 Of Al
Ā 
An Inquiry-Based Case Study For Conservation Biology
An Inquiry-Based Case Study For Conservation BiologyAn Inquiry-Based Case Study For Conservation Biology
An Inquiry-Based Case Study For Conservation Biology
Ā 
An Introduction To Environmental Auditing
An Introduction To Environmental AuditingAn Introduction To Environmental Auditing
An Introduction To Environmental Auditing
Ā 

Recently uploaded

psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
Ā 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
Ā 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
Ā 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
Ā 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
Ā 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
Ā 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
Ā 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
Ā 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
Ā 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
Ā 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
Ā 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
Ā 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
Ā 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxNikitaBankoti2
Ā 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
Ā 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
Ā 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
Ā 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
Ā 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
Ā 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
Ā 

Recently uploaded (20)

psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
Ā 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
Ā 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
Ā 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
Ā 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
Ā 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
Ā 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
Ā 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
Ā 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
Ā 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
Ā 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
Ā 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
Ā 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
Ā 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
Ā 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
Ā 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Ā 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
Ā 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Ā 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
Ā 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
Ā 

Applied Probability Models In Marketing Research

  • 1. Applied Probability Models in Marketing Research: Introduction Bruce G. S. Hardie London Business School bhardie@london.edu Peter S. Fader University of Pennsylvania faderp@wharton.upenn.edu 12th Annual Advanced Research Techniques Forum June 24ā€“27, 2001 Ā©2001 Bruce G. S. Hardie and Peter S. Fader 1 Problem 1: Predicting New Product Trial (Modeling Timing Data) 2
  • 2. Background Ace Snackfoods, Inc. has developed a new snack product called Krunchy Bits. Before deciding whether or not to ā€œgo nationalā€ with the new product, the marketing manager for Krunchy Bits has decided to commission a year-long test market using IRIā€™s BehaviorScan service, with a view to getting a clearer picture of the productā€™s potential. The product has now been under test for 24 weeks. On hand is a dataset documenting the number of households that have made a trial purchase by the end of each week. (The total size of the panel is 1499 households.) The marketing manager for Krunchy Bits would like a forecast of the productā€™s year-end performance in the test market. First, she wants a forecast of the percentage of households that will have made a trial purchase by week 52. 3 Krunchy Bits Cumulative Trial Week # Households Week # Households 1 8 13 68 2 14 14 72 3 16 15 75 4 32 16 81 5 40 17 90 6 47 18 94 7 50 19 96 8 52 20 96 9 57 21 96 10 60 22 97 11 65 23 97 12 67 24 101 4
  • 3. Krunchy Bits Cumulative Trial 0 4 8 12 16 20 24 28 32 36 40 44 48 52 Week 0 5 10 Cum. % Households Trying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Approaches to Forecasting Trial ā€¢ French curve ā€¢ ā€œCurve fittingā€ ā€” specify a flexible functional form, fit it to the data, and project into the future. ā€¢ Probability model 6
  • 4. Developing a Model of Trial Purchasing ā€¢ Start at the individual-level then aggregate. Q: What is the individual-level behavior of interest? A: Time (since new product launch) of trial purchase. ā€¢ We donā€™t know exactly what is driving the behavior ā‡’ treat it as a random variable. 7 The Individual-Level Model ā€¢ Let T denote the random variable of interest, and t denote a particular realization. ā€¢ Assume time-to-trial is distributed exponentially. ā€¢ The probability that an individual has tried by time t is given by: F(t) = P(T ā‰¤ t) = 1 āˆ’ eāˆ’Ī»t ā€¢ Ī» represents the individualā€™s trial rate. 8
  • 5. The Market-Level Model Assume two segments of consumers: Segment Description Size Ī» 1 ever triers p Īø 2 never triers 1 āˆ’ p 0 P(T ā‰¤ t) = P(T ā‰¤ t|ever trier) Ɨ P(ever trier) + P(T ā‰¤ t|never trier) Ɨ P(never trier) = pF(t|Ī» = Īø) + (1 āˆ’ p)F(t|Ī» = 0) = p(1 āˆ’ eāˆ’Īøt ) ā†’ the ā€œexponential w/ never triersā€ model 9 Estimating Model Parameters The log-likelihood function is defined as: LL(p, Īø|data) = 8 Ɨ ln[P(0 < T ā‰¤ 1)] + 6 Ɨ ln[P(1 < T ā‰¤ 2)] + . . . + 4 Ɨ ln[P(23 < T ā‰¤ 24)] + (1499 āˆ’ 101) Ɨ ln[P(T > 24)] The maximum value of the log-likelihood function is LL = āˆ’680.9, which occurs at pĢ‚ = 0.085 and ĪøĢ‚ = 0.066. 10
  • 6. Forecasting Trial ā€¢ F(t) represents the probability that a randomly chosen household has made a trial purchase by time t, where t = 0 corresponds to the launch of the new product. ā€¢ Let T(t) = cumulative # households that have made a trial purchase by time t: E[T(t)] = N Ɨ FĢ‚(t) = NpĢ‚(1 āˆ’ eāˆ’ĪøĢ‚t ), t = 1, 2, . . . where N is the panel size. ā€¢ Use projection factors for market-level estimates. 11 Cumulative Trial Forecast 0 4 8 12 16 20 24 28 32 36 40 44 48 52 Week 0 50 100 150 Cum. # Households Trying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Actual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Predicted 12
  • 7. Extending the Basic Model ā€¢ The ā€œexponential w/ never triersā€ model assumes all triers have the same underlying trial rate Īø ā€” a bit simplistic. ā€¢ Allow for multiple trier ā€œsegmentsā€ each with a different (latent) trial rate: F(t) = S s=1 psF(t|Ī»s), Ī»1 = 0, S s=1 ps = 1 ā€¢ Replace the discrete distribution with a continuous distribution. 13 Distribution of Trial Rates Ī» g(Ī») 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
  • 8. Distribution of Trial Rates ā€¢ Assume trial rates are distributed across the population according to a gamma distribution: g(Ī») = Ī±r Ī»rāˆ’1 eāˆ’Ī±Ī» Ī“(r) where r is the ā€œshapeā€ parameter and Ī± is the ā€œscaleā€ parameter. ā€¢ The gamma distribution is a flexible (unimodal) distribution . . . and is mathematically convenient. 15 Illustrative Gamma Density Functions 0 1 2 3 Ī» 0.0 0.5 1.0 1.5 g(Ī») . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r = 0.5, Ī± = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r = 1, Ī± = 1 . . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . . r = 2, Ī± = 1 0 1 2 3 Ī» 0.0 0.5 1.0 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r = 2, Ī± = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r = 2, Ī± = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . r = 2, Ī± = 4 16
  • 9. Alternative Market-Level Model The cumulative distribution of time-to-trial at the market-level is given by: P(T ā‰¤ t) = āˆž 0 P(T ā‰¤ t|Ī») g(Ī») dĪ» = 1 āˆ’ Ī± Ī± + t r We call this the ā€œexponential-gammaā€ model. 17 Estimating Model Parameters The log-likelihood function is defined as: LL(r, Ī±|data) = 8 Ɨ ln[P(0 T ā‰¤ 1)] + 6 Ɨ ln[P(1 T ā‰¤ 2)] + . . . + 4 Ɨ ln[P(23 T ā‰¤ 24)] + (1499 āˆ’ 101) Ɨ ln[P(T 24)] The maximum value of the log-likelihood function is LL = āˆ’681.4, which occurs at rĢ‚ = 0.050 and Ī±Ģ‚ = 7.973. 18
  • 10. Estimated Distribution of Ī» 0.0 0.5 1.0 1.5 2.0 g(Ī») 0.0 0.5 1.0 Ī» exponential w/ never triers (pĢ‚ = 0.085, ĪøĢ‚ = 0.066) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . exponential-gamma (rĢ‚ = 0.050, Ī±Ģ‚ = 7.973) 19 Cumulative Trial Forecast 0 4 8 12 16 20 24 28 32 36 40 44 48 52 Week 0 50 100 150 Cum. # Households Trying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Actual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Predicted 20
  • 11. Further Model Extensions ā€¢ Combine a ā€œnever triersā€ term with the ā€œexponential-gammaā€ model. ā€¢ Incorporate the effects of marketing covariates. ā€¢ Model repeat sales using a ā€œdepth of repeatā€ formulation, where transitions from one repeat class to the next are modeled using an ā€œexponential-gammaā€-type model. 21 Concepts and Tools Introduced ā€¢ Probability models ā€¢ (Single-event) timing processes ā€¢ Models of new product trial/adoption 22
  • 12. Further Reading Hardie, Bruce G. S., Peter S. Fader, and Michael Wisniewski (1998), ā€œAn Empirical Comparison of New Product Trial Forecasting Models,ā€ Journal of Forecasting, 17 (Juneā€“July), 209ā€“29. Fader, Peter S., Bruce G. S. Hardie, and Robert Zeithammer (1998), ā€œWhat are the Ingredients of a ā€˜Goodā€™ New Product Forecasting Model?ā€ Wharton Marketing Department Working Paper #98-021. Kalbfleisch, John D. and Ross L. Prentice (1980), The Statistical Analysis of Failure Time Data, New York: Wiley. Lawless, J. F. (1982), Statistical Models and Methods for Lifetime Data, New York: Wiley. 23 Introduction to Probability Models 24
  • 13. The Logic of Probability Models ā€¢ Many researchers attempt to describe/predict behavior using observed variables. ā€¢ However, they still use random components in recognition that not all factors are included in the model. ā€¢ We treat behavior as if it were ā€œrandomā€ (probabilistic, stochastic). ā€¢ We propose a model of individual-level behavior which is ā€œsummedā€ across individuals (taking individual differences into account) to obtain a model of aggregate behavior. 25 Uses of Probability Models ā€¢ Understanding market-level behavior patterns ā€¢ Prediction ā€“ To settings (e.g., time periods) beyond the observation period ā€“ Conditional on past behavior ā€¢ Profiling behavioral propensities of individuals ā€¢ Benchmarks/norms 26
  • 14. Building a Probability Model (i) Determine the marketing decision problem/ information needed. (ii) Identify the observable individual-level behavior of interest. ā€¢ We denote this by x. (iii) Select a probability distribution that characterizes this individual-level behavior. ā€¢ This is denoted by f (x|Īø). ā€¢ We view the parameters of this distribution as individual-level latent traits. 27 Building a Probability Model (iv) Specify a distribution to characterize the distribution of the latent trait variable(s) across the population. ā€¢ We denote this by g(Īø). ā€¢ This is often called the mixing distribution. (v) Derive the corresponding aggregate or observed distribution for the behavior of interest: f (x) = f (x|Īø)g(Īø) dĪø 28
  • 15. Building a Probability Model (vi) Estimate the parameters (of the mixing distribution) by fitting the aggregate distribution to the observed data. (vii) Use the model to solve the marketing decision problem/provide the required information. 29 Outline ā€¢ Problem 1: Predicting New Product Trial (Modeling Timing Data) ā€¢ Problem 2: Estimating Billboard Exposures (Modeling Count Data) ā€¢ Problem 3: Test/Roll Decisions in Segmentation- based Direct Marketing (Modeling ā€œChoiceā€ Data) ā€¢ Further applications and tools/modeling issues 30
  • 16. Problem 2: Estimating Billboard Exposures (Modeling Count Data) 31 Background One advertising medium at the marketerā€™s disposal is the outdoor billboard. The unit of purchase for this medium is usually a ā€œmonthly showing,ā€ which comprises a specific set of billboards carrying the advertiserā€™s message in a given market. The effectiveness of a monthly showing is evaluated in terms of three measures: reach, (average) frequency, and gross rating points (GRPs). These measures are determined using data collected from a sample of people in the market. Respondents record their daily travel on maps. From each respondentā€™s travel map, the total frequency of exposure to the showing over the survey period is counted. An ā€œexposureā€ is deemed to occur each time the respondent travels by a billboard in the showing, on the street or road closest to that billboard, going towards the billboardā€™s face. 32
  • 17. Background The standard approach to data collection requires each respondent to fill out daily travel maps for an entire month. The problem with this is that it is difficult and expensive to get a high proportion of respondents to do this accurately. BP Research is interested in developing a means by which it can generate effectiveness measures for a monthly showing from a survey in which respondents fill out travel maps for only one week. Data have been collected from a sample of 250 residents who completed daily travel maps for one week. The sampling process is such that approximately one quarter of the respondents fill out travel maps during each of the four weeks in the target month. 33 Effectiveness Measures The effectiveness of a monthly showing is evaluated in terms of three measures: ā€¢ Reach: the proportion of the population exposed to the billboard message at least once in the month. ā€¢ Average Frequency: the average number of exposures (per month) among those people reached. ā€¢ Gross Rating Points (GRPs): the mean number of exposures per 100 people. 34
  • 18. Distribution of Billboard Exposures (1 week) # Exposures # People # Exposures # People 0 48 12 5 1 37 13 3 2 30 14 3 3 24 15 2 4 20 16 2 5 16 17 2 6 13 18 1 7 11 19 1 8 9 20 2 9 7 21 1 10 6 22 1 11 5 23 1 35 Modeling Objective Develop a model that enables us to estimate a billboard showingā€™s reach, average frequency, and GRPs for the month using the one-week data. 36
  • 19. Modeling Issues ā€¢ Modeling the exposures to showing in a week. ā€¢ Estimating summary statistics of the exposure distribution for a longer period of time (i.e., one month). 37 Modeling One Week Exposures ā€¢ Let the random variable X denote the number of exposures to the showing in a week. ā€¢ At the individual-level, X is assumed to be Poisson distributed with (exposure) rate parameter Ī»: P(X = x|Ī») = Ī»x eāˆ’Ī» x! ā€¢ Exposure rates (Ī») are distributed across the population according to a gamma distribution: g(Ī») = Ī±r Ī»rāˆ’1 eāˆ’Ī±Ī» Ī“(r) 38
  • 20. Modeling One Week Exposures ā€¢ The distribution of exposures at the population- level is given by: P(X = x) = āˆž 0 P(X = x|Ī») g(Ī») dĪ» = Ī“(r + x) Ī“(r)x! Ī± Ī± + 1 r 1 Ī± + 1 x This is called the Negative Binomial Distribution, or NBD model. ā€¢ The mean of the NBD is given by E(X) = r/Ī±. 39 Computing NBD Probabilities ā€¢ Note that P(X = x) P(X = x āˆ’ 1) = r + x āˆ’ 1 x(Ī± + 1) ā€¢ We can therefore compute NBD probabilities using the following forward recursion formula: P(X = x) = ļ£± ļ£“ ļ£“ ļ£“ ļ£“ ļ£“ ļ£² ļ£“ ļ£“ ļ£“ ļ£“ ļ£“ ļ£³ Ī± Ī± + 1 r x = 0 r + x āˆ’ 1 x(Ī± + 1) Ɨ P(X = x āˆ’ 1) x ā‰„ 1 40
  • 21. Estimating Model Parameters The log-likelihood function is defined as: LL(r, Ī±|data) = 48 Ɨ ln[P(X = 0)] + 37 Ɨ ln[P(X = 1)] + 30 Ɨ ln[P(X = 2)] + . . . + 1 Ɨ ln[P(X = 23)] The maximum value of the log-likelihood function is LL = āˆ’649.7, which occurs at rĢ‚ = 0.969 and Ī±Ģ‚ = 0.218. 41 Estimated Distribution of Ī» 0.0 0.1 0.2 0.3 0.4 0.5 g(Ī») 0 2 4 6 8 10 Ī» . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rĢ‚ = 0.969, Ī±Ģ‚ = 0.218 42
  • 22. NBD for a Non-Unit Time Period ā€¢ Let X(t) be the number of exposures occuring in an observation period of length t time units. ā€¢ If, for a unit time period, the distribution of exposures at the individual-level is distributed Poisson with rate parameter Ī», then X(t) has a Poisson distribution with rate parameter Ī»t: P(X(t) = x|Ī») = (Ī»t)x eāˆ’Ī»t x! 43 NBD for a Non-Unit Time Period ā€¢ The distribution of exposures at the population- level is given by: P(X(t) = x) = āˆž 0 P(X(t) = x|Ī») g(Ī») dĪ» = Ī“(r + x) Ī“(r)x! Ī± Ī± + t r t Ī± + t x ā€¢ The mean of this distribution is given by E[X(t)] = rt/Ī±. 44
  • 23. Exposure Distributions: 1 week vs. 4 week 0 40 80 120 160 # People # Exposures 0ā€“4 5ā€“9 10ā€“14 15ā€“19 20+ 1 week 4 week 45 Effectiveness of Monthly Showing ā€¢ For t = 4, we have: ā€“ P(X(t) = 0) = 0.056, and ā€“ E X(t) = 17.82 ā€¢ It follows that: ā€“ Reach = 1 āˆ’ P(X(t) = 0) = 94.4% ā€“ Frequency = E X(t) 1 āˆ’ P(X(t) = 0) = 18.9 ā€“ GRPs = 100 Ɨ E[X(t)] = 1782 46
  • 24. Concepts and Tools Introduced ā€¢ Counting processes ā€¢ The NBD model ā€¢ Extrapolating an observed histogram over time ā€¢ Using models to estimate ā€œexposure distributionsā€ for media vehicles 47 Further Reading Greene, Jerome D. (1982), Consumer Behavior Models for Non-Statisticians, New York: Praeger. Morrison, Donald G. and David C. Schmittlein (1988), ā€œGeneralizing the NBD Model for Customer Purchases: What Are the Implications and Is It Worth the Effort?ā€ Journal of Business and Economic Statistics, 6 (April), 145ā€“59. Ehrenberg, A. S. C. (1988), Repeat-Buying, 2nd edn., London: Charles Griffin Company, Ltd. (Available online at http://www.empgens.com/ehrenberg.html#repeat.) 48
  • 25. Problem 3: Test/Roll Decisions in Segmentation-based Direct Marketing (Modeling ā€œChoiceā€ Data) 49 The ā€œSegmentationā€ Approach 1. Divide the customer list into a set of (homogeneous) segments. 2. Test customer response by mailing to a random sample of each segment. 3. Rollout to segments with a response rate (RR) above some cut-off point, e.g., RR cost of each mailing unit margin 50
  • 26. Benā€™s Knick Knacks, Inc. ā€¢ A consumer durable product (unit margin = $161.50, mailing cost per 10,000 = $3343) ā€¢ 126 segments formed from customer database on the basis of past purchase history information ā€¢ Test mailing to 3.24% of database 51 Benā€™s Knick Knacks, Inc. Standard approach: ā€¢ Rollout to all segments with Test RR 3343/10, 000 161.50 = 0.00207 ā€¢ 51 segments pass this hurdle 52
  • 27. Test vs. Actual Response Rate 0 1 2 3 4 5 6 7 8 Test RR (%) 0 1 2 3 4 5 6 7 8 Rollout RR (%) ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ ā‹„ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Modeling Objective Develop a model that leverages the whole data set to make better informed decisions. 54
  • 28. Model Development Notation: Ns = size of segment s (s = 1, . . . , S) ms = # members of segment s tested Xs = # responses to test in segment s Assume: All members of segment s have the same (unknown) response probability ps ā‡’ Xs is a binomial random variable P(Xs = xs|ms, ps) = ms xs p xs s (1 āˆ’ ps)msāˆ’xs 55 Distribution of Response Probabilities ā€¢ Heterogeneity in ps is captured using a beta distribution: g(ps) = 1 B(Ī±, Ī²) pĪ±āˆ’1 s (1 āˆ’ ps)Ī²āˆ’1 ā€¢ The beta function, B(Ī±, Ī²), can be expressed as B(Ī±, Ī²) = Ī“(Ī±)Ī“(Ī²) Ī“(Ī± + Ī²) ā€¢ The mean of the beta distribution is given by E(ps) = Ī± Ī± + Ī² 56
  • 29. Illustrative Beta Density Functions 0.0 0.5 1.0 p 0 1 2 3 g(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ī± = 5, Ī² = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ī± = 1, Ī² = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ī± = 0.5, Ī² = 0.5 0.0 0.5 1.0 p 0 2 4 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ī± = 1.5, Ī² = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ī± = 0.5, Ī² = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . Ī± = 2, Ī² = 4 57 Shape of the Beta Density āœ² āœ» Ī± Ī² 1 1 U-shaped J-shaped Reverse J-shaped Mode at Ī±āˆ’1 Ī±+Ī²āˆ’2 58
  • 30. The Beta Binomial Model The aggregate distribution of responses to a mailing of size ms is given by P(Xs = xs|ms) = 1 0 P(Xs = xs|ms, ps) g(ps) dps = ms xs B(Ī± + xs, Ī² + ms āˆ’ xs) B(Ī±, Ī²) 59 Estimating Model Parameters The log-likelihood function is defined as: LL(Ī±, Ī²|data) = 126 s=1 ln[P(Xs = xs|ms)] = 126 s=1 ln ms! (ms āˆ’ xs)! xs! Ī“(Ī± + xs)Ī“(Ī² + ms āˆ’ xs) Ī“(Ī± + Ī² + ms) B(Ī±+xs ,Ī²+ms āˆ’xs ) Ī“(Ī± + Ī²) Ī“(Ī±)Ī“(Ī²) 1/B(Ī±,Ī²) The maximum value of the log-likelihood function is LL = āˆ’200.5, which occurs at Ī±Ģ‚ = 0.439 and Ī²Ģ‚ = 95.411. 60
  • 31. Estimated Distribution of p 0 5 10 15 20 g(p) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ī±Ģ‚ = 0.439, Ī²Ģ‚ = 95.411, pĢ„ = 0.0046 61 Applying the Model What is our best guess of ps given a response of xs to a test mailing of size ms? Intuitively, we would expect E(ps|xs, ms) ā‰ˆ Ļ‰ Ī± Ī± + Ī² + (1 āˆ’ Ļ‰) xs ms 62
  • 32. Bayes Theorem ā€¢ The prior distribution g(p) captures the possible values p can take on, prior to collecting any information about the specific individual. ā€¢ The posterior distribution g(p|x) is the conditional distribution of p, given the observed data x. It represents our updated opinion about the possible values p can take on, now that we have some information x about the specific individual. ā€¢ According to Bayes theorem: g(p|x) = f (x|p)g(p) f (x|p)g(p) dp 63 Bayes Theorem For the beta-binomial model, we have: g(ps|Xs = xs, ms) = binomial P(Xs = xs|ms, ps) beta g(ps) 1 0 P(Xs = xs|ms, ps) g(ps) dps beta-binomial = 1 B(Ī± + xs, Ī² + ms āˆ’ xs) p Ī±+xsāˆ’1 s (1 āˆ’ ps)Ī²+msāˆ’xsāˆ’1 which is a beta distribution with parameters Ī± + xs and Ī² + ms āˆ’ xs. 64
  • 33. Distribution of p 0 50 100 150 g(p) 0 0.1 1 p āˆ¼ āˆ¼ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . prior (Ī±Ģ‚ = 0.439, Ī²Ģ‚ = 95.411) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . posterior with xs = 80, ms = 1235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . posterior with xs = 0, ms = 171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pĢ„ = 0.0604 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pĢ„ = 0.0016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pĢ„ = 0.0046 65 Applying the Model Recall that the mean of the beta distribution is Ī±/(Ī± + Ī²). Therefore E(ps|Xs = xs, ms) = Ī± + xs Ī± + Ī² + ms which can be written as Ī± + Ī² Ī± + Ī² + ms Ī± Ī± + Ī² + ms Ī± + Ī² + ms xs ms ā€¢ a weighted average of the test RR (xs/ms) and the population mean (Ī±/(Ī± + Ī²)). ā€¢ ā€œRegressing the test RR to the meanā€ 66
  • 34. Model-Based Decision Rule ā€¢ Rollout to segments with: E(ps|Xs = xs, ms) 3343/10, 000 161.5 = 0.00207 ā€¢ 66 segments pass this hurdle ā€¢ To test this model, we compare model predictions with managersā€™ actions. (We also examine the performance of the ā€œstandardā€ approach.) 67 Results Standard Manager Model # Segments (Rule) 51 66 # Segments (Act.) 46 71 53 Contacts 682,392 858,728 732,675 Responses 4,463 4,804 4,582 Profit $492,651 $488,773 $495,060 Use of model results in a profit increase of $6287; 126,053 fewer contacts, saved for another offering. 68
  • 35. Concepts and Tools Introduced ā€¢ ā€œChoiceā€ processes ā€¢ The Beta Binomial model ā€¢ ā€œRegression-to-the-meanā€ and the use of models to capture such an effect ā€¢ Bayes theorem (and ā€œempirical Bayesā€ methods) ā€¢ Using ā€œempirical Bayesā€ methods in the development of targeted marketing campaigns 69 Further Reading Colombo, Richard and Donald G. Morrison (1988), ā€œBlacklisting Social Science Departments with Poor Ph.D. Submission Rates,ā€ Management Science, 34 (June), 696ā€“706. Morwitz, Vicki G. and David C. Schmittlein (1998), ā€œTesting New Direct Marketing Offerings: The Interplay of Management Judgment and Statistical Models,ā€ Management Science, 44 (May), 610ā€“28. Sabavala, Darius J. and Donald G. Morrison (1977), ā€œA Model of TV Show Loyalty,ā€ Journal of Advertising Research, 17 (December), 35ā€“43. 70
  • 36. Further Applications and Tools/ Modeling Issues 71 Recap ā€¢ The preceding three problems introduce simple models for three behavioral processes: ā€“ Timing ā†’ ā€œwhenā€ ā€“ Counting ā†’ ā€œhow manyā€ ā€“ ā€œChoiceā€ ā†’ ā€œwhether/whichā€ ā€¢ Each of these simple models has multiple applications. ā€¢ More complex behavioral phenomena can be captured by combining models from each of these processes. 72
  • 37. Further Applications: Timing Models ā€¢ Repeat purchasing of new products ā€¢ Response times: ā€“ Coupon redemptions ā€“ Survey response ā€“ Direct mail (response, returns, repeat sales) ā€¢ Customer retention/attrition ā€¢ Other durations: ā€“ Salesforce job tenure ā€“ Length of web site browsing session 73 Further Applications: Count Models ā€¢ Repeat purchasing ā€¢ Customer concentration (ā€œ80/20ā€ rules) ā€¢ Salesforce productivity/allocation ā€¢ Number of page views during a web site browsing session 74
  • 38. Further Applications: ā€œChoiceā€ Models ā€¢ Brand choice HH #1 āœ² Ɨ A Ɨ B Ɨ A Ɨ A HH #2 āœ² Ɨ B HH #3 āœ² Ɨ B Ɨ A . . . HH #h āœ² Ɨ A Ɨ B Ɨ B Ɨ B ā€¢ Media exposure ā€¢ Multibrand choice (BB ā†’ Dirichlet Multinomial) ā€¢ Taste tests (discrimination tests) ā€¢ ā€œClick-throughā€ behavior 75 Integrated Models ā€¢ Counting + Timing ā€“ catalog purchases (purchasing | ā€œaliveā€ ā€œdeathā€ process) ā€“ ā€œstickinessā€ (# visits duration/visit) ā€¢ Counting + Counting ā€“ purchase volume (# transactions units/transaction) ā€“ page views/month (# visits pages/visit) ā€¢ Counting + Choice ā€“ brand purchasing (category purchasing brand choice) ā€“ ā€œconversionā€ behavior (# visits buy/not-buy) 76
  • 39. Further Issues Relaxing usual assumptions: ā€¢ Non-exponential purchasing (greater regularity) ā†’ non-Poisson counts ā€¢ Non-gamma/beta heterogeneity (e.g., ā€œhard coreā€ nonbuyers, ā€œhard coreā€ loyals) ā€¢ Nonstationarity ā€” latent traits vary over time The basic models are quite robust to these departures. 77 Extensions ā€¢ Latent class/finite mixture models ā€¢ Introducing covariate effects ā€¢ Hierarchical Bayes methods 78
  • 40. The Excel spreadsheets associated with this tutorial, along with electronic copies of the tutorial materials, can be found at: http://brucehardie.com/talks.html 79