SlideShare a Scribd company logo
1 of 39
O v e r v i e w o n
M O E M S
Hana Medhat Abdelhadi
B.Sc., German University in Cairo
Faculty of Information Engineering and Technology
Electronics Department
M O E M S
On-Chip Micro-Scaled Systems:
• Miniaturization  Portability
• Monolithic Micro-fabrication  Commerciality
• Arrayability  Multi-Purpose
• Re-Configurability  Functionality Tuning
M O E M S
Reversible Mechanical Perturbation by, e.g.:
• Electro-thermal Force
• Electro-static Force
• Piezo-electricity
M O E M S
Optical MEMS: Displays, e.g. Micro-Mirror Arrays
M O E M S
Optical MEMS: Diffractive Spectrometers, e.g. Tunable
Gratings
M O E M S
Optical MEMS: Interferometric Spectrometers, e.g.
Michelson Interferometer
M O E M S
Optical MEMS: Tunable Optical Resonators, e.g. VCSEL
swept laser source
M i c r o - O p t i c a l B e n c h e s
Component fabrication Requirements:
• High Verticality
• High Aspect Ratio
• Low Surface Roughness
• Control of Surface Curvature
L i t h o g r a p h y
Minimum Line width:
𝑊 𝑚𝑖𝑛 =
𝐾 ⋋
𝑁𝐴
Depth of focus:
𝜎 =
⋋
𝑁𝐴2
K is a measure of photo-resistivity; ⋋ is the source wavelength; 𝑁𝐴 is the numerical
aperture of the optical component
D R I E ( B o s c h P r o c e s s )
𝑆𝐹6 Plasma  Isotropic Etch
𝑆𝐹6 Plasma cycle +𝐶4 𝐹8 cycle  Anisotropic Etch + Scallops
M o n o l i t h i c
M i c r o - F a b r i c a t i o n
E l e c t r o - t h e r m a l
A c t u a t i o n
Electric Current Flow  Thermal Energy rises
Transient Deformation  Translational Actuation
U - S h a p e d B e a m
Resistivity of thin arm >> Resistivity of wide arm
Thin arm expands in length  Side deflection of the structure
U - S h a p e d B e a m
M a t h e m a t i c a l M o d e l
Temperature Profile in thin arm:
𝑇 𝑥 =
𝑉2
2𝐿2 𝜌𝐾 𝑝
𝐿𝑥 − 𝑥2 + 𝑇𝑠  𝑇 𝑚𝑎𝑥 𝑎𝑡 𝑥 =
𝐿
2
Beam Deflection:
d 𝑥 =
−𝛼
2ℎ
𝑇ℎ − 𝑇𝑐 𝑥2
Change in the beam’s length:
∆𝐿 = 𝐿(
𝑉2
12𝜌𝐾 𝑝
+ 𝑇𝑠)
V: Applied voltage; L: Length of thin arm; 𝐾 𝑝: thermal conductivity; 𝜌: 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦;
𝑇𝑠: 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑟𝑚 𝑡𝑒𝑚𝑝; α: 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
U - S h a p e d B e a m
M o d e l i n g
U - S h a p e d B e a m
P e r f o r m a n c e
Short Range Actuation
High Power Consumption
V - S h a p e d B e a m
V - S h a p e d B e a m
M a t h e m a t i c a l M o d e l
Maximum deflection (with no loading
force) :
𝑑 𝑚𝑎𝑥 = 2
tan 𝜃1
𝑘
tan
𝑘𝐿1
4
−
𝐿1
2
tan 𝜃1
For a desired deflection at a certain angle, we obtain
the force F and the required change in temp.:
∆𝑇 =
1
𝛼𝐿1
(∆𝐿1
′
+
𝐹𝐿1
𝑌𝑊𝐻
)
F is the applied force; Y is Young’s modulus; I is the moment of inertia of the beam; H is beam thickness; W is the
beam width; 𝐿1
′
is the corrected beam length for compression at the fixed side; k= 𝐹
𝑌𝐼
V - S h a p e d B e a m
P e r f o r m a n c e
Short range actuation.
High power consumption.
E l e c t r o - S t a t i c
A c t u a t i o n
Potential diff. between 2 conductors  Charge accumulation
Attraction Forces  Translational Actuation
P a r a l l e l P l a t e
M a t h e m a t i c a l M o d e l
Electrostatic Force:
𝐹𝑒 =
1
2
𝐶𝑉2
=
1
2
𝐴𝜀0 𝜀 𝑟
(𝑑)2
Restoring Spring Force:
𝐹𝑠 = 𝑘 𝑒 𝑥
Equilibrium  𝐹𝑒 = 𝐹𝑠 translational distance:
𝑥 =
1
2
𝐴𝜀0 𝜀 𝑟
𝑘 𝑒(𝑑)2
𝑉2
C is the capacitance; V is the applied voltage; A is the surface area, d is the initial gap, 𝑘 𝑒 is the
spring stiffness, x is the displacement.
P a r a l l e l P l a t e
P e r f o r m a n c e
Extremely Short
range actuation.
No power
consumption.
Low upper limit
Voltages.
C o m b - D r i v e
A c t u a t o r
C o m b - D r i v e
M a t h e m a t i c a l M o d e l
Electro-static force for N fingers:
𝐹 =
𝑁𝜀𝑡𝑉2
2(𝑑)2
Deflection at equilibrium:
𝑥 =
𝑁𝜀𝑡𝑉2
2𝑘 𝑒(𝑑)2
V is the applied voltage; t is the finger thickness, d is the initial gap, 𝑘 𝑒 is the spring stiffness, x
is the displacement.
C o m b - D r i v e
P e r f o r m a n c e
Long Range Actuation (400𝜇𝑚 at 35𝑉)
No power consumption
Resilient to non-linearity at large displacements
M E M S
C h a r a c t e r i z a t i o n
Electrical Model in Frequency Domain:
Resonance Frequency
Quality Factor
Optical Model in Time Domain:
Relative position/ Velocity
Microscopic Imaging
E l e c t r i c a l M o d e l
At resonance:
G 𝜔0 =
1
𝑅 𝑚
→ 𝜔0 & 𝑅 𝑚
𝐵 𝜔0 = 𝜔0 𝐶𝑠 + 𝐶 𝑝 → 𝐶𝑠 + 𝐶 𝑝
Generally:
𝐶𝑒𝑞 =
𝐵(𝜔)
𝜔
= 𝐶𝑠 + 𝐶 𝑝+
𝐿 𝑚(
𝜔0
2
𝜔2 −1)
𝑅 𝑚
2+ (𝜔𝐿 𝑚−
1
𝜔𝐶 𝑚
)2
→ 𝐶𝑒𝑞 𝑚𝑎𝑥
at
𝜕𝐶 𝑒𝑞
𝜕𝜔
= 0
𝐿 𝑚 =
𝜔0 𝑅 𝑚
𝜔 𝑒𝑞|1 −
𝜔0
2
𝜔 𝑒𝑞
2 |
→ 𝐶 𝑚
E l e c t r i c a l M o d e l
O p t i c a l M o d e l
L a s e r D o p p l e r T e c h n i q u e
BS1 + M1  Reference Beam
P+L+BS3  Modulated Beam
Reference Beam + BC  High Carrier Frequency
BS : Beam Splitter; L : thin lens; P: quarter wave plate; M: Mirror; BC: Bragg Cell; D: Detector
O p t i c a l M o d e l
L a s e r D o p p l e r T e c h n i q u e
A: AC Amplitude; 𝑓𝐵: carrier frequency; 𝜃 𝑚: modulation phase; 𝜃0: initial phase; 𝑓𝑚: doppler
frequency; 𝑣: velocity; 𝑠: displacement.
BS : Beam Splitter; L : thin lens; P: quarter wave plate; M: Mirror; BC: Bragg Cell; D: Detector
𝑖 𝑑𝑒𝑡 𝑡 = 𝐼 𝐷𝐶 + 𝐴𝑐𝑜𝑠 2𝜋𝑓𝐵 𝑡 + 𝜃 𝑚 + 𝜃0
𝜃 𝑚 𝑡 =
4𝜋𝑠(𝑡)
⋋
 𝑓𝑚 𝑡 =
2𝑣(𝑡)
⋋
O p t i c a l M o d e l
M i c r o - S c a n n i n g V i b r o m e t e r
Doppler technique + Array of points  Microscopic Imaging of MEMS motion
C h a l l e n g e s i n M E M S
Gaussian Beam Envelope:
𝐴 𝑟 =
𝐴
𝑞(𝑧)
exp −𝑗𝑘
𝜌2
2𝑞 𝑧
, 𝑞 𝑧 = 𝑧 + 𝑗𝑧0
Gaussian Beam Amplitude:
𝑈 𝑟 = 𝐴
𝑊0
𝑊(𝑧)
exp −
𝜌2
𝑊2 𝑧
exp(−𝑗𝑘𝑧 − 𝑗𝑘
𝜌2
2𝑅 𝑧
+ 𝑗𝛾 𝑧 )
𝜌2
= 𝑥2
+ 𝑦2
;
1
𝑞(𝑧)
=
1
𝑅(𝑧)
− 𝑗
⋋
𝜋𝑊2(𝑧)
; 𝑊 𝑧 = 𝑊0 1 + (
𝑧0
𝑧
)2; 𝑅 𝑧 = 𝑧(1 +
𝑧0
𝑧
2
) ;𝑊0 =
⋋𝑧0
𝜋
; 𝛾 𝑧 = 𝑡𝑎𝑛−1
(
𝑧
𝑧0
)
C h a l l e n g e s i n M E M S
D i f f r a c t i o n
Phase Difference:
∆𝜃 = 𝑘∆𝑧 +
𝑧 𝑚
𝑧 𝑚
2 + 𝑧0
2
−
𝑧 𝑟𝑒𝑓
𝑧 𝑟𝑒𝑓
2 + 𝑧0
2
+ (𝛾 𝑧 𝑚 − 𝛾 𝑧 𝑟𝑒𝑓 )
At
𝑧 𝑚
𝑧 𝑚
2+𝑧0
2 =
𝑧 𝑟𝑒𝑓
𝑧 𝑟𝑒𝑓
2+𝑧0
2  Single interference
fringe
Initial spot size is 30𝜇𝑚 with OPD of 500𝜇𝑚
C h a l l e n g e s i n M E M S
D i f f r a c t i o n
Single Fringe  Better Visibility iff Detector size is reduced
Detector Size Reduction  Throughput Reduction
C h a l l e n g e s i n M E M S
B e a m C o l l i m a t i o n
Gaussian Inherent Divergence Angle :
Limited propagation
Weak Coupling Efficiency
C h a l l e n g e s i n M E M S
B e a m C o l l i m a t i o n
Increase beam waist  Decrease Divergence Angle
𝐺𝑐 =
𝑊𝑜𝑢𝑡
𝑊𝑖𝑛
=
1
(1 −
𝑑𝑖𝑛
𝑓
)2+(
𝑧0
𝑓
)2
𝐺𝑐 :Beam Collimation Gain; 𝑑𝑖𝑛: distance bet. Incident beam waist and focal length of mirror; 𝑓: focal length of mirror
R e f e r e n c e s
(1) S.Kim; G. Barbastathis; and H. Tuller, “MEMS For Optical Functionality”, Journal of Electroceramics, 12, 133-144, 2004.
(2) Y. Sabry; D. Khalil; and T. Bourouina, “ Monolithic Silicon-Micromachined free-space optical interferometers on chip”,
Laser and Photonics Reviews, 9, No.1, 2015.
(3) J.J. Allens, “Micro Electro Mechanical System Design”, Ohio University, 2005.
(4) K. Riaz; A. Iqbal; M. U. Mian; and S. Bazaz, “Active Gap Reduction in comb drive of three axes capacitive micro-
accelerometer for enhancing sense capacitance and sensitivity”, Microsystem Technology, 2014.
(5) V. Kumar; and N. N. Sharma, “Design and Validation Of Silicon-on-Insulator Based U-Shaped Thermal Micro-actuator”,
International Journal of Materials, Mechanics and Manufacturing, Vol. 2., No.1, 2014
(6) L. Que; J. Park; and Y. B. Gianchandani, “Bent Beam Electro-thermal Actuators-Part I: Single Beam and Cascaded
devices”, Journal of Microelectromechanical Systems, Vol. 10, No.2, 2001.
(7) M. Hasnan; M. Sabri; S. Said; and N. Ghazali, “Modeling of a High Force Density Fishbone Shaped Electro-static Comb
Drive Micro-Actuator”, The Scientific World Journal, 2014.
(8) J. Zou; C. Liu; and J. Schott-Aine, “Development of a Wide-Tuning-Range Two-Parallel-Plate Tunable Capacitor for
Integrated Wireless Communication Systems”, International Journal for RF and Microwave Computer Aided Engineering,
Vol. 11, No.5, 2001
(9) Y. Sabry; D. Khalil; B. Saadany; and T. Bourouina, “Integrated Wide-angle scanner based on translating a curved mirror
of acylindrical shape”, Optical Express, Vol. 21, No. 12, 2013.
R e f e r e n c e s
(10) E. Lawrence, “Optical Measurement Techniques for Dynamic Characterization of MEMS Devices”, Polytech. Inc., 2012.
(11) B. Saleh; and M. Teich, “ Fundamentals of Photonics”, John Wiley & Sons Inc., 1991.
(12) D. Khalil; Y. Sabry; H. Omran; M. Medhat; A. Hafez; and B. Saadany, “Characterization of MEMS FTIR Spectrometer”,
SPIE, Vol. 7930, No. 73900J-9, 2016.
(13) T. Al-Saeed; and D. Khalil, “Diffraction Effects in Optical Micro-Electro-Mechanical System Michelson Interferometers”,
Applied Optics, Vol. 49, No. 20, 2010.
(14) Y. Sabry; D. Khalil; B. Saadany; and T. Bourouina, “In-Plane Optical Beam Collimation Using a Three-Dimensional
Curved MEMS Mirror”, Micromachines, Vol. 8, No. 134, 2017.
T H A N K Y O U

More Related Content

What's hot (17)

Magnetic field and trajectory of movig charges
Magnetic field and trajectory of movig chargesMagnetic field and trajectory of movig charges
Magnetic field and trajectory of movig charges
 
Difference between plane waves and laser
Difference between plane waves and laserDifference between plane waves and laser
Difference between plane waves and laser
 
Lecture notes microwaves
Lecture notes   microwavesLecture notes   microwaves
Lecture notes microwaves
 
Magnetic
MagneticMagnetic
Magnetic
 
Gradient echo pulse sequence and its application
Gradient echo pulse sequence and its applicationGradient echo pulse sequence and its application
Gradient echo pulse sequence and its application
 
30120140503013
3012014050301330120140503013
30120140503013
 
Lecture 8 3_n_8_4_magnetic_force
Lecture 8 3_n_8_4_magnetic_forceLecture 8 3_n_8_4_magnetic_force
Lecture 8 3_n_8_4_magnetic_force
 
141 physics of mri
141 physics of mri141 physics of mri
141 physics of mri
 
Resonancia Magnetica
Resonancia Magnetica Resonancia Magnetica
Resonancia Magnetica
 
Class 12 Cbse Physics Syllabus 2012-13
Class 12 Cbse Physics Syllabus 2012-13Class 12 Cbse Physics Syllabus 2012-13
Class 12 Cbse Physics Syllabus 2012-13
 
Magniticfield 1
Magniticfield 1Magniticfield 1
Magniticfield 1
 
Theory of vibration
Theory of vibrationTheory of vibration
Theory of vibration
 
Waves
WavesWaves
Waves
 
electromagnetic induction ( part 1 )
electromagnetic induction ( part 1 )electromagnetic induction ( part 1 )
electromagnetic induction ( part 1 )
 
RF Coils invivo NMR course 2014
RF Coils invivo NMR course 2014RF Coils invivo NMR course 2014
RF Coils invivo NMR course 2014
 
3 ece aw pby jpk
3 ece aw pby jpk3 ece aw pby jpk
3 ece aw pby jpk
 
Electromagnetism material
Electromagnetism materialElectromagnetism material
Electromagnetism material
 

Similar to Review on Micro-opto-electro-mechanical Systems

Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...NuioKila
 
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTETBASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTETjanakiravi
 
Metasurface Hologram Invisibility - ppt
Metasurface Hologram Invisibility -  pptMetasurface Hologram Invisibility -  ppt
Metasurface Hologram Invisibility - pptCarlo Andrea Gonano
 
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma Tahmid Abtahi
 
Helical Methode - To determine the specific charge
Helical Methode - To determine the specific chargeHelical Methode - To determine the specific charge
Helical Methode - To determine the specific chargeharshadagawali1
 
Ultimate astronomicalimaging
Ultimate astronomicalimagingUltimate astronomicalimaging
Ultimate astronomicalimagingClifford Stone
 
ANUPAMA Physics Practical.pptx
ANUPAMA Physics Practical.pptxANUPAMA Physics Practical.pptx
ANUPAMA Physics Practical.pptxAnupama54
 
Antennas and Wave Propagation
Antennas and Wave Propagation Antennas and Wave Propagation
Antennas and Wave Propagation VenkataRatnam14
 
Cbse Class 12 Physics Sample Paper 2010 Model 1
Cbse Class 12 Physics Sample Paper 2010 Model 1Cbse Class 12 Physics Sample Paper 2010 Model 1
Cbse Class 12 Physics Sample Paper 2010 Model 1Sunaina Rawat
 
CRO-SARAVANA SELVI.pdf which is visualise the electrical signal into waveform
CRO-SARAVANA SELVI.pdf which is visualise the electrical signal into waveformCRO-SARAVANA SELVI.pdf which is visualise the electrical signal into waveform
CRO-SARAVANA SELVI.pdf which is visualise the electrical signal into waveformsivanandagouda57
 
CRO is the instrument that which visualise tha electrical signal into waveform
CRO is the instrument that which visualise tha electrical signal into waveformCRO is the instrument that which visualise tha electrical signal into waveform
CRO is the instrument that which visualise tha electrical signal into waveformsivanandagouda57
 
Dual-hop Variable-Gain Relaying with Beamforming over 휿−흁 Shadowed Fading Cha...
Dual-hop Variable-Gain Relaying with Beamforming over 휿−흁 Shadowed Fading Cha...Dual-hop Variable-Gain Relaying with Beamforming over 휿−흁 Shadowed Fading Cha...
Dual-hop Variable-Gain Relaying with Beamforming over 휿−흁 Shadowed Fading Cha...zeenta zeenta
 

Similar to Review on Micro-opto-electro-mechanical Systems (20)

Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
 
xrd basic
 xrd basic xrd basic
xrd basic
 
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTETBASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
 
Metasurface Hologram Invisibility - ppt
Metasurface Hologram Invisibility -  pptMetasurface Hologram Invisibility -  ppt
Metasurface Hologram Invisibility - ppt
 
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
 
Helical Methode - To determine the specific charge
Helical Methode - To determine the specific chargeHelical Methode - To determine the specific charge
Helical Methode - To determine the specific charge
 
Ultimate astronomicalimaging
Ultimate astronomicalimagingUltimate astronomicalimaging
Ultimate astronomicalimaging
 
A011210108
A011210108A011210108
A011210108
 
ANUPAMA Physics Practical.pptx
ANUPAMA Physics Practical.pptxANUPAMA Physics Practical.pptx
ANUPAMA Physics Practical.pptx
 
Antennas and Wave Propagation
Antennas and Wave Propagation Antennas and Wave Propagation
Antennas and Wave Propagation
 
Nmr 1
Nmr 1Nmr 1
Nmr 1
 
Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
 
3 ECE AWP.pdf
3 ECE AWP.pdf3 ECE AWP.pdf
3 ECE AWP.pdf
 
Magnetic effects
Magnetic effectsMagnetic effects
Magnetic effects
 
Cbse Class 12 Physics Sample Paper 2010 Model 1
Cbse Class 12 Physics Sample Paper 2010 Model 1Cbse Class 12 Physics Sample Paper 2010 Model 1
Cbse Class 12 Physics Sample Paper 2010 Model 1
 
Optical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdfOptical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdf
 
E010512730
E010512730E010512730
E010512730
 
CRO-SARAVANA SELVI.pdf which is visualise the electrical signal into waveform
CRO-SARAVANA SELVI.pdf which is visualise the electrical signal into waveformCRO-SARAVANA SELVI.pdf which is visualise the electrical signal into waveform
CRO-SARAVANA SELVI.pdf which is visualise the electrical signal into waveform
 
CRO is the instrument that which visualise tha electrical signal into waveform
CRO is the instrument that which visualise tha electrical signal into waveformCRO is the instrument that which visualise tha electrical signal into waveform
CRO is the instrument that which visualise tha electrical signal into waveform
 
Dual-hop Variable-Gain Relaying with Beamforming over 휿−흁 Shadowed Fading Cha...
Dual-hop Variable-Gain Relaying with Beamforming over 휿−흁 Shadowed Fading Cha...Dual-hop Variable-Gain Relaying with Beamforming over 휿−흁 Shadowed Fading Cha...
Dual-hop Variable-Gain Relaying with Beamforming over 휿−흁 Shadowed Fading Cha...
 

Recently uploaded

Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 

Recently uploaded (20)

Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 

Review on Micro-opto-electro-mechanical Systems

  • 1. O v e r v i e w o n M O E M S Hana Medhat Abdelhadi B.Sc., German University in Cairo Faculty of Information Engineering and Technology Electronics Department
  • 2. M O E M S On-Chip Micro-Scaled Systems: • Miniaturization  Portability • Monolithic Micro-fabrication  Commerciality • Arrayability  Multi-Purpose • Re-Configurability  Functionality Tuning
  • 3. M O E M S Reversible Mechanical Perturbation by, e.g.: • Electro-thermal Force • Electro-static Force • Piezo-electricity
  • 4. M O E M S Optical MEMS: Displays, e.g. Micro-Mirror Arrays
  • 5. M O E M S Optical MEMS: Diffractive Spectrometers, e.g. Tunable Gratings
  • 6. M O E M S Optical MEMS: Interferometric Spectrometers, e.g. Michelson Interferometer
  • 7. M O E M S Optical MEMS: Tunable Optical Resonators, e.g. VCSEL swept laser source
  • 8. M i c r o - O p t i c a l B e n c h e s Component fabrication Requirements: • High Verticality • High Aspect Ratio • Low Surface Roughness • Control of Surface Curvature
  • 9. L i t h o g r a p h y Minimum Line width: 𝑊 𝑚𝑖𝑛 = 𝐾 ⋋ 𝑁𝐴 Depth of focus: 𝜎 = ⋋ 𝑁𝐴2 K is a measure of photo-resistivity; ⋋ is the source wavelength; 𝑁𝐴 is the numerical aperture of the optical component
  • 10. D R I E ( B o s c h P r o c e s s ) 𝑆𝐹6 Plasma  Isotropic Etch 𝑆𝐹6 Plasma cycle +𝐶4 𝐹8 cycle  Anisotropic Etch + Scallops
  • 11. M o n o l i t h i c M i c r o - F a b r i c a t i o n
  • 12. E l e c t r o - t h e r m a l A c t u a t i o n Electric Current Flow  Thermal Energy rises Transient Deformation  Translational Actuation
  • 13. U - S h a p e d B e a m Resistivity of thin arm >> Resistivity of wide arm Thin arm expands in length  Side deflection of the structure
  • 14. U - S h a p e d B e a m M a t h e m a t i c a l M o d e l Temperature Profile in thin arm: 𝑇 𝑥 = 𝑉2 2𝐿2 𝜌𝐾 𝑝 𝐿𝑥 − 𝑥2 + 𝑇𝑠  𝑇 𝑚𝑎𝑥 𝑎𝑡 𝑥 = 𝐿 2 Beam Deflection: d 𝑥 = −𝛼 2ℎ 𝑇ℎ − 𝑇𝑐 𝑥2 Change in the beam’s length: ∆𝐿 = 𝐿( 𝑉2 12𝜌𝐾 𝑝 + 𝑇𝑠) V: Applied voltage; L: Length of thin arm; 𝐾 𝑝: thermal conductivity; 𝜌: 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦; 𝑇𝑠: 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑟𝑚 𝑡𝑒𝑚𝑝; α: 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
  • 15. U - S h a p e d B e a m M o d e l i n g
  • 16. U - S h a p e d B e a m P e r f o r m a n c e Short Range Actuation High Power Consumption
  • 17. V - S h a p e d B e a m
  • 18. V - S h a p e d B e a m M a t h e m a t i c a l M o d e l Maximum deflection (with no loading force) : 𝑑 𝑚𝑎𝑥 = 2 tan 𝜃1 𝑘 tan 𝑘𝐿1 4 − 𝐿1 2 tan 𝜃1 For a desired deflection at a certain angle, we obtain the force F and the required change in temp.: ∆𝑇 = 1 𝛼𝐿1 (∆𝐿1 ′ + 𝐹𝐿1 𝑌𝑊𝐻 ) F is the applied force; Y is Young’s modulus; I is the moment of inertia of the beam; H is beam thickness; W is the beam width; 𝐿1 ′ is the corrected beam length for compression at the fixed side; k= 𝐹 𝑌𝐼
  • 19. V - S h a p e d B e a m P e r f o r m a n c e Short range actuation. High power consumption.
  • 20. E l e c t r o - S t a t i c A c t u a t i o n Potential diff. between 2 conductors  Charge accumulation Attraction Forces  Translational Actuation
  • 21. P a r a l l e l P l a t e M a t h e m a t i c a l M o d e l Electrostatic Force: 𝐹𝑒 = 1 2 𝐶𝑉2 = 1 2 𝐴𝜀0 𝜀 𝑟 (𝑑)2 Restoring Spring Force: 𝐹𝑠 = 𝑘 𝑒 𝑥 Equilibrium  𝐹𝑒 = 𝐹𝑠 translational distance: 𝑥 = 1 2 𝐴𝜀0 𝜀 𝑟 𝑘 𝑒(𝑑)2 𝑉2 C is the capacitance; V is the applied voltage; A is the surface area, d is the initial gap, 𝑘 𝑒 is the spring stiffness, x is the displacement.
  • 22. P a r a l l e l P l a t e P e r f o r m a n c e Extremely Short range actuation. No power consumption. Low upper limit Voltages.
  • 23. C o m b - D r i v e A c t u a t o r
  • 24. C o m b - D r i v e M a t h e m a t i c a l M o d e l Electro-static force for N fingers: 𝐹 = 𝑁𝜀𝑡𝑉2 2(𝑑)2 Deflection at equilibrium: 𝑥 = 𝑁𝜀𝑡𝑉2 2𝑘 𝑒(𝑑)2 V is the applied voltage; t is the finger thickness, d is the initial gap, 𝑘 𝑒 is the spring stiffness, x is the displacement.
  • 25. C o m b - D r i v e P e r f o r m a n c e Long Range Actuation (400𝜇𝑚 at 35𝑉) No power consumption Resilient to non-linearity at large displacements
  • 26. M E M S C h a r a c t e r i z a t i o n Electrical Model in Frequency Domain: Resonance Frequency Quality Factor Optical Model in Time Domain: Relative position/ Velocity Microscopic Imaging
  • 27. E l e c t r i c a l M o d e l At resonance: G 𝜔0 = 1 𝑅 𝑚 → 𝜔0 & 𝑅 𝑚 𝐵 𝜔0 = 𝜔0 𝐶𝑠 + 𝐶 𝑝 → 𝐶𝑠 + 𝐶 𝑝 Generally: 𝐶𝑒𝑞 = 𝐵(𝜔) 𝜔 = 𝐶𝑠 + 𝐶 𝑝+ 𝐿 𝑚( 𝜔0 2 𝜔2 −1) 𝑅 𝑚 2+ (𝜔𝐿 𝑚− 1 𝜔𝐶 𝑚 )2 → 𝐶𝑒𝑞 𝑚𝑎𝑥 at 𝜕𝐶 𝑒𝑞 𝜕𝜔 = 0 𝐿 𝑚 = 𝜔0 𝑅 𝑚 𝜔 𝑒𝑞|1 − 𝜔0 2 𝜔 𝑒𝑞 2 | → 𝐶 𝑚
  • 28. E l e c t r i c a l M o d e l
  • 29. O p t i c a l M o d e l L a s e r D o p p l e r T e c h n i q u e BS1 + M1  Reference Beam P+L+BS3  Modulated Beam Reference Beam + BC  High Carrier Frequency BS : Beam Splitter; L : thin lens; P: quarter wave plate; M: Mirror; BC: Bragg Cell; D: Detector
  • 30. O p t i c a l M o d e l L a s e r D o p p l e r T e c h n i q u e A: AC Amplitude; 𝑓𝐵: carrier frequency; 𝜃 𝑚: modulation phase; 𝜃0: initial phase; 𝑓𝑚: doppler frequency; 𝑣: velocity; 𝑠: displacement. BS : Beam Splitter; L : thin lens; P: quarter wave plate; M: Mirror; BC: Bragg Cell; D: Detector 𝑖 𝑑𝑒𝑡 𝑡 = 𝐼 𝐷𝐶 + 𝐴𝑐𝑜𝑠 2𝜋𝑓𝐵 𝑡 + 𝜃 𝑚 + 𝜃0 𝜃 𝑚 𝑡 = 4𝜋𝑠(𝑡) ⋋  𝑓𝑚 𝑡 = 2𝑣(𝑡) ⋋
  • 31. O p t i c a l M o d e l M i c r o - S c a n n i n g V i b r o m e t e r Doppler technique + Array of points  Microscopic Imaging of MEMS motion
  • 32. C h a l l e n g e s i n M E M S Gaussian Beam Envelope: 𝐴 𝑟 = 𝐴 𝑞(𝑧) exp −𝑗𝑘 𝜌2 2𝑞 𝑧 , 𝑞 𝑧 = 𝑧 + 𝑗𝑧0 Gaussian Beam Amplitude: 𝑈 𝑟 = 𝐴 𝑊0 𝑊(𝑧) exp − 𝜌2 𝑊2 𝑧 exp(−𝑗𝑘𝑧 − 𝑗𝑘 𝜌2 2𝑅 𝑧 + 𝑗𝛾 𝑧 ) 𝜌2 = 𝑥2 + 𝑦2 ; 1 𝑞(𝑧) = 1 𝑅(𝑧) − 𝑗 ⋋ 𝜋𝑊2(𝑧) ; 𝑊 𝑧 = 𝑊0 1 + ( 𝑧0 𝑧 )2; 𝑅 𝑧 = 𝑧(1 + 𝑧0 𝑧 2 ) ;𝑊0 = ⋋𝑧0 𝜋 ; 𝛾 𝑧 = 𝑡𝑎𝑛−1 ( 𝑧 𝑧0 )
  • 33. C h a l l e n g e s i n M E M S D i f f r a c t i o n Phase Difference: ∆𝜃 = 𝑘∆𝑧 + 𝑧 𝑚 𝑧 𝑚 2 + 𝑧0 2 − 𝑧 𝑟𝑒𝑓 𝑧 𝑟𝑒𝑓 2 + 𝑧0 2 + (𝛾 𝑧 𝑚 − 𝛾 𝑧 𝑟𝑒𝑓 ) At 𝑧 𝑚 𝑧 𝑚 2+𝑧0 2 = 𝑧 𝑟𝑒𝑓 𝑧 𝑟𝑒𝑓 2+𝑧0 2  Single interference fringe Initial spot size is 30𝜇𝑚 with OPD of 500𝜇𝑚
  • 34. C h a l l e n g e s i n M E M S D i f f r a c t i o n Single Fringe  Better Visibility iff Detector size is reduced Detector Size Reduction  Throughput Reduction
  • 35. C h a l l e n g e s i n M E M S B e a m C o l l i m a t i o n Gaussian Inherent Divergence Angle : Limited propagation Weak Coupling Efficiency
  • 36. C h a l l e n g e s i n M E M S B e a m C o l l i m a t i o n Increase beam waist  Decrease Divergence Angle 𝐺𝑐 = 𝑊𝑜𝑢𝑡 𝑊𝑖𝑛 = 1 (1 − 𝑑𝑖𝑛 𝑓 )2+( 𝑧0 𝑓 )2 𝐺𝑐 :Beam Collimation Gain; 𝑑𝑖𝑛: distance bet. Incident beam waist and focal length of mirror; 𝑓: focal length of mirror
  • 37. R e f e r e n c e s (1) S.Kim; G. Barbastathis; and H. Tuller, “MEMS For Optical Functionality”, Journal of Electroceramics, 12, 133-144, 2004. (2) Y. Sabry; D. Khalil; and T. Bourouina, “ Monolithic Silicon-Micromachined free-space optical interferometers on chip”, Laser and Photonics Reviews, 9, No.1, 2015. (3) J.J. Allens, “Micro Electro Mechanical System Design”, Ohio University, 2005. (4) K. Riaz; A. Iqbal; M. U. Mian; and S. Bazaz, “Active Gap Reduction in comb drive of three axes capacitive micro- accelerometer for enhancing sense capacitance and sensitivity”, Microsystem Technology, 2014. (5) V. Kumar; and N. N. Sharma, “Design and Validation Of Silicon-on-Insulator Based U-Shaped Thermal Micro-actuator”, International Journal of Materials, Mechanics and Manufacturing, Vol. 2., No.1, 2014 (6) L. Que; J. Park; and Y. B. Gianchandani, “Bent Beam Electro-thermal Actuators-Part I: Single Beam and Cascaded devices”, Journal of Microelectromechanical Systems, Vol. 10, No.2, 2001. (7) M. Hasnan; M. Sabri; S. Said; and N. Ghazali, “Modeling of a High Force Density Fishbone Shaped Electro-static Comb Drive Micro-Actuator”, The Scientific World Journal, 2014. (8) J. Zou; C. Liu; and J. Schott-Aine, “Development of a Wide-Tuning-Range Two-Parallel-Plate Tunable Capacitor for Integrated Wireless Communication Systems”, International Journal for RF and Microwave Computer Aided Engineering, Vol. 11, No.5, 2001 (9) Y. Sabry; D. Khalil; B. Saadany; and T. Bourouina, “Integrated Wide-angle scanner based on translating a curved mirror of acylindrical shape”, Optical Express, Vol. 21, No. 12, 2013.
  • 38. R e f e r e n c e s (10) E. Lawrence, “Optical Measurement Techniques for Dynamic Characterization of MEMS Devices”, Polytech. Inc., 2012. (11) B. Saleh; and M. Teich, “ Fundamentals of Photonics”, John Wiley & Sons Inc., 1991. (12) D. Khalil; Y. Sabry; H. Omran; M. Medhat; A. Hafez; and B. Saadany, “Characterization of MEMS FTIR Spectrometer”, SPIE, Vol. 7930, No. 73900J-9, 2016. (13) T. Al-Saeed; and D. Khalil, “Diffraction Effects in Optical Micro-Electro-Mechanical System Michelson Interferometers”, Applied Optics, Vol. 49, No. 20, 2010. (14) Y. Sabry; D. Khalil; B. Saadany; and T. Bourouina, “In-Plane Optical Beam Collimation Using a Three-Dimensional Curved MEMS Mirror”, Micromachines, Vol. 8, No. 134, 2017.
  • 39. T H A N K Y O U