SlideShare a Scribd company logo
1 of 63
Download to read offline
Geometric and viscosity solutions for the
Cauchy problem of first order
Juliho Castillo, M.Sc.
Instituto de Matem´aticas, UNAM
Doctoral Examination: August 30, 2017
Abstract
There are two kinds of solutions of the Cauchy problem
of first order, the viscosity solution and the more
geometric minimax solution and in general they are
different. The aim of this dissertation is to show how
they are related: iterating the minimax procedure during
shorter and shorter time intervals one approaches the
viscosity solution.This can be considered as an extension
to the contact framework of the result of Q. Wei [Wei]
in the symplectic case.
Section 1
Introduction
Consider the Cauchy problem



∂tu(t, x) + H(t, x, ∂xu(t, x), u(t, x)) = 0, t ∈ (0, T]
u(0, t) = v(x), x ∈ Rk
.
(C.P.F.O.)
The classical method to solve this problem, for v ∈ C2
and a
short time interval, consists in solving characteristics equations
˙x = ∂yH
˙y = −∂xH − y∂zH
˙z = y∂yH − H,
(Eq. Char.)
to get the characteristic lines
Φ(t, q0) ˙=(t, x(t, q0), y(t, q0), z(t, q0));
(where Φ(0, q0) = (0, q0)) and then obtain the solution u(t, x)
of the Cauchy problem as follows: setting ut(x) ˙=u(t, x), for
fixed t, and its 1-jet j1
ut(x) = (x, dut(x), ut(x)), the image of
j1
ut is the section at time t of the union
L (Λ0) =
t∈[0,T]
Φ(t, Λ0) = {Φ(t)| t ∈ [0, T], Φ(0) ∈ Λ}
of the characteristic lines
Φ(t, Λ0) = {Φ(t)| Φ(0) ∈ Λ0} , t ∈ [0, T]
passing through Λ0 = {(0, j1
v(x)}.
This procedure does not yield a global solution of the problem
in the whole interval [0, T], as the geometric solution L it is
not always the set {(t, j1
ut(x))} for a function u(t, x).
According to [Arnold, section 3.2] the wavefront
F = π (L(Λ0)) ,
(where π (t, x, y, z) = (t, x, z)) obtained in (t, x, y, z) space by
solving the equation
dz = −H(t, x, y, z)dt + ydx
restricted to (t, x, y, z) ∈ L it is not the graph of a function:
the projected characteristics
π (Φ(t, q0)) = (t, x(t, q0), z(t, q0)), q0 ∈ Λ0
may cross after some time. For example, characteristics for
conservation laws [Evans, example 3.2.5]
Whereas in some applications, e.g. to geometrical optics, the
wavefront F can be considered as a solution of the physical
problem, one is interested in a single-valued solution u(t, x).
Assuming that the projection of F into (t, x) space is onto,
one can construct such a solution as a section of the
wavefront, selecting a single u over each (t, x). When the
function H is sufficiently convex with respect to y (and v is
not too wild at infinity), such a “selector” consists in choosing
for u(t, x) the smallest u with (t, x, u) ∈ F.
This min solution happens to be the “viscosity solution” which
was first introduced as the viscosity limit when ε → 0+
of the
solution of the Cauchy problem for the viscous equation
∂tu(t, x) + H(t, x, ∂xu, u) = ε xu(t, x),
and afterwards got a general definition for general nonlinear
first order partial differential equations in the work of Crandall,
Evans and Lions [CEL] [CEL, BCD].
In the non-convex case the viscosity solution may not be a
section of the wavefront (see for example [Checiner]). On the
other hand, Chaperon introduced in [Chaperon] weak
solutions whose graph is a section of the wavefront, obtained
by a “minimax” procedure which generalizes the minimum
considered in the convex case and relies on the existence of
suitable generating families for the geometric solution.
Let’s explain in more detail the procdeure: At first, considere
the legendrian submanifold Λ = ϕt
(j1
v) ⊂ J1
Rk
, for some
Rk
, where ϕt
is the flow generated by (Eq. Char.) and
therefore Φ(t) = (t, ϕ(t)) .
It turns out that there exist a so called generating function
quadratic at infinity
SH,v : [0, T] × Rk
× Rq
, (t, x, ξ) → St
H,v(x, ξ)
(for some Rq
, a family of parameters ξ) such that
Λ = x, ∂xSt
H,v(x, ξ), St
H,v(x, ξ) ∂ξSt
H,v(x, ξ) = 0 .
Now we can define a minimax selector such that
u(t, x) = infmaxξ St
H,v(x, ξ)
is a generalized solution of Cauchy problem (C.P.F.O.). It is
called the minimax solution. But in general this is not a
classical solution. Indeed ut ∈ CLip
Rk
.
Although, we have been considering v ∈ C2
(Rk
), in the more
general setting of Clarke calculus, we can consider
v ∈ C2
(Rk
), and thus for a given H ∈ C2
(J1
Rk
), we obtain
an operator
RH : CLip
(Rk
H) → CLip
(Rk
), v → infmaxξ St
H,v(·, ξ).
One may to try to get a solution as a limit obtained by
dividing a given time interval into small pieces and iterating
the minimax procedure step by step.
Our goal is to show that when the size of the time intervals go
to zero, one indeed gets the viscosity solution as the limit
Theorem 1.
Suppose H ∈ C2
c ([0, T] × J1
(Rk
)), v ∈ CLip
(Rk
). Then the
viscosity solution is the limit of iterated minimax solutions for
problem (C.P.F.O.) on [0, T].
This extends the result obtained by Q. Wei [Wei] in the
symplectic framework.
Section 2
Cauchy Problem
Characteristics method
For a given function H ∈ C2
[0, T] × J1
Rk
, the following
statement relates solutions u : [0, T] × Rk
→ R for Cauchy
problem of First Order (C.P.F.O.) (being u0 : Rk
→ R the
initial condition) and solutions for characterics equations
(Eq. Char.) starting at the 1−graph of S0 :
Characteristics method
Suppose that u ∈ C2
([0, T] × Rk
) is a solution for the given
Cauchy problem (C.P.F.O.). Then, if a solution for the
equation
˙x = ∂yH (t, x, ∂xu, u) , (2.1)
on [0, T] is given, the curve defined by
(x(t), y(t), z(t)) = (x(t), ∂xu(t, x(t)), u(t, x(t))) . (2.2)
is a solution for characteric equations (Eq. Char.).
Characteristics method
Conversely, u0 ∈ C1
(M), T is small enough and
(X(t,x), Y(t,x), Z(t,x)) : [0, T] → J1
Rk
is the unique solution for characteristic characteristics
(Eq. Char.) with boundary conditions



X(t,x)(t) = x,
Y(t,x)(0) = ∂xu0 X(t,x)(0) ,
Z(t,x)(0) = u0 X(t,x)(0) ,
Characteristics method
then
u(t, x) = Z(t,x)(t) (2.3)
defines the solution for the Cauchy problem with initial
condition u(0, x) = u0(x).
So for fixed t, small enough:
ϕt(J1
v) = (x(t, q0), y(t, q0), z(t, q0)) | q0 ∈ J1
v
= (ξ, ∂xu(t, ξ), u(t, ξ)) | ξ ∈ x(t, J1
v)
= J1
ut
But in general for t bigger, there is no f ∈ C1
(Rk
) s.t.
ϕt(J1
v) = J1
f.
Section 3
Generating Families
Let J1
(M) = T∗
M × R with the contact form α = dz − ydx.
Definition 1 (gfqi).
S ∈ C2
(M × Rq
) is a generating family quadratic at infinity
of the Legendrian submanifold Λ of J1
M if
0 is a regular value of the fiber derivative ∂ξS.
Λ = {(x, ∂xS(x, ξ), S(x, ξ)) : ∂ξS(x, ξ) = 0}
∃ non degenerate quadratic form Q, such that ∀K ⊂ M
compact |∂ξ(S(x, ξ) − Q(ξ))| is bounded on K × Rq
.
Theorem.
A Legendrian submanifold contact isotopic to the zero section
has a gfqi, unique up to the following operations S1 ∼ S2
Stabilitation S2(x, ξ, η) = S1(x, ξ) + q(η) with q a ndqf.
Diffeomorphism S2(x, ξ) = S1(x, ψ(x, ξ)) with ψ(x, ·) a
diffeomorphism ∀x ∈ M.
Section 4
Constructing generating families
Generating Functions
Definition 2.
Φ ∈ C2
(R2k+1
) is a generating function for a
contactomorphism ϕ : J1
Rk
→ J1
Rk
if 1 − ∂zΦ(x, Y, z) = 0
and
X − x = ∂Y Φ(x, Y, z) (cx)
Y − y = −∂xΦ(x, Y, z) − y∂zΦ(x, Y, z) (cy)
Z − z = (X − x)Y − Φ(x, Y, z) (cz)
if and only if ϕ(x, y, z) = (X, Y, Z).
Remark 1.
ϕ has compact support if and only if Φ does.
Proposition 1.
A contactomorphism ϕ : J1
Rk
→ J1
Rk
with I − dϕ(p) < 1
for all p ∈ J1
Rk
has a unique generating function.
Suppose:
1 H ∈ C2
c ([0, T] × J1
Rk
)
2 ϕt
is the contact isotopy defined by (Eq. Char.).
3 supp H ⊂ {(x, y, z) : |y| ≤ a},
4 cH = sup{|DHt(x, y, z)|, |D2
Ht(x, y, z)|},
Lemma 3.
If δH = log 2/(2 + a)cH, and 0 < t − s < δH, then ϕs,t
has a
unique g.f. Φs,t
and letting ϕs,τ
(q) = (x(τ), y(τ), z(τ)), then
Φs,t
(x(s), y(t), z(s))
=
t
s
( ˙x(τ)(y(t) − y(τ)) + H(τ, ϕs,τ
(q)))dτ, (4.1)
∂tΦs,t
(x(s), y(t), z(s)) = H(t, ϕs,t
(q)) (4.2)
Constructing generating families
(a) Let s = t0 < t1 < · · · < tN = t such that |ti+1 − ti| < δH,
Φj = Φtj−1,tj
, v ∈ CLip,2
(Rk
). Define S : Rk
× R2kn
→ R
Ss,t
(x; ξ) = v(x0) +
N
j=1
yj(xj − xj−1) − Φj(xj−1, yj, zj−1)
(4.3)
xN = x, ξ = (x0, . . . , xN−1, y1, . . . , yN ), and



z0 = v(x0),
zj = zj−1 + (xj − xj−1)yj − Φj(xj−1, yj, zj−1).
Constructing generating families
Defining
Q(ξ) = −yN xN−1 +
N−1
i=1
yi(xi − xi−1), (QF)
Ws,t
(x, ξ) = v(x0) + x · yN −
N
j=1
Φtj−1,tj
(xj−1, yj, ¯zj−1),
(CS)
we see that for v ∈ C2,Lip
(Rk
), Ss,t
(x, ξ) is a gfqi.
Constructing generating families
(b) Let τj = s + (τ − s)(tj − s)/(t − s), Φτ
j = Φτj−1,τj
, then
Ss,t
(τ, x; ξ) = v(x0) +
N
j=1
yj(xj − xj−1) − Φτ
j (xj−1, yj, ¯zj−1).
(4.4)
is a gfqi of ϕs,τ
(J1
v).
Constructing generating families
(c) For each critical point ξ of Ss,t
(τ, x; ·)
Ss,t
(τ, x, ξ)
= v(x(s)) +
τ
s
˙x(σ)y(σ) − H σ, ϕs,σ
(j1
v(x0)) dσ
(4.5)
where ϕs,σ
(j1
v(x0)) = (x(σ), y(σ), z(σ)), x(τ) = x.
Section 5
Clarke Calculus Setting
Clarke Generalized Derivative
For f ∈ Liploc(Rq
), we define the Clark (generalized)
derivative as
∂f(a) = co lim
n→∞
df(xn) | lim
n→∞
xn = a (CGD)
Clarke Generalized Derivative
Lemma 4 (Fermat Rule).
If f ∈ Liploc(Rq
), then
(a) if f has a local extreme value at x = a, then 0 ∈ ∂f(a);
(b) if 0 ∈ ∂f(a), there exists a direction v for f at x = a such
that
lim sup
t↓0
f(x + tv) − f(x)
t
< 0.
Generalized generating families
Proposition 2.
Suppose that in the Cauchy problem (C.P.F.O.),
v ∈ Liploc(Rk
) and define ∂v = {(x, y, v(x)) : y ∈ ∂v(x)}.
Thus Ss,τ
generates Lτ
= ϕs,τ
H (∂v) i.e.
Lτ
= {(x, ∂xSs,τ
(τ, x, ξ), Ss,t
(τ, x, ξ)) : 0 ∈ ∂ξSs,t
(τ, x, ξ)}
(5.1)
where ∂ denotes the Clarke’s generalized derivative.
Generalized generating families
Let H ∈ C2
c ([0, T] × J1
Rk
), v ∈ CLip
(Rk
). Write
Ss,t
: [s, t] × Rk
× Rq
→ R given by (4.4) as
Ss,t
(τ, x, ξ) = Ws,t
(τ, x, ξ) + Q(ξ),
with Q, Ws,t
defined in (QF), (CS).
For each compact subset K of Rk
, the family of functions
{Ws,t
(τ, x, ·)}τ∈[s,t],x∈K is uniformly Lipschitz.
Generalized generating families
Moreover for any θ ∈ Cc(Rq
, [0, T]) identically 1 in a
neighborhhod of the origin with Dθ < 1, there exists a
constant aK > 1 such that for τ ∈ [s, t],
(x, ξ) → Ss,t
K (τ, x, ξ) = θ
ξ
aK
Ws,t
(τ, x, ξ) + Q(ξ) (5.2)
is a g.f.q.i. for
Lτ
K = Lτ
∩ π−1
(K)
= (x, ∂xSs,t
K (τ, x, ξ), Ss,t
K (τ, x, ξ)|0 ∈ ∂ξSs,t
K (τ, x, ξ)) ,
where π : J1
Rk
→ Rk
, (x, y, z) → x.
Section 6
Minimax Solution
Definition 5.
1 A sequence (um) in a manifold M is called of
Palais-Smale for E ∈ C1
(M) if |E(um)| ≤ c uniformly in
m and
limm→∞
DE(um) = 0.
2 We say that E satisfies Palais-Smale compactness
condition (PS) if every P-S sequence for E has a
strongly convergent subsequence.
Minimax Principle
Definition 1.
Let Φ : Rq
× [0, ∞) → Rq
be a semi-flow. A family F of
subsets of Rq
is called (positively) Φ-invariant if Φ(F, t) ∈ F
for all F ∈ F, t ≥ 0.
Minimax Principle
Suppose f ∈ C1
(Rq
) satisfies (PS). Also suppose F ⊂ P(Rq
)
is a collection of sets which is positively invariant with respect
to any continuous semi-flow
Φ : Rq
× [0, ∞) → Rq
satisfying:
(i) Φ(·, 0) = id(·);
(ii) Φ(·, t) is a homeomorphism of Rq
for any t ≥ 0; and
(iii) f (Φ(u, t)) is non-incresing in t for any u ∈ Rq
.
Minimax Principle
Theorem 2.
Under the above conditions, if
β = inf
F∈F
sup
u∈F
f(u)
is finite, β is a critical value of f.
Minimax Function
Let K ⊂ Rk
be a compact set, Ss,t
K ∈ C1
([s, t] × Rk
× Rq
) be
g.f.q.i. given as in (5.2) and Q(ξ) =
1
2
Pξ, ξ be the
associated quadratic form. As Ss,t
K = Q outside a compact set,
the critical levels of Ss,t
K are bounded. There is R(K) < 0 such
that for R < R(K), the sub–level set
(Ss,t
K )R
τ,x = ξ ∈ Rq
|Ss,t
k (τ, x; ξ) < R
is identical to the sub–level QR
.
Minimax Function
Definition 2.
Let j be the Morse index of Q and a > 0 large. We define Ga
as the set of continuous maps σ : Bj → Rq
, of the unit ball
Bj of dimension j, such that
σ(∂Bj) ⊂ Q−1
(−∞, −a).
Minimax Function
Let v ∈ CLip
(Rk
) H ∈ C2
c ([0, T] × J1
Rk
). Let
Ss,t
K ∈ C1
([s, t] × Rk
× Rq
) be as in (5.2). Let K ⊂ Rk
be
compact, a > −R(K).
Minimax Function
The function
(τ, x) ∈ [s, t] × Rk
→ Rs,τ
H,Kv(x) = inf
σ∈Ga
max
e∈Bj
Ss,t
K (τ, x, σ(e)),
has the following properties
(a) Rs,τ
H,Kv(x) is a critical value of ξ → Ss,t
K (τ, x, ξ);
(b) it is a Lipschitz function and therefore differentiable
almost everywhere a.e.;
(c) j1
Rs,τ
H,Kv is an a.e. section of the wave front
(τ, x, ∂xSs,t
K (τ, x, ξ), Ss,t
K (τ, x, ξ)) : 0 ∈ ∂ξSs,t
K (τ, x, ξ) .
Minimax Function
Let K, K ⊂ Rk
be compact. If x ∈ K ∩ K , τ ∈ [s, t] then
Rs,τ
H,K v(x) = Rs,τ
H,Kv(x).
Minimax Function
Rs,τ
H v(x) = inf
σ∈Ga
max
e∈Bj
Ss,t
(τ, x; σ(e)). (6.1)
Section 7
Iterated Minimax Solution
Viscosity solution
Definition 6.
(a) u ∈ C([0, T] × V ), V ⊂ Rk
is a viscosity subsolution (
supersolution) of
∂tu + H(t, x, ∂xu, u) = 0,
if ∀φ ∈ C1
(V × [0, T]), ∀(t0, x0) ∈ [0, T] × V at which
u − φ has a maximum (minimum)
∂tφ(t0, x0) + H(t0, x0, ∂xφ(t0, x0), u(t0, x0)) ≤ 0 (≥ 0).
(b) u is a viscosity solution if it is both a viscosity subsolution
and a supersolution.
Estimates
Proposition 3.
For [s, t] ⊂ [0, T] consider Rs,t
H : CLip
(Rk
) → CLip
(Rk
)
(a) ∂(Rs,t
H v) ≤ ( ∂v + |t − s| ∂xH )e|t−s| ∂zH
(b) |Rs,t
H v(x) − Rs,τ
H v(x)| ≤ C(H)|t − τ| H .
(c) If K ⊂ Rk
compact, ∃ ˜K ⊂ Rk
s.t.
Rs,t
H v − Rs,t
H w K ≤ v − w ˜K.
Iterated minimax operator
Given ζ = {0 = t0 < t1 < · · · < tn = T} define
|ζ| = max |ti+1 − ti|, and ζ(s) = max{ti : ti < s}, s ∈ [0, T].
Definition 7.
For 0 ≤ s < s ≤ T, let tj = ζ(s), ti = ζ(s ). We say that
Rs ,s
H,ζv(x) = R
tj,s
H ◦ · · · ◦ R
s ,ti+1
H v(x) (7.1)
is the iterated minimax solution.
Main result
Lemma 8.
(ζn)n sequence of partitions of [0, T] s,t. |ζn| → 0.
v ∈ CLip
(Rk
). Then {un(s, x) := R0,s
ζ v(x)} is equi-Lipschitz
in [0, T] × K.
Main result
Proposition 4.
For any sequence (ζn) of subdivisions of [0, T] s.t. |ζn| → 0,
K ⊂ Rk
, compact, {un := R0,s
ζn
v(x)} has a subsequence
converging uniformly on [0, T] × K to the viscosity solution of
(HJ).
Bibliography
V.I. Arnold Singularities of Caustics and Wave Fronts.
Mathematics and Its Applications (Soviet Series). Vol. 62.
Springer.
M Bhupal. Legendrian Intersections in the 1-Jet Bundle.
PhD Thesis. Mathematics Institute, University of
Warwick. 1998.
M. Bardi, I. Capuzzo Dolcetta. Optimal control and
viscosity solutions of Hamilton-Jacobi-Bellman equations.
Birkhausser, 1997.
Clarke, F.; Functional Analysis, Calculus of Variations and
Optimal Control. Springer-Verlag London, 2013.
Bibliography
Chaperon, M. On generating families. The Floer
Memorial volume. Birkh¨ausser, 1995, 284–296.
Chenciner A. Aspects g´eom´etriques de l’´etudes des chocs
dans les lois de conservation. Probl`ems d’´evolution non
lin´eaires, S´eminaire de Nice
M.G. Crandall, L.C. Evans, P.L. Lions, Some properties of
viscosity solutions of Hamilton-Jacobi equations. Trans.
Amer. Math. Soc. 282 (1984), no. 2, 487–502.
M.G. Crandall, P.L. Lions. On existence and uniqueness of
solutions of Hamilton-Jacobi equations. Nonlinear
Analysis: Theory, Methods & Applications, 10 No. 4
(1986) 353–370.
Bibliography
L. Evans. Partial Differential Equations. 2nd Edition.
American Mathematical Society. 2010.
Palais, R.S.; Critical point theory and the minimax
principle; Proceedings of Symposia in Pure Mathematics,
1970, XV, 185-212.
Struwe, Michael; Variational Methods: Applications to
Nonlinear Partial Differential Equations and Hamiltonian
Systems. Springer-Verlag, A Series of Modern Surveys in
Mathematics Vol. 34, 2008.
Wei, Q.; Viscosity solution of the Hamilton - Jacobi
equation by a limiting minimax method. Nonlinearity 27
(2014) 17–41.

More Related Content

What's hot

somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013Somenath Bandyopadhyay
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsChristian Robert
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 
Unbiased Bayes for Big Data
Unbiased Bayes for Big DataUnbiased Bayes for Big Data
Unbiased Bayes for Big DataChristian Robert
 
Existance Theory for First Order Nonlinear Random Dfferential Equartion
Existance Theory for First Order Nonlinear Random Dfferential EquartionExistance Theory for First Order Nonlinear Random Dfferential Equartion
Existance Theory for First Order Nonlinear Random Dfferential Equartioninventionjournals
 
The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...Alexander Decker
 
Applications of differential equations by shahzad
Applications of differential equations by shahzadApplications of differential equations by shahzad
Applications of differential equations by shahzadbiotech energy pvt limited
 
Compatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsCompatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsMarie E. Rognes
 
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...SSA KPI
 
What are free particles in quantum mechanics
What are free particles in quantum mechanicsWhat are free particles in quantum mechanics
What are free particles in quantum mechanicsbhaskar chatterjee
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
MCMC and likelihood-free methods
MCMC and likelihood-free methodsMCMC and likelihood-free methods
MCMC and likelihood-free methodsChristian Robert
 
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...Marco Frasca
 
Coincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionCoincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionAlexander Decker
 

What's hot (20)

somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013
 
Berans qm overview
Berans qm overviewBerans qm overview
Berans qm overview
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Chris Sherlock's slides
Chris Sherlock's slidesChris Sherlock's slides
Chris Sherlock's slides
 
Unbiased Bayes for Big Data
Unbiased Bayes for Big DataUnbiased Bayes for Big Data
Unbiased Bayes for Big Data
 
Existance Theory for First Order Nonlinear Random Dfferential Equartion
Existance Theory for First Order Nonlinear Random Dfferential EquartionExistance Theory for First Order Nonlinear Random Dfferential Equartion
Existance Theory for First Order Nonlinear Random Dfferential Equartion
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
 
The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...
 
Applications of differential equations by shahzad
Applications of differential equations by shahzadApplications of differential equations by shahzad
Applications of differential equations by shahzad
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Compatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsCompatible discretizations in our hearts and minds
Compatible discretizations in our hearts and minds
 
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
 
What are free particles in quantum mechanics
What are free particles in quantum mechanicsWhat are free particles in quantum mechanics
What are free particles in quantum mechanics
 
ABC in Venezia
ABC in VeneziaABC in Venezia
ABC in Venezia
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
MCMC and likelihood-free methods
MCMC and likelihood-free methodsMCMC and likelihood-free methods
MCMC and likelihood-free methods
 
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
 
Coincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionCoincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contraction
 

Similar to Geometric and viscosity solutions for the Cauchy problem of first order

NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESTahia ZERIZER
 
A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...OctavianPostavaru
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Alexander Litvinenko
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
quan2009.pdf
quan2009.pdfquan2009.pdf
quan2009.pdfTriPham86
 
An Approach For Solving Nonlinear Programming Problems
An Approach For Solving Nonlinear Programming ProblemsAn Approach For Solving Nonlinear Programming Problems
An Approach For Solving Nonlinear Programming ProblemsMary Montoya
 
A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”IOSRJM
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013Madd Maths
 
Pinning and facetting in multiphase LBMs
Pinning and facetting in multiphase LBMsPinning and facetting in multiphase LBMs
Pinning and facetting in multiphase LBMsTim Reis
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
Stochastic Schrödinger equations
Stochastic Schrödinger equationsStochastic Schrödinger equations
Stochastic Schrödinger equationsIlya Gikhman
 
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...Tim Reis
 
Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014Nikita V. Artamonov
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 

Similar to Geometric and viscosity solutions for the Cauchy problem of first order (20)

NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
 
A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
quan2009.pdf
quan2009.pdfquan2009.pdf
quan2009.pdf
 
An Approach For Solving Nonlinear Programming Problems
An Approach For Solving Nonlinear Programming ProblemsAn Approach For Solving Nonlinear Programming Problems
An Approach For Solving Nonlinear Programming Problems
 
residue
residueresidue
residue
 
A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013
 
Pinning and facetting in multiphase LBMs
Pinning and facetting in multiphase LBMsPinning and facetting in multiphase LBMs
Pinning and facetting in multiphase LBMs
 
02_AJMS_297_21.pdf
02_AJMS_297_21.pdf02_AJMS_297_21.pdf
02_AJMS_297_21.pdf
 
D021018022
D021018022D021018022
D021018022
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Stochastic Schrödinger equations
Stochastic Schrödinger equationsStochastic Schrödinger equations
Stochastic Schrödinger equations
 
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
 
Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
 

More from Juliho Castillo

Conceptos Estadísticos para la Modelación Predictiva
Conceptos Estadísticos para la Modelación PredictivaConceptos Estadísticos para la Modelación Predictiva
Conceptos Estadísticos para la Modelación PredictivaJuliho Castillo
 
Distribuciones de Probabilidad Especiales
Distribuciones de Probabilidad EspecialesDistribuciones de Probabilidad Especiales
Distribuciones de Probabilidad EspecialesJuliho Castillo
 
Esperanza,Varianza y Covarianza
Esperanza,Varianza y CovarianzaEsperanza,Varianza y Covarianza
Esperanza,Varianza y CovarianzaJuliho Castillo
 
Variables Aleatorias y Distribuciones de Probabilidad
Variables Aleatorias y Distribuciones de ProbabilidadVariables Aleatorias y Distribuciones de Probabilidad
Variables Aleatorias y Distribuciones de ProbabilidadJuliho Castillo
 
Teoría Básica de Probabilidad
Teoría Básica de ProbabilidadTeoría Básica de Probabilidad
Teoría Básica de ProbabilidadJuliho Castillo
 
Estadística Descriptiva
Estadística DescriptivaEstadística Descriptiva
Estadística DescriptivaJuliho Castillo
 
ULSA 2017-2 Probabilidad y Estadística
ULSA 2017-2 Probabilidad y EstadísticaULSA 2017-2 Probabilidad y Estadística
ULSA 2017-2 Probabilidad y EstadísticaJuliho Castillo
 
Aplicaciones del Cálculo Diferencial
Aplicaciones del Cálculo DiferencialAplicaciones del Cálculo Diferencial
Aplicaciones del Cálculo DiferencialJuliho Castillo
 
Notas de Cálculo Diferencial
Notas de Cálculo DiferencialNotas de Cálculo Diferencial
Notas de Cálculo DiferencialJuliho Castillo
 
Problemario de Álgebra Lineal
Problemario de Álgebra LinealProblemario de Álgebra Lineal
Problemario de Álgebra LinealJuliho Castillo
 
Taller de Matemáticas para Economistas
Taller de Matemáticas para EconomistasTaller de Matemáticas para Economistas
Taller de Matemáticas para EconomistasJuliho Castillo
 
Matemáticas Básicas: Introducción a las Matemáticas Financieras
Matemáticas Básicas: Introducción a las Matemáticas FinancierasMatemáticas Básicas: Introducción a las Matemáticas Financieras
Matemáticas Básicas: Introducción a las Matemáticas FinancierasJuliho Castillo
 
Matemáticas Básicas: Sistemas Lineales
Matemáticas Básicas: Sistemas LinealesMatemáticas Básicas: Sistemas Lineales
Matemáticas Básicas: Sistemas LinealesJuliho Castillo
 
Matemáticas Básicas: Funciones
Matemáticas Básicas: FuncionesMatemáticas Básicas: Funciones
Matemáticas Básicas: FuncionesJuliho Castillo
 
Taller Remedial de Matemáticas
Taller Remedial de MatemáticasTaller Remedial de Matemáticas
Taller Remedial de MatemáticasJuliho Castillo
 
Cálculo Integral para Empresariales
Cálculo Integral para EmpresarialesCálculo Integral para Empresariales
Cálculo Integral para EmpresarialesJuliho Castillo
 
El Teorema Fundamental del Cálculo
El Teorema Fundamental del CálculoEl Teorema Fundamental del Cálculo
El Teorema Fundamental del CálculoJuliho Castillo
 

More from Juliho Castillo (20)

Conceptos Estadísticos para la Modelación Predictiva
Conceptos Estadísticos para la Modelación PredictivaConceptos Estadísticos para la Modelación Predictiva
Conceptos Estadísticos para la Modelación Predictiva
 
Distribuciones de Probabilidad Especiales
Distribuciones de Probabilidad EspecialesDistribuciones de Probabilidad Especiales
Distribuciones de Probabilidad Especiales
 
Esperanza,Varianza y Covarianza
Esperanza,Varianza y CovarianzaEsperanza,Varianza y Covarianza
Esperanza,Varianza y Covarianza
 
Variables Aleatorias y Distribuciones de Probabilidad
Variables Aleatorias y Distribuciones de ProbabilidadVariables Aleatorias y Distribuciones de Probabilidad
Variables Aleatorias y Distribuciones de Probabilidad
 
Teoría Básica de Probabilidad
Teoría Básica de ProbabilidadTeoría Básica de Probabilidad
Teoría Básica de Probabilidad
 
Estadística Descriptiva
Estadística DescriptivaEstadística Descriptiva
Estadística Descriptiva
 
ULSA 2017-2 Probabilidad y Estadística
ULSA 2017-2 Probabilidad y EstadísticaULSA 2017-2 Probabilidad y Estadística
ULSA 2017-2 Probabilidad y Estadística
 
Chern-Simons Theory
Chern-Simons TheoryChern-Simons Theory
Chern-Simons Theory
 
Aplicaciones del Cálculo Diferencial
Aplicaciones del Cálculo DiferencialAplicaciones del Cálculo Diferencial
Aplicaciones del Cálculo Diferencial
 
Notas de Cálculo Diferencial
Notas de Cálculo DiferencialNotas de Cálculo Diferencial
Notas de Cálculo Diferencial
 
Problemario de Álgebra Lineal
Problemario de Álgebra LinealProblemario de Álgebra Lineal
Problemario de Álgebra Lineal
 
Taller de Matemáticas para Economistas
Taller de Matemáticas para EconomistasTaller de Matemáticas para Economistas
Taller de Matemáticas para Economistas
 
Inducción y Recursión
Inducción y RecursiónInducción y Recursión
Inducción y Recursión
 
Teoría de Conjuntos
Teoría de ConjuntosTeoría de Conjuntos
Teoría de Conjuntos
 
Matemáticas Básicas: Introducción a las Matemáticas Financieras
Matemáticas Básicas: Introducción a las Matemáticas FinancierasMatemáticas Básicas: Introducción a las Matemáticas Financieras
Matemáticas Básicas: Introducción a las Matemáticas Financieras
 
Matemáticas Básicas: Sistemas Lineales
Matemáticas Básicas: Sistemas LinealesMatemáticas Básicas: Sistemas Lineales
Matemáticas Básicas: Sistemas Lineales
 
Matemáticas Básicas: Funciones
Matemáticas Básicas: FuncionesMatemáticas Básicas: Funciones
Matemáticas Básicas: Funciones
 
Taller Remedial de Matemáticas
Taller Remedial de MatemáticasTaller Remedial de Matemáticas
Taller Remedial de Matemáticas
 
Cálculo Integral para Empresariales
Cálculo Integral para EmpresarialesCálculo Integral para Empresariales
Cálculo Integral para Empresariales
 
El Teorema Fundamental del Cálculo
El Teorema Fundamental del CálculoEl Teorema Fundamental del Cálculo
El Teorema Fundamental del Cálculo
 

Recently uploaded

VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptxAlMamun560346
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxRizalinePalanog2
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICEayushi9330
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLkantirani197
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 

Recently uploaded (20)

VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 

Geometric and viscosity solutions for the Cauchy problem of first order

  • 1. Geometric and viscosity solutions for the Cauchy problem of first order Juliho Castillo, M.Sc. Instituto de Matem´aticas, UNAM Doctoral Examination: August 30, 2017
  • 2. Abstract There are two kinds of solutions of the Cauchy problem of first order, the viscosity solution and the more geometric minimax solution and in general they are different. The aim of this dissertation is to show how they are related: iterating the minimax procedure during shorter and shorter time intervals one approaches the viscosity solution.This can be considered as an extension to the contact framework of the result of Q. Wei [Wei] in the symplectic case.
  • 4. Consider the Cauchy problem    ∂tu(t, x) + H(t, x, ∂xu(t, x), u(t, x)) = 0, t ∈ (0, T] u(0, t) = v(x), x ∈ Rk . (C.P.F.O.)
  • 5. The classical method to solve this problem, for v ∈ C2 and a short time interval, consists in solving characteristics equations ˙x = ∂yH ˙y = −∂xH − y∂zH ˙z = y∂yH − H, (Eq. Char.) to get the characteristic lines Φ(t, q0) ˙=(t, x(t, q0), y(t, q0), z(t, q0)); (where Φ(0, q0) = (0, q0)) and then obtain the solution u(t, x) of the Cauchy problem as follows: setting ut(x) ˙=u(t, x), for fixed t, and its 1-jet j1 ut(x) = (x, dut(x), ut(x)), the image of j1 ut is the section at time t of the union L (Λ0) = t∈[0,T] Φ(t, Λ0) = {Φ(t)| t ∈ [0, T], Φ(0) ∈ Λ}
  • 6. of the characteristic lines Φ(t, Λ0) = {Φ(t)| Φ(0) ∈ Λ0} , t ∈ [0, T] passing through Λ0 = {(0, j1 v(x)}.
  • 7. This procedure does not yield a global solution of the problem in the whole interval [0, T], as the geometric solution L it is not always the set {(t, j1 ut(x))} for a function u(t, x).
  • 8. According to [Arnold, section 3.2] the wavefront F = π (L(Λ0)) , (where π (t, x, y, z) = (t, x, z)) obtained in (t, x, y, z) space by solving the equation dz = −H(t, x, y, z)dt + ydx restricted to (t, x, y, z) ∈ L it is not the graph of a function: the projected characteristics π (Φ(t, q0)) = (t, x(t, q0), z(t, q0)), q0 ∈ Λ0 may cross after some time. For example, characteristics for conservation laws [Evans, example 3.2.5]
  • 9.
  • 10. Whereas in some applications, e.g. to geometrical optics, the wavefront F can be considered as a solution of the physical problem, one is interested in a single-valued solution u(t, x). Assuming that the projection of F into (t, x) space is onto, one can construct such a solution as a section of the wavefront, selecting a single u over each (t, x). When the function H is sufficiently convex with respect to y (and v is not too wild at infinity), such a “selector” consists in choosing for u(t, x) the smallest u with (t, x, u) ∈ F.
  • 11. This min solution happens to be the “viscosity solution” which was first introduced as the viscosity limit when ε → 0+ of the solution of the Cauchy problem for the viscous equation ∂tu(t, x) + H(t, x, ∂xu, u) = ε xu(t, x), and afterwards got a general definition for general nonlinear first order partial differential equations in the work of Crandall, Evans and Lions [CEL] [CEL, BCD].
  • 12. In the non-convex case the viscosity solution may not be a section of the wavefront (see for example [Checiner]). On the other hand, Chaperon introduced in [Chaperon] weak solutions whose graph is a section of the wavefront, obtained by a “minimax” procedure which generalizes the minimum considered in the convex case and relies on the existence of suitable generating families for the geometric solution.
  • 13. Let’s explain in more detail the procdeure: At first, considere the legendrian submanifold Λ = ϕt (j1 v) ⊂ J1 Rk , for some Rk , where ϕt is the flow generated by (Eq. Char.) and therefore Φ(t) = (t, ϕ(t)) .
  • 14. It turns out that there exist a so called generating function quadratic at infinity SH,v : [0, T] × Rk × Rq , (t, x, ξ) → St H,v(x, ξ) (for some Rq , a family of parameters ξ) such that Λ = x, ∂xSt H,v(x, ξ), St H,v(x, ξ) ∂ξSt H,v(x, ξ) = 0 .
  • 15. Now we can define a minimax selector such that u(t, x) = infmaxξ St H,v(x, ξ) is a generalized solution of Cauchy problem (C.P.F.O.). It is called the minimax solution. But in general this is not a classical solution. Indeed ut ∈ CLip Rk .
  • 16. Although, we have been considering v ∈ C2 (Rk ), in the more general setting of Clarke calculus, we can consider v ∈ C2 (Rk ), and thus for a given H ∈ C2 (J1 Rk ), we obtain an operator RH : CLip (Rk H) → CLip (Rk ), v → infmaxξ St H,v(·, ξ).
  • 17. One may to try to get a solution as a limit obtained by dividing a given time interval into small pieces and iterating the minimax procedure step by step.
  • 18. Our goal is to show that when the size of the time intervals go to zero, one indeed gets the viscosity solution as the limit Theorem 1. Suppose H ∈ C2 c ([0, T] × J1 (Rk )), v ∈ CLip (Rk ). Then the viscosity solution is the limit of iterated minimax solutions for problem (C.P.F.O.) on [0, T].
  • 19. This extends the result obtained by Q. Wei [Wei] in the symplectic framework.
  • 21. Characteristics method For a given function H ∈ C2 [0, T] × J1 Rk , the following statement relates solutions u : [0, T] × Rk → R for Cauchy problem of First Order (C.P.F.O.) (being u0 : Rk → R the initial condition) and solutions for characterics equations (Eq. Char.) starting at the 1−graph of S0 :
  • 22. Characteristics method Suppose that u ∈ C2 ([0, T] × Rk ) is a solution for the given Cauchy problem (C.P.F.O.). Then, if a solution for the equation ˙x = ∂yH (t, x, ∂xu, u) , (2.1) on [0, T] is given, the curve defined by (x(t), y(t), z(t)) = (x(t), ∂xu(t, x(t)), u(t, x(t))) . (2.2) is a solution for characteric equations (Eq. Char.).
  • 23. Characteristics method Conversely, u0 ∈ C1 (M), T is small enough and (X(t,x), Y(t,x), Z(t,x)) : [0, T] → J1 Rk is the unique solution for characteristic characteristics (Eq. Char.) with boundary conditions    X(t,x)(t) = x, Y(t,x)(0) = ∂xu0 X(t,x)(0) , Z(t,x)(0) = u0 X(t,x)(0) ,
  • 24. Characteristics method then u(t, x) = Z(t,x)(t) (2.3) defines the solution for the Cauchy problem with initial condition u(0, x) = u0(x).
  • 25. So for fixed t, small enough: ϕt(J1 v) = (x(t, q0), y(t, q0), z(t, q0)) | q0 ∈ J1 v = (ξ, ∂xu(t, ξ), u(t, ξ)) | ξ ∈ x(t, J1 v) = J1 ut But in general for t bigger, there is no f ∈ C1 (Rk ) s.t. ϕt(J1 v) = J1 f.
  • 27. Let J1 (M) = T∗ M × R with the contact form α = dz − ydx. Definition 1 (gfqi). S ∈ C2 (M × Rq ) is a generating family quadratic at infinity of the Legendrian submanifold Λ of J1 M if 0 is a regular value of the fiber derivative ∂ξS. Λ = {(x, ∂xS(x, ξ), S(x, ξ)) : ∂ξS(x, ξ) = 0} ∃ non degenerate quadratic form Q, such that ∀K ⊂ M compact |∂ξ(S(x, ξ) − Q(ξ))| is bounded on K × Rq .
  • 28. Theorem. A Legendrian submanifold contact isotopic to the zero section has a gfqi, unique up to the following operations S1 ∼ S2 Stabilitation S2(x, ξ, η) = S1(x, ξ) + q(η) with q a ndqf. Diffeomorphism S2(x, ξ) = S1(x, ψ(x, ξ)) with ψ(x, ·) a diffeomorphism ∀x ∈ M.
  • 30. Generating Functions Definition 2. Φ ∈ C2 (R2k+1 ) is a generating function for a contactomorphism ϕ : J1 Rk → J1 Rk if 1 − ∂zΦ(x, Y, z) = 0 and X − x = ∂Y Φ(x, Y, z) (cx) Y − y = −∂xΦ(x, Y, z) − y∂zΦ(x, Y, z) (cy) Z − z = (X − x)Y − Φ(x, Y, z) (cz) if and only if ϕ(x, y, z) = (X, Y, Z).
  • 31. Remark 1. ϕ has compact support if and only if Φ does. Proposition 1. A contactomorphism ϕ : J1 Rk → J1 Rk with I − dϕ(p) < 1 for all p ∈ J1 Rk has a unique generating function.
  • 32. Suppose: 1 H ∈ C2 c ([0, T] × J1 Rk ) 2 ϕt is the contact isotopy defined by (Eq. Char.). 3 supp H ⊂ {(x, y, z) : |y| ≤ a}, 4 cH = sup{|DHt(x, y, z)|, |D2 Ht(x, y, z)|},
  • 33. Lemma 3. If δH = log 2/(2 + a)cH, and 0 < t − s < δH, then ϕs,t has a unique g.f. Φs,t and letting ϕs,τ (q) = (x(τ), y(τ), z(τ)), then Φs,t (x(s), y(t), z(s)) = t s ( ˙x(τ)(y(t) − y(τ)) + H(τ, ϕs,τ (q)))dτ, (4.1) ∂tΦs,t (x(s), y(t), z(s)) = H(t, ϕs,t (q)) (4.2)
  • 34. Constructing generating families (a) Let s = t0 < t1 < · · · < tN = t such that |ti+1 − ti| < δH, Φj = Φtj−1,tj , v ∈ CLip,2 (Rk ). Define S : Rk × R2kn → R Ss,t (x; ξ) = v(x0) + N j=1 yj(xj − xj−1) − Φj(xj−1, yj, zj−1) (4.3) xN = x, ξ = (x0, . . . , xN−1, y1, . . . , yN ), and    z0 = v(x0), zj = zj−1 + (xj − xj−1)yj − Φj(xj−1, yj, zj−1).
  • 35. Constructing generating families Defining Q(ξ) = −yN xN−1 + N−1 i=1 yi(xi − xi−1), (QF) Ws,t (x, ξ) = v(x0) + x · yN − N j=1 Φtj−1,tj (xj−1, yj, ¯zj−1), (CS) we see that for v ∈ C2,Lip (Rk ), Ss,t (x, ξ) is a gfqi.
  • 36. Constructing generating families (b) Let τj = s + (τ − s)(tj − s)/(t − s), Φτ j = Φτj−1,τj , then Ss,t (τ, x; ξ) = v(x0) + N j=1 yj(xj − xj−1) − Φτ j (xj−1, yj, ¯zj−1). (4.4) is a gfqi of ϕs,τ (J1 v).
  • 37. Constructing generating families (c) For each critical point ξ of Ss,t (τ, x; ·) Ss,t (τ, x, ξ) = v(x(s)) + τ s ˙x(σ)y(σ) − H σ, ϕs,σ (j1 v(x0)) dσ (4.5) where ϕs,σ (j1 v(x0)) = (x(σ), y(σ), z(σ)), x(τ) = x.
  • 39. Clarke Generalized Derivative For f ∈ Liploc(Rq ), we define the Clark (generalized) derivative as ∂f(a) = co lim n→∞ df(xn) | lim n→∞ xn = a (CGD)
  • 40. Clarke Generalized Derivative Lemma 4 (Fermat Rule). If f ∈ Liploc(Rq ), then (a) if f has a local extreme value at x = a, then 0 ∈ ∂f(a); (b) if 0 ∈ ∂f(a), there exists a direction v for f at x = a such that lim sup t↓0 f(x + tv) − f(x) t < 0.
  • 41. Generalized generating families Proposition 2. Suppose that in the Cauchy problem (C.P.F.O.), v ∈ Liploc(Rk ) and define ∂v = {(x, y, v(x)) : y ∈ ∂v(x)}. Thus Ss,τ generates Lτ = ϕs,τ H (∂v) i.e. Lτ = {(x, ∂xSs,τ (τ, x, ξ), Ss,t (τ, x, ξ)) : 0 ∈ ∂ξSs,t (τ, x, ξ)} (5.1) where ∂ denotes the Clarke’s generalized derivative.
  • 42. Generalized generating families Let H ∈ C2 c ([0, T] × J1 Rk ), v ∈ CLip (Rk ). Write Ss,t : [s, t] × Rk × Rq → R given by (4.4) as Ss,t (τ, x, ξ) = Ws,t (τ, x, ξ) + Q(ξ), with Q, Ws,t defined in (QF), (CS). For each compact subset K of Rk , the family of functions {Ws,t (τ, x, ·)}τ∈[s,t],x∈K is uniformly Lipschitz.
  • 43. Generalized generating families Moreover for any θ ∈ Cc(Rq , [0, T]) identically 1 in a neighborhhod of the origin with Dθ < 1, there exists a constant aK > 1 such that for τ ∈ [s, t], (x, ξ) → Ss,t K (τ, x, ξ) = θ ξ aK Ws,t (τ, x, ξ) + Q(ξ) (5.2) is a g.f.q.i. for Lτ K = Lτ ∩ π−1 (K) = (x, ∂xSs,t K (τ, x, ξ), Ss,t K (τ, x, ξ)|0 ∈ ∂ξSs,t K (τ, x, ξ)) , where π : J1 Rk → Rk , (x, y, z) → x.
  • 45. Definition 5. 1 A sequence (um) in a manifold M is called of Palais-Smale for E ∈ C1 (M) if |E(um)| ≤ c uniformly in m and limm→∞ DE(um) = 0. 2 We say that E satisfies Palais-Smale compactness condition (PS) if every P-S sequence for E has a strongly convergent subsequence.
  • 46. Minimax Principle Definition 1. Let Φ : Rq × [0, ∞) → Rq be a semi-flow. A family F of subsets of Rq is called (positively) Φ-invariant if Φ(F, t) ∈ F for all F ∈ F, t ≥ 0.
  • 47. Minimax Principle Suppose f ∈ C1 (Rq ) satisfies (PS). Also suppose F ⊂ P(Rq ) is a collection of sets which is positively invariant with respect to any continuous semi-flow Φ : Rq × [0, ∞) → Rq satisfying: (i) Φ(·, 0) = id(·); (ii) Φ(·, t) is a homeomorphism of Rq for any t ≥ 0; and (iii) f (Φ(u, t)) is non-incresing in t for any u ∈ Rq .
  • 48. Minimax Principle Theorem 2. Under the above conditions, if β = inf F∈F sup u∈F f(u) is finite, β is a critical value of f.
  • 49. Minimax Function Let K ⊂ Rk be a compact set, Ss,t K ∈ C1 ([s, t] × Rk × Rq ) be g.f.q.i. given as in (5.2) and Q(ξ) = 1 2 Pξ, ξ be the associated quadratic form. As Ss,t K = Q outside a compact set, the critical levels of Ss,t K are bounded. There is R(K) < 0 such that for R < R(K), the sub–level set (Ss,t K )R τ,x = ξ ∈ Rq |Ss,t k (τ, x; ξ) < R is identical to the sub–level QR .
  • 50. Minimax Function Definition 2. Let j be the Morse index of Q and a > 0 large. We define Ga as the set of continuous maps σ : Bj → Rq , of the unit ball Bj of dimension j, such that σ(∂Bj) ⊂ Q−1 (−∞, −a).
  • 51. Minimax Function Let v ∈ CLip (Rk ) H ∈ C2 c ([0, T] × J1 Rk ). Let Ss,t K ∈ C1 ([s, t] × Rk × Rq ) be as in (5.2). Let K ⊂ Rk be compact, a > −R(K).
  • 52. Minimax Function The function (τ, x) ∈ [s, t] × Rk → Rs,τ H,Kv(x) = inf σ∈Ga max e∈Bj Ss,t K (τ, x, σ(e)), has the following properties (a) Rs,τ H,Kv(x) is a critical value of ξ → Ss,t K (τ, x, ξ); (b) it is a Lipschitz function and therefore differentiable almost everywhere a.e.; (c) j1 Rs,τ H,Kv is an a.e. section of the wave front (τ, x, ∂xSs,t K (τ, x, ξ), Ss,t K (τ, x, ξ)) : 0 ∈ ∂ξSs,t K (τ, x, ξ) .
  • 53. Minimax Function Let K, K ⊂ Rk be compact. If x ∈ K ∩ K , τ ∈ [s, t] then Rs,τ H,K v(x) = Rs,τ H,Kv(x).
  • 54. Minimax Function Rs,τ H v(x) = inf σ∈Ga max e∈Bj Ss,t (τ, x; σ(e)). (6.1)
  • 56. Viscosity solution Definition 6. (a) u ∈ C([0, T] × V ), V ⊂ Rk is a viscosity subsolution ( supersolution) of ∂tu + H(t, x, ∂xu, u) = 0, if ∀φ ∈ C1 (V × [0, T]), ∀(t0, x0) ∈ [0, T] × V at which u − φ has a maximum (minimum) ∂tφ(t0, x0) + H(t0, x0, ∂xφ(t0, x0), u(t0, x0)) ≤ 0 (≥ 0). (b) u is a viscosity solution if it is both a viscosity subsolution and a supersolution.
  • 57. Estimates Proposition 3. For [s, t] ⊂ [0, T] consider Rs,t H : CLip (Rk ) → CLip (Rk ) (a) ∂(Rs,t H v) ≤ ( ∂v + |t − s| ∂xH )e|t−s| ∂zH (b) |Rs,t H v(x) − Rs,τ H v(x)| ≤ C(H)|t − τ| H . (c) If K ⊂ Rk compact, ∃ ˜K ⊂ Rk s.t. Rs,t H v − Rs,t H w K ≤ v − w ˜K.
  • 58. Iterated minimax operator Given ζ = {0 = t0 < t1 < · · · < tn = T} define |ζ| = max |ti+1 − ti|, and ζ(s) = max{ti : ti < s}, s ∈ [0, T]. Definition 7. For 0 ≤ s < s ≤ T, let tj = ζ(s), ti = ζ(s ). We say that Rs ,s H,ζv(x) = R tj,s H ◦ · · · ◦ R s ,ti+1 H v(x) (7.1) is the iterated minimax solution.
  • 59. Main result Lemma 8. (ζn)n sequence of partitions of [0, T] s,t. |ζn| → 0. v ∈ CLip (Rk ). Then {un(s, x) := R0,s ζ v(x)} is equi-Lipschitz in [0, T] × K.
  • 60. Main result Proposition 4. For any sequence (ζn) of subdivisions of [0, T] s.t. |ζn| → 0, K ⊂ Rk , compact, {un := R0,s ζn v(x)} has a subsequence converging uniformly on [0, T] × K to the viscosity solution of (HJ).
  • 61. Bibliography V.I. Arnold Singularities of Caustics and Wave Fronts. Mathematics and Its Applications (Soviet Series). Vol. 62. Springer. M Bhupal. Legendrian Intersections in the 1-Jet Bundle. PhD Thesis. Mathematics Institute, University of Warwick. 1998. M. Bardi, I. Capuzzo Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhausser, 1997. Clarke, F.; Functional Analysis, Calculus of Variations and Optimal Control. Springer-Verlag London, 2013.
  • 62. Bibliography Chaperon, M. On generating families. The Floer Memorial volume. Birkh¨ausser, 1995, 284–296. Chenciner A. Aspects g´eom´etriques de l’´etudes des chocs dans les lois de conservation. Probl`ems d’´evolution non lin´eaires, S´eminaire de Nice M.G. Crandall, L.C. Evans, P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502. M.G. Crandall, P.L. Lions. On existence and uniqueness of solutions of Hamilton-Jacobi equations. Nonlinear Analysis: Theory, Methods & Applications, 10 No. 4 (1986) 353–370.
  • 63. Bibliography L. Evans. Partial Differential Equations. 2nd Edition. American Mathematical Society. 2010. Palais, R.S.; Critical point theory and the minimax principle; Proceedings of Symposia in Pure Mathematics, 1970, XV, 185-212. Struwe, Michael; Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag, A Series of Modern Surveys in Mathematics Vol. 34, 2008. Wei, Q.; Viscosity solution of the Hamilton - Jacobi equation by a limiting minimax method. Nonlinearity 27 (2014) 17–41.