SlideShare a Scribd company logo
1 of 16
Download to read offline
Introduction Theory Simulation and Results Conclusion
Output Regulation of a Tubular Reactor with
Recycle by boundary actuation
Navid Alavi
Department of Chemical and Materials Engineering
University of Alberta, Edmonton, Canada
June 23, 2016
Faculty of Engineering Graduate
Research Symposium (FEGRS 2016)
1 / 16
Introduction Theory Simulation and Results Conclusion
Motivations and Objectives
Motivation:
Tubular reactors with recycle are very common in the chemical industry
Hyperbolic partial differential equations (PDE) have a pronounced standing in
chemical engineering
The recycle in the reactor add complexity to the mathematical model as it couples
the two boundaries together
Control by boundary actuation is more feasible in comparison with in-domain
actuation in most of processes
Backstepping features structural simplicity and leads to explicit control law in
some cases.
Objective:
Stabilize the system at the origin
Regulate the system to track a reference trajectory
2 / 16
Introduction Theory Simulation and Results Conclusion
Motivation
Motivation
Assumptions:
The flow is incompressible,
The flow is one dimensional,
The reaction is exothermic,
Velocity is high enough to make the
diffusion term negligible,
The reaction (or heat generation) oc-
curring in the system is first order.
u
R
Tubular reactor with recycle
ρ
∂x(z, t)
∂t
+ ρv
∂x(z, t)
∂z
= kx(z, t) + D(t)
x(0, t) = Ru(t) + (1 − R)x(1, t)
3 / 16
Introduction Theory Simulation and Results Conclusion
System Description
System Description
Generalized system:
∂x(z, t)
∂t
= −
∂x(z, t)
∂z
+ a(z)x(z, t) + g(z)x(1, t)
x(0, t) = Ru(t) + (1 − R)x(1, t)
Coordinate transformation
ξ = 1 − z
leads to
∂x(ξ, t)
∂t
=
∂x(ξ, t)
∂ξ
+ A(ξ)x(ξ, t) + G(ξ)x(0, t)
x(1, t) = Ru(t) + (1 − R)x(0, t)
where
A(ξ) = a(1 − z) G(ξ) = g(1 − z)
4 / 16
Introduction Theory Simulation and Results Conclusion
System Description
State transformation
x(ξ, t) = e
−
ξ
0
A(α)dα
χ(ξ, t)
leads to
∂χ(ξ, t)
∂t
=
∂χ(ξ, t)
∂ξ
+ λ(ξ)χ(0, t)
χ(1, t) = RU(t) + (1 − R)e
1
0
A(α)dα
χ(0, t)
where
λ(ξ) = e
ξ
0
A(α)dα
G(ξ)
U(t) = e
1
0
A(α)dα
u(t)
5 / 16
Introduction Theory Simulation and Results Conclusion
Backstepping
Implementation of Backstepping
Goal: To map the system into the target system
∂w(ξ, t)
∂t
=
∂w(ξ, t)
∂ξ
w(1, t) = (1 − R)e
1
0
A(α)dα
w(0, t)
How: Applying Volterra transformation
w(ξ, t) = χ(ξ, t) −
ξ
0
k(ξ, y)χ(y, t)dy
along with the full state feedback
U(t) =
1
R
1
0
k(1, y)χ(y, t)dy
6 / 16
Introduction Theory Simulation and Results Conclusion
Backstepping
Finding the Kernel
Derivative of w(ξ, t) with respect to ξ:
∂w(ξ,t)
∂ξ
=
∂χ(ξ,t)
∂ξ
−k(ξ, ξ)χ(ξ, t)
− ξ
0
∂k(ξ,y)
∂ξ
χ(y, t)dy,
Derivative of w(ξ, t) with respect to t:
∂w(ξ,t)
∂t
= χ(ξ, t) − ξ
0 k(x, y)
∂χ(y,t)
∂t
dy
...
=
∂χ(ξ,t)
∂ξ
+ λ(ξ)χ(0, t) − k(ξ, ξ)χ(ξ, t)
+k(ξ, 0)χ(0, t) − ξ
0 k(ξ, y)λ(y)χ(0, t)dy
+ ξ
0
∂k(ξ,y)
∂y
χ(y, t)dy
7 / 16
Introduction Theory Simulation and Results Conclusion
Backstepping
Substituting the derivatives into the target system
[λ(ξ) −
ξ
0
k(ξ, y)λ(y)dy + k(ξ, 0)]χ(0, t)
+
ξ
0
[
∂k(ξ, y)
∂y
+
∂k(ξ, y)
∂ξ
]χ(y, t)dy = 0
leads to
∂k(ξ, y)
∂y
+
∂k(ξ, y)
∂ξ
= 0
k(ξ, 0) =
ξ
0
k(ξ, y)λ(y)dy − λ(ξ)
8 / 16
Introduction Theory Simulation and Results Conclusion
Trajectory Tracking
Trajectory Tracking
Introducing an error variable
˜χ(ξ, t) = χ(ξ, t) − χr
(ξ, t)
the plant becomes
∂ ˜χ(ξ, t)
∂t
=
∂ ˜χ(ξ, t)
∂ξ
+ λ(ξ)˜χ(0, t)
˜χ(1, t) = RU(t) + (1 − R)e
1
0
A(α)dα
˜χ(0, t)
Hence, the input is
χ(1, t) = χr(1, t) + RU(t)
+(1 − R)e
1
0
A(α)dα
[χ(0, t) − χr(0, t)]
where
U(t) =
1
R
1
0
k(1, y)[χ(y, t) − χr
(y, t)]dy
9 / 16
Introduction Theory Simulation and Results Conclusion
Simulation
Simulation
Consider the system
∂χ(z, t)
∂t
= −
∂χ(z, t)
∂z
+ geb(1−z)
x(1, t)
χ(0, t) = RU(t) + (1 − R)χ(1, t)
The kernel found to be
k(ξ, y) = −geb+g
(ξ − y)
which leads to the following controller
U(t) = −
1
R
1
0
geb+g
(1 − y)χ(y, t)dy
10 / 16
Introduction Theory Simulation and Results Conclusion
Results
Results
Open-loop behavior of system when g=1
and b=2
Closed-loop behavior of system when R=1
11 / 16
Introduction Theory Simulation and Results Conclusion
Results
Results
Closed-loop behavior of system when
R=0.5
Closed-loop behavior of system when
R=0.1
12 / 16
Introduction Theory Simulation and Results Conclusion
Results
Results
Controller progression when R=0.5 Controller progression when R=0.1
13 / 16
Introduction Theory Simulation and Results Conclusion
Results
Results
Trajectory tracking when R=0.5
Error of the system when tracking the
trajectory with R=0.5
14 / 16
Introduction Theory Simulation and Results Conclusion
Summary
Conclusion:
A tubular reactor with recycle model using a first order hyperbolic PDE where the
boundaries were coupled at the inlet and outlet of the system
A controller designed based on backstepping method to stabilize and regulate the
system
Effect of different recycle ratios investigated on the response of the system
15 / 16
Introduction Theory Simulation and Results Conclusion
Thank you!
Any Questions?
16 / 16

More Related Content

What's hot

signal and system Dirac delta functions (1)
signal and system Dirac delta functions (1)signal and system Dirac delta functions (1)
signal and system Dirac delta functions (1)iqbal ahmad
 
Laplace periodic function with graph
Laplace periodic function with graphLaplace periodic function with graph
Laplace periodic function with graphKaushal Surti
 
Graph for Coulomb damped oscillation
Graph for Coulomb damped oscillationGraph for Coulomb damped oscillation
Graph for Coulomb damped oscillationphanhung20
 
EM3 mini project Laplace Transform
EM3 mini project Laplace TransformEM3 mini project Laplace Transform
EM3 mini project Laplace TransformAditi523129
 
EES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transferEES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transfertmuliya
 
Asymptotic notations(Big O, Omega, Theta )
Asymptotic notations(Big O, Omega, Theta )Asymptotic notations(Big O, Omega, Theta )
Asymptotic notations(Big O, Omega, Theta )swapnac12
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its applicationJaydrath Sindhav
 
【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...
【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...
【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...Deep Learning JP
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997JOAQUIN REA
 
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt AlgorithmString Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt AlgorithmKiran K
 

What's hot (19)

signal and system Dirac delta functions (1)
signal and system Dirac delta functions (1)signal and system Dirac delta functions (1)
signal and system Dirac delta functions (1)
 
Laplace periodic function with graph
Laplace periodic function with graphLaplace periodic function with graph
Laplace periodic function with graph
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Graph for Coulomb damped oscillation
Graph for Coulomb damped oscillationGraph for Coulomb damped oscillation
Graph for Coulomb damped oscillation
 
EM3 mini project Laplace Transform
EM3 mini project Laplace TransformEM3 mini project Laplace Transform
EM3 mini project Laplace Transform
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
ENFPC 2010
ENFPC 2010ENFPC 2010
ENFPC 2010
 
Direct current machine
Direct current machineDirect current machine
Direct current machine
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Inverse laplace transforms
Inverse laplace transformsInverse laplace transforms
Inverse laplace transforms
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
 
EES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transferEES Functions and Procedures for Forced convection heat transfer
EES Functions and Procedures for Forced convection heat transfer
 
Asymptotic notations(Big O, Omega, Theta )
Asymptotic notations(Big O, Omega, Theta )Asymptotic notations(Big O, Omega, Theta )
Asymptotic notations(Big O, Omega, Theta )
 
Scalable Link Discovery for Modern Data-Driven Applications (poster)
Scalable Link Discovery for Modern Data-Driven Applications (poster)Scalable Link Discovery for Modern Data-Driven Applications (poster)
Scalable Link Discovery for Modern Data-Driven Applications (poster)
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
 
【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...
【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...
【DL輪読会】SUMO: Unbiased Estimation of Log Marginal Probability for Latent Varia...
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
 
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt AlgorithmString Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
 

Viewers also liked

0851 0004 2009 (Tsel) Lembaga Wakaf Produktif, Lembaga Pengelola Wakaf, Lemba...
0851 0004 2009 (Tsel) Lembaga Wakaf Produktif, Lembaga Pengelola Wakaf, Lemba...0851 0004 2009 (Tsel) Lembaga Wakaf Produktif, Lembaga Pengelola Wakaf, Lemba...
0851 0004 2009 (Tsel) Lembaga Wakaf Produktif, Lembaga Pengelola Wakaf, Lemba...Lembaga-Wakaf-Tunai-Dan-Produktif
 
Proyecto de expresión
Proyecto de expresiónProyecto de expresión
Proyecto de expresiónhelen apolo
 
Química General
Química GeneralQuímica General
Química GeneralGIE VRN
 
INDICE DE MASA CORPORAL
INDICE DE MASA CORPORALINDICE DE MASA CORPORAL
INDICE DE MASA CORPORALesmeraldapg
 
MD.NAFISUL HAQUE_original
MD.NAFISUL HAQUE_originalMD.NAFISUL HAQUE_original
MD.NAFISUL HAQUE_originalM.Nafis Haque
 
Реализационное проектирование. Особенности технологии. методическое пособие. ...
Реализационное проектирование. Особенности технологии. методическое пособие. ...Реализационное проектирование. Особенности технологии. методическое пособие. ...
Реализационное проектирование. Особенности технологии. методическое пособие. ...Проектариум Проектариум
 

Viewers also liked (15)

Chapter 6
Chapter 6Chapter 6
Chapter 6
 
0851 0004 2009 (Tsel) Lembaga Wakaf Produktif, Lembaga Pengelola Wakaf, Lemba...
0851 0004 2009 (Tsel) Lembaga Wakaf Produktif, Lembaga Pengelola Wakaf, Lemba...0851 0004 2009 (Tsel) Lembaga Wakaf Produktif, Lembaga Pengelola Wakaf, Lemba...
0851 0004 2009 (Tsel) Lembaga Wakaf Produktif, Lembaga Pengelola Wakaf, Lemba...
 
Proyecto de expresión
Proyecto de expresiónProyecto de expresión
Proyecto de expresión
 
Robotic Hair Transplant System Treatment
Robotic Hair Transplant System TreatmentRobotic Hair Transplant System Treatment
Robotic Hair Transplant System Treatment
 
Carrie
CarrieCarrie
Carrie
 
Química General
Química GeneralQuímica General
Química General
 
INDICE DE MASA CORPORAL
INDICE DE MASA CORPORALINDICE DE MASA CORPORAL
INDICE DE MASA CORPORAL
 
Wildwood_Final_Report
Wildwood_Final_ReportWildwood_Final_Report
Wildwood_Final_Report
 
Question 5
Question 5Question 5
Question 5
 
MD.NAFISUL HAQUE_original
MD.NAFISUL HAQUE_originalMD.NAFISUL HAQUE_original
MD.NAFISUL HAQUE_original
 
Tarea 5
Tarea 5Tarea 5
Tarea 5
 
My Resume
My ResumeMy Resume
My Resume
 
Реализационное проектирование. Особенности технологии. методическое пособие. ...
Реализационное проектирование. Особенности технологии. методическое пособие. ...Реализационное проектирование. Особенности технологии. методическое пособие. ...
Реализационное проектирование. Особенности технологии. методическое пособие. ...
 
FORRES Lookbook
FORRES LookbookFORRES Lookbook
FORRES Lookbook
 
Power
PowerPower
Power
 

Similar to Navid_Alavi

International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2IJEMM
 
Real Time Code Generation for Nonlinear Model Predictive Control
Real Time Code Generation for Nonlinear Model Predictive ControlReal Time Code Generation for Nonlinear Model Predictive Control
Real Time Code Generation for Nonlinear Model Predictive ControlBehzad Samadi
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIREditor IJMTER
 
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular System
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular SystemNonlinear Systems Term Project: Averaged Modeling of the Cardiovascular System
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular SystemPhilip Diette
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptStavrovDule2
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Arthur Charpentier
 
Model reduction design for continuous systems with finite frequency specifications
Model reduction design for continuous systems with finite frequency specificationsModel reduction design for continuous systems with finite frequency specifications
Model reduction design for continuous systems with finite frequency specificationsIJECEIAES
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT Claudio Attaccalite
 
A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...OctavianPostavaru
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...SYRTO Project
 

Similar to Navid_Alavi (20)

International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2
 
Real Time Code Generation for Nonlinear Model Predictive Control
Real Time Code Generation for Nonlinear Model Predictive ControlReal Time Code Generation for Nonlinear Model Predictive Control
Real Time Code Generation for Nonlinear Model Predictive Control
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
 
Finite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S formFinite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S form
 
Lec1 01
Lec1 01Lec1 01
Lec1 01
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
 
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular System
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular SystemNonlinear Systems Term Project: Averaged Modeling of the Cardiovascular System
Nonlinear Systems Term Project: Averaged Modeling of the Cardiovascular System
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation Project
 
lecture3_2.pdf
lecture3_2.pdflecture3_2.pdf
lecture3_2.pdf
 
ENFPC 2012
ENFPC 2012 ENFPC 2012
ENFPC 2012
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.ppt
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
 
beamer
beamerbeamer
beamer
 
Lecture13 controls
Lecture13  controls Lecture13  controls
Lecture13 controls
 
Model reduction design for continuous systems with finite frequency specifications
Model reduction design for continuous systems with finite frequency specificationsModel reduction design for continuous systems with finite frequency specifications
Model reduction design for continuous systems with finite frequency specifications
 
03 dynamic.system.
03 dynamic.system.03 dynamic.system.
03 dynamic.system.
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
 

Navid_Alavi

  • 1. Introduction Theory Simulation and Results Conclusion Output Regulation of a Tubular Reactor with Recycle by boundary actuation Navid Alavi Department of Chemical and Materials Engineering University of Alberta, Edmonton, Canada June 23, 2016 Faculty of Engineering Graduate Research Symposium (FEGRS 2016) 1 / 16
  • 2. Introduction Theory Simulation and Results Conclusion Motivations and Objectives Motivation: Tubular reactors with recycle are very common in the chemical industry Hyperbolic partial differential equations (PDE) have a pronounced standing in chemical engineering The recycle in the reactor add complexity to the mathematical model as it couples the two boundaries together Control by boundary actuation is more feasible in comparison with in-domain actuation in most of processes Backstepping features structural simplicity and leads to explicit control law in some cases. Objective: Stabilize the system at the origin Regulate the system to track a reference trajectory 2 / 16
  • 3. Introduction Theory Simulation and Results Conclusion Motivation Motivation Assumptions: The flow is incompressible, The flow is one dimensional, The reaction is exothermic, Velocity is high enough to make the diffusion term negligible, The reaction (or heat generation) oc- curring in the system is first order. u R Tubular reactor with recycle ρ ∂x(z, t) ∂t + ρv ∂x(z, t) ∂z = kx(z, t) + D(t) x(0, t) = Ru(t) + (1 − R)x(1, t) 3 / 16
  • 4. Introduction Theory Simulation and Results Conclusion System Description System Description Generalized system: ∂x(z, t) ∂t = − ∂x(z, t) ∂z + a(z)x(z, t) + g(z)x(1, t) x(0, t) = Ru(t) + (1 − R)x(1, t) Coordinate transformation ξ = 1 − z leads to ∂x(ξ, t) ∂t = ∂x(ξ, t) ∂ξ + A(ξ)x(ξ, t) + G(ξ)x(0, t) x(1, t) = Ru(t) + (1 − R)x(0, t) where A(ξ) = a(1 − z) G(ξ) = g(1 − z) 4 / 16
  • 5. Introduction Theory Simulation and Results Conclusion System Description State transformation x(ξ, t) = e − ξ 0 A(α)dα χ(ξ, t) leads to ∂χ(ξ, t) ∂t = ∂χ(ξ, t) ∂ξ + λ(ξ)χ(0, t) χ(1, t) = RU(t) + (1 − R)e 1 0 A(α)dα χ(0, t) where λ(ξ) = e ξ 0 A(α)dα G(ξ) U(t) = e 1 0 A(α)dα u(t) 5 / 16
  • 6. Introduction Theory Simulation and Results Conclusion Backstepping Implementation of Backstepping Goal: To map the system into the target system ∂w(ξ, t) ∂t = ∂w(ξ, t) ∂ξ w(1, t) = (1 − R)e 1 0 A(α)dα w(0, t) How: Applying Volterra transformation w(ξ, t) = χ(ξ, t) − ξ 0 k(ξ, y)χ(y, t)dy along with the full state feedback U(t) = 1 R 1 0 k(1, y)χ(y, t)dy 6 / 16
  • 7. Introduction Theory Simulation and Results Conclusion Backstepping Finding the Kernel Derivative of w(ξ, t) with respect to ξ: ∂w(ξ,t) ∂ξ = ∂χ(ξ,t) ∂ξ −k(ξ, ξ)χ(ξ, t) − ξ 0 ∂k(ξ,y) ∂ξ χ(y, t)dy, Derivative of w(ξ, t) with respect to t: ∂w(ξ,t) ∂t = χ(ξ, t) − ξ 0 k(x, y) ∂χ(y,t) ∂t dy ... = ∂χ(ξ,t) ∂ξ + λ(ξ)χ(0, t) − k(ξ, ξ)χ(ξ, t) +k(ξ, 0)χ(0, t) − ξ 0 k(ξ, y)λ(y)χ(0, t)dy + ξ 0 ∂k(ξ,y) ∂y χ(y, t)dy 7 / 16
  • 8. Introduction Theory Simulation and Results Conclusion Backstepping Substituting the derivatives into the target system [λ(ξ) − ξ 0 k(ξ, y)λ(y)dy + k(ξ, 0)]χ(0, t) + ξ 0 [ ∂k(ξ, y) ∂y + ∂k(ξ, y) ∂ξ ]χ(y, t)dy = 0 leads to ∂k(ξ, y) ∂y + ∂k(ξ, y) ∂ξ = 0 k(ξ, 0) = ξ 0 k(ξ, y)λ(y)dy − λ(ξ) 8 / 16
  • 9. Introduction Theory Simulation and Results Conclusion Trajectory Tracking Trajectory Tracking Introducing an error variable ˜χ(ξ, t) = χ(ξ, t) − χr (ξ, t) the plant becomes ∂ ˜χ(ξ, t) ∂t = ∂ ˜χ(ξ, t) ∂ξ + λ(ξ)˜χ(0, t) ˜χ(1, t) = RU(t) + (1 − R)e 1 0 A(α)dα ˜χ(0, t) Hence, the input is χ(1, t) = χr(1, t) + RU(t) +(1 − R)e 1 0 A(α)dα [χ(0, t) − χr(0, t)] where U(t) = 1 R 1 0 k(1, y)[χ(y, t) − χr (y, t)]dy 9 / 16
  • 10. Introduction Theory Simulation and Results Conclusion Simulation Simulation Consider the system ∂χ(z, t) ∂t = − ∂χ(z, t) ∂z + geb(1−z) x(1, t) χ(0, t) = RU(t) + (1 − R)χ(1, t) The kernel found to be k(ξ, y) = −geb+g (ξ − y) which leads to the following controller U(t) = − 1 R 1 0 geb+g (1 − y)χ(y, t)dy 10 / 16
  • 11. Introduction Theory Simulation and Results Conclusion Results Results Open-loop behavior of system when g=1 and b=2 Closed-loop behavior of system when R=1 11 / 16
  • 12. Introduction Theory Simulation and Results Conclusion Results Results Closed-loop behavior of system when R=0.5 Closed-loop behavior of system when R=0.1 12 / 16
  • 13. Introduction Theory Simulation and Results Conclusion Results Results Controller progression when R=0.5 Controller progression when R=0.1 13 / 16
  • 14. Introduction Theory Simulation and Results Conclusion Results Results Trajectory tracking when R=0.5 Error of the system when tracking the trajectory with R=0.5 14 / 16
  • 15. Introduction Theory Simulation and Results Conclusion Summary Conclusion: A tubular reactor with recycle model using a first order hyperbolic PDE where the boundaries were coupled at the inlet and outlet of the system A controller designed based on backstepping method to stabilize and regulate the system Effect of different recycle ratios investigated on the response of the system 15 / 16
  • 16. Introduction Theory Simulation and Results Conclusion Thank you! Any Questions? 16 / 16