[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
1.
1
DEEP LEARNING JP
[DLPapers]
http://deeplearning.jp/
“Learning to Adapt: Meta-Learning for Model-Based Control",
Ignasi Clavera, Anusha Nagabandi, Ronald S. Fearing, Pieter Abbeel,
Sergey Levine, Chelsea Finn
Presentater: Kei Akuzawa
2.
書誌情報
• 投稿先: arxiv,2018/03
• プロジェクトページ: https://sites.google.com/berkeley.edu/metaadaptivecontrol
• 著者: Ignasi Clavera, Anusha Nagabandi, Ronald S. Fearing, Pieter Abbeel,
Sergey Levine, Chelsea Finn
• 選定理由:
• メタ学習への興味
• 実環境で動くエージェントを作るためにオンラインで適応させるのは筋が良
いように思えた
Reference
• Santoro, Adam,Bartunov, Sergey, Botvinick, Matthew, Wierstra, Daan, and Lillicrap,
Timothy. One-shot learning with memory-augmented neural networks. arXiv preprint
arXiv:1605.06065, 2016.
• Duan, Yan, Schulman, John, Chen, Xi, Bartlett, Peter L., Sutskever, Ilya, and Abbeel, Pieter.
Rl$ˆ2$: Fast reinforcement learning via slow reinforcement learning. CoRR,
abs/1611.02779, 2016.
• Finn, Chelsea, Abbeel, Pieter, and Levine, Sergey. Model-agnostic meta-learning for fast
adaptation of deep networks. CoRR, abs/1703.03400, 2017.
• Nagabandi, Anusha, Kahn, Gregory, Fearing, Ronald S., and Levine, Sergey. Neural
network dynamics for model-based deep reinforcement learning with model-free fine-
tuning. CoRR, abs/1708.02596, 2017.
• Krause, Ben, Kahembwe, Emmanuel, Murray, Iain, and Renals, Steve. Dynamic evaluation
of neural sequence models. CoRR, abs/1709.07432, 2017.
• Finn, Chelsea and Levine, Sergey. Meta-learning and universality: Deep representations
and gradient descent can approximate any learning algorithm. International Conference
on Learning Representations(ICLR), 2018.
• Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural
attentive meta-learner. International Conference on Learning Representations (ICLR),
2018.