SlideShare a Scribd company logo
1 of 50
Download to read offline
逆強化学習とGANs
冨山 翔司
2017/08/24
東京大学松尾研究室,株式会社DeepX
2017/11/28 2
自己紹介
• 冨山翔司
• 東京大学松尾研究室修士2年
• 株式会社DeepX
• 趣味:ボルダリング
• 興味:系列モデリング
今日の話
• Guided Cost Learning
– 今日の中心
• Guided Cost Learning and GANs
• Generative Adversarial Imitation Learning
2017/11/28 3
報酬関数の定義は実世界では難しいことがある
[0]
2017/11/28 4
逆強化学習の枠組み
[0]
2017/11/28 5
Behavior Cloning VS Inverse RL
• Behavior Cloning
– デモンストレーションのデータで教師あり学習(尤度最大
化)
– 行動空間が大きい場合に,全てを網羅するようなデモンスト
レーションを確保するのが困難
– 仮に十分なデモンストレーションを確保できても,良いポリ
シーを獲得できない
• 尤度最大化による学習は.全てのモードをカバーするような分
布になってしまう
– e.g. 理解不能な画像の生成
• Inverse RL
– 少量のデモンストレーションからでも方策を学習できる
– Behavior Cloningに比べ良い方策を獲得する
• 尤度ではなくコストの最適化をしているから
– モードとモードの間に確率密度を置かない
– あれGANっぽい
2017/11/28 6
エントロピー最大逆強化学習
[0]
2017/11/28 7
アルゴリズム
・ダイナミクスがわからない
・コスト関数が複雑(e.g. NN)
な場合は,このアルゴリズムを適用できない [0]
2017/11/28 8
分配関数Zの計算が最大の問題
分配関数Zは状態が連続だったりすると計算できない
サンプリングでどうにか回避する(Guided Cost Learning)
2017/11/28 9
Guided Cost Learning
[1]
2017/11/28 10
Guided Cost Learning
[1]
2017/11/28 11
コスト関数のパラメータに関する勾配
• 𝑝(𝜏)の負の対数尤度
• 上の,コスト関数のパラメータ𝜃に関する勾配
𝑞(𝜏)からの重点サンプリングでZを近似
𝑤𝑗とする
※この𝑍は 𝑍 = 𝑗 𝑤𝑗
2017/11/28 12
𝑞(𝜏)はどうすればいい???
• 理想的な𝑞(𝜏)は求めたい分配関数が exp −𝑐 𝜃 𝜏 𝑑𝜏
なので明らかに
• 𝑞(𝜏)を,その時点でのコスト関数 𝑐 𝜃 𝜏 に関して毎回
最適化.
– 𝑞(𝜏)がより(現在の)コストの低い軌道を生成するようにな
る
– 𝑚𝑖𝑚 𝑞 𝐸 𝑞 𝑐 𝜃 𝜏 − 𝐻(𝜏)を目的関数にすることで
𝑞(𝜏) ∝ exp −𝑐 𝜃 𝜏 を復元可能 [Ziebart, 2010]
• どうやって𝑞(𝜏)を現在のコスト関数に関して最適
化?
– Guided Policy Search
• ダイナミクスが未知でもオッケー
• サンプルが少量で済む
𝑞(𝜏) ∝ exp −𝑐 𝜃 𝜏
2017/11/28 13
(エントロピー正則での強化学習の目的関数)
𝐿 𝑅𝐿 𝜃; 𝜏, 𝐷 =
𝑥,𝑦∗ ∈𝐷
{−𝜏ℍ 𝑝 𝜃 −
𝑦∈𝑌
𝑝 𝜃 𝑦 𝑥 𝑟 𝑦, 𝑦∗ }
ℍ 𝑝 𝜃 ・・・エントロピー
𝑟 𝑦, 𝑦∗ ・・・報酬関数
RL objective
Energy-based model for behavior
𝑞 𝑦 𝑦∗
: 𝜏 =
1
𝑍(𝑦∗, 𝜏)
exp{𝑟(𝑦, 𝑦∗
)/𝜏}
where 𝑍 𝑦∗
, 𝜏 = 𝑦∈𝑌 exp{
𝑟 𝑦,𝑦∗
𝜏
}
𝑥,𝑦∗ ∈𝐷
𝐷 𝐾𝐿( 𝑝 𝜃 𝑦 𝑥) || 𝑞(𝑦|𝑦∗
; 𝜏)) =
1
𝜏
𝐿 𝑅𝐿 𝜃; 𝜏 + 𝑐𝑜𝑛𝑠𝑡
Re-expressed RL objective
2017/11/28 14
(証明)
2017/11/28 15
(おまけ)
[0]
2017/11/28 16
Guided Policy Search (Trajectory Optimization)
𝑞 𝑢 𝑡 𝑥 𝑡) = 𝑁(𝑘 𝑡 + 𝐾𝑡 𝑥 𝑡, Σ 𝑡)
𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑐𝑜𝑠𝑡
𝑙𝑖𝑛𝑒𝑎𝑟 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑝(𝑥 𝑡+1|𝑥 𝑡, 𝑢 𝑡 )
[2]
2017/11/28 17
Guided Cost Learning
2017/11/28 18
𝑞(𝜏)はGPSで最適化をしているが・・・
• とはいえ分配関数Zは不安定になりがち
– 特に𝑞(𝜏)からのサンプル数が少ない時
• ロボットとかだとサンプル数はできるだけ少なくありたい
𝑤𝑗
2017/11/28 19
工夫1:𝐷𝑠𝑎𝑚𝑝にデモンストレーションを加える
• 分配関数が小さくなりすぎる(= 𝑙𝑜𝑔𝑍が発散)ことを
防ぐことができる
– デモンストレーションの𝑤𝑗は基本大きい
𝑤𝑗
2017/11/28 20
工夫2:過去の𝑞(𝜏)の平均を使う
• 𝑞(𝜏)は毎イテレーションで更新されるので,過去の
𝑞 𝑘(𝜏)をつかって,𝜏に対する𝑞 𝑘(𝜏)の平均を重点重み
とする
– (𝐷𝑠𝑎𝑚𝑝は今まで生成した軌道全てを含んでます)
元の目的関数
重点重みを のように置くと
2017/11/28 21
Guided Cost Learning (over all algorithm)
[1]
2017/11/28 22
実験結果
[1]
2017/11/28 23
2017/11/28 24
動画
ちょっと休憩
• ここまでがGCL
• 質問ある方今のタイミングでした方がいいと思いま
す!
• つぎに,GCLとGANの関係について説明
2017/11/28 25
逆強化学習とGANsはなんか似てる
[0]
2017/11/28 26
ここからの話は少しややこしいです.
• GANsとGuided Cost Learning(GCL)は色々な条件を
揃えると完全に同じことをしていますっていう話です.
• まず,その色々な条件について説明します.
2017/11/28 27
Special Form of Generative Adversarial Network
Optimal Discriminator
通常のGANはDを[0,1]の値を出すNNとするのでpもqも確率密度を
評価する必要が無い.しかし,qを確率密度を評価できる関数とし,
更にpθ =
1
Z
exp(−cθ τ )とすると,
※ qが確率密度が評価可能なのに尤度最大化をしない理由は冒頭の通り
2017/11/28 28
Guided Cost Learning再訪
工夫1を思い出す.つまりZの推定にデモンストレーションpからの
サンプリングを使う.今,pからの軌道とqからの軌道を半々ずつ使うとすると,
where
𝜇 =
1
2
𝑝 𝜏 +
1
2
𝑞 𝜏
𝑝 𝜏 はデモンストレーションの密度推定器
e.g.) 𝑝 𝜃 =
1
𝑍
exp(−𝑐 𝜃 𝜏 ) (GANと揃えるため)
※前述のGuided Cost Learningの時は,デモンストレーションのτは
qによって密度計算している
2017/11/28 29
確認
• GANsもGCLも,リアル(デモンストレーション)
データ分布𝑝(𝜏)の推定を 𝑝 𝜃 =
1
𝑍
exp(−𝑐 𝜃 𝜏 ) によって
行う
• GANsにおけるGenerator(=GCLにおけるポリシー)
𝑞 𝜏 は密度計算可能なモデル
– ガウシアンとか出力にSoftmaxかけたRNNとか
• GCLは分配関数𝑍の推定に際し𝑝,𝑞から半々ずつ軌道を
重点サンプリング
• GANsのGの目的関数をBCEとする
2017/11/28 30
DとCの目的関数
・Dの目的関数を最小化するZは,重点サンプリングによるCostのZの推定器
・上のZのとき,Dの勾配はCの勾配と一致
・Gの目的関数は,エントロピー正則化の元での方策の目的関数と一致
以下の三つを証明
2017/11/28 31
Dの目的関数を最小化するZは,CのZを推定する
𝜇
[3]
2017/11/28 32
Dの勾配はCの勾配と一致
𝜇
[3]
2017/11/28 33
Gの目的関数は,エントロピー正則化の元での方策の目的関数
[3]
2017/11/28 34
結論
• 色々な条件を揃えると,GANのDとGの目的関数に
GCLの目的関数が一致する
2017/11/28 35
ちょっと休憩
• 質問があれば
• 次にGAILについて軽く説明します
2017/11/28 36
Generative Adversarial Imitation Learning(GAIL)
• Inverse RLによるコスト関数推定と,RLによる方策
の学習を交互に行っていたが,お互いの関係性は不明
だった.それらの関係を明らかにし,IRLとRLを統一
的に見るフレームワークを提案
– GANみたいなアルゴリズムが有名だが,こっちの方が理論
的貢献として重要
• 上のフレームワークの中から,特定のΨ正則化がGAN
とほぼ同一の学習アルゴリズムを導く
• わかりにくいですこの論文...
– 間違ったこと言っている可能性大アリ
2017/11/28 37
2つのモチベーション
• RLとIRLを統一的に見たい
– コスト関数の更新と方策の更新を交互にやるのはめんどくさ
い.エキスパートからそのまま方策を獲得できないか
• っていってるのに結局GAN
• (NNのような)表現力が高いコスト関数を最適化した
い
– 表現力の高いコスト関数を少量のエキスパートから推定する
と過学習してしまうが,頑張る.
2017/11/28 38
通常のIRLとRL
IRLによるコスト推定
RLによる方策学習
2017/11/28 39
凸関数Ψ付きIRL
IRLによるコスト推定
RLによる方策学習
ψ付きIRLによるコスト推定
Ψをかける理由はひとまず置いておく.
2017/11/28 40
凸関数Ψ付きIRLでのRL
•
– occupancy measureと呼ぶ。
– 方策πの元でstateとactionのペアがどれだけ発生するか
• 一般に凸関数fに対して
–
ψ付きIRLによるコスト推定
RLによる方策学習
2017/11/28 41
つまりどういうことかというと
• ΨIRLでのRLは凸共役関数𝜓∗
のもとでエキスパートの
occupancy measureとマッチするように方策を学習
– Ψ=constantのとき(=正則化が無い),IRLによるコスト
関数の推定はoccupancy measureのマッチングと双対問題で
あることが示されている
– 確かに式を見るとコスト関数を求める必要がなくなっている
ように見える
ψ付きIRLによるコスト推定
RLによる方策学習
2017/11/28 42
整理
IRLによるコスト推定
RLによるポリシー学習
ψ付きIRLによるコスト推定
RLによるポリシー学習
2017/11/28 43
Ψをかける実用的な理由
• 𝑐 ∈ 𝑅 𝑆∗𝐴で表現力の高いコスト関数を使うとすぐに過
学習する
– それを防ぐための正則化Ψ
– 従来のIRLは方策最適化を行えるようにコスト関数を線形関
数に限定
– うまくΨを設定すれば表現力が高いコスト関数の元でエキス
パートに過学習しない方策が獲得できる→GAIL
ψ付きIRLによるコスト推定
RLによる方策学習
2017/11/28 44
GAIL
• 上のようにψを設定する。と、これは
– コストがいたるところで負であるような任意のコスト関数を
表現可能
– このψの凸共役関数は
– エキスパートとのoccupancy measureのJSDを最小化する
• 方策はエキスパートを完全に模倣可能
– Discriminatorはコスト関数のように振る舞う
• RLIRLからGANが出てきた(!)
2017/11/28 45
GAIL
[4]
2017/11/28 46
GAILとGCLの関係
• GAILはDをそのまま出す
– pやqの密度を計算しない
– logDをコストとして方策勾配法(TRPO)
• GAILのほうがコスト関数の表現力は高い
– GCLはNNによって特徴抽出した状態と行動の二次形式
• GAILはコスト関数がDの中に隠蔽されており,取り出
すことができない(?)
– と[3]論文内に書いてあったが本当なのか?
• (GAILはそもそも方策学習のために大量のサンプリ
ングをすることを厭わないという点でGCLと大きく異
なる)
2017/11/28 47
まとめ
[0]
2017/11/28 48
まとめ
[0]
2017/11/28 49
2017/11/28 50
References
• [0] ICML 2017 Deep RL Tutorial (https://sites.google.com/view/icml17deeprl)
• [1] Finn, Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization
• [2] Levine, Talk: Sergey Levine, UC Berkeley - Learning Dynamic Manipulation Skills
(https://www.youtube.com/watch?v=CW1s6psByxk&t=921s)
• [3] Finn & Christiano, A Connection Between Generative Adversarial Networks, Inverse
Reinforcement Learning, and Energy-Based Models
• [4] Ho, Generative Adversarial Imitation Learning

More Related Content

What's hot

[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence ModelingDeep Learning JP
 
[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論Deep Learning JP
 
強化学習における好奇心
強化学習における好奇心強化学習における好奇心
強化学習における好奇心Shota Imai
 
[DL輪読会]Learning Latent Dynamics for Planning from Pixels
[DL輪読会]Learning Latent Dynamics for Planning from Pixels[DL輪読会]Learning Latent Dynamics for Planning from Pixels
[DL輪読会]Learning Latent Dynamics for Planning from PixelsDeep Learning JP
 
【DL輪読会】DayDreamer: World Models for Physical Robot Learning
【DL輪読会】DayDreamer: World Models for Physical Robot Learning【DL輪読会】DayDreamer: World Models for Physical Robot Learning
【DL輪読会】DayDreamer: World Models for Physical Robot LearningDeep Learning JP
 
[DL輪読会]`強化学習のための状態表現学習 -より良い「世界モデル」の獲得に向けて-
[DL輪読会]`強化学習のための状態表現学習 -より良い「世界モデル」の獲得に向けて-[DL輪読会]`強化学習のための状態表現学習 -より良い「世界モデル」の獲得に向けて-
[DL輪読会]`強化学習のための状態表現学習 -より良い「世界モデル」の獲得に向けて-Deep Learning JP
 
強化学習 DQNからPPOまで
強化学習 DQNからPPOまで強化学習 DQNからPPOまで
強化学習 DQNからPPOまでharmonylab
 
[DL輪読会]Model-Based Reinforcement Learning via Meta-Policy Optimization
[DL輪読会]Model-Based Reinforcement Learning via Meta-Policy Optimization[DL輪読会]Model-Based Reinforcement Learning via Meta-Policy Optimization
[DL輪読会]Model-Based Reinforcement Learning via Meta-Policy OptimizationDeep Learning JP
 
海鳥の経路予測のための逆強化学習
海鳥の経路予測のための逆強化学習海鳥の経路予測のための逆強化学習
海鳥の経路予測のための逆強化学習Tsubasa Hirakawa
 
DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜Jun Okumura
 
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling ProblemDeep Learning JP
 
方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用Ryo Iwaki
 
Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Shohei Taniguchi
 
深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)Masahiro Suzuki
 
[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展Deep Learning JP
 
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展Deep Learning JP
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究についてMasahiro Suzuki
 
強化学習の基礎的な考え方と問題の分類
強化学習の基礎的な考え方と問題の分類強化学習の基礎的な考え方と問題の分類
強化学習の基礎的な考え方と問題の分類佑 甲野
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)Shota Imai
 
【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral Cloning【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral CloningDeep Learning JP
 

What's hot (20)

[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
[DL輪読会]Decision Transformer: Reinforcement Learning via Sequence Modeling
 
[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論
 
強化学習における好奇心
強化学習における好奇心強化学習における好奇心
強化学習における好奇心
 
[DL輪読会]Learning Latent Dynamics for Planning from Pixels
[DL輪読会]Learning Latent Dynamics for Planning from Pixels[DL輪読会]Learning Latent Dynamics for Planning from Pixels
[DL輪読会]Learning Latent Dynamics for Planning from Pixels
 
【DL輪読会】DayDreamer: World Models for Physical Robot Learning
【DL輪読会】DayDreamer: World Models for Physical Robot Learning【DL輪読会】DayDreamer: World Models for Physical Robot Learning
【DL輪読会】DayDreamer: World Models for Physical Robot Learning
 
[DL輪読会]`強化学習のための状態表現学習 -より良い「世界モデル」の獲得に向けて-
[DL輪読会]`強化学習のための状態表現学習 -より良い「世界モデル」の獲得に向けて-[DL輪読会]`強化学習のための状態表現学習 -より良い「世界モデル」の獲得に向けて-
[DL輪読会]`強化学習のための状態表現学習 -より良い「世界モデル」の獲得に向けて-
 
強化学習 DQNからPPOまで
強化学習 DQNからPPOまで強化学習 DQNからPPOまで
強化学習 DQNからPPOまで
 
[DL輪読会]Model-Based Reinforcement Learning via Meta-Policy Optimization
[DL輪読会]Model-Based Reinforcement Learning via Meta-Policy Optimization[DL輪読会]Model-Based Reinforcement Learning via Meta-Policy Optimization
[DL輪読会]Model-Based Reinforcement Learning via Meta-Policy Optimization
 
海鳥の経路予測のための逆強化学習
海鳥の経路予測のための逆強化学習海鳥の経路予測のための逆強化学習
海鳥の経路予測のための逆強化学習
 
DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜DQNからRainbowまで 〜深層強化学習の最新動向〜
DQNからRainbowまで 〜深層強化学習の最新動向〜
 
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
 
方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用
 
Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)
 
深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)
 
[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展
 
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
 
強化学習の基礎的な考え方と問題の分類
強化学習の基礎的な考え方と問題の分類強化学習の基礎的な考え方と問題の分類
強化学習の基礎的な考え方と問題の分類
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
 
【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral Cloning【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral Cloning
 

Similar to [DL輪読会]逆強化学習とGANs

NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeNIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeTakami Sato
 
NeurIPS'21参加報告 tanimoto_public
NeurIPS'21参加報告 tanimoto_publicNeurIPS'21参加報告 tanimoto_public
NeurIPS'21参加報告 tanimoto_publicAkira Tanimoto
 
分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試み
分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試み分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試み
分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試みSusumuOTA
 
[DL輪読会]Object-Oriented Dynamics Predictor (NIPS 2018)
[DL輪読会]Object-Oriented Dynamics Predictor (NIPS 2018)[DL輪読会]Object-Oriented Dynamics Predictor (NIPS 2018)
[DL輪読会]Object-Oriented Dynamics Predictor (NIPS 2018)Deep Learning JP
 
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based ControlDeep Learning JP
 
LCCC2010:Learning on Cores, Clusters and Cloudsの解説
LCCC2010:Learning on Cores,  Clusters and Cloudsの解説LCCC2010:Learning on Cores,  Clusters and Cloudsの解説
LCCC2010:Learning on Cores, Clusters and Cloudsの解説Preferred Networks
 
ブースティング入門
ブースティング入門ブースティング入門
ブースティング入門Retrieva inc.
 
北大調和系 DLゼミ A3C
北大調和系 DLゼミ A3C北大調和系 DLゼミ A3C
北大調和系 DLゼミ A3CTomoya Oda
 
Long-Tailed Classificationの最新動向について
Long-Tailed Classificationの最新動向についてLong-Tailed Classificationの最新動向について
Long-Tailed Classificationの最新動向についてPlot Hong
 
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
[DL輪読会]Meta-Learning Probabilistic Inference for PredictionDeep Learning JP
 
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたいTakuji Tahara
 
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...Deep Learning JP
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門Shuyo Nakatani
 
LightGBM: a highly efficient gradient boosting decision tree
LightGBM: a highly efficient gradient boosting decision treeLightGBM: a highly efficient gradient boosting decision tree
LightGBM: a highly efficient gradient boosting decision treeYusuke Kaneko
 
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用Eiji Uchibe
 
第3回NIPS読み会・関西発表資料
第3回NIPS読み会・関西発表資料第3回NIPS読み会・関西発表資料
第3回NIPS読み会・関西発表資料Takato Horii
 
AIがAIを生み出す?
AIがAIを生み出す?AIがAIを生み出す?
AIがAIを生み出す?Daiki Tsuchiya
 
Rainbow: Combining Improvements in Deep Reinforcement Learning (AAAI2018 unde...
Rainbow: Combining Improvements in Deep Reinforcement Learning (AAAI2018 unde...Rainbow: Combining Improvements in Deep Reinforcement Learning (AAAI2018 unde...
Rainbow: Combining Improvements in Deep Reinforcement Learning (AAAI2018 unde...Toru Fujino
 

Similar to [DL輪読会]逆強化学習とGANs (20)

NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeNIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
 
NeurIPS'21参加報告 tanimoto_public
NeurIPS'21参加報告 tanimoto_publicNeurIPS'21参加報告 tanimoto_public
NeurIPS'21参加報告 tanimoto_public
 
分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試み
分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試み分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試み
分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試み
 
[DL輪読会]Object-Oriented Dynamics Predictor (NIPS 2018)
[DL輪読会]Object-Oriented Dynamics Predictor (NIPS 2018)[DL輪読会]Object-Oriented Dynamics Predictor (NIPS 2018)
[DL輪読会]Object-Oriented Dynamics Predictor (NIPS 2018)
 
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
 
LCCC2010:Learning on Cores, Clusters and Cloudsの解説
LCCC2010:Learning on Cores,  Clusters and Cloudsの解説LCCC2010:Learning on Cores,  Clusters and Cloudsの解説
LCCC2010:Learning on Cores, Clusters and Cloudsの解説
 
ブースティング入門
ブースティング入門ブースティング入門
ブースティング入門
 
北大調和系 DLゼミ A3C
北大調和系 DLゼミ A3C北大調和系 DLゼミ A3C
北大調和系 DLゼミ A3C
 
Long-Tailed Classificationの最新動向について
Long-Tailed Classificationの最新動向についてLong-Tailed Classificationの最新動向について
Long-Tailed Classificationの最新動向について
 
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
 
Rainbow
RainbowRainbow
Rainbow
 
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
 
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learnin...
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
 
MIRU MIRU わかる GAN
MIRU MIRU わかる GANMIRU MIRU わかる GAN
MIRU MIRU わかる GAN
 
LightGBM: a highly efficient gradient boosting decision tree
LightGBM: a highly efficient gradient boosting decision treeLightGBM: a highly efficient gradient boosting decision tree
LightGBM: a highly efficient gradient boosting decision tree
 
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用
 
第3回NIPS読み会・関西発表資料
第3回NIPS読み会・関西発表資料第3回NIPS読み会・関西発表資料
第3回NIPS読み会・関西発表資料
 
AIがAIを生み出す?
AIがAIを生み出す?AIがAIを生み出す?
AIがAIを生み出す?
 
Rainbow: Combining Improvements in Deep Reinforcement Learning (AAAI2018 unde...
Rainbow: Combining Improvements in Deep Reinforcement Learning (AAAI2018 unde...Rainbow: Combining Improvements in Deep Reinforcement Learning (AAAI2018 unde...
Rainbow: Combining Improvements in Deep Reinforcement Learning (AAAI2018 unde...
 

More from Deep Learning JP

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving PlannersDeep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについてDeep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-ResolutionDeep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxivDeep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLMDeep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place RecognitionDeep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究についてDeep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat ModelsDeep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...Deep Learning JP
 

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
 

Recently uploaded

Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。iPride Co., Ltd.
 
プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価sugiuralab
 
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
新人研修のまとめ       2024/04/12の勉強会で発表されたものです。新人研修のまとめ       2024/04/12の勉強会で発表されたものです。
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。iPride Co., Ltd.
 
20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directoryosamut
 
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」Tetsuya Nihonmatsu
 
プレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツールプレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツールsugiuralab
 

Recently uploaded (7)

Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
 
プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価
 
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
新人研修のまとめ       2024/04/12の勉強会で発表されたものです。新人研修のまとめ       2024/04/12の勉強会で発表されたものです。
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
 
20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory
 
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」
 
U-22プログラミング・コンテスト2024 作品説明動画を制作するポイントを紹介
U-22プログラミング・コンテスト2024 作品説明動画を制作するポイントを紹介U-22プログラミング・コンテスト2024 作品説明動画を制作するポイントを紹介
U-22プログラミング・コンテスト2024 作品説明動画を制作するポイントを紹介
 
プレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツールプレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツール
 

[DL輪読会]逆強化学習とGANs