SlideShare a Scribd company logo
1 of 23
Download to read offline
1
【DLHacks LT】The Neural Process Family
−Neural Processes関連の実装を読んで動かしてみる−
Presenter:Tatsuya Matsushima @__tmats__ , Matsuo Lab
この発表について
• Neural Processes関連の実装がDeepMindから公開されたので,読んで動かしてみる
• Github: https://github.com/deepmind/neural-processes
• Colabで動くようにもなっている
• Neural Process Family
• Conditional Neural Processes (CNPs)
• Neural Processes (NPs)
• Attentive Neural Processes (ANPs)

• 論文の詳細はDL輪読資料を読むと良さげ
• [DL輪読会]Conditional Neural Processes

https://www.slideshare.net/DeepLearningJP2016/dlconditional-neural-processes
• [DL輪読会]Attentive neural processes

https://www.slideshare.net/DeepLearningJP2016/dlattentive-neural-processes
2
NP Familyのお気持ち
NP Familyでやりたいこと
• データセット何らかの構造を共有しており,新たなcontextのデータセットが得られた場
合に,contextのデータセット全体を入力しとして,targetに対する予測を行う
• 例) パラメータを持つ関数から,データセットごとにパラメータが違う関数からデータがやっ
てくる(ただし関数形はずっと同じ).few-shot learning
• MAMLなどメタ学習手法とやりたいことは似ている
• meta-trainとmeta-testの関係
• 出力された関数に関して不確実性もモデリングしたい
• データが少ない部分に関してはちゃんと不確実性が高いようにモデリングしたい
3
Conditional Neural Processes (CNPs)
Conditional Neural Processes
• https://arxiv.org/abs/1807.01613 (Submitted on 4 Jul 2018)
• Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David
Saxton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, S. M. Ali Eslami
• DeepMind
• 著者実装
• https://github.com/deepmind/neural-processes/blob/master/conditional_neural_process.ipynb
• DeepMindが実装公開するのめずらしい...
4
CNPsの全体像
Encoder (e)
• contextのデータ点(xとyのペア)で共通のネットワーク
• ここではMLP
Aggregator (a)
• contextの情報を集約して一つの変数にする
• ここでは,mean aggregation(Encoderの出力の平均)を用いている
Decoder (d)
• ターゲットのxに対する予測yの分布を出力
• 分布のパラメータを出力する

(ここではMLPでガウス分布のパラメータを出力)
5
1D Regressionのデータセット
Gaussian Kernelを用いたガウス過程(GP)を使ってデータを作成 (1D Regression)
• Gaussian Kernel
• Gaussian Kernelを使って関数をサンプリング
• ここでは各iterationごとにGPのパラメータは固定
6
k(x, x′$) = σ2
f exp
(
−
|x − x′$|2
2l2 )
Knn′$ = k(xn, xn′$)
f ∼ p( f ) = N( f |0,K)
1D Regressionのデータセット
Data generator
• Gaussian kernel
7
x − x′$
|x − x′$|2
l2
σ2
f exp
(
−
|x − x′$|2
2l2 )
あとでコレスキー分解するので
1D Regressionのデータセット
Data generator
• 関数をサンプル
8
共分散行列をコレスキー分解
・・・
・・・
ガウス分布にスケールとしてかける
queryはcontextの(x,y)のペアとtargetのx
CNPsの実装
Encoder(e)とAggregator(a)
• contextのペア(x,y)を入力

としてrepresentationを出力
9
contextのxとyをconcat
適当なMLPに通す(e)
meanを取ることで集約
CNPsの実装
Decoder(d)
• representationとtargetのxを

入力として分布のパラメータ

を出力
10
representationと

targetのxをconcat
適当なMLPに通す(d)
分布のパラメータを出力
・・・
・・・
ガウス分布
モデル全体
• contextの(x,y)のペアを入力

targetのxに対する分布を出力
• 対数尤度の最大化として学習
CNPsの実装
11
学習時はtargetのyの

対数尤度を出力
対数尤度の最大化

としてlossを定義
・・・
CNPs実装を回した結果
• なんかうまくできているような気もする (context数は最大10とした)
• データが少ないところでの不確実性の評価ができてる
• GPのように滑らかではない

そもそもGPみたいにGaussianカーネルの

仮定をしてないので当然といえば当然
12
100,000 iter 200,000 iter40,000 iter
0 iter 20,000 iter
Neural Processes (NPs)
Neural Processes
• https://arxiv.org/abs/1807.01622 (Submitted on 4 Jul 2018)
• Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M.
Ali Eslami, Yee Whye Teh
• DeepMind
• 著者実装
• https://github.com/deepmind/neural-processes/blob/master/attentive_neural_process.ipynb
• contextのデータペアから潜在変数を推論するのがCNPsとの差分
13
これ
1D Regressionのデータセット
Gaussian Kernelを用いたガウス過程(GP)を使ってデータを作成 (1D Regression)
• iterationごとにカーネルパラメータはランダムに設定する(CNPsの実験との違い)
• 各iterationごとに関数の形状は共通している(ガウスカーネル)
• CNPの実験より難しくなっているはず
• contextを使って新しいカーネルパラメータにadaptする必要がある
14
NPsの全体像
Encoder (e)
• Deterministic PathとLatent Pathを用意
• Deterministic PathはCNPsと同じ
• Latent Pathは    を推論
Aggregator (a)
• 各ペアのcontextを集約して一つの変数にする
• ここではmean aggregationを利用
Decoder (d)
• ターゲットのxに対する予測yの分布を出力
• 分布のパラメータを出力する

(ここではMLPでガウス分布のパラメータを出力)
15
q(z|sc)
CNPsの実装
EncoderのLatent Path
• 分布として出力
16
contextのxとyをconcat
適当なMLPに通す(e)
分布のパラメータを出力
meanでaggregate
モデル全体
• train時はtargetのペアから作成した

posteriorをcontextから作成した

priorに近づける項を追加
NPsの実装
17
posterior
・・・
・・・
Prior
kl項
targetの

対数尤度
NPs実装を回した結果
• なんかうまくできているような気もする (context数は最大50とした)
• 分散の評価はそれなりにちゃんとできてそう
• この場合モデルの評価ってどうすれば

いいんですかね
18
100,000 iter 200,000 iter40,000 iter
0 iter 20,000 iter
Attentive Neural Processes (ANPs)
Attentive Neural Processes
• https://arxiv.org/abs/1807.01622 (Submitted on 17 Jan 2019)
• Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan
Rosenbaum, Oriol Vinyals, Yee Whye Teh
• DeepMind
• 著者実装
• https://github.com/deepmind/neural-processes/blob/master/attentive_neural_process.ipynb
• Mean aggregationによるunder-fittingを避けるためにattentionを導入したのがNPsとの差分
• aggregationで使っているcross-attentionをuniformにすればNPsと同じになる
• 論文中になんでmean aggregationのせいなのかはあんまり説明がないような気が….
19
ANPsの全体像
Encoder (e)
• Deterministic PathとLatent Pathを用意(NPsと同じ)
• self-attentionをかける(ただし1D regressionではやってない)
Aggregator (a)
• Deterministic Pathにkey(contextのx)と

query(targetのx)を用いたcross-attentionをかける
Decoder (d)
• ターゲットのxに対する予測yの分布を出力
• 分布のパラメータを出力する

(ここではMLPでガウス分布のパラメータを出力)
20
ANPsのattention
Aggregator (a)にcross-attentionを用いる
• Encoderの中でattentionのlayerを通す
• 実装のDeterministicEncoderの中
21
ANPs実装を回した結果
• Colab走りきらなかったごめんなさい(あとで追加します) (context数は最大50とした)
• colab参照
22
100,000 iter 200,000 iter40,000 iter
0 iter 20,000 iter
感想
• ハイパラいっぱいふってみて実験してみたい
• カーネルの形状を事前知識として与えずに,データから学習させたい気持ちはわかる
• MAMLとかのmeta-learning系の研究そうだもんね
• NPのLatent PathとDeterministic Pathを共存させる意味はなんだったのだろう
• 論文的には,両方使ってもいいしどちらかでも良い,みたいな書きかた
• グローバルな潜在変数を持つモデル vs one-step adaptationどちらがいつ良いのだろうか
• DeepMindはグローバルな潜在変数のモデル推し(NP,GQNなど)
• UCバークレー(BAIR)はone-step adaptation推し(MAMLベースの手法)
23

More Related Content

What's hot

[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係についてDeep Learning JP
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?Masanao Ochi
 
[DL輪読会]Flow-based Deep Generative Models
[DL輪読会]Flow-based Deep Generative Models[DL輪読会]Flow-based Deep Generative Models
[DL輪読会]Flow-based Deep Generative ModelsDeep Learning JP
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoderSho Tatsuno
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Yusuke Uchida
 
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-EncoderDeep Learning JP
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門tmtm otm
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門joisino
 
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...Deep Learning JP
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイcvpaper. challenge
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門Shuyo Nakatani
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)Masahiro Suzuki
 
【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic Assembly【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic AssemblyDeep Learning JP
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
 
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介Deep Learning JP
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化Yusuke Uchida
 
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement LearningDeep Learning JP
 
Sliced Wasserstein距離と生成モデル
Sliced Wasserstein距離と生成モデルSliced Wasserstein距離と生成モデル
Sliced Wasserstein距離と生成モデルohken
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用Yoshitaka Ushiku
 

What's hot (20)

[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?
 
[DL輪読会]Flow-based Deep Generative Models
[DL輪読会]Flow-based Deep Generative Models[DL輪読会]Flow-based Deep Generative Models
[DL輪読会]Flow-based Deep Generative Models
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
 
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
[DL輪読会]Wasserstein GAN/Towards Principled Methods for Training Generative Adv...
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイ
 
Iclr2016 vaeまとめ
Iclr2016 vaeまとめIclr2016 vaeまとめ
Iclr2016 vaeまとめ
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
 
【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic Assembly【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic Assembly
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
 
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
 
Sliced Wasserstein距離と生成モデル
Sliced Wasserstein距離と生成モデルSliced Wasserstein距離と生成モデル
Sliced Wasserstein距離と生成モデル
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
 

Similar to [DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−

強化学習初心者が強化学習でニューラルネットワークの設計を自動化してみたい
強化学習初心者が強化学習でニューラルネットワークの設計を自動化してみたい強化学習初心者が強化学習でニューラルネットワークの設計を自動化してみたい
強化学習初心者が強化学習でニューラルネットワークの設計を自動化してみたいTakuma Wakamori
 
[DL輪読会] Spectral Norm Regularization for Improving the Generalizability of De...
[DL輪読会] Spectral Norm Regularization for Improving the Generalizability of De...[DL輪読会] Spectral Norm Regularization for Improving the Generalizability of De...
[DL輪読会] Spectral Norm Regularization for Improving the Generalizability of De...Deep Learning JP
 
[DL輪読会]Training RNNs as Fast as CNNs
[DL輪読会]Training RNNs as Fast as CNNs[DL輪読会]Training RNNs as Fast as CNNs
[DL輪読会]Training RNNs as Fast as CNNsDeep Learning JP
 
Tree-to-Sequence Attentional Neural Machine Translation (ACL 2016)
Tree-to-Sequence Attentional Neural Machine Translation (ACL 2016)Tree-to-Sequence Attentional Neural Machine Translation (ACL 2016)
Tree-to-Sequence Attentional Neural Machine Translation (ACL 2016)Toru Fujino
 
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKSDeep Learning JP
 
【2017年】ディープラーニングのフレームワーク比較
【2017年】ディープラーニングのフレームワーク比較【2017年】ディープラーニングのフレームワーク比較
【2017年】ディープラーニングのフレームワーク比較Ryota Suzuki
 
Diet networks thin parameters for fat genomic
Diet networks thin parameters for fat genomicDiet networks thin parameters for fat genomic
Diet networks thin parameters for fat genomicHakky St
 
Image net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural NetworksImage net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural NetworksShingo Horiuchi
 
Development and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafDevelopment and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafKenta Oono
 
Using Deep Learning for Recommendation
Using Deep Learning for RecommendationUsing Deep Learning for Recommendation
Using Deep Learning for RecommendationEduardo Gonzalez
 
財布にやさしいRを使ったデータマイニング
財布にやさしいRを使ったデータマイニング財布にやさしいRを使ったデータマイニング
財布にやさしいRを使ったデータマイニングRyoji Yanashima
 
[DL輪読会]Learning convolutional neural networks for graphs
[DL輪読会]Learning convolutional neural networks for graphs[DL輪読会]Learning convolutional neural networks for graphs
[DL輪読会]Learning convolutional neural networks for graphsDeep Learning JP
 
Deep Learning Implementations: pylearn2 and torch7 (JNNS 2015)
Deep Learning Implementations: pylearn2 and torch7 (JNNS 2015)Deep Learning Implementations: pylearn2 and torch7 (JNNS 2015)
Deep Learning Implementations: pylearn2 and torch7 (JNNS 2015)Kotaro Nakayama
 
Getting Started with Deep Learning using Scala
Getting Started with Deep Learning using ScalaGetting Started with Deep Learning using Scala
Getting Started with Deep Learning using ScalaTaisuke Oe
 
GiNZAで始める日本語依存構造解析 〜CaboCha, UDPipe, Stanford NLPとの比較〜
GiNZAで始める日本語依存構造解析 〜CaboCha, UDPipe, Stanford NLPとの比較〜GiNZAで始める日本語依存構造解析 〜CaboCha, UDPipe, Stanford NLPとの比較〜
GiNZAで始める日本語依存構造解析 〜CaboCha, UDPipe, Stanford NLPとの比較〜Megagon Labs
 
[ICLR2016] 採録論文の個人的まとめ
[ICLR2016] 採録論文の個人的まとめ[ICLR2016] 採録論文の個人的まとめ
[ICLR2016] 採録論文の個人的まとめYusuke Iwasawa
 
公開ミラーサーバの運用
公開ミラーサーバの運用公開ミラーサーバの運用
公開ミラーサーバの運用yoppy3
 
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」ManaMurakami1
 

Similar to [DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる− (20)

強化学習初心者が強化学習でニューラルネットワークの設計を自動化してみたい
強化学習初心者が強化学習でニューラルネットワークの設計を自動化してみたい強化学習初心者が強化学習でニューラルネットワークの設計を自動化してみたい
強化学習初心者が強化学習でニューラルネットワークの設計を自動化してみたい
 
[DL輪読会] Spectral Norm Regularization for Improving the Generalizability of De...
[DL輪読会] Spectral Norm Regularization for Improving the Generalizability of De...[DL輪読会] Spectral Norm Regularization for Improving the Generalizability of De...
[DL輪読会] Spectral Norm Regularization for Improving the Generalizability of De...
 
[DL輪読会]Training RNNs as Fast as CNNs
[DL輪読会]Training RNNs as Fast as CNNs[DL輪読会]Training RNNs as Fast as CNNs
[DL輪読会]Training RNNs as Fast as CNNs
 
Tree-to-Sequence Attentional Neural Machine Translation (ACL 2016)
Tree-to-Sequence Attentional Neural Machine Translation (ACL 2016)Tree-to-Sequence Attentional Neural Machine Translation (ACL 2016)
Tree-to-Sequence Attentional Neural Machine Translation (ACL 2016)
 
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
 
【2017年】ディープラーニングのフレームワーク比較
【2017年】ディープラーニングのフレームワーク比較【2017年】ディープラーニングのフレームワーク比較
【2017年】ディープラーニングのフレームワーク比較
 
Diet networks thin parameters for fat genomic
Diet networks thin parameters for fat genomicDiet networks thin parameters for fat genomic
Diet networks thin parameters for fat genomic
 
Image net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural NetworksImage net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural Networks
 
Development and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafDevelopment and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and maf
 
Using Deep Learning for Recommendation
Using Deep Learning for RecommendationUsing Deep Learning for Recommendation
Using Deep Learning for Recommendation
 
財布にやさしいRを使ったデータマイニング
財布にやさしいRを使ったデータマイニング財布にやさしいRを使ったデータマイニング
財布にやさしいRを使ったデータマイニング
 
[DL輪読会]Learning convolutional neural networks for graphs
[DL輪読会]Learning convolutional neural networks for graphs[DL輪読会]Learning convolutional neural networks for graphs
[DL輪読会]Learning convolutional neural networks for graphs
 
Rainbow
RainbowRainbow
Rainbow
 
Deep Learning Implementations: pylearn2 and torch7 (JNNS 2015)
Deep Learning Implementations: pylearn2 and torch7 (JNNS 2015)Deep Learning Implementations: pylearn2 and torch7 (JNNS 2015)
Deep Learning Implementations: pylearn2 and torch7 (JNNS 2015)
 
Getting Started with Deep Learning using Scala
Getting Started with Deep Learning using ScalaGetting Started with Deep Learning using Scala
Getting Started with Deep Learning using Scala
 
S4
S4S4
S4
 
GiNZAで始める日本語依存構造解析 〜CaboCha, UDPipe, Stanford NLPとの比較〜
GiNZAで始める日本語依存構造解析 〜CaboCha, UDPipe, Stanford NLPとの比較〜GiNZAで始める日本語依存構造解析 〜CaboCha, UDPipe, Stanford NLPとの比較〜
GiNZAで始める日本語依存構造解析 〜CaboCha, UDPipe, Stanford NLPとの比較〜
 
[ICLR2016] 採録論文の個人的まとめ
[ICLR2016] 採録論文の個人的まとめ[ICLR2016] 採録論文の個人的まとめ
[ICLR2016] 採録論文の個人的まとめ
 
公開ミラーサーバの運用
公開ミラーサーバの運用公開ミラーサーバの運用
公開ミラーサーバの運用
 
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
 

More from Deep Learning JP

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving PlannersDeep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについてDeep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-ResolutionDeep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxivDeep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLMDeep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place RecognitionDeep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究についてDeep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat ModelsDeep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...Deep Learning JP
 

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
 

Recently uploaded

CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?akihisamiyanaga1
 
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版) 2024年4月作成
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版) 2024年4月作成業務で生成AIを活用したい人のための生成AI入門講座(社外公開版) 2024年4月作成
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版) 2024年4月作成Hiroshi Tomioka
 
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)Hiroki Ichikura
 
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...博三 太田
 
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfAWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfFumieNakayama
 
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineerYuki Kikuchi
 
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)UEHARA, Tetsutaro
 
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfクラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfFumieNakayama
 
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案sugiuralab
 

Recently uploaded (9)

CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
 
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版) 2024年4月作成
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版) 2024年4月作成業務で生成AIを活用したい人のための生成AI入門講座(社外公開版) 2024年4月作成
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版) 2024年4月作成
 
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)
 
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
 
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfAWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
 
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
 
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
 
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfクラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
 
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
 

[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−