SlideShare a Scribd company logo
1 of 70
Download to read offline
Indicators, Tracers and Surrogates
Why Use Them, Probability Analysis, Definitions and Examples
AEHS, March 21st, 2017
Presented by Chris Lutes
2
A Key Term: Reasonable Maximum Exposure:  Risk 
Assessment Guidance for Superfund Part A:
• 6.4.1 QUANTIFYING THE REASONABLE MAXIMUM EXPOSURE
• “There are three categories of variables that are used to estimate intake….exposure 
concentrations…..exposure frequency and duration……averaging time……
• Each intake variable in the equation has a range of values. For Superfund exposure assessments, 
intake variable values for a given pathway should be selected so that the combination of all intake 
variables results in an estimate of the reasonable maximum exposure for that pathway. As 
defined previously, the reasonable maximum exposure (RME) is the maximum exposure that is 
reasonably expected to occur at a site. Under this approach, some intake variables may not be at 
their individual maximum values but when in combination with other variables will result in 
estimates of the RME.
• Exposure concentration. The concentration term in the intake equation is the arithmetic average 
of the concentration that is contacted over the exposure period. Although this concentration does 
not reflect the maximum concentration that could be contacted at any one time, it is regarded as 
a reasonable estimate of the concentration likely to be contacted over time. This is because in 
most situations, assuming long‐term contact with the maximum concentration is not reasonable. 
…..Because of the uncertainty associated with any estimate of exposure concentration, the upper 
confidence limit (i.e., the 95 percent upper confidence limit) on the arithmetic average will be 
used for this variable.”
Quotes from OSWER 9285.701A; July 1989
3
Why Do We Need Indicators, Tracers and 
Surrogates to Guide Sampling?
EPA 2015 VI guide definition:  reasonable maximum exposure (RME) 
A semi‐quantitative term, referring to the lower portion of the high end 
of the exposure distribution; conceptually, above the 90th percentile 
exposure but less than the 98th percentile exposure. 
Here we discuss the exposure concentration, but don’t forget that the 
exposure frequency and exposure duration are also part of RME.
Observing the reasonable maximum exposure concentration with 
random sampling is hard!
4
28
58
22
45
15
31
11
23
0
20
40
60
80
100
120
140
160
0.88 0.9 0.92 0.94 0.96 0.98 1
Required Number of Samples to Observee RME Once
Percentile Defined as RME =  Chance of Not Seeing RME With One Sample 
Required Number of Unguided Random Samples Per 
Location/Zone to Observe RME Once at Various Confidence Levels
5% Prob. Of Underestimating RME
10% Prob. Of Underestimating RME
20% Prob. Of Underestimating RME
30% Prob. Of Underestimating RME
This analysis is just the 
mathematics of probability. No 
assumptions about the 
distribution have been made, 
only the assumption of random 
independent sampling.  RME 
defined as percentile. 
5
58
28
13
8
6 4 3 2 2 10
10
20
30
40
50
60
70
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Required Number of Samples to Observee RME Once
Surrogate Guided True Positive Rate  = Chance of Seeing RME (Here defined as 
95th Percentile with One Guided Sample)
Required Number of Surrogate Guided Samples Per Location/Zone 
to Observe RME with 5% Probabilty of Underestimating
A surrogate does not need to be 
perfect to be very helpful.  It 
just needs to “load the dice” by 
significantly increasing the odds 
of observing a sample toward 
the top of the VOC distribution.
Note the 0.05 “guided 
true positive” is a guide 
no better then chance
6
Definition:  Indicator
Metrics that can indicate elevated 
potential for chlorinated VOC exposures. 
Think:
• An indicator in chemistry is a substance whose 
color varies with acidity or alkalinity. 
• An indicator in biology is a species an animal or 
plant species that can be used to infer 
conditions of a particular habitat.  For example 
amphibians are sensitive to environmental 
stress.
For VI season and differential pressure may be 
indicators.
Images reprinted from:  http://sciencefair.math.iit.edu/techniques/PHTesting/PHTesting.jpg
http://news.psu.edu/story/140702/2002/05/01/research/lessons‐toads
7
Definition:  Tracer
Easily observable substances that move 
physically along with the target 
compounds of interest for VI
Think:
• In hydrogeology and medicine an 
identifiable substance, such as a dye or 
radioactive isotope, that can be 
followed through the course of a 
mechanical, chemical, or biological 
process.
For VI radon is a tracer of processes 
across the slab.
Photos reprinted from:  http://newsroom.unl.edu/announce/files/file9957.png
https://meyercancer.weill.cornell.edu/news/2016‐01‐25/tracer‐treatment‐radiopharmaceuticals‐home‐hard‐detect‐cancers
8
Definition:  Surrogate
Metrics with a quantitative relationship 
to the target compound for VI, 
sufficiently accurate to be a substitute. 
“In the context of environmental 
microbiology and health risk assessment, 
we have defined surrogates as organisms, 
particles, or substances used to study the 
fate of a pathogen in a specific 
environment…. The use of surrogates in 
these scenarios can allow quantification 
of the degree of exposure” (Sinclair, 2012)
Sinclair, Ryan G., Joan B. Rose, Syed A. Hashsham, Charles P. Gerba, and Charles N. Haas. 
"Criteria for selection of surrogates used to study the fate and control of pathogens in the 
environment." Applied and environmental microbiology 78, no. 6 (2012): 1969‐1977.
Images from:
https://water.me.vccs.edu/course
s/ENV295Micro/lesson9b.htm
https://images.tandf.co.uk/comm
on/jackets/amazon/978041921/9
780419218708.jpg
9
An Analogy
TO‐15 total cost per 
sample/data point >$350 leads 
to very small sample sizes (i.e. 
three sampling rounds)
A complex population 
influenced by multiple 
processes; 
Rich information content
From a subsample, n=3
How much can you tell?
Could statistical analysis 
alone help?
=
10
But Wait, I’ve Always Heard “Only EPA Standard 
Method Results Can be Used in Risk Assessment”
Key elements of an exposure assessment include:
• “ Investigate patterns of exposure (e.g., frequency and duration)…. 
• Consider variability in exposures and appropriate exposure 
distributions (e.g., the use of Monte Carlo or kriging). 
• Establish descriptors of exposure, generally including estimates for 
“average” and “high‐end” exposures, as well as susceptible populations 
or life stages. “
From US EPA Risk Assessment Forum (2014) “Framework for Human 
Health Risk Assessment to Inform Decision Making”  EPA/100/R‐14/001.
Does the current approach do that well?
11
EPA Guidance for Data Usability in Risk Assessment  
(1991)
• “Options for combining environmental analytical data 
of varying levels of quality from different sources and 
incorporating them into the risk assessment….
• Use data from different data sources together to 
balance turnaround time, quatity (sic) of data, and 
cost…..
• Three types of analytical data sources can be used 
during the RI to acquire analytical data for a risk 
assessment. These include field screening, field 
analyses, and fixed laboratory analyses. 
12
US EPA: Guidelines for Exposure Assessment (1992)
• “Exposure or dose profiles describe the exposure concentration or dose as a 
function of time.. Such profiles are very important for use in risk assessment 
where the severity of effect is dependent on the pattern by which the exposure 
occurs rather than the total (integrated) exposure…..”
• “ Level of Detail: How accurate must the exposure or dose estimate be to 
achieve the purpose? How detailed must the assessment be to properly account 
for the biological link between exposure, dose, effect, and risk, if necessary? 
How is the depth of the assessment limited by resources (time and money), and 
what is the most effective use of those resources in terms of level of detail of 
the various parts of the assessment?”
• “Surrogate data ‐ Substitute data or measurements on one substance used to 
estimate analogous or corresponding values of another substance.”
• Surrogate data is suggested as one of several methods to be used in addressing 
data gaps.
13
Examples of Use of Indicators and Surrogates in Other 
EPA Human Health Risk Management Programs
• Date of house construction, plumbing permits, plumbing codes etc. used as 
surrogate for maximum lead risk in selecting sampling sites for lead in drinking 
water   EPA 816‐R‐10‐004 March 2010 
• “Total coliforms are a group of related bacteria that are (with few exceptions) 
not harmful to humans. A variety of bacteria, parasites, and viruses, known as 
pathogens, can potentially cause health problems ... EPA considers total 
coliforms a useful indicator of other pathogens for drinking water. Total 
coliforms are used to determine the adequacy of water treatment and the 
integrity of the distribution system.” https://www.epa.gov/dwreginfo/revised‐total‐coliform‐rule‐and‐
total‐coliform‐rule
• Total coliform, E coli or coliphages are used as a surrogates for a wide range of 
pathogens in water.  A range of surrogates of different specificity has been used as 
technology evolves.  https://www.epa.gov/sites/production/files/2015‐10/documents/webinar‐10‐15‐2015‐
coliphage.pdf
• Good combustion practices (time, temperature) are used as indicators of 
control of air toxics emissions  https://www3.epa.gov/airquality/combustion/docs/20110221mboilersfs.pdf; 
See also 40CFR Part 62, Subpart JJJ 
14
Examples of Indicator, Tracer and 
Surrogate Applications – Indianapolis 
Applied R&D Projects
Spatial example from Wheeler Building –
coauthor Ron Mosley, Dale Greenwell 
(EPA); Robert Uppencamp (ARCADIS)
Temporal examples from Indianapolis 
Duplex – coauthors John Zimmerman and 
Brian Schumacher (US EPA NERL_; Brian 
Cosky (ARCADIS), Robert Truesdale, Brenda 
Munoz and Robert Norberg  (RTI 
International)
420 Not
Heated
422
Heated
15
Example: Randomized Trial of Radon Tracer for 
Spatial Sampling Application 
• Fifty locations within the Wheeler 
complex were  screened for radon 
• Then two subsets of these sample 
locations were selected for 
passive VOC sampling, one 
randomly and the other based on 
the radon. 
• The upstairs radon guided 
samples were significantly higher 
in trichloroethene (TCE) than the 
randomly selected locations
• t‐test shows that the two mean 
concentration values for the 
guided and randomly collected 
data are statistically different for 
the data collected at the 95 
percent confidence level. 
0
5
10
15
20
25
Unit 106
(Column in
Kitchen)
2nd Floor,
On North
Wall, East
Side of
Atrium
Unit 134
(Column in
Center of
Unit)
Unit 224
(TV Stand
near
Exterior
Wall)
On
Papertowel
Dispenser
in Women’s
Restroom
Unit 154
(Shelf
Between
Bed and
Door)
Unit 106
(Column in
Kitchen)
Unit 148
(Shelf in
Kitchen)
On Coat
Rack in
Theater
Prop Room
Shelf at SE
Corner of
South File
Storage
Room
On Gate to
South
Overhead
Door in
Theater
Between
Basement
& 1s t Floor
on West
Stairs
Radon(pCi/L)andVOCs(µg/m3)
Sampling Locations
Results forUpstairs Sampling Locations
Radon
TCE
PCE
RADON GUIDEDRANDOM
Lutes, C.C., R. Uppencamp, L. Abreu , C. Singer, R. Mosley and D.Greenwell. 
“Radon Tracer as a Multipurpose Tool to Enhance Vapor Intrusion 
Assessment and Mitigation” poster presentation at AWMA Specialty 
Conference: Vapor Intrusion 2010, September 28‐30, 2010, Chicago, IL. 
Available at 
http://events.awma.org/education/Posters/Final/Lutes_RadonPoster.pdf
16
Introduction to Time Series Methods Used in 
Indianapolis Project
• Sequential observations in time series are, in general, time‐correlated 
and thus, not independent of each other
• In this analysis used only consecutive, evenly spaced observations [i.e., 
daily (GC average) or weekly (passive) observations]. 
• Auto‐correlation observed = the values at one point in the time series 
are determined or strongly influenced by values at a previous time.
• Given the temporal resolution and length of available data sets we 
expect to observe causes of change in indoor air concentration from 
week to week and season to season; not year to year, and not within 
the diurnal cycle.
• Time series is the statistically most correct way to analyze closely 
spaced observations, but it isn’t likely to be a frequently used tool at 
“practical” sites  
17
Visualization of Time Series Data Fit – Change in 
Exterior Temperature vs. Change in PCE
WarmingCooling
Decreasing
PCE
Increasing
PCE
Read more in “Simple, Efficient, 
and Rapid Methods to 
Determine the Potential for 
Vapor Intrusion into the Home: 
Temporal Trends, Vapor 
Intrusion Forecasting, Sampling 
Strategies, and Contaminant 
Migration Routes.” U.S. 
Environmental Protection 
Agency, Washington, DC, 
EPA/600/R‐15/070, 2015.
http://cfpub.epa.gov/si/si_publi
c_record_report.cfm?dirEntryId
=309644
18
Example Time Series Results 
Interpretation
Using on‐line GC Data for basement PCE Dec 2012 – March 2013, mitigation 
off, Exterior Temperature in F, the following equation was significant at the 
99% confidence level:
Ct – C(t‐1) =  0.748 + ‐0.078*Tt + 0.057*T(t‐1)
C= Concentration       T = Exterior temperature   t= time 
Note red and green coefficients similar but opposite in sign.
Example A: falling temp: 20 F today; 40 F yesterday, on average PCE 
concentration increased 1.5 µg/m3.
Example B: rising temp: 20 F today, 10 F yesterday, on average PCE 
concentration decreased 0.2 µg/m3
19
Key Time Series Conclusions from Indianapolis
• The change in the differential temperature and thus stack effect 
strength was more important than the absolute value of the 
differential temperature. Indoor air concentrations of VOCs are 
expected to be high when the weather is getting colder, but would 
not necessarily be expected to be as high during a period of 
sustained cold weather.  Not all winter sampling times are 
equivalent.
• The most consistent relationship for barometric pressure is that an 
elevated (greater than 30 inches) and/or rising barometric 
pressure is associated with increasing vapor intrusion.
• No statistically significant effect of rain was seen.
• Increasing radon as a predictor was found to be statistically 
significant at the 1% level and to predict 40‐60% of the variability 
in indoor air VOC concentrations. 
20
Temperature Differential – Another Potential 
Surrogate
Time Series Analysis Results
• The strength of the stack effect 
predicted by the temperature 
differential between the 422 
basement south and outdoors 
was significant at the 1% level. 
• Increasing strength of the stack 
effect was associated with higher 
VOC concentrations, not primarily 
high values in and of themselves 
• Data from EPA/600/R‐15/070 | 
October 2015 ‘Third Indy Report’
422 Basement North Temperature (C)
422 Basement South Weekly [PCE]
PCE Data from Indy Test House: Jan 2011 to Feb2012 (includes 
locally weighted scatterplot smoothing line [blue], with a 95% 
confidence interval [shaded])
21
Visualization of Time Series Data:
Change in indoor radon vs. change in indoor PCE
Increasing PCE
Decreasing
Radon
Decreasing PCE
Increasing Radon
22
What if This Time Series Stuff is Too Complicated for 
Me?….What If I Just Look at the Thermometer or the 
Radon Instrument Today and Use that To Guide 
Sampling?
Image reprinted from www.homedepot.com and http://www.twu.edu/dsc/thermometer.jpg
23
New Analysis of ASU Sun Devil Manor
Data
ASU Sun Devil Manor Data Reprise
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
170 270 370 470 570 670
Sampling Day
Sun Devil Manor 24 hr Ave TCE (ppbv) vs Radon
24 h Average Radon in Indoor Air [pCi/L] 24 h Average TCE in Indoor Air [ppbv] ‐
ASU SDM Data Reprise
SDM TCE vs Rn
R² = 0.37
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
24hr Ave TCE (ppbv)
24 hr Ave Rn (pCi/L)
24hr Ave TCE vs 24 hr Ave Rn (SDM)
SDM TCE vs Differential Temperature
R² = 0.1607
‐0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
‐10 ‐5 0 5 10 15 20 25 30 35
24 hr TCE (ppbv)
Differential T (C)
24 h Average TCE in Indoor Air [ppbv] vs Differential T (SDM)
SDM Differential Temperature vs Rn
R² = 0.2326
‐10
‐5
0
5
10
15
20
25
30
35
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
24 hr Differential T 
24 hr Rn (pCi/L)
24 hr Differential Temperature [°C] vs 24 hr Rn (SDM)
A Different Indicator Approach
 What if we use Radon or Differential
Temperature as an Indicator?
 What criteria work (at least for SDM)?
 How does this help us with the number of
samples required to identify the RME?
 *Note that this approach is very likely to seriously
overestimate the long term average exposure
concentration
Rn Indicator (>90th%) approach for RME
40% True Positives
60% False Positives
Differential T Indicator (>90th%) approach
for RME
Differential T>90th percentile, 
TCE>95th percentile
34% True Positives
66% False Positives
How Many Samples Are Needed?
58
28
13
8
6 4 3 2 2 10
10
20
30
40
50
60
70
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Required Number of Samples to Observee RME Once
Surrogate Guided True Positive Rate  = Chance of Seeing RME (Here defined as 
95th Percentile with One Guided Sample)
Required Number of Surrogate Guided Samples Per Location/Zone 
to Observe RME with 5% Probabilty of Underestimating
95 UCL of Mean vs Number of Samples
New SDM Sampling Simulation Results &
Statistical Applications
(N=593 24 hr TCE points, 5000 simulations of random seasonal sampling)
Probability of 1 or more indoor air sample exceeding the Target Concentration 
and 
95UCL of Mean compared to percentile of total dataset for various sampling strategies
Seasons Sampled
4 
season
s
Summer&
Winter
2 
Winter
3 
Winter
4 
Winter
5 
Winter
6 
Winter
7 
Winter
8 
Winter
Total Samples 4 2 2 3 4 5 6 7 8
1 or more sample>90th% 34% 27% 47% 62% 73% 81% 86% 90% 93%
1 or more sample>95th% 19% 11% 26% 36% 45% 52% 59% 65% 70%
95 UCL OF MEAN=% OF 
DISTRIBUTION 90TH%
>95.5
%
>95TH
%
>95TH
%
>94.5T
H%
>94TH
%
>94TH
%
Implications
 Indicators can provide guide for WHEN to
sample
 Indicators can limit the NUMBER of
samples
 Statistics for limited number of indicator
guided samples can provide a protective
estimate of the RME
Outline
Practical Methods for Using Indicators, Tracers, and Surrogates in Vapor 
Intrusion Pathway Assessment
Presented by Chase Holton
AEHS, March 21st, 2017
38
Outline
1. Introduction
2. Indicators, Tracers, and Surrogates for 
Vapor Intrusion Pathway Assessment
3. Related Guidance and Supporting 
Information
4. Conclusions
39
1. Introduction
• 1.0 Introduction
– Describe general vapor intrusion (VI) pathway, issues associated with conventional 
assessment approaches, long‐term stewardship
– Define worst case conditions (spatially and temporally) based on current state‐of‐the‐
science
– Describe current state‐of‐the‐science of conventional sampling approaches, as well as 
real‐time/continuous monitoring approaches 
– Short summary to define/differentiate indicators, tracers, and surrogates; describe 
rationale for using alternative methods and need for document
• 1.1 Objectives
– Provide simple, efficient, and economically viable approaches for supporting VI 
investigations (as a line of evidence), assessing the potential for VI, 
estimating/projecting/forecasting potential risks/exposure, 
– Provide insight on when conventional approaches should be applied
• 1.2 Document Scope 
– Companion to statistical toolbox document
– Applicability to different building types, exposure scenarios
40
2. Indicators, Tracers, and Surrogates for Vapor 
Intrusion Pathway Assessment
• 2.1 Characteristics of Potential Indicators, Tracers, and Surrogates
– Define/differentiate indicators, tracers, and surrogates using examples 
from related fields to explain differences (examples shown in presentation 
outline)
– Provide list of indicators, tracers, and surrogates included in past studies 
(e.g., ~80 studied at USEPA research house in Indianapolis, not all 
significant); highlight those that have shown greatest utility in VI 
assessments
– Highlight best practices for use of radon, SF6, differential temperature, 
differential pressure, and other methods/parameters that have shown 
greatest utility in VI assessments
41
2. Indicators, Tracers, and Surrogates for Vapor 
Intrusion Pathway Assessment (cont’d)
• 2.2 Uses and Utility within the Screening Process
– Define the screening process; building/site selection, prioritization, VI 
susceptibility; discuss in context of conventional approaches
– Identify indicators, tracers, and/or surrogates applicable to screening 
process and relative benefit (e.g., lower cost, higher confidence)
• 2.3 Uses and Utility within Detailed Assessments
– Define detailed VI assessments and provide a short summary of 
conventional approaches 
– Discuss approaches/tools/methods where indicators, tracers, and/or 
surrogates can be applied and the relative value compared to other lines 
of evidence.
42
2. Indicators, Tracers, and Surrogates for Vapor 
Intrusion Pathway Assessment
• 2.4 Uses and Utility within Post‐Mitigation/Remediation Phase
– Define mitigation/remediation, institutional controls, long‐term 
stewardship and provide a short summary of conventional approaches
– Identify indicators, tracers, and/or surrogates that can be applied to post‐
mitigation (e.g. VIMS OMM) and long‐term stewardship approaches
43
3. Related Guidance and Supporting Information
• 3.1 Incorporating Indicators, Tracers, and Surrogates into the Risk 
Assessment Process
– Discuss purpose of risk assessments, estimation and projection of 
risks/exposure, and how other approaches can be applied 
– Discuss EPA guidance on data quality and usability requirements for risk 
assessment and exposure assessment
– Present examples where indicators, tracers, and/or surrogates have been 
used in HHRA, site management, decision‐making
44
4. Conclusions
• Current assessment approaches rely on small number of point‐
in‐time samples analyzed by off‐site laboratories, can result in 
false‐negatives; costly if implemented frequently
• Currently available continuous/real‐time analytical instruments 
and sensors have some limitations (costs, selectivity, sensitivity, 
accuracy)
• Previous applications have demonstrated that certain variables 
(e.g., differential temperature, radon) can be used to understand 
variability, appropriate sampling periods, etc.
• Other USEPA guidance and/or studies supports use of indicators, 
tracers, and/or surrogates for protection of public health
45
What Can You Potentially Do With a Good Tracer 
or Surrogate?
• Guide sampling times and locations
• Find soil gas entry points to buildings
• Track mitigation system effectiveness
• Distinguish subslab from indoor sources of VOCs
46
Practical Aspects – Availability of Baseline 
Comparison Data
• Differential temperature – almost always available, because
– Inside temperature often as easy as “where do you set your thermostat?”
– Historical outside temperature data for thousands of locations cataloged 
either for specific period or normal values
https://www.ncdc.noaa.gov/cdo‐web/
https://www.wunderground.com/history/ https://www.ncdc.noaa.gov/cdo‐
web/datatools/selectlocation
• Radon – baseline comparison very building dependent, so needs to be 
acquired
• Differential pressure:
o Beneficial to get some background data
o But upper end of range fairly similar for many structures (5 to 20 Pa) so may 
be able to make useful decisions with limited background.
Temperature logger image reprinted from https://www.microdaq.com
47
Practical Aspects – Capital Cost of Monitoring 
Equipment (not including data transmission)
• Differential temperature
o Range is from free to <$100 per 
location
• Radon – as low as $129 for a device 
that reads out the average of 48 
hours to 7 days  $250 for four hours 
time resolution.  Some have audible 
alarms.
• Differential pressure ‐ $405 for 
resolution to 0.002” w.c. (0.5 Pa) Image reprinted from 
www.homedepot.com
48
Practical Aspects – Advanced Predictability
• Temperature – readily 
available forecasts, 
probably sufficient short 
term accuracy for purpose
• Radon – not easily 
forecasted
• Differential pressure – may 
be partially forecastable if in 
a given structure controlled 
by differential temperature 
rather then wind Graphic reprinted from: 
http://blog.extension.uga.edu/climate/2
015/07/when‐weather‐apps‐go‐bad/
Statistical Toolbox for RCRA 
CVI Decisions
Lead in Slides
50
Introduction:  Chlorinated VOCs in Indoor Air
• Challenging to assess at ‘low’ levels 
• Difficult to predict 
• Concentrations result from complex interaction of many variables 
• Data‐rich residential studies show significant variability:
– Spatial (x, y, z) – across neighborhood and within building scales
– Temporal (t) – diurnal, seasonal and climatic scales 
Graphic adapted from: 
http://www.nature.com/ncomms/2014/140708/ncomms5
344/images/ncomms5344‐f2.jpg
51
Why Do Vapor Intrusion Plots Have Scatter?
Many Variables Involved – Radon Experience
“This paper identified about thirteen factors that can affect radon: 
…soil moisture content, soil permeability, wind, temperature, 
barometric pressure, rainfall, frozen ground, snow cover, earth 
tides, atmospheric tides, occupancy factors, season and time of 
day. 
….. Four factors that influence radon concentrations indoors are 
properties of the building material and ground; building 
construction; meteorological conditions; and occupant activities.” 
Lewis & Houle, A Living Radon Reference Manual (2009)
For mechanistic reasons it is likely that VOC VI is more variable and complex then radon 
VI.
52
Current Practice
• Heavy reliance on extractive samples for laboratory analysis
– Costly (>$350 per sample) & disruptive to measure 
– Only provide single ‘Points of Evidence’  (at a specific location & 
time period) within spatial and temporal distributions
• The accuracy of inferences/extrapolations between & beyond the 
‘points of evidence’ (samples) have rarely been tested (but ‘data‐rich’ 
studies informative)
• Statistics is the scientific tool to provide defensible inferences from the 
sample to the population.  But statistical methods are rarely applied to 
VI  even though the variability in VI is more than for groundwater
• Analysis of performance of typical sampling strategies suggests safety 
factor of at least 3X may be needed (Holton, 2013; Weinberg, 2014)
53
Reprise from Last Session
Why Study Statistics?
If we:
• don’t have guidance 
on when to sample; 
• don’t have the basis 
for an assumption 
about the distribution, 
• don’t want to use an 
additional safety factor 
and
• do want to see a single 
example of the RME
We will be sampling a 
long time!
58
28
13
8
6 4 3 2 2 10
10
20
30
40
50
60
70
0 0.2 0.4 0.6 0.8 1
Required Number of Samples to Observee RME Once
Surrogate Guided True Positive Rate  = Chance of Seeing RME 
(Here defined as 95th Percentile with One Guided Sample)
Required Number of Surrogate Guided Samples Per Location/Zone 
to Observe RME with 5% Probabilty of Underestimating
54
Occupational Methods for Estimating Exposure a/
• Identify similar exposure groups (SEGs)
– Based on similarity/frequency of tasks and types of materials/processes
• Number of samples needed for baseline assessment
– Based on statistical estimates/methods and SEG profile
– General AIHA recommendation:  6 – 10 samples where variability is expected to 
be low to moderate
– Fewer than 6 samples can be used with caution; 3 is generally a minimum
a/ AIHA. 2015. A Strategy for Assessing and Managing Occupational Exposure. 4th Edition.
Ratio True 
95th/OEL
Low Variability 
(GSD=1.5)
GSD = 2
Moderate Variability 
(GSD=2.5)
GSD = 3
High Variability 
(GSD=3.5)
0.75 53 138 231 326 418
0.5 13 30 47 65 82
0.25 6 10 16 20 25
0.1 4 6 8 10 12
Sample Size Estimates (95% confidence; Power of 90%)
If goal is 
for 95th to 
be 10X 
<OEL
GSDs at Industrial Buildings 
Shown/Expected
55
Occupational Approach to Exposure Assessment: 
Exceedance Fraction
• The exceedance fraction (f) is the probability that a concentration in a distribution is higher than 
the screening level (AIHA, 2015).
• One property of a log‐normal distribution is that the exceedance fraction can be related to the 
mean, and more specifically the ratio of the screening level (SL) to the mean,
where Z is the value from a normal distribution table corresponding to the desired exceedance 
fraction (Rappaport, 1991). For planning purposes, Z is used in lieu of the standard deviation 
which generally is not known prior to sampling. 
• This can provide a risk manager an indication of how far below a SL the mean concentration 
needs to be to keep exposures below the desired exceedance fraction. For example if the 
exceedance fraction is 5% (0.05), the mean should be maintained ~4‐fold below the screening 
level. 
• How much sampling is needed to evaluate this situation with confidence? That will depend on 
the variability of the distribution of concentrations in air in addition to the ratio of the screening 
level to the mean concentration.
Rappaport, S.M. 1991. Assessment of Long‐Term Exposure to Toxic Substances in Air. Annals of Occupational 
Hygiene. 35(1): 61‐121.  See also Lowe, AEHS Conference 2016,
56
Jeff Kurtz notes that this material is his personal 
opinion from experience at CDOT, Redfield and other 
sites
Next Slide from Paul Johnson 2013• For full presentation see: 
https://iavi.rti.org/attachments/WorkshopsAndConferences/05_
Johnson_03‐19‐13.pdf
57
Daily Average Concentration Data Set*
Fall FallSummer SummerWinter Spring Winter
August 14, 2012Aug 15, 2010
(08:00)
Spring Spring Summer
25 of 723 days (3.5%) 
contribute 50% of 
total exposure over 
this time frame
0.01
0.1
1
10
-180 -120 -60 0 60 120 180 240 300 360 420 480 540 600 660 720
TCEinIndoorAir[ppbv]
Time [d]
Daily Average Concentrations Average (0.078 ppbv)
Median (<0.01 ppbv) 50% of Exposure (25 days >0.6 ppbv)
58
Statistical Toolbox Outline – Basic Questions
• Is VI pathway complete & significant at a site (that has GW 
conc. >levels of concern & undergoing GW remediation)?
• Given that GW remediation can extend for decades, how can 
we ensure, with a known degree of confidence, that VI 
exposures are under control during the cleanup period?
Objectives
• Provide sound statistical methodologies to determine 
appropriate frequencies & approaches for verifying protection 
from CVI over long‐term periods  (with a known degree of 
confidence)
• primary applicability is to RCRA VI decisions, but could be useful 
for other types of VI sites
59
Organization and Scope
• Follows 2009 RCRA Statistical Analysis of Groundwater Monitoring Data at 
RCRA Facilities (Unified Guidance) and supporting ITRC document, but applies 
applicable methods to VI, structured by same or similar study questions.
• Also draws on other technical resources when Unified Guidance does not 
address an important topic.  Include the NIOSH Occupational Exposure 
Sampling Strategy Manual, AIHA “A Strategy for Assessing and Monitoring 
Occupational Exposures”, and ITRC’s “Groundwater Statistics and Monitoring 
Compliance:  Statistical Tools for the Project Life Cycle”. The web link to some 
very useful and relevant Superfund Groundwater guidance for groundwater 
statistics and their Excel‐based groundwater statistics tool is:
• https://www.epa.gov/superfund/superfund‐groundwater‐groundwater‐
response‐completion
• Limits and Applicability: Not comprehensive, but does focus on many  
decisions/questions a RCRA practitioner is likely to encounter during an 
extended groundwater  cleanup period at typical CVI sites. 
60
Statistical Toolbox for RCRA VI – Considerations
• Background comparison
• Comparison to Screening Level
• Population Distribution
• Seasonality
• Trends
• Required sampling frequency
• Closure
Comparisons to RCRA/CERCLA 
Groundwater Statistical Tools







61
ARE THE INDOOR AIR CONCENTRATIONS ABOVE 
BACKGROUND?
• Start with lit values (mean or %); but background indoor air is 
highly variable
• Are there indoor VOC sources? If so, can they be removed? 
• Are indoor air concentrations above outdoor air concentrations?
• Are indoor air concentrations above background?  ‐ Probably a 
“bright line” test against the selected background value.
• NAVFAC User’s Guide UG2‐2091‐ENV “Interim Final:  Guidance 
for Environmental Background Analysis; Volume IV: Vapor 
Intrusion Pathway” has useful material on lines of evidence 
evaluation and statistical tests for this purpose.
62
ARE INDOOR AIR CONCENTRATIONS ABOVE OR BELOW 
A CRITERION?
• What is the criterion, ACUTE OR CHRONIC exposure?
• Specify certainty: e.g., max, 95th percentile , or 95% UCL of 
mean?  Selected certainty dependent on number of samples. 
Maximum or 95th percentile typically used for small number of 
samples.
• When will criteria be met? (base on rate of change over time)
• AIHA exposure assessment strategy, similar exposure group 
concept & exceedance fraction concept from Rappaport provide 
useful tools.
• Controls & engineering modeling can constrain variability of 
indoor air due to VI.
63
IS THERE SEASONALITY?
•Most VI is seasonal, but not all; need to account for 
when it is.
• Seasonality cannot be captured by the simple concept 
of “winter worst”.  Evidence suggests that “getting 
colder” can be more important than being cold, in 
some cases.  Evidence shows that, even within one city, 
buildings have very different seasonal patterns from 
each other.  Evidence also shows that southern climates 
are likely different then northern US climates.
•Extreme values can’t be removed if using max or 95th 
percentile
64
IS THERE A TREND? WHAT IS DIRECTION AND RATE OF 
CHANGE OVER TIME?
• Trends can be used to predict future exposure, remediation 
success, etc.
• Must account for seasonality, which can invalidate a trend test
• Start with scatter plot, linear regression
• Steady increase = increasing VI
• Confidence bands usually increase over (future) time unless GW 
is being remediated & source term is decreasing, which is likely 
to be common for RCRA sites under MNA
• Once trend is detected, rate of change over time can be 
determined
• Trends & rates can be determined at the VOC source, indoor air, 
or in between (subslab)
65
IS THE SAMPLING FREQUENCY APPROPRIATE 
(TEMPORAL OPTIMIZATION)?
• Optimization and design of the monitoring program must assure 
sample independence while covering site sufficiently & collecting 
adequate data over an appropriate time period for proposed statistical 
evaluations. 
• In early stages, statistical design options should be considered such 
that adequate number of samples are collected. 
• For sites with existing long term monitoring data, sampling frequency 
can often be reduced while still providing adequate data
• Required sampling frequency can be evaluated with statistical methods 
that assess redundancy of sample results.
• How often do I need to sample to capture a trend?
• Cost effective sampling (CES) ‐ rate of change (linear regression) vs 
Trend (Mann‐Kendal)
66
IS THE SPATIAL COVERAGE APPROPRIATE (SPATIAL 
OPTIMIZATION)?
• Optimization and design of monitoring program must assure 
sample independence while providing adequate spatial coverage 
of site. Optimization can lead to decreasing or increasing number 
of sampling points.  Expected to result in decrease in locations 
over time with MNA.
• Are sample locations redundant or should new locations be 
added? 
• Geostatistics, other spatial statistical methods applicable. –
unlikely to be applicable to indoor air, but might apply to GW, 
external soil gas, and subslab soil gas.
Panel discussion – draft toolbox outlines – specific questions
1. We will begin the panel session with a review of the existing
outlines and any panel comments.
a) Indicators Toolbox Outline _ from Chase Holton Presentation Slides
b) Statistics Tool box Outline _ from Jeff Kurtz Presentation Slides
68
Indicators, Tracers and Surrogates Toolbox
1.0 Introduction
1.1 Objectives
1.2 Document Scope 
2.1 Characteristics of Potential Indicators, Tracers, and Surrogates
2.2 Uses and Utility within the Screening Process
2.3 Uses and Utility within Detailed Assessments
2.4 Uses and Utility within Post‐Mitigation/Remediation Phase
3.1 Incorporating Indicators, Tracers, and Surrogates into the Risk 
Assessment Process
4.0 Conclusions
69
Statistical Toolbox for RCRA VI – Considerations
• Background comparison
• Comparison to Screening Level
• Population Distribution
• Seasonality
• Trends
• Required sampling frequency
• Closure
Comparisons to RCRA/CERCLA 
Groundwater Statistical Tools







Panel discussion – draft toolbox outlines – general questions
1. Are there any community benefits or concerns for the Statistics or
Indicators approaches? How should they be addressed?
2. Would each product (Statistics or Indicators Toolboxes) be useful?
a) What are the best parts?
b) What would you add or change?
c) What would you not include?
3. Do you think indicators, tracers, and/or surrogates have promise
for greater use in the VI field? Why or why not?
4. What is your view on the utility of statistical methods for VI
decision making? At what stages of the project/types of sites?
5. What is your opinion on the directed sampling approach and its
ability to efficiently capture RME?
a) Is it statistically valid?
b) Where should it not be applied?

More Related Content

Similar to Aehs 03.2017 lutesindicators tracers and surrogates 9 including holton and kurtz_jk0320

Quantitative Analysis and Decision Making.ppt
Quantitative Analysis and Decision Making.pptQuantitative Analysis and Decision Making.ppt
Quantitative Analysis and Decision Making.pptzeeshankhan907950
 
Bio statistics Bio statistics Bio statistics
Bio statistics Bio statistics  Bio statisticsBio statistics Bio statistics  Bio statistics
Bio statistics Bio statistics Bio statisticsArwaAbdelHamid1
 
Central tendancy 4
Central tendancy 4Central tendancy 4
Central tendancy 4Sundar B N
 
Practical Application Of System Safety For Performance Improvement
Practical Application Of System Safety For Performance ImprovementPractical Application Of System Safety For Performance Improvement
Practical Application Of System Safety For Performance ImprovementAlbert V. Condello III CSP CHMM
 
Determination of dose and dosing interval
Determination of dose and dosing intervalDetermination of dose and dosing interval
Determination of dose and dosing intervalDr. Ramesh Bhandari
 
Measures of Dispersion.pdf
Measures of Dispersion.pdfMeasures of Dispersion.pdf
Measures of Dispersion.pdfShaownRoy1
 
Dependence Techniques
Dependence Techniques Dependence Techniques
Dependence Techniques Hasnain Khan
 
Respiratory Health Risk Assessment(1) (2).pdf
Respiratory Health Risk Assessment(1) (2).pdfRespiratory Health Risk Assessment(1) (2).pdf
Respiratory Health Risk Assessment(1) (2).pdfajengps11
 
Chapter 4
Chapter 4Chapter 4
Chapter 4Lem Lem
 
Determination of dose and dosing interval
Determination of dose and dosing intervalDetermination of dose and dosing interval
Determination of dose and dosing intervalDr. Ramesh Bhandari
 
Pharmacokinetics basics Introduced and applications
Pharmacokinetics basics Introduced  and applicationsPharmacokinetics basics Introduced  and applications
Pharmacokinetics basics Introduced and applicationsSumant Saini
 
Week 3 Occupational Hazards &amp; Risk Spring 2010!!
Week 3 Occupational Hazards &amp; Risk Spring 2010!!Week 3 Occupational Hazards &amp; Risk Spring 2010!!
Week 3 Occupational Hazards &amp; Risk Spring 2010!!sewhood
 
Safety guidelines- S3A and S3B
Safety guidelines- S3A and S3BSafety guidelines- S3A and S3B
Safety guidelines- S3A and S3Banshagrawal2121
 
Sensitivity Analysis, Optimal Design, Population Modeling.pptx
Sensitivity Analysis, Optimal Design, Population Modeling.pptxSensitivity Analysis, Optimal Design, Population Modeling.pptx
Sensitivity Analysis, Optimal Design, Population Modeling.pptxAditiChauhan701637
 

Similar to Aehs 03.2017 lutesindicators tracers and surrogates 9 including holton and kurtz_jk0320 (19)

Experiment by design.pptx
Experiment by design.pptxExperiment by design.pptx
Experiment by design.pptx
 
Quantitative Analysis and Decision Making.ppt
Quantitative Analysis and Decision Making.pptQuantitative Analysis and Decision Making.ppt
Quantitative Analysis and Decision Making.ppt
 
Bio statistics Bio statistics Bio statistics
Bio statistics Bio statistics  Bio statisticsBio statistics Bio statistics  Bio statistics
Bio statistics Bio statistics Bio statistics
 
Central tendancy 4
Central tendancy 4Central tendancy 4
Central tendancy 4
 
Practical Application Of System Safety For Performance Improvement
Practical Application Of System Safety For Performance ImprovementPractical Application Of System Safety For Performance Improvement
Practical Application Of System Safety For Performance Improvement
 
Determination of dose and dosing interval
Determination of dose and dosing intervalDetermination of dose and dosing interval
Determination of dose and dosing interval
 
Bioassay.pptx
Bioassay.pptxBioassay.pptx
Bioassay.pptx
 
CH3.pdf
CH3.pdfCH3.pdf
CH3.pdf
 
Measures of Dispersion.pdf
Measures of Dispersion.pdfMeasures of Dispersion.pdf
Measures of Dispersion.pdf
 
Dependence Techniques
Dependence Techniques Dependence Techniques
Dependence Techniques
 
Analytical control strategy 3
Analytical control strategy 3Analytical control strategy 3
Analytical control strategy 3
 
Respiratory Health Risk Assessment(1) (2).pdf
Respiratory Health Risk Assessment(1) (2).pdfRespiratory Health Risk Assessment(1) (2).pdf
Respiratory Health Risk Assessment(1) (2).pdf
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Determination of dose and dosing interval
Determination of dose and dosing intervalDetermination of dose and dosing interval
Determination of dose and dosing interval
 
Pharmacokinetics basics Introduced and applications
Pharmacokinetics basics Introduced  and applicationsPharmacokinetics basics Introduced  and applications
Pharmacokinetics basics Introduced and applications
 
Week 3 Occupational Hazards &amp; Risk Spring 2010!!
Week 3 Occupational Hazards &amp; Risk Spring 2010!!Week 3 Occupational Hazards &amp; Risk Spring 2010!!
Week 3 Occupational Hazards &amp; Risk Spring 2010!!
 
Safety guidelines- S3A and S3B
Safety guidelines- S3A and S3BSafety guidelines- S3A and S3B
Safety guidelines- S3A and S3B
 
Sensitivity Analysis, Optimal Design, Population Modeling.pptx
Sensitivity Analysis, Optimal Design, Population Modeling.pptxSensitivity Analysis, Optimal Design, Population Modeling.pptx
Sensitivity Analysis, Optimal Design, Population Modeling.pptx
 
Sample and effect size
Sample and effect sizeSample and effect size
Sample and effect size
 

More from Chris Lutes

Are Industrial Buildings Different? Implication of a Quantitative Vapor Intr...
Are Industrial Buildings Different?  Implication of a Quantitative Vapor Intr...Are Industrial Buildings Different?  Implication of a Quantitative Vapor Intr...
Are Industrial Buildings Different? Implication of a Quantitative Vapor Intr...Chris Lutes
 
Passive Samplers for Vapor Intrusion Monitoring: Update of EPA’s Technical S...
Passive Samplers for Vapor Intrusion Monitoring:  Update of EPA’s Technical S...Passive Samplers for Vapor Intrusion Monitoring:  Update of EPA’s Technical S...
Passive Samplers for Vapor Intrusion Monitoring: Update of EPA’s Technical S...Chris Lutes
 
Petroleum Vapor Intrusion Strategies at UST and non-UST Sites Under 2015 EPA ...
Petroleum Vapor Intrusion Strategies at UST and non-UST Sites Under 2015 EPA ...Petroleum Vapor Intrusion Strategies at UST and non-UST Sites Under 2015 EPA ...
Petroleum Vapor Intrusion Strategies at UST and non-UST Sites Under 2015 EPA ...Chris Lutes
 
Passive Fence Line Monitoring for Benzene. Coming Soon to Refineries. Who’s...
Passive Fence Line Monitoring for Benzene. Coming Soon to Refineries. Who’s...Passive Fence Line Monitoring for Benzene. Coming Soon to Refineries. Who’s...
Passive Fence Line Monitoring for Benzene. Coming Soon to Refineries. Who’s...Chris Lutes
 
Implementation of 2015 EPA Vapor Intrusion (VI) Guides: Application in State ...
Implementation of 2015 EPA Vapor Intrusion (VI) Guides: Application in State ...Implementation of 2015 EPA Vapor Intrusion (VI) Guides: Application in State ...
Implementation of 2015 EPA Vapor Intrusion (VI) Guides: Application in State ...Chris Lutes
 
Comparing Industrial Hygiene and Environmental Approaches to Statistically Ev...
Comparing Industrial Hygiene and Environmental Approaches to Statistically Ev...Comparing Industrial Hygiene and Environmental Approaches to Statistically Ev...
Comparing Industrial Hygiene and Environmental Approaches to Statistically Ev...Chris Lutes
 
Vapor Intrusion in an Age of Federalism
Vapor Intrusion in an Age of FederalismVapor Intrusion in an Age of Federalism
Vapor Intrusion in an Age of FederalismChris Lutes
 
Lund Using Climate Zones, Architectural Knowledge, and Low-cost Indicators t...
Lund  Using Climate Zones, Architectural Knowledge, and Low-cost Indicators t...Lund  Using Climate Zones, Architectural Knowledge, and Low-cost Indicators t...
Lund Using Climate Zones, Architectural Knowledge, and Low-cost Indicators t...Chris Lutes
 
Economics poster 2 jdm rev3_lgl clfinal
Economics poster 2 jdm rev3_lgl clfinalEconomics poster 2 jdm rev3_lgl clfinal
Economics poster 2 jdm rev3_lgl clfinalChris Lutes
 
Million square foot building lutes aehs epa workshop ssda community leader-...
Million square foot building lutes aehs epa workshop   ssda community leader-...Million square foot building lutes aehs epa workshop   ssda community leader-...
Million square foot building lutes aehs epa workshop ssda community leader-...Chris Lutes
 
08 lutes workshop presentation mew4
08 lutes workshop presentation mew408 lutes workshop presentation mew4
08 lutes workshop presentation mew4Chris Lutes
 
07 lutes send wheeler case study6
07 lutes send wheeler case study607 lutes send wheeler case study6
07 lutes send wheeler case study6Chris Lutes
 
08 future testing combining external
08 future testing combining external08 future testing combining external
08 future testing combining externalChris Lutes
 
07 lutes slides for epa 2018 workshop moisturev5
07 lutes slides for epa 2018 workshop moisturev507 lutes slides for epa 2018 workshop moisturev5
07 lutes slides for epa 2018 workshop moisturev5Chris Lutes
 
Lutes panel discussion conf battelle2016 power_point_template_widescreenrev
Lutes panel discussion conf battelle2016 power_point_template_widescreenrevLutes panel discussion conf battelle2016 power_point_template_widescreenrev
Lutes panel discussion conf battelle2016 power_point_template_widescreenrevChris Lutes
 
Hapsite large plume slide
Hapsite large plume slide Hapsite large plume slide
Hapsite large plume slide Chris Lutes
 
Epa ord aeh sv11
Epa ord  aeh sv11Epa ord  aeh sv11
Epa ord aeh sv11Chris Lutes
 
Epa ord aehs 2015 v8 jhz rst cl
Epa ord  aehs 2015 v8 jhz rst clEpa ord  aehs 2015 v8 jhz rst cl
Epa ord aehs 2015 v8 jhz rst clChris Lutes
 

More from Chris Lutes (20)

Are Industrial Buildings Different? Implication of a Quantitative Vapor Intr...
Are Industrial Buildings Different?  Implication of a Quantitative Vapor Intr...Are Industrial Buildings Different?  Implication of a Quantitative Vapor Intr...
Are Industrial Buildings Different? Implication of a Quantitative Vapor Intr...
 
Passive Samplers for Vapor Intrusion Monitoring: Update of EPA’s Technical S...
Passive Samplers for Vapor Intrusion Monitoring:  Update of EPA’s Technical S...Passive Samplers for Vapor Intrusion Monitoring:  Update of EPA’s Technical S...
Passive Samplers for Vapor Intrusion Monitoring: Update of EPA’s Technical S...
 
Petroleum Vapor Intrusion Strategies at UST and non-UST Sites Under 2015 EPA ...
Petroleum Vapor Intrusion Strategies at UST and non-UST Sites Under 2015 EPA ...Petroleum Vapor Intrusion Strategies at UST and non-UST Sites Under 2015 EPA ...
Petroleum Vapor Intrusion Strategies at UST and non-UST Sites Under 2015 EPA ...
 
Passive Fence Line Monitoring for Benzene. Coming Soon to Refineries. Who’s...
Passive Fence Line Monitoring for Benzene. Coming Soon to Refineries. Who’s...Passive Fence Line Monitoring for Benzene. Coming Soon to Refineries. Who’s...
Passive Fence Line Monitoring for Benzene. Coming Soon to Refineries. Who’s...
 
Implementation of 2015 EPA Vapor Intrusion (VI) Guides: Application in State ...
Implementation of 2015 EPA Vapor Intrusion (VI) Guides: Application in State ...Implementation of 2015 EPA Vapor Intrusion (VI) Guides: Application in State ...
Implementation of 2015 EPA Vapor Intrusion (VI) Guides: Application in State ...
 
Comparing Industrial Hygiene and Environmental Approaches to Statistically Ev...
Comparing Industrial Hygiene and Environmental Approaches to Statistically Ev...Comparing Industrial Hygiene and Environmental Approaches to Statistically Ev...
Comparing Industrial Hygiene and Environmental Approaches to Statistically Ev...
 
Vapor Intrusion in an Age of Federalism
Vapor Intrusion in an Age of FederalismVapor Intrusion in an Age of Federalism
Vapor Intrusion in an Age of Federalism
 
Lund Using Climate Zones, Architectural Knowledge, and Low-cost Indicators t...
Lund  Using Climate Zones, Architectural Knowledge, and Low-cost Indicators t...Lund  Using Climate Zones, Architectural Knowledge, and Low-cost Indicators t...
Lund Using Climate Zones, Architectural Knowledge, and Low-cost Indicators t...
 
Economics poster 2 jdm rev3_lgl clfinal
Economics poster 2 jdm rev3_lgl clfinalEconomics poster 2 jdm rev3_lgl clfinal
Economics poster 2 jdm rev3_lgl clfinal
 
Million square foot building lutes aehs epa workshop ssda community leader-...
Million square foot building lutes aehs epa workshop   ssda community leader-...Million square foot building lutes aehs epa workshop   ssda community leader-...
Million square foot building lutes aehs epa workshop ssda community leader-...
 
08 lutes workshop presentation mew4
08 lutes workshop presentation mew408 lutes workshop presentation mew4
08 lutes workshop presentation mew4
 
07 lutes send wheeler case study6
07 lutes send wheeler case study607 lutes send wheeler case study6
07 lutes send wheeler case study6
 
08 future testing combining external
08 future testing combining external08 future testing combining external
08 future testing combining external
 
04 radon
04 radon04 radon
04 radon
 
02 temperature
02 temperature02 temperature
02 temperature
 
07 lutes slides for epa 2018 workshop moisturev5
07 lutes slides for epa 2018 workshop moisturev507 lutes slides for epa 2018 workshop moisturev5
07 lutes slides for epa 2018 workshop moisturev5
 
Lutes panel discussion conf battelle2016 power_point_template_widescreenrev
Lutes panel discussion conf battelle2016 power_point_template_widescreenrevLutes panel discussion conf battelle2016 power_point_template_widescreenrev
Lutes panel discussion conf battelle2016 power_point_template_widescreenrev
 
Hapsite large plume slide
Hapsite large plume slide Hapsite large plume slide
Hapsite large plume slide
 
Epa ord aeh sv11
Epa ord  aeh sv11Epa ord  aeh sv11
Epa ord aeh sv11
 
Epa ord aehs 2015 v8 jhz rst cl
Epa ord  aehs 2015 v8 jhz rst clEpa ord  aehs 2015 v8 jhz rst cl
Epa ord aehs 2015 v8 jhz rst cl
 

Recently uploaded

Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLkantirani197
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Creating and Analyzing Definitive Screening Designs
Creating and Analyzing Definitive Screening DesignsCreating and Analyzing Definitive Screening Designs
Creating and Analyzing Definitive Screening DesignsNurulAfiqah307317
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Monika Rani
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 

Recently uploaded (20)

Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Creating and Analyzing Definitive Screening Designs
Creating and Analyzing Definitive Screening DesignsCreating and Analyzing Definitive Screening Designs
Creating and Analyzing Definitive Screening Designs
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 

Aehs 03.2017 lutesindicators tracers and surrogates 9 including holton and kurtz_jk0320