SlideShare a Scribd company logo
1 of 6
Download to read offline
©2007 Dresser-Rand Company
Contract / Sales File #
DR Reference File:
DR Curve Reference:
Plotted By:
Date Created:
Revision:
Revision Date:
MW
Zs
Zavg
pKavg
Ps
Pd
Ts
Td
Flow
Basis of Curves Comments
Volume Flow, m³/min
PolytropicHead,kJ/kg
350 400 450 500 550 600 650 700 750 800 850
25
50
75
100
125
150
175
105.00 %
100.00 %
95.00 %
90.00 %
85.00 %
80.00 %
75.01 %
70.00 %
Polytropic Head Vs Volume Flow
Volume Flow, m³/min
PolytropicEfficiency
350 400 450 500 550 600 650 700 750 800 850
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875
105.00%
100.00%
95.00%
90.00%
85.00%
80.00%
75.01%
70.00%
Polytropic Efficiency Vs Volume Flow
PREDICTED PERFORMANCE CURVES
TECHNIP/Fengzhen Wanjie Natural Gas Co
Liquified Nat. Gas/Inner Mongolia
D14R6B (Section1) / OperCond: Summer (RATED) LP
3.8100
16.703
27.74
113
734.45
bar A
bar A
°C
°C
m³/min
34.214
0.9724
0.9677
1.163
100% Speed 9254 RPM
Inlet capacity based on process flow
Discharge Mass Flow rate shown on data sheets
MUST be used for sizing process equipment.
-7SL_Technip Wanjie_R04
-7SL_Technip Wanjie_R04
ncortez
2/26/2014
2/26/2014
For the sake of extended operating flexibility (i.e. greater flow range), most of the centrifugal compressions in the oil and
gas industries are designed (aero-dynamically and rotor-dynamically) to operate in between 70% to 105% of design speed.
The minimum speed (70% of design speed) curve is achievable in most of single stage machine (aero and rotor-
dynamically), however it may not be aero-dynamically feasible for multi-stage compressions.
To illustrate this idea, consider point "A" and "B" in the Head vs. Volume flow curve marked in this page. Discharge volume
flow rates are calculated as follows (based on suction pressure 3.81 barA and suction temperature 27.74 deg. C):-
1) Point A: Discharge volume flow rate = 11141 m^3/hr (inter-cooled at 37.86 deg. C)
2) Point B: Discharge volume flow rate = 15514 m^3/hr (inter-cooled at 37.86 deg. C)
Transferring these volume flow rates into HP stage (see next page), it can be seen that these rates are located way beyond
the choke limit of HP compression stage.
Point "B"
Point "A"
©2007 Dresser-Rand Company
Contract / Sales File #
DR Reference File:
DR Curve Reference:
Plotted By:
Date Created:
Revision:
Revision Date:
MW
Zs
Zavg
pKavg
Ps
Pd
Ts
Td
Flow
Basis of Curves Comments
Volume Flow, m³/min
PolytropicHead,kJ/kg
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
20
30
40
50
60
70
80
90
100
110
105.00 %
100.00 %
95.00 %
90.00 %
85.00 %
80.00 %
75.01 %
70.00 %
Polytropic Head Vs Volume Flow
Volume Flow, m³/min
PolytropicEfficiency
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875
105.00%
100.00%
95.00%
90.00%
85.00%
80.00%
75.01%
70.00%
Polytropic Efficiency Vs Volume Flow
PREDICTED PERFORMANCE CURVES
TECHNIP/Fengzhen Wanjie Natural Gas Co
Liquified Nat. Gas/Inner Mongolia
D14R6B (Section2) / OperCond: Summer (RATED) HP
16.103
44.722
37.86
104
153.38
bar A
bar A
°C
°C
m³/min
31.878
0.9060
0.8936
1.188
100% Speed 9254 RPM
Inlet capacity based on process flow
Discharge Mass Flow rate shown on data sheets
MUST be used for sizing process equipment.
-7SL_Technip Wanjie_R04
-7SL_Technip Wanjie_R04
ncortez
2/26/2014
2/26/2014
11141 m^3/hr (or 185.68 m^3/min)
15514 m^3/hr (or 258.57 m^3/min)
16000
18000
Discharge volume flow rate_cooled (m3/hr) vs. Actual inlet volume flow rate (m3/hr) for [FZLP old]
12000
14000
8000
10000
12000
6000
8000
20000 25000 30000 35000 40000 45000 50000
105% speed
100% speed
95% speed
90% speed
85% speed
80% speed
75% speed
70% speed
Surge limit
Choke limitStep1:
Calculate discharge volume flow rates from stage
one discharge flange that go into second stage
across the entire performance envelope.
Note: If there is inter-stage cooling (which is
applicable for most high head back-to-back
machines), volume flow rates that enter second
stage must be tuned accordingly.
©2007 Dresser-Rand Company
Contract / Sales File #
DR Reference File:
DR Curve Reference:
Plotted By:
Date Created:
Revision:
Revision Date:
MW
Zs
Zavg
pKavg
Ps
Pd
Ts
Td
Flow
Basis of Curves Comments
Volume Flow, m³/min
DischargePressure,barA
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
20
25
30
35
40
45
50
55
60
105.00%
100.00%
95.00%
90.00%
85.00
%
80.00
%75.01
%70.00 %
Discharge Pressure Vs Volume Flow
Volume Flow, m³/min
BrakePower,kW@Ps=16.1bar
POWER=PWRcrvXPs/16.1bar
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
750
1500
2250
3000
3750
4500
5250
6000
6750
7500
105.00%
100.00%
95.00 %
90.00 %
85.00
%
80.00
%
75.01%
70.00%
Brake Power Vs Volume Flow
PREDICTED PERFORMANCE CURVES
TECHNIP/Fengzhen Wanjie Natural Gas Co
Liquified Nat. Gas/Inner Mongolia
D14R6B (Section2) / OperCond: Summer (RATED) HP
16.103
44.722
37.86
104
153.38
bar A
bar A
°C
°C
m³/min
31.878
0.9060
0.8936
1.188
100% Speed 9254 RPM
Inlet capacity based on process flow
Discharge Mass Flow rate shown on data sheets
MUST be used for sizing process equipment.
-7SL_Technip Wanjie_R04
-7SL_Technip Wanjie_R04
ncortez
2/26/2014
2/26/2014
6425 m^3/hr
7084 m^3/hr
7774 m^3/hr 8493 m^3/hr
9232 m^3/hr
10009 m^3/hr
10727 m^3/hr
11395 m^3/hr
4489 m^3/hr
4862 m^3/hr
5235 m^3/hr
5609 m^3/hr
5982 m^3/hr 6383 m^3/hr
6787 m^3/hr
7200 m^3/hr
Step2:
Transfer both surge and choke limits of second stage in "Discharge volume flow rate vs. inlet
volume flow rate" curves derived earlier (see next page).
16000
18000
Discharge volume flow rate_cooled (m3/hr) vs. Actual inlet volume flow rate (m3/hr) for [FZLP old]
12000
14000
6000
8000
10000
4000
6000
20000 25000 30000 35000 40000 45000 50000
11395 m^3/hr
10727 m^3/hr
10009 m^3/hr
9232 m^3/hr
42800 m^3/hr
44570 m^3/hr
39400 m^3/hr33550 m^3/hr
105% speed
100% speed
95% speed90% speed85% speed80% speed75% speed
70% speed
Choke limit
Surge limit
140000
160000
Polytropic head (J/kg) vs. Actual inlet volume flow rate (m3/hr) for [FZLP old]
100000
120000
60000
80000
100000
40000
60000
20000 25000 30000 35000 40000 45000 50000
33550 m^3/hr, 103300 J/kg
39400 m^3/hr, 110000 J/kg
44570 m^3/hr, 115200 J/kg
42800 m^3/hr, 146500 J/kg
LP stage duty point
70% speed
75% speed
80% speed
85% speed
90% speed
95% speed
100% speed
105% speed
Choke limit
Surge limit
The area shaded in green (approximately 1/3 of overall area) is
operable range on stage 1 compression; this restriction is due to
aero-dynamic mismatch between stage 1 and stage 2 compressions.
Operating below this line
(on 1st stage) would cause
overloading (choke) on the
2nd stage.

More Related Content

Viewers also liked (7)

1975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A11975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A1
 
1200 5
1200 51200 5
1200 5
 
432 1
432 1432 1
432 1
 
4648
46484648
4648
 
Gen. ref. book
Gen. ref. bookGen. ref. book
Gen. ref. book
 
Lean Self Pocket Edition (Preview)
Lean Self Pocket Edition (Preview)Lean Self Pocket Edition (Preview)
Lean Self Pocket Edition (Preview)
 
Genetics of bipolar disorder
Genetics of bipolar disorderGenetics of bipolar disorder
Genetics of bipolar disorder
 

Similar to Attachment 4_How to trim LP stage flow limits for 2-stage compressions

Googol gas generaor model list 20kW-200kW
Googol gas generaor model list 20kW-200kWGoogol gas generaor model list 20kW-200kW
Googol gas generaor model list 20kW-200kWMark Wang
 
Googol gas generaor model list 20kW-200kW
Googol gas generaor model list 20kW-200kWGoogol gas generaor model list 20kW-200kW
Googol gas generaor model list 20kW-200kWMark Wang
 
Googol gas generaor model list
Googol gas generaor model listGoogol gas generaor model list
Googol gas generaor model listMark Wang
 
6 ta data sheet - flypartsguy.com - 8.2018
6 ta   data sheet - flypartsguy.com -  8.20186 ta   data sheet - flypartsguy.com -  8.2018
6 ta data sheet - flypartsguy.com - 8.2018FrankEasel
 
6 na data - flypartsguy.com - 1.2018
6 na   data - flypartsguy.com - 1.20186 na   data - flypartsguy.com - 1.2018
6 na data - flypartsguy.com - 1.2018FrankEasel
 
10 na data sheet - flypartsguy.com - 9.2018
10 na   data sheet - flypartsguy.com - 9.201810 na   data sheet - flypartsguy.com - 9.2018
10 na data sheet - flypartsguy.com - 9.2018FrankEasel
 
10 DTL flow rate and tank volume calculation.pptx
10 DTL flow rate and tank volume calculation.pptx10 DTL flow rate and tank volume calculation.pptx
10 DTL flow rate and tank volume calculation.pptxHusseinJabbar6
 
10 ta data sheet - flypartsguy.com - 8.2018
10 ta   data sheet - flypartsguy.com - 8.201810 ta   data sheet - flypartsguy.com - 8.2018
10 ta data sheet - flypartsguy.com - 8.2018FrankEasel
 
13 ta data sheet - flypartsguy.com - 10.2018
13 ta   data sheet - flypartsguy.com - 10.201813 ta   data sheet - flypartsguy.com - 10.2018
13 ta data sheet - flypartsguy.com - 10.2018FrankEasel
 
Study Of Knock Phenomenon Predicted Bywave 7
Study Of Knock Phenomenon Predicted Bywave 7Study Of Knock Phenomenon Predicted Bywave 7
Study Of Knock Phenomenon Predicted Bywave 7Anupam Dhyani
 
Groschopp 02010 specsheet
Groschopp 02010 specsheetGroschopp 02010 specsheet
Groschopp 02010 specsheetElectromate
 
Groschopp 02010 specsheet
Groschopp 02010 specsheetGroschopp 02010 specsheet
Groschopp 02010 specsheetElectromate
 
Groschopp 02010 specsheet
Groschopp 02010 specsheetGroschopp 02010 specsheet
Groschopp 02010 specsheetElectromate
 
096000-4940 plano de teste denso
096000-4940 plano de teste denso096000-4940 plano de teste denso
096000-4940 plano de teste densoJunior Iung
 
Радиально-поршневые гидромоторы Hägglunds CA Bosch Rexroth
Радиально-поршневые гидромоторы Hägglunds CA Bosch RexrothРадиально-поршневые гидромоторы Hägglunds CA Bosch Rexroth
Радиально-поршневые гидромоторы Hägglunds CA Bosch RexrothArve
 
Groschopp 02008 specsheet
Groschopp 02008 specsheetGroschopp 02008 specsheet
Groschopp 02008 specsheetElectromate
 
Groschopp 02008 specsheet
Groschopp 02008 specsheetGroschopp 02008 specsheet
Groschopp 02008 specsheetElectromate
 
Groschopp 02008 specsheet
Groschopp 02008 specsheetGroschopp 02008 specsheet
Groschopp 02008 specsheetElectromate
 

Similar to Attachment 4_How to trim LP stage flow limits for 2-stage compressions (20)

Googol gas generaor model list 20kW-200kW
Googol gas generaor model list 20kW-200kWGoogol gas generaor model list 20kW-200kW
Googol gas generaor model list 20kW-200kW
 
Googol gas generaor model list 20kW-200kW
Googol gas generaor model list 20kW-200kWGoogol gas generaor model list 20kW-200kW
Googol gas generaor model list 20kW-200kW
 
Googol gas generaor model list
Googol gas generaor model listGoogol gas generaor model list
Googol gas generaor model list
 
6 ta data sheet - flypartsguy.com - 8.2018
6 ta   data sheet - flypartsguy.com -  8.20186 ta   data sheet - flypartsguy.com -  8.2018
6 ta data sheet - flypartsguy.com - 8.2018
 
461
461461
461
 
6 na data - flypartsguy.com - 1.2018
6 na   data - flypartsguy.com - 1.20186 na   data - flypartsguy.com - 1.2018
6 na data - flypartsguy.com - 1.2018
 
10 na data sheet - flypartsguy.com - 9.2018
10 na   data sheet - flypartsguy.com - 9.201810 na   data sheet - flypartsguy.com - 9.2018
10 na data sheet - flypartsguy.com - 9.2018
 
10 DTL flow rate and tank volume calculation.pptx
10 DTL flow rate and tank volume calculation.pptx10 DTL flow rate and tank volume calculation.pptx
10 DTL flow rate and tank volume calculation.pptx
 
10 ta data sheet - flypartsguy.com - 8.2018
10 ta   data sheet - flypartsguy.com - 8.201810 ta   data sheet - flypartsguy.com - 8.2018
10 ta data sheet - flypartsguy.com - 8.2018
 
13 ta data sheet - flypartsguy.com - 10.2018
13 ta   data sheet - flypartsguy.com - 10.201813 ta   data sheet - flypartsguy.com - 10.2018
13 ta data sheet - flypartsguy.com - 10.2018
 
Niva Hava Perdesi Katolog 2021
Niva Hava Perdesi Katolog 2021Niva Hava Perdesi Katolog 2021
Niva Hava Perdesi Katolog 2021
 
Study Of Knock Phenomenon Predicted Bywave 7
Study Of Knock Phenomenon Predicted Bywave 7Study Of Knock Phenomenon Predicted Bywave 7
Study Of Knock Phenomenon Predicted Bywave 7
 
Groschopp 02010 specsheet
Groschopp 02010 specsheetGroschopp 02010 specsheet
Groschopp 02010 specsheet
 
Groschopp 02010 specsheet
Groschopp 02010 specsheetGroschopp 02010 specsheet
Groschopp 02010 specsheet
 
Groschopp 02010 specsheet
Groschopp 02010 specsheetGroschopp 02010 specsheet
Groschopp 02010 specsheet
 
096000-4940 plano de teste denso
096000-4940 plano de teste denso096000-4940 plano de teste denso
096000-4940 plano de teste denso
 
Радиально-поршневые гидромоторы Hägglunds CA Bosch Rexroth
Радиально-поршневые гидромоторы Hägglunds CA Bosch RexrothРадиально-поршневые гидромоторы Hägglunds CA Bosch Rexroth
Радиально-поршневые гидромоторы Hägglunds CA Bosch Rexroth
 
Groschopp 02008 specsheet
Groschopp 02008 specsheetGroschopp 02008 specsheet
Groschopp 02008 specsheet
 
Groschopp 02008 specsheet
Groschopp 02008 specsheetGroschopp 02008 specsheet
Groschopp 02008 specsheet
 
Groschopp 02008 specsheet
Groschopp 02008 specsheetGroschopp 02008 specsheet
Groschopp 02008 specsheet
 

More from CangTo Cheah

Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aPeng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aCangTo Cheah
 
A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...CangTo Cheah
 
1975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B11975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B1CangTo Cheah
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009CangTo Cheah
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009CangTo Cheah
 
Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010CangTo Cheah
 
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010CangTo Cheah
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010CangTo Cheah
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...CangTo Cheah
 
Campbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCampbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCangTo Cheah
 
automation of PRNAT phase mapper
automation of PRNAT phase mapperautomation of PRNAT phase mapper
automation of PRNAT phase mapperCangTo Cheah
 
East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014CangTo Cheah
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flashCangTo Cheah
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010CangTo Cheah
 
Attachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportAttachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportCangTo Cheah
 
Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012CangTo Cheah
 

More from CangTo Cheah (20)

LP_point_6_(LtR)
LP_point_6_(LtR)LP_point_6_(LtR)
LP_point_6_(LtR)
 
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aPeng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
 
A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...
 
1975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B11975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B1
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009
 
Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010
 
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
 
Campbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCampbell interference plot_Wheatstone
Campbell interference plot_Wheatstone
 
nv and kv
nv and kvnv and kv
nv and kv
 
nt and kt
nt and ktnt and kt
nt and kt
 
automation of PRNAT phase mapper
automation of PRNAT phase mapperautomation of PRNAT phase mapper
automation of PRNAT phase mapper
 
East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flash
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010
 
Attachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportAttachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection report
 
Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012
 
Final stage T2
Final stage T2Final stage T2
Final stage T2
 

Attachment 4_How to trim LP stage flow limits for 2-stage compressions

  • 1. ©2007 Dresser-Rand Company Contract / Sales File # DR Reference File: DR Curve Reference: Plotted By: Date Created: Revision: Revision Date: MW Zs Zavg pKavg Ps Pd Ts Td Flow Basis of Curves Comments Volume Flow, m³/min PolytropicHead,kJ/kg 350 400 450 500 550 600 650 700 750 800 850 25 50 75 100 125 150 175 105.00 % 100.00 % 95.00 % 90.00 % 85.00 % 80.00 % 75.01 % 70.00 % Polytropic Head Vs Volume Flow Volume Flow, m³/min PolytropicEfficiency 350 400 450 500 550 600 650 700 750 800 850 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 105.00% 100.00% 95.00% 90.00% 85.00% 80.00% 75.01% 70.00% Polytropic Efficiency Vs Volume Flow PREDICTED PERFORMANCE CURVES TECHNIP/Fengzhen Wanjie Natural Gas Co Liquified Nat. Gas/Inner Mongolia D14R6B (Section1) / OperCond: Summer (RATED) LP 3.8100 16.703 27.74 113 734.45 bar A bar A °C °C m³/min 34.214 0.9724 0.9677 1.163 100% Speed 9254 RPM Inlet capacity based on process flow Discharge Mass Flow rate shown on data sheets MUST be used for sizing process equipment. -7SL_Technip Wanjie_R04 -7SL_Technip Wanjie_R04 ncortez 2/26/2014 2/26/2014 For the sake of extended operating flexibility (i.e. greater flow range), most of the centrifugal compressions in the oil and gas industries are designed (aero-dynamically and rotor-dynamically) to operate in between 70% to 105% of design speed. The minimum speed (70% of design speed) curve is achievable in most of single stage machine (aero and rotor- dynamically), however it may not be aero-dynamically feasible for multi-stage compressions. To illustrate this idea, consider point "A" and "B" in the Head vs. Volume flow curve marked in this page. Discharge volume flow rates are calculated as follows (based on suction pressure 3.81 barA and suction temperature 27.74 deg. C):- 1) Point A: Discharge volume flow rate = 11141 m^3/hr (inter-cooled at 37.86 deg. C) 2) Point B: Discharge volume flow rate = 15514 m^3/hr (inter-cooled at 37.86 deg. C) Transferring these volume flow rates into HP stage (see next page), it can be seen that these rates are located way beyond the choke limit of HP compression stage. Point "B" Point "A"
  • 2. ©2007 Dresser-Rand Company Contract / Sales File # DR Reference File: DR Curve Reference: Plotted By: Date Created: Revision: Revision Date: MW Zs Zavg pKavg Ps Pd Ts Td Flow Basis of Curves Comments Volume Flow, m³/min PolytropicHead,kJ/kg 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 20 30 40 50 60 70 80 90 100 110 105.00 % 100.00 % 95.00 % 90.00 % 85.00 % 80.00 % 75.01 % 70.00 % Polytropic Head Vs Volume Flow Volume Flow, m³/min PolytropicEfficiency 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 105.00% 100.00% 95.00% 90.00% 85.00% 80.00% 75.01% 70.00% Polytropic Efficiency Vs Volume Flow PREDICTED PERFORMANCE CURVES TECHNIP/Fengzhen Wanjie Natural Gas Co Liquified Nat. Gas/Inner Mongolia D14R6B (Section2) / OperCond: Summer (RATED) HP 16.103 44.722 37.86 104 153.38 bar A bar A °C °C m³/min 31.878 0.9060 0.8936 1.188 100% Speed 9254 RPM Inlet capacity based on process flow Discharge Mass Flow rate shown on data sheets MUST be used for sizing process equipment. -7SL_Technip Wanjie_R04 -7SL_Technip Wanjie_R04 ncortez 2/26/2014 2/26/2014 11141 m^3/hr (or 185.68 m^3/min) 15514 m^3/hr (or 258.57 m^3/min)
  • 3. 16000 18000 Discharge volume flow rate_cooled (m3/hr) vs. Actual inlet volume flow rate (m3/hr) for [FZLP old] 12000 14000 8000 10000 12000 6000 8000 20000 25000 30000 35000 40000 45000 50000 105% speed 100% speed 95% speed 90% speed 85% speed 80% speed 75% speed 70% speed Surge limit Choke limitStep1: Calculate discharge volume flow rates from stage one discharge flange that go into second stage across the entire performance envelope. Note: If there is inter-stage cooling (which is applicable for most high head back-to-back machines), volume flow rates that enter second stage must be tuned accordingly.
  • 4. ©2007 Dresser-Rand Company Contract / Sales File # DR Reference File: DR Curve Reference: Plotted By: Date Created: Revision: Revision Date: MW Zs Zavg pKavg Ps Pd Ts Td Flow Basis of Curves Comments Volume Flow, m³/min DischargePressure,barA 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 20 25 30 35 40 45 50 55 60 105.00% 100.00% 95.00% 90.00% 85.00 % 80.00 %75.01 %70.00 % Discharge Pressure Vs Volume Flow Volume Flow, m³/min BrakePower,kW@Ps=16.1bar POWER=PWRcrvXPs/16.1bar 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 750 1500 2250 3000 3750 4500 5250 6000 6750 7500 105.00% 100.00% 95.00 % 90.00 % 85.00 % 80.00 % 75.01% 70.00% Brake Power Vs Volume Flow PREDICTED PERFORMANCE CURVES TECHNIP/Fengzhen Wanjie Natural Gas Co Liquified Nat. Gas/Inner Mongolia D14R6B (Section2) / OperCond: Summer (RATED) HP 16.103 44.722 37.86 104 153.38 bar A bar A °C °C m³/min 31.878 0.9060 0.8936 1.188 100% Speed 9254 RPM Inlet capacity based on process flow Discharge Mass Flow rate shown on data sheets MUST be used for sizing process equipment. -7SL_Technip Wanjie_R04 -7SL_Technip Wanjie_R04 ncortez 2/26/2014 2/26/2014 6425 m^3/hr 7084 m^3/hr 7774 m^3/hr 8493 m^3/hr 9232 m^3/hr 10009 m^3/hr 10727 m^3/hr 11395 m^3/hr 4489 m^3/hr 4862 m^3/hr 5235 m^3/hr 5609 m^3/hr 5982 m^3/hr 6383 m^3/hr 6787 m^3/hr 7200 m^3/hr Step2: Transfer both surge and choke limits of second stage in "Discharge volume flow rate vs. inlet volume flow rate" curves derived earlier (see next page).
  • 5. 16000 18000 Discharge volume flow rate_cooled (m3/hr) vs. Actual inlet volume flow rate (m3/hr) for [FZLP old] 12000 14000 6000 8000 10000 4000 6000 20000 25000 30000 35000 40000 45000 50000 11395 m^3/hr 10727 m^3/hr 10009 m^3/hr 9232 m^3/hr 42800 m^3/hr 44570 m^3/hr 39400 m^3/hr33550 m^3/hr 105% speed 100% speed 95% speed90% speed85% speed80% speed75% speed 70% speed Choke limit Surge limit
  • 6. 140000 160000 Polytropic head (J/kg) vs. Actual inlet volume flow rate (m3/hr) for [FZLP old] 100000 120000 60000 80000 100000 40000 60000 20000 25000 30000 35000 40000 45000 50000 33550 m^3/hr, 103300 J/kg 39400 m^3/hr, 110000 J/kg 44570 m^3/hr, 115200 J/kg 42800 m^3/hr, 146500 J/kg LP stage duty point 70% speed 75% speed 80% speed 85% speed 90% speed 95% speed 100% speed 105% speed Choke limit Surge limit The area shaded in green (approximately 1/3 of overall area) is operable range on stage 1 compression; this restriction is due to aero-dynamic mismatch between stage 1 and stage 2 compressions. Operating below this line (on 1st stage) would cause overloading (choke) on the 2nd stage.