SlideShare a Scribd company logo
1 of 23
Download to read offline
200
Wheatstone Initial Plateau, Summer duty: Discharge pressure (bara) vs inlet volume flow rate (m3/hr)
200
Red Line: Dresser Rand
Blue Line: Everywheel
180
160
140
120
100
80
8500 10500 12500 14500 16500 18500 20500 22500 24500 26500
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
4270 rpm
4880 rpm
5490 rpm
6100 rpm
6405 rpm
By: Cheah CangTo
Date: 30 December 2010
890.7 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 9302.39 meter
Date: Input 45.9 91225.27 J/kg
Process stage: Single 129.0100 3100.80 meter
Driver type: Gas turbine NaceCS 30408.42 J/kg
Number of wheels 3 -
Bearing loss, kW: 47.86 Gas data Mol % Impeller diameter 398.18 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 255.12 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 261.91 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1393 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.96 %
1 1.2877 1.2841 0.8982 0.9014 5217.00 1.4210 1.4284 1.3593 1.3538 Oxygen 0.0000 Rotational speed 12236.84 rpm
2 1.2841 1.2802 0.9014 0.9054 5217.00 1.4187 1.4288 1.3479 1.3422 Methane 82.9700 k1 1.4732 -
3 1.2802 1.2762 0.9054 0.9105 5217.00 1.4255 1.4387 1.3402 1.3344 15822 Ethane 4.2890 k2 1.4448 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:45
3 1.2802 1.2762 0.9054 0.9105 5217.00 1.4255 1.4387 1.3402 1.3344 15822 Ethane 4.2890 k2 1.4448
4 1.2762 1.2720 0.9105 0.9169 5217.00 1.4402 1.4566 1.3352 1.3291 Propane 1.7600 Z1 0.8982 -
5 1.2720 1.2676 0.9169 0.9248 5217.00 1.4616 1.4815 1.3319 1.3257 i-Butane 0.3198 Z2 0.9339 -
6 1.2676 1.2632 0.9248 0.9344 5217.00 1.4888 1.5121 1.3297 1.3234 P2 129.01 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 890.700 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 15927.4 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 874194 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 37.28 356.35 74.73 416.79 268.74 49.86 34.88 73.4382 54.51 276.84 187.33 0.0639 0.2842 0.1407 CFD 83.62% 0.71025548 14903.80 12462.88 17
2 685.80 35.30 354.14 71.24 414.20 274.20 49.06 34.61 81.8384 63.74 278.09 187.33 0.0595 0.2798 0.1361 CFD 85.10% 0.78339592 16152.73 13746.28 17
3 685.80 33.34 351.96 67.68 411.65 279.83 48.27 34.31 91.6697 73.52 279.36 187.33 0.0552 0.2751 0.1314 CFD 85.63% 0.84880255 17393.49 14893.97 17
4 685.80 31.43 349.85 64.10 409.19 285.43 47.51 34.01 103.0112 83.76 280.62 187.33 0.0510 0.2704 0.1267 CFD 85.39% 0.90463039 18589.16 15873.59 17
5 685.80 29.63 347.85 60.60 406.84 290.83 46.80 33.71 115.9171 94.33 281.84 187.33 0.0470 0.2658 0.1222 CFD 84.63% 0.95064104 19711.40 16680.94 17
6 685.80 27.93 347.60 58.14 406.55 295.89 46.14 33.48 130.4220 105.16 282.98 187.33 0.0434 0.2612 0.1154 CFD 83.55% 0.98770287 20742.86 17331.26 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
107493.45 90988.92
Notes: Overall polytropic efficiency = 84.65%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 26102.82
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 9278.29
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
108,980
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 35,231
105% speed
33,142
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
28,980
38,980
48,980
58,980
68,980
78,980
88,980
98,980
108,980
9,477 11,477 13,477 15,477 17,477 19,477 21,477
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 35,231
surge
Stonewall
105% speed
8,142
13,142
18,142
23,142
28,142
33,142
9477 11477 13477 15477 17477 19477 21477
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
498.19 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 7494.51 meter
Date: Input 45.9 73495.99 J/kg
Process stage: Single 115.0000 3747.25 meter
Driver type: Gas turbine NaceCS 36748.00 J/kg
Number of wheels 2 -
Bearing loss, kW: 32.06 Gas data Mol % Impeller diameter 296.39 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 277.86 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 263.19 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1291 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.85 %
1 1.2877 1.2843 0.8982 0.9012 4270.00 1.4208 1.4277 1.3592 1.3541 Oxygen 0.0000 Rotational speed 17904.99 rpm
2 1.2843 1.2809 0.9012 0.9048 4270.00 1.4346 1.4429 1.3582 1.3530 Methane 82.9700 k1 1.4732 -
3 1.2809 1.2775 0.9048 0.9091 4270.00 1.4504 1.4603 1.3573 1.3521 15822 Ethane 4.2890 k2 1.4506 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 16:42
3 1.2809 1.2775 0.9048 0.9091 4270.00 1.4504 1.4603 1.3573 1.3521 15822 Ethane 4.2890 k2 1.4506
4 1.2775 1.2740 0.9091 0.9141 4270.00 1.4680 1.4794 1.3565 1.3512 Propane 1.7600 Z1 0.8982 -
5 1.2740 1.2706 0.9141 0.9199 4270.00 1.4872 1.5003 1.3556 1.3503 i-Butane 0.3198 Z2 0.9243 -
6 1.2706 1.2671 0.9199 0.9264 4270.00 1.5080 1.5225 1.3546 1.3494 P2 115 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 498.190 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 8908.6 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 488958 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 28.18 346.12 57.66 404.81 295.49 46.19 33.44 72.9201 53.91 282.89 153.33 0.0437 0.2616 0.1043 CFD 83.65% 0.98497430 13841.66 11578.25 17
2 685.80 26.82 344.63 54.97 403.07 299.45 45.69 33.20 80.1060 62.07 283.79 153.33 0.0409 0.2579 0.1014 CFD 82.64% 1.01062995 14374.94 11879.83 17
3 685.80 25.53 343.20 52.44 401.41 303.14 45.22 32.98 87.9311 70.35 284.63 153.33 0.0383 0.2544 0.0986 CFD 81.59% 1.03198600 14867.76 12130.86 17
4 685.80 24.33 341.85 50.04 399.83 306.56 44.79 32.77 96.4073 78.71 285.42 153.33 0.0359 0.2509 0.0959 CFD 80.54% 1.04974271 15320.63 12339.59 17
5 685.80 23.21 340.56 47.79 398.32 309.70 44.40 32.57 105.5447 87.12 286.14 153.33 0.0338 0.2477 0.0933 CFD 79.52% 1.06452579 15735.15 12513.37 17
6 685.80 22.17 340.79 46.50 398.59 312.58 44.04 32.45 115.3522 95.55 286.82 153.33 0.0318 0.2446 0.0889 CFD 78.56% 1.07686980 16113.52 12658.47 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
90253.67 73100.37
Notes: Overall polytropic efficiency = 80.99%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 12258.40
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 7454.16
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
83,282
93,282
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
Trip speed, 16,545
105% speed
15,824
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
23,282
33,282
43,282
53,282
63,282
73,282
83,282
93,282
5,301 6,301 7,301 8,301 9,301 10,301 11,301
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 16,545
surge
Stonewall
105% speed
3,824
5,824
7,824
9,824
11,824
13,824
15,824
5301 6301 7301 8301 9301 10301 11301
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
678.26 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 6144.88 meter
Date: Input 45.9 60260.73 J/kg
Process stage: Single 105.0000 3072.44 meter
Driver type: Gas turbine NaceCS 30130.36 J/kg
Number of wheels 2 -
Bearing loss, kW: 32.06 Gas data Mol % Impeller diameter 346.70 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 254.22 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 261.79 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1404 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.86 %
1 1.2877 1.2850 0.8982 0.9004 4270.00 1.4111 1.4166 1.3533 1.3493 Oxygen 0.0000 Rotational speed 14004.43 rpm
2 1.2850 1.2823 0.9004 0.9031 4270.00 1.4137 1.4205 1.3476 1.3435 Methane 82.9700 k1 1.4732 -
3 1.2823 1.2795 0.9031 0.9062 4270.00 1.4202 1.4284 1.3434 1.3392 15822 Ethane 4.2890 k2 1.4529 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 16:46
3 1.2823 1.2795 0.9031 0.9062 4270.00 1.4202 1.4284 1.3434 1.3392 15822 Ethane 4.2890 k2 1.4529
4 1.2795 1.2765 0.9062 0.9100 4270.00 1.4302 1.4398 1.3403 1.3360 Propane 1.7600 Z1 0.8982 -
5 1.2765 1.2736 0.9100 0.9143 4270.00 1.4433 1.4544 1.3380 1.3337 i-Butane 0.3198 Z2 0.9186 -
6 1.2736 1.2705 0.9143 0.9194 4270.00 1.4591 1.4718 1.3363 1.3319 P2 105 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 678.260 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 12128.6 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 665691 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 35.83 354.11 71.01 414.17 274.27 49.05 34.60 71.5519 52.21 278.11 153.33 0.0595 0.2797 0.1129 CFD 85.12% 0.78435929 10832.41 9220.04 17
2 685.80 34.40 352.57 68.48 412.36 278.24 48.49 34.40 77.3599 58.80 279.00 153.33 0.0564 0.2764 0.1102 CFD 85.57% 0.83134595 11420.54 9772.37 17
3 685.80 32.99 351.06 65.97 410.59 282.22 47.95 34.18 83.8113 65.63 279.90 153.33 0.0534 0.2731 0.1075 CFD 85.61% 0.87367957 11996.44 10269.99 17
4 685.80 31.62 349.59 63.48 408.88 286.14 47.42 33.97 90.9279 72.68 280.78 153.33 0.0505 0.2698 0.1048 CFD 85.32% 0.91108255 12552.68 10709.66 17
5 685.80 30.30 348.18 61.03 407.22 289.95 46.91 33.76 98.7268 79.91 281.64 153.33 0.0477 0.2665 0.1021 CFD 84.78% 0.94363047 13083.56 11092.26 17
6 685.80 29.03 348.47 59.53 407.57 293.60 46.44 33.61 107.2215 87.28 282.46 153.33 0.0450 0.2633 0.0976 CFD 84.07% 0.97164245 13585.15 11421.53 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
73470.77 62485.85
Notes: Overall polytropic efficiency = 85.05%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 13585.79
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 6371.78
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d69,902
79,902
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
Trip speed, 18,337
105% speed
16 238
18,238
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
19,902
29,902
39,902
49,902
59,902
69,902
79,902
7,217 8,217 9,217 10,217 11,217 12,217 13,217 14,217 15,217 16,217
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 18,337
surge
Stonewall
105% speed
4,238
6,238
8,238
10,238
12,238
14,238
16,238
18,238
7217 8217 9217 10217 11217 12217 13217 14217 15217 16217
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
826.79 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 4717.30 meter
Date: Input 45.9 46260.91 J/kg
Process stage: Single 95.0000 2358.65 meter
Driver type: Gas turbine NaceCS 23130.46 J/kg
Number of wheels 2 -
Bearing loss, kW: 32.06 Gas data Mol % Impeller diameter 383.40 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 226.45 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 260.28 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1571 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 82.24 %
1 1.2877 1.2857 0.8982 0.9002 4270.00 1.4669 1.4702 1.3871 1.3837 Oxygen 0.0000 Rotational speed 11280.36 rpm
2 1.2857 1.2836 0.9002 0.9023 4270.00 1.4517 1.4559 1.3727 1.3693 Methane 82.9700 k1 1.4732 -
3 1.2836 1.2814 0.9023 0.9047 4270.00 1.4413 1.4466 1.3607 1.3572 15822 Ethane 4.2890 k2 1.4551 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 16:50
3 1.2836 1.2814 0.9023 0.9047 4270.00 1.4413 1.4466 1.3607 1.3572 15822 Ethane 4.2890 k2 1.4551
4 1.2814 1.2791 0.9047 0.9073 4270.00 1.4357 1.4421 1.3508 1.3473 Propane 1.7600 Z1 0.8982 -
5 1.2791 1.2767 0.9073 0.9104 4270.00 1.4344 1.4421 1.3428 1.3392 i-Butane 0.3198 Z2 0.9133 -
6 1.2767 1.2742 0.9104 0.9139 4270.00 1.4373 1.4464 1.3365 1.3329 P2 95 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 826.790 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 14784.6 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 811469 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 42.02 360.76 80.50 421.95 258.75 50.00 35.36 69.9735 50.64 274.53 153.33 0.0725 0.2924 0.1193 CFD 77.51% 0.55059383 8350.23 6472.16 17
2 685.80 40.82 359.43 78.63 420.38 261.65 50.00 35.23 74.0636 55.66 275.21 153.33 0.0699 0.2900 0.1172 CFD 79.82% 0.60026972 8840.20 7056.09 17
3 685.80 39.58 358.05 76.68 418.77 264.76 50.00 35.08 78.6791 60.95 275.93 153.33 0.0673 0.2874 0.1149 CFD 81.79% 0.65059627 9350.92 7647.68 17
4 685.80 38.30 356.64 74.63 417.12 268.05 49.96 34.92 83.8658 66.51 276.69 153.33 0.0645 0.2848 0.1127 CFD 83.36% 0.70035049 9876.45 8232.53 17
5 685.80 37.01 355.23 72.50 415.47 271.49 49.45 34.74 89.6644 72.34 277.47 153.33 0.0617 0.2820 0.1103 CFD 84.50% 0.74834165 10409.87 8796.66 17
6 685.80 35.70 355.63 71.21 415.94 275.02 48.95 34.62 96.1096 78.40 278.27 153.33 0.0589 0.2791 0.1060 CFD 85.24% 0.79355351 10943.91 9328.12 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
57771.58 47533.25
Notes: Overall polytropic efficiency = 82.28%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 13022.17
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 4847.04
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
55,139
60,139
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
Trip speed, 17,576
105% speed16,062
18,062
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
15,139
20,139
25,139
30,139
35,139
40,139
45,139
50,139
55,139
60,139
8,797 10,797 12,797 14,797 16,797 18,797
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 17,576
surge
Stonewall
105% speed
4,062
6,062
8,062
10,062
12,062
14,062
16,062
18,062
8797 10797 12797 14797 16797 18797
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
921.35 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 3183.99 meter
Date: Input 45.9 31224.27 J/kg
Process stage: Single 85.0000 3183.99 meter
Driver type: Gas turbine NaceCS 31224.27 J/kg
Number of wheels 1 -
Bearing loss, kW: 32.06 Gas data Mol % Impeller diameter 405.09 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 258.12 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 262.11 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1376 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.12 %
1 1.2877 1.2861 0.8982 0.9001 4270.00 1.5731 1.5744 1.4487 1.4456 Oxygen 0.0000 Rotational speed 12169.26 rpm
2 1.2861 1.2845 0.9001 0.9020 4270.00 1.5420 1.5441 1.4272 1.4241 Methane 82.9700 k1 1.4732 -
3 1.2845 1.2828 0.9020 0.9041 4270.00 1.5155 1.5184 1.4078 1.4047 15822 Ethane 4.2890 k2 1.4603 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 16:53
3 1.2845 1.2828 0.9020 0.9041 4270.00 1.5155 1.5184 1.4078 1.4047 15822 Ethane 4.2890 k2 1.4603
4 1.2828 1.2810 0.9041 0.9063 4270.00 1.4938 1.4975 1.3905 1.3874 Propane 1.7600 Z1 0.8982 -
5 1.2810 1.2790 0.9063 0.9086 4270.00 1.4766 1.4812 1.3753 1.3722 i-Butane 0.3198 Z2 0.9071 -
6 1.2790 1.2770 0.9086 0.9112 4270.00 1.4640 1.4696 1.3622 1.3590 P2 85 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 921.350 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 16475.5 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 904276 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 46.00 365.20 85.89 427.14 250.04 50.00 35.76 68.8864 49.60 272.43 153.33 0.0808 0.3000 0.1231 CFD 67.26% 0.38734341 6769.98 4553.17 17
2 685.80 45.10 364.17 84.60 425.93 251.94 50.00 35.68 71.7246 53.52 272.90 153.33 0.0789 0.2983 0.1215 CFD 69.96% 0.42444049 7131.24 4989.24 17
3 685.80 44.14 363.07 83.25 424.65 254.05 50.00 35.58 74.9183 57.66 273.41 153.33 0.0769 0.2964 0.1198 CFD 72.64% 0.46468233 7519.60 5462.28 17
4 685.80 43.12 361.92 81.78 423.29 256.36 50.00 35.48 78.5139 62.03 273.96 153.33 0.0747 0.2944 0.1180 CFD 75.22% 0.50771592 7934.27 5968.14 17
5 685.80 42.05 360.70 80.19 421.87 258.89 50.00 35.36 82.5596 66.64 274.56 153.33 0.0724 0.2923 0.1161 CFD 77.63% 0.55297429 8373.48 6500.14 17
6 685.80 40.91 361.35 79.41 422.63 261.61 50.00 35.28 87.1040 71.50 275.20 153.33 0.0700 0.2900 0.1122 CFD 79.79% 0.59967513 8834.26 7049.11 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
46562.84 34522.08
Notes: Overall polytropic efficiency = 74.14%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 11696.02
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 3520.27
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
40,995
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
Trip speed, 15,786
105% speed
15,648
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
10,995
15,995
20,995
25,995
30,995
35,995
40,995
9,803 11,803 13,803 15,803 17,803 19,803 21,803
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 15,786
surge
Stonewall
105% speed
3,648
5,648
7,648
9,648
11,648
13,648
15,648
9803 11803 13803 15803 17803 19803 21803
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
620.74 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 9671.68 meter
Date: Input 45.9 94846.75 J/kg
Process stage: Single 132.0000 3223.89 meter
Driver type: Gas turbine NaceCS 31615.58 J/kg
Number of wheels 3 -
Bearing loss, kW: 41.88 Gas data Mol % Impeller diameter 331.43 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 259.73 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 262.10 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1376 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.12 %
1 1.2877 1.2835 0.8982 0.9019 4880.00 1.4134 1.4223 1.3547 1.3484 Oxygen 0.0000 Rotational speed 14967.02 rpm
2 1.2835 1.2793 0.9019 0.9066 4880.00 1.4294 1.4408 1.3527 1.3462 Methane 82.9700 k1 1.4732 -
3 1.2793 1.2750 0.9066 0.9125 4880.00 1.4495 1.4635 1.3513 1.3448 15822 Ethane 4.2890 k2 1.4440 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 16:56
3 1.2793 1.2750 0.9066 0.9125 4880.00 1.4495 1.4635 1.3513 1.3448 15822 Ethane 4.2890 k2 1.4440
4 1.2750 1.2706 0.9125 0.9196 4880.00 1.4730 1.4897 1.3501 1.3436 Propane 1.7600 Z1 0.8982 -
5 1.2706 1.2662 0.9196 0.9281 4880.00 1.4994 1.5188 1.3489 1.3424 i-Butane 0.3198 Z2 0.9358 -
6 1.2662 1.2619 0.9281 0.9378 4880.00 1.5285 1.5505 1.3476 1.3412 P2 132 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 620.740 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 11100.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 609237 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 29.80 348.16 61.36 407.20 290.00 46.91 33.75 74.6395 55.81 281.65 175.23 0.0476 0.2665 0.1218 CFD 84.77% 0.94402749 17097.60 14493.94 17
2 685.80 28.03 346.20 57.84 404.91 295.28 46.22 33.45 84.0030 66.03 282.84 175.23 0.0438 0.2618 0.1174 CFD 83.70% 0.98350715 18041.21 15100.08 17
3 685.80 26.37 344.35 54.53 402.74 300.18 45.59 33.16 94.4813 76.48 283.96 175.23 0.0404 0.2572 0.1133 CFD 82.44% 1.01506989 18903.95 15584.68 17
4 685.80 24.84 342.61 51.42 400.71 304.66 45.03 32.89 106.0990 87.08 284.98 175.23 0.0372 0.2528 0.1094 CFD 81.13% 1.04012944 19683.26 15969.42 17
5 685.80 23.44 340.98 48.55 398.80 308.71 44.52 32.63 118.8754 97.76 285.91 175.23 0.0344 0.2487 0.1057 CFD 79.85% 1.06001311 20381.41 16274.70 17
6 685.80 22.15 340.90 46.72 398.72 312.33 44.07 32.47 132.8252 108.45 286.76 175.23 0.0319 0.2449 0.0999 CFD 78.64% 1.07584725 21003.63 16517.81 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
115111.07 93940.64
Notes: Overall polytropic efficiency = 81.61%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 19480.53
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 9579.28
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
109,920
119,920
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 26,293
105% speed
26,076
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
29,920
39,920
49,920
59,920
69,920
79,920
89,920
99,920
109,920
119,920
6,605 7,605 8,605 9,605 10,605 11,605 12,605 13,605 14,605
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 26,293
surge
Stonewall
105% speed
6,076
11,076
16,076
21,076
26,076
6605 7605 8605 9605 10605 11605 12605 13605 14605
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
782.912 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 8548.55 meter
Date: Input 45.9 83832.60 J/kg
Process stage: Single 123.0000 2849.52 meter
Driver type: Gas turbine NaceCS 27944.20 J/kg
Number of wheels 3 -
Bearing loss, kW: 41.88 Gas data Mol % Impeller diameter 372.92 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 245.87 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 261.32 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1448 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.45 %
1 1.2877 1.2843 0.8982 0.9012 4880.00 1.4120 1.4192 1.3539 1.3487 Oxygen 0.0000 Rotational speed 12591.81 rpm
2 1.2843 1.2807 0.9012 0.9048 4880.00 1.4153 1.4247 1.3464 1.3411 Methane 82.9700 k1 1.4732 -
3 1.2807 1.2770 0.9048 0.9094 4880.00 1.4251 1.4369 1.3413 1.3359 15822 Ethane 4.2890 k2 1.4461 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 16:58
3 1.2807 1.2770 0.9048 0.9094 4880.00 1.4251 1.4369 1.3413 1.3359 15822 Ethane 4.2890 k2 1.4461
4 1.2770 1.2731 0.9094 0.9150 4880.00 1.4405 1.4548 1.3379 1.3323 Propane 1.7600 Z1 0.8982 -
5 1.2731 1.2692 0.9150 0.9218 4880.00 1.4606 1.4776 1.3356 1.3299 i-Butane 0.3198 Z2 0.9302 -
6 1.2692 1.2652 0.9218 0.9299 4880.00 1.4849 1.5046 1.3339 1.3281 P2 123 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 782.912 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 14000.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 768404 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 35.71 354.41 71.67 414.52 273.52 49.16 34.64 73.1083 54.03 277.93 175.23 0.0601 0.2803 0.1294 CFD 84.98% 0.77487085 14000.29 11896.83 17
2 685.80 33.90 352.42 68.41 412.19 278.62 48.44 34.38 80.9096 62.63 279.09 175.23 0.0561 0.2761 0.1254 CFD 85.59% 0.83558704 14989.14 12829.02 17
3 685.80 32.14 350.49 65.16 409.93 283.74 47.74 34.10 89.8234 71.63 280.24 175.23 0.0522 0.2719 0.1214 CFD 85.53% 0.88863967 15951.52 13643.56 17
4 685.80 30.44 348.63 61.95 407.75 288.73 47.07 33.82 99.8937 80.95 281.37 175.23 0.0486 0.2676 0.1175 CFD 84.98% 0.93356922 16867.37 14333.37 17
5 685.80 28.83 346.86 58.84 405.69 293.49 46.45 33.55 111.1520 90.51 282.44 175.23 0.0451 0.2634 0.1136 CFD 84.10% 0.97078374 17722.84 14904.74 17
6 685.80 27.31 346.81 56.75 405.62 297.94 45.88 33.35 123.6205 100.26 283.45 175.23 0.0420 0.2593 0.1077 CFD 83.04% 1.00118703 18510.36 15371.53 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
98041.51 82979.04
Notes: Overall polytropic efficiency = 84.64%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 20926.52
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 8461.51
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
96,429
106,429
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 28,244
105% speed
26,527
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
26,429
36,429
46,429
56,429
66,429
76,429
86,429
96,429
106,429
8,330 10,330 12,330 14,330 16,330 18,330
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 28,244
surge
Stonewall
105% speed
6,527
11,527
16,527
21,527
26,527
8330 10330 12330 14330 16330 18330
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
922.72 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 6827.90 meter
Date: Input 45.9 66958.84 J/kg
Process stage: Single 110.0000 3413.95 meter
Driver type: Gas turbine NaceCS 33479.42 J/kg
Number of wheels 2 -
Bearing loss, kW: 41.88 Gas data Mol % Impeller diameter 405.40 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 266.24 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 262.62 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1334 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.49 %
1 1.2877 1.2850 0.8982 0.9008 4880.00 1.4541 1.4589 1.3794 1.3749 Oxygen 0.0000 Rotational speed 12542.87 rpm
2 1.2850 1.2821 0.9008 0.9038 4880.00 1.4390 1.4455 1.3630 1.3585 Methane 82.9700 k1 1.4732 -
3 1.2821 1.2790 0.9038 0.9073 4880.00 1.4318 1.4403 1.3504 1.3458 15822 Ethane 4.2890 k2 1.4518 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:01
3 1.2821 1.2790 0.9038 0.9073 4880.00 1.4318 1.4403 1.3504 1.3458 15822 Ethane 4.2890 k2 1.4518
4 1.2790 1.2758 0.9073 0.9115 4880.00 1.4319 1.4426 1.3409 1.3361 Propane 1.7600 Z1 0.8982 -
5 1.2758 1.2724 0.9115 0.9166 4880.00 1.4388 1.4519 1.3340 1.3291 i-Butane 0.3198 Z2 0.9214 -
6 1.2724 1.2689 0.9166 0.9226 4880.00 1.4518 1.4673 1.3291 1.3241 P2 110 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 922.720 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 16500.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 905621 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 40.80 359.88 79.55 420.91 260.66 50.00 35.27 71.3968 52.36 274.98 175.23 0.0708 0.2908 0.1354 CFD 79.08% 0.58361017 11330.10 8960.34 17
2 685.80 39.19 358.09 76.98 418.81 264.66 50.00 35.08 77.3008 59.29 275.91 175.23 0.0673 0.2875 0.1321 CFD 81.73% 0.64911296 12193.44 9966.03 17
3 685.80 37.54 356.25 74.27 416.67 268.99 49.82 34.87 84.1741 66.68 276.90 175.23 0.0637 0.2840 0.1287 CFD 83.71% 0.71384006 13091.81 10959.80 17
4 685.80 35.87 354.40 71.42 414.51 273.55 49.16 34.64 92.1049 74.51 277.94 175.23 0.0601 0.2803 0.1251 CFD 84.98% 0.77520064 14005.40 11901.89 17
5 685.80 34.21 352.58 68.48 412.37 278.22 48.50 34.40 101.1642 82.72 279.00 175.23 0.0564 0.2765 0.1215 CFD 85.57% 0.83114505 14913.20 12760.82 17
6 685.80 32.57 352.55 66.43 412.34 282.90 47.85 34.20 111.4051 91.27 280.05 175.23 0.0529 0.2726 0.1157 CFD 85.58% 0.88045777 15795.69 13517.94 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
81329.64 68066.83
Notes: Overall polytropic efficiency = 83.69%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 20459.40
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 6940.88
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
81,679
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 27,614
105% speed
26,381
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
21,679
31,679
41,679
51,679
61,679
71,679
81,679
9,818 11,818 13,818 15,818 17,818 19,818 21,818
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 27,614
surge
Stonewall
105% speed
6,381
11,381
16,381
21,381
26,381
9818 11818 13818 15818 17818 19818 21818
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
1081.15 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 4270.94 meter
Date: Input 45.9 41883.57 J/kg
Process stage: Single 92.0000 2135.47 meter
Driver type: Gas turbine NaceCS 20941.79 J/kg
Number of wheels 2 -
Bearing loss, kW: 41.88 Gas data Mol % Impeller diameter 439.39 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 216.87 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 259.89 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1633 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 81.61 %
1 1.2877 1.2858 0.8982 0.9006 4880.00 1.6192 1.6202 1.4745 1.4706 Oxygen 0.0000 Rotational speed 9426.43 rpm
2 1.2858 1.2838 0.9006 0.9032 4880.00 1.5737 1.5759 1.4447 1.4408 Methane 82.9700 k1 1.4732 -
3 1.2838 1.2817 0.9032 0.9058 4880.00 1.5358 1.5392 1.4181 1.4142 15822 Ethane 4.2890 k2 1.4559 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:03
3 1.2838 1.2817 0.9032 0.9058 4880.00 1.5358 1.5392 1.4181 1.4142 15822 Ethane 4.2890 k2 1.4559
4 1.2817 1.2794 0.9058 0.9087 4880.00 1.5054 1.5101 1.3948 1.3909 Propane 1.7600 Z1 0.8982 -
5 1.2794 1.2769 0.9087 0.9119 4880.00 1.4823 1.4886 1.3748 1.3709 i-Butane 0.3198 Z2 0.9117 -
6 1.2769 1.2743 0.9119 0.9155 4880.00 1.4666 1.4745 1.3582 1.3542 P2 92 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1081.150 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 19333.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1061115 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 46.74 366.40 87.49 428.53 247.93 50.00 35.86 69.3093 50.38 271.91 175.23 0.0830 0.3019 0.1418 CFD 63.93% 0.34576782 8304.25 5308.68 17
2 685.80 45.68 365.19 86.01 427.12 250.07 50.00 35.76 72.7153 55.18 272.44 175.23 0.0808 0.2999 0.1396 CFD 67.31% 0.38803303 8851.26 5957.59 17
3 685.80 44.51 363.87 84.42 425.58 252.52 50.00 35.65 76.6639 60.32 273.04 175.23 0.0783 0.2978 0.1373 CFD 70.73% 0.43553139 9454.38 6686.85 17
4 685.80 43.25 362.45 82.64 423.92 255.29 50.00 35.53 81.2512 65.83 273.71 175.23 0.0757 0.2953 0.1348 CFD 74.07% 0.48790523 10113.62 7490.96 17
5 685.80 41.91 360.93 80.67 422.15 258.39 50.00 35.38 86.5802 71.73 274.44 175.23 0.0728 0.2927 0.1321 CFD 77.19% 0.54427857 10826.00 8356.47 17
6 685.80 40.47 361.25 79.43 422.52 261.82 50.00 35.27 92.7557 78.03 275.25 175.23 0.0698 0.2898 0.1271 CFD 79.94% 0.60322049 11584.89 9261.43 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
59134.41 43061.97
Notes: Overall polytropic efficiency = 72.82%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 17430.11
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 4391.10
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
48,715
53,715
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 23,525
105% speed21,437
23,437
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
13,715
18,715
23,715
28,715
33,715
38,715
43,715
48,715
53,715
11,503 13,503 15,503 17,503 19,503 21,503 23,503 25,503
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 23,525
surge
Stonewall
105% speed
5,437
7,437
9,437
11,437
13,437
15,437
17,437
19,437
21,437
23,437
11503 13503 15503 17503 19503 21503 23503 25503
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
754.95 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 12181.32 meter
Date: Input 45.9 119457.96 J/kg
Process stage: Single 153.0000 3045.33 meter
Driver type: Gas turbine NaceCS 29864.49 J/kg
Number of wheels 4 -
Bearing loss, kW: 53.00 Gas data Mol % Impeller diameter 366.09 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 253.18 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 261.75 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1407 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.83 %
1 1.2877 1.2827 0.8982 0.9026 5490.00 1.4090 1.4201 1.3520 1.3446 Oxygen 0.0000 Rotational speed 13208.02 rpm
2 1.2827 1.2776 0.9026 0.9086 5490.00 1.4261 1.4412 1.3482 1.3406 Methane 82.9700 k1 1.4732 -
3 1.2776 1.2723 0.9086 0.9165 5490.00 1.4506 1.4698 1.3460 1.3382 15822 Ethane 4.2890 k2 1.4365 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:05
3 1.2776 1.2723 0.9086 0.9165 5490.00 1.4506 1.4698 1.3460 1.3382 15822 Ethane 4.2890 k2 1.4365
4 1.2723 1.2670 0.9165 0.9264 5490.00 1.4810 1.5044 1.3444 1.3365 Propane 1.7600 Z1 0.8982 -
5 1.2670 1.2617 0.9264 0.9384 5490.00 1.5163 1.5439 1.3428 1.3350 i-Butane 0.3198 Z2 0.9506 -
6 1.2617 1.2564 0.9384 0.9525 5490.00 1.5558 1.5873 1.3411 1.3336 P2 153 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 754.950 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 13500.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 740960 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 31.26 350.11 64.88 409.49 284.73 47.61 34.05 76.4116 57.74 280.47 197.14 0.0515 0.2710 0.1397 CFD 85.46% 0.89814400 20422.65 17452.31 17
2 685.80 29.06 347.63 60.48 406.59 291.42 46.72 33.67 88.2162 70.14 281.97 197.14 0.0466 0.2653 0.1337 CFD 84.52% 0.95524283 21962.34 18561.83 17
3 685.80 27.01 345.31 56.32 403.87 297.65 45.92 33.31 101.8411 82.94 283.38 197.14 0.0422 0.2596 0.1279 CFD 83.12% 0.99932216 23362.51 19418.35 17
4 685.80 25.15 343.15 52.46 401.35 303.27 45.20 32.97 117.3330 95.98 284.66 197.14 0.0382 0.2542 0.1225 CFD 81.55% 1.03272274 24606.97 20067.38 17
5 685.80 23.47 341.16 48.92 399.02 308.26 44.58 32.66 134.7236 109.12 285.81 197.14 0.0348 0.2492 0.1174 CFD 80.00% 1.05790921 25696.66 20556.79 17
6 685.80 21.96 340.78 46.56 398.57 312.61 44.03 32.45 154.0318 122.26 286.82 197.14 0.0318 0.2445 0.1102 CFD 78.55% 1.07697937 26642.44 20927.35 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
142693.58 116984.01
Notes: Overall polytropic efficiency = 81.98%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 29369.51
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 11929.05
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
137,259
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 39,640
105% speed
34 161
39,161
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
37,259
57,259
77,259
97,259
117,259
137,259
8,032 10,032 12,032 14,032 16,032 18,032
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 39,640
surge
Stonewall
105% speed
9,161
14,161
19,161
24,161
29,161
34,161
39,161
8032 10032 12032 14032 16032 18032
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
978.64 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 10036.11 meter
Date: Input 45.9 98420.63 J/kg
Process stage: Single 135.0000 3345.37 meter
Driver type: Gas turbine NaceCS 32806.88 J/kg
Number of wheels 3 -
Bearing loss, kW: 53.00 Gas data Mol % Impeller diameter 417.70 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 263.82 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 262.48 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1345 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.39 %
1 1.2877 1.2839 0.8982 0.9017 5490.00 1.4315 1.4390 1.3657 1.3598 Oxygen 0.0000 Rotational speed 12062.58 rpm
2 1.2839 1.2799 0.9017 0.9060 5490.00 1.4235 1.4342 1.3505 1.3445 Methane 82.9700 k1 1.4732 -
3 1.2799 1.2756 0.9060 0.9115 5490.00 1.4270 1.4413 1.3403 1.3340 15822 Ethane 4.2890 k2 1.4434 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:08
3 1.2799 1.2756 0.9060 0.9115 5490.00 1.4270 1.4413 1.3403 1.3340 15822 Ethane 4.2890 k2 1.4434
4 1.2756 1.2710 0.9115 0.9186 5490.00 1.4407 1.4588 1.3337 1.3272 Propane 1.7600 Z1 0.8982 -
5 1.2710 1.2664 0.9186 0.9275 5490.00 1.4629 1.4852 1.3295 1.3228 i-Butane 0.3198 Z2 0.9377 -
6 1.2664 1.2616 0.9275 0.9383 5490.00 1.4925 1.5190 1.3267 1.3199 P2 135 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 978.640 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 17500.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 960505 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 38.41 357.79 76.91 418.47 265.35 50.00 35.05 73.6465 54.87 276.07 197.14 0.0668 0.2869 0.1498 CFD 82.11% 0.65985326 15616.37 12821.96 17
2 685.80 36.29 355.42 73.28 415.69 271.02 49.52 34.77 82.4834 64.60 277.37 197.14 0.0621 0.2823 0.1447 CFD 84.37% 0.74200598 17088.80 14418.31 17
3 685.80 34.18 353.04 69.50 412.92 277.01 48.66 34.46 93.0390 75.01 278.73 197.14 0.0573 0.2775 0.1395 CFD 85.48% 0.81730289 18580.02 15881.44 17
4 685.80 32.11 350.73 65.63 410.21 283.08 47.83 34.14 105.4367 86.00 280.09 197.14 0.0527 0.2724 0.1342 CFD 85.57% 0.88228449 20035.12 17144.13 17
5 685.80 30.15 348.53 61.82 407.64 288.99 47.04 33.81 119.7588 97.43 281.42 197.14 0.0484 0.2674 0.1290 CFD 84.94% 0.93577370 21408.43 18183.51 17
6 685.80 28.30 348.11 59.05 407.15 294.55 46.32 33.55 136.0549 109.16 282.68 197.14 0.0444 0.2625 0.1215 CFD 83.87% 0.97841554 22669.89 19012.11 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
115398.63 97461.46
Notes: Overall polytropic efficiency = 84.46%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 30789.15
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 9938.30
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
111,041
121,041
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 41,556
105% speed
39,603
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
31,041
41,041
51,041
61,041
71,041
81,041
91,041
101,041
111,041
121,041
10,412 12,412 14,412 16,412 18,412 20,412 22,412
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 41,556
surge
Stonewall
105% speed
9,603
14,603
19,603
24,603
29,603
34,603
39,603
10412 12412 14412 16412 18412 20412 22412
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
1118.45 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 7775.15 meter
Date: Input 45.9 76248.19 J/kg
Process stage: Single 117.0000 2591.72 meter
Driver type: Gas turbine NaceCS 25416.06 J/kg
Number of wheels 3 -
Bearing loss, kW: 53.00 Gas data Mol % Impeller diameter 447.03 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 235.72 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 260.82 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1502 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 82.93 %
1 1.2877 1.2847 0.8982 0.9014 5490.00 1.5047 1.5089 1.4093 1.4041 Oxygen 0.0000 Rotational speed 10070.89 rpm
2 1.2847 1.2815 0.9014 0.9050 5490.00 1.4718 1.4784 1.3824 1.3771 Methane 82.9700 k1 1.4732 -
3 1.2815 1.2781 0.9050 0.9092 5490.00 1.4512 1.4605 1.3611 1.3557 15822 Ethane 4.2890 k2 1.4476 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:10
3 1.2815 1.2781 0.9050 0.9092 5490.00 1.4512 1.4605 1.3611 1.3557 15822 Ethane 4.2890 k2 1.4476
4 1.2781 1.2743 0.9092 0.9143 5490.00 1.4424 1.4548 1.3452 1.3396 Propane 1.7600 Z1 0.8982 -
5 1.2743 1.2703 0.9143 0.9206 5490.00 1.4445 1.4604 1.3338 1.3281 i-Butane 0.3198 Z2 0.9266 -
6 1.2703 1.2661 0.9206 0.9284 5490.00 1.4566 1.4764 1.3259 1.3201 P2 117 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1118.450 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 20000.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1097724 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 43.04 362.77 83.53 424.29 254.66 50.00 35.55 71.5584 52.93 273.55 197.14 0.0763 0.2959 0.1557 CFD 73.35% 0.47611641 12612.37 9251.67 17
2 685.80 41.27 360.79 80.87 421.98 258.69 50.00 35.37 77.8884 60.63 274.51 197.14 0.0726 0.2925 0.1517 CFD 77.45% 0.54949355 13785.70 10677.50 17
3 685.80 39.38 358.69 77.95 419.52 263.29 50.00 35.15 85.5667 69.01 275.59 197.14 0.0685 0.2886 0.1473 CFD 80.92% 0.62724193 15062.25 12188.27 17
4 685.80 37.43 356.50 74.75 416.96 268.38 49.91 34.90 94.7988 78.07 276.76 197.14 0.0642 0.2845 0.1428 CFD 83.49% 0.70513203 16412.09 13701.79 17
5 685.80 35.47 354.29 71.33 414.38 273.82 49.12 34.62 105.7599 87.76 278.00 197.14 0.0598 0.2801 0.1380 CFD 85.03% 0.77867029 17793.88 15130.75 17
6 685.80 33.51 353.89 68.71 413.91 279.41 48.33 34.39 118.5828 97.99 279.27 197.14 0.0555 0.2755 0.1308 CFD 85.62% 0.84431701 19161.91 16406.37 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
94828.19 77356.34
Notes: Overall polytropic efficiency = 81.58%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 28915.33
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 7888.15
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
94,638
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 39,027
105% speed
34 019
39,019
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
24,638
34,638
44,638
54,638
64,638
74,638
84,638
94,638
11,900 13,900 15,900 17,900 19,900 21,900 23,900 25,900
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 39,027
surge
Stonewall
105% speed
9,019
14,019
19,019
24,019
29,019
34,019
39,019
11900 13900 15900 17900 19900 21900 23900 25900
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
1248.93 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 5154.38 meter
Date: Input 45.9 50547.16 J/kg
Process stage: Single 98.0000 2577.19 meter
Driver type: Gas turbine NaceCS 25273.58 J/kg
Number of wheels 2 -
Bearing loss, kW: 53.00 Gas data Mol % Impeller diameter 472.81 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 235.09 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 260.81 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1503 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 82.92 %
1 1.2877 1.2855 0.8982 0.9012 5490.00 1.6797 1.6801 1.5075 1.5028 Oxygen 0.0000 Rotational speed 9496.26 rpm
2 1.2855 1.2831 0.9012 0.9044 5490.00 1.6154 1.6174 1.4676 1.4629 Methane 82.9700 k1 1.4732 -
3 1.2831 1.2806 0.9044 0.9077 5490.00 1.5625 1.5662 1.4322 1.4275 15822 Ethane 4.2890 k2 1.4546 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:12
3 1.2831 1.2806 0.9044 0.9077 5490.00 1.5625 1.5662 1.4322 1.4275 15822 Ethane 4.2890 k2 1.4546
4 1.2806 1.2778 0.9077 0.9114 5490.00 1.5207 1.5265 1.4016 1.3969 Propane 1.7600 Z1 0.8982 -
5 1.2778 1.2748 0.9114 0.9155 5490.00 1.4901 1.4981 1.3760 1.3712 i-Butane 0.3198 Z2 0.9148 -
6 1.2748 1.2716 0.9155 0.9203 5490.00 1.4704 1.4810 1.3553 1.3504 P2 98 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1248.930 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 22333.3 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1225786 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 47.55 367.64 89.14 429.98 245.83 50.00 35.95 69.6459 51.12 271.38 197.14 0.0852 0.3039 0.1609 CFD 60.26% 0.30417763 9808.83 5910.64 17
2 685.80 46.34 366.29 87.52 428.41 248.11 50.00 35.85 73.5396 56.77 271.95 197.14 0.0828 0.3017 0.1580 CFD 64.23% 0.34937801 10569.88 6788.95 17
3 685.80 44.98 364.79 85.73 426.65 250.80 50.00 35.73 78.1889 62.90 272.62 197.14 0.0800 0.2993 0.1550 CFD 68.38% 0.40229615 11432.81 7817.23 17
4 685.80 43.49 363.12 83.68 424.71 253.95 50.00 35.59 83.7684 69.58 273.38 197.14 0.0770 0.2965 0.1517 CFD 72.53% 0.46288205 12401.70 8994.50 17
5 685.80 41.87 361.31 81.34 422.59 257.60 50.00 35.42 90.4738 76.83 274.26 197.14 0.0736 0.2934 0.1481 CFD 76.45% 0.53011205 13474.05 10300.89 17
6 685.80 40.14 361.29 79.64 422.57 261.74 50.00 35.27 98.5102 84.69 275.23 197.14 0.0699 0.2899 0.1418 CFD 79.88% 0.60176313 14638.05 11693.18 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
72325.32 51505.38
Notes: Overall polytropic efficiency = 71.21%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 24626.49
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 5252.09
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
66,404
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 33,238
105% speed
32,681
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
16,404
26,404
36,404
46,404
56,404
66,404
13,288 15,288 17,288 19,288 21,288 23,288 25,288 27,288 29,288
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 33,238
surge
Stonewall
105% speed
7,681
12,681
17,681
22,681
27,681
32,681
13288 15288 17288 19288 21288 23288 25288 27288 29288
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
911.31 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 14955.06 meter
Date: Input 45.9 146659.08 J/kg
Process stage: Single 178.0000 3738.77 meter
Driver type: Gas turbine NaceCS 36664.77 J/kg
Number of wheels 4 -
Bearing loss, kW: 65.44 Gas data Mol % Impeller diameter 402.84 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 277.30 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 263.32 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1281 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.94 %
1 1.2877 1.2820 0.8982 0.9034 6100.00 1.4081 1.4211 1.3514 1.3430 Oxygen 0.0000 Rotational speed 13146.85 rpm
2 1.2820 1.2760 0.9034 0.9107 6100.00 1.4235 1.4424 1.3444 1.3355 Methane 82.9700 k1 1.4732 -
3 1.2760 1.2697 0.9107 0.9209 6100.00 1.4514 1.4766 1.3407 1.3315 15822 Ethane 4.2890 k2 1.4305 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:15
3 1.2760 1.2697 0.9107 0.9209 6100.00 1.4514 1.4766 1.3407 1.3315 15822 Ethane 4.2890 k2 1.4305
4 1.2697 1.2634 0.9209 0.9341 6100.00 1.4891 1.5207 1.3384 1.3292 Propane 1.7600 Z1 0.8982 -
5 1.2634 1.2571 0.9341 0.9506 6100.00 1.5347 1.5725 1.3365 1.3274 i-Butane 0.3198 Z2 0.9680 -
6 1.2571 1.2510 0.9506 0.9701 6100.00 1.5866 1.6300 1.3344 1.3258 P2 178 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 911.310 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 16296.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 894422 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 32.88 352.34 68.80 412.10 278.83 48.41 34.36 78.0207 59.49 279.14 219.04 0.0559 0.2760 0.1586 CFD 85.60% 0.83790578 23482.86 20100.97 17
2 685.80 30.25 349.31 63.53 408.55 286.90 47.32 33.93 92.3504 74.03 280.95 219.04 0.0499 0.2692 0.1507 CFD 85.23% 0.91788550 25836.01 22019.65 17
3 685.80 27.80 346.46 58.47 405.22 294.56 46.31 33.49 109.4978 89.23 282.68 219.04 0.0444 0.2624 0.1430 CFD 83.86% 0.97849752 27990.74 23473.70 17
4 685.80 25.59 343.86 53.78 402.17 301.46 45.43 33.08 129.5499 104.80 284.25 219.04 0.0395 0.2560 0.1358 CFD 82.08% 1.02256176 29885.78 24530.78 17
5 685.80 23.62 341.49 49.55 399.40 307.46 44.68 32.71 152.5521 120.52 285.62 219.04 0.0353 0.2500 0.1290 CFD 80.25% 1.05413078 31509.71 25288.11 17
6 685.80 21.89 340.80 46.62 398.59 312.57 44.04 32.45 178.5194 136.18 286.81 219.04 0.0318 0.2446 0.1201 CFD 78.56% 1.07681813 32881.37 25832.37 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
171586.46 141245.59
Notes: Overall polytropic efficiency = 82.32%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 42630.77
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 14403.04
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
164,987
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 57,538
105% speed
53,297
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
44,987
64,987
84,987
104,987
124,987
144,987
164,987
9,696 11,696 13,696 15,696 17,696 19,696 21,696
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 57,538
surge
Stonewall
105% speed
13,297
18,297
23,297
28,297
33,297
38,297
43,297
48,297
53,297
9696 11696 13696 15696 17696 19696 21696
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
1103.35 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 12748.64 meter
Date: Input 45.9 125021.48 J/kg
Process stage: Single 158.0000 3187.16 meter
Driver type: Gas turbine NaceCS 31255.37 J/kg
Number of wheels 4 -
Bearing loss, kW: 65.44 Gas data Mol % Impeller diameter 443.95 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 258.14 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 262.16 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1372 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.16 %
1 1.2877 1.2832 0.8982 0.9025 6100.00 1.4361 1.4452 1.3685 1.3613 Oxygen 0.0000 Rotational speed 11105.24 rpm
2 1.2832 1.2782 0.9025 0.9081 6100.00 1.4252 1.4391 1.3494 1.3421 Methane 82.9700 k1 1.4732 -
3 1.2782 1.2729 0.9081 0.9156 6100.00 1.4313 1.4507 1.3375 1.3298 15822 Ethane 4.2890 k2 1.4354 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:18
3 1.2782 1.2729 0.9081 0.9156 6100.00 1.4313 1.4507 1.3375 1.3298 15822 Ethane 4.2890 k2 1.4354
4 1.2729 1.2673 0.9156 0.9257 6100.00 1.4519 1.4774 1.3305 1.3225 Propane 1.7600 Z1 0.8982 -
5 1.2673 1.2615 0.9257 0.9387 6100.00 1.4846 1.5163 1.3264 1.3182 i-Butane 0.3198 Z2 0.9539 -
6 1.2615 1.2558 0.9387 0.9548 6100.00 1.5270 1.5649 1.3237 1.3156 P2 158 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1103.350 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 19730.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1082904 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 38.38 358.29 77.89 419.05 264.20 50.00 35.10 75.1678 56.71 275.80 219.04 0.0677 0.2879 0.1671 CFD 81.47% 0.64177598 18898.16 15395.91 17
2 685.80 35.86 355.44 73.52 415.72 270.97 49.53 34.77 86.3107 68.64 277.35 219.04 0.0621 0.2824 0.1604 CFD 84.36% 0.74132324 21081.48 17784.00 17
3 685.80 33.36 352.57 68.90 412.37 278.23 48.49 34.40 100.1026 81.55 279.00 219.04 0.0564 0.2765 0.1533 CFD 85.57% 0.83124932 23304.65 19941.29 17
4 685.80 30.95 349.81 64.20 409.13 285.56 47.50 34.00 116.7567 95.24 280.65 219.04 0.0509 0.2703 0.1462 CFD 85.38% 0.90575910 25449.62 21728.74 17
5 685.80 28.71 347.22 59.64 406.11 292.53 46.58 33.61 136.3959 109.47 282.22 219.04 0.0458 0.2643 0.1393 CFD 84.30% 0.96368704 27424.21 23118.41 17
6 685.80 26.66 346.44 56.25 405.20 298.87 45.76 33.30 159.0780 123.99 283.66 219.04 0.0413 0.2585 0.1300 CFD 82.80% 1.00706921 29178.43 24159.12 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
145336.54 122127.47
Notes: Overall polytropic efficiency = 84.03%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 43718.19
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 12453.54
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
138,898
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 59,006
105% speed53,636
58,636
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
38,898
58,898
78,898
98,898
118,898
138,898
11,739 13,739 15,739 17,739 19,739 21,739 23,739 25,739
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 59,006
surge
Stonewall
105% speed
13,636
18,636
23,636
28,636
33,636
38,636
43,636
48,636
53,636
58,636
11739 13739 15739 17739 19739 21739 23739 25739
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
1258.251 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 10035.52 meter
Date: Input 45.9 98414.80 J/kg
Process stage: Single 135.0000 3345.17 meter
Driver type: Gas turbine NaceCS 32804.93 J/kg
Number of wheels 3 -
Bearing loss, kW: 65.44 Gas data Mol % Impeller diameter 474.60 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 263.69 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 262.54 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1340 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.44 %
1 1.2877 1.2842 0.8982 0.9022 6100.00 1.5166 1.5215 1.4163 1.4099 Oxygen 0.0000 Rotational speed 10611.38 rpm
2 1.2842 1.2803 0.9022 0.9067 6100.00 1.4748 1.4832 1.3827 1.3763 Methane 82.9700 k1 1.4732 -
3 1.2803 1.2759 0.9067 0.9122 6100.00 1.4508 1.4633 1.3574 1.3508 15822 Ethane 4.2890 k2 1.4434 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:20
3 1.2803 1.2759 0.9067 0.9122 6100.00 1.4508 1.4633 1.3574 1.3508 15822 Ethane 4.2890 k2 1.4434
4 1.2759 1.2713 0.9122 0.9192 6100.00 1.4438 1.4612 1.3396 1.3328 Propane 1.7600 Z1 0.8982 -
5 1.2713 1.2663 0.9192 0.9283 6100.00 1.4524 1.4754 1.3278 1.3208 i-Butane 0.3198 Z2 0.9376 -
6 1.2663 1.2611 0.9283 0.9400 6100.00 1.4749 1.5038 1.3205 1.3132 P2 135 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1258.251 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 22500.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1234934 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 43.07 363.28 84.45 424.88 253.66 50.00 35.60 72.5481 54.33 273.31 219.04 0.0772 0.2968 0.1736 CFD 72.17% 0.45725345 15200.09 10969.30 17
2 685.80 40.95 360.94 81.31 422.15 258.38 50.00 35.38 80.3975 63.71 274.44 219.04 0.0728 0.2927 0.1683 CFD 77.18% 0.54411985 16912.48 13053.18 17
3 685.80 38.68 358.40 77.76 419.18 263.94 50.00 35.12 90.3059 74.11 275.74 219.04 0.0680 0.2881 0.1625 CFD 81.32% 0.63772865 18813.52 15298.82 17
4 685.80 36.34 355.75 73.80 416.08 270.20 49.64 34.81 102.6468 85.48 277.18 219.04 0.0627 0.2830 0.1563 CFD 84.13% 0.73080857 20839.73 17531.76 17
5 685.80 34.02 353.09 69.57 412.97 276.88 48.68 34.47 117.7190 97.72 278.70 219.04 0.0574 0.2776 0.1499 CFD 85.46% 0.81581460 22899.74 19571.02 17
6 685.80 31.76 352.26 66.16 412.00 283.64 47.75 34.16 135.7236 110.64 280.22 219.04 0.0523 0.2720 0.1407 CFD 85.54% 0.88770498 24896.19 21295.63 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
119561.74 97719.71
Notes: Overall polytropic efficiency = 81.73%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 41014.13
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 9964.64
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
111,124
121,124
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 55,356
105% speed
47 793
52,793
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
31,124
41,124
51,124
61,124
71,124
81,124
91,124
101,124
111,124
121,124
13,387 15,387 17,387 19,387 21,387 23,387 25,387 27,387 29,387
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 55,356
surge
Stonewall
105% speed
12,793
17,793
22,793
27,793
32,793
37,793
42,793
47,793
52,793
13387 15387 17387 19387 21387 23387 25387 27387 29387
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
1342.135 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 8034.68 meter
Date: Input 45.9 78793.31 J/kg
Process stage: Single 119.0000 2678.23 meter
Driver type: Gas turbine NaceCS 26264.44 J/kg
Number of wheels 3 -
Bearing loss, kW: 65.44 Gas data Mol % Impeller diameter 490.42 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 239.03 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 261.05 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1476 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.18 %
1 1.2877 1.2847 0.8982 0.9020 6100.00 1.6059 1.6081 1.4671 1.4611 Oxygen 0.0000 Rotational speed 9308.53 rpm
2 1.2847 1.2814 0.9020 0.9061 6100.00 1.5430 1.5479 1.4245 1.4184 Methane 82.9700 k1 1.4732 -
3 1.2814 1.2778 0.9061 0.9108 6100.00 1.4971 1.5052 1.3893 1.3832 15822 Ethane 4.2890 k2 1.4472 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:22
3 1.2814 1.2778 0.9061 0.9108 6100.00 1.4971 1.5052 1.3893 1.3832 15822 Ethane 4.2890 k2 1.4472
4 1.2778 1.2738 0.9108 0.9164 6100.00 1.4680 1.4800 1.3617 1.3556 Propane 1.7600 Z1 0.8982 -
5 1.2738 1.2694 0.9164 0.9232 6100.00 1.4553 1.4718 1.3414 1.3351 i-Butane 0.3198 Z2 0.9277 -
6 1.2694 1.2647 0.9232 0.9320 6100.00 1.4580 1.4797 1.3273 1.3207 P2 119 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1342.135 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 24000.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1317264 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 45.74 366.08 87.74 428.16 248.48 50.00 35.83 71.1496 53.03 272.04 219.04 0.0824 0.3014 0.1769 CFD 64.83% 0.35665137 13197.47 8555.90 17
2 685.80 43.97 364.17 85.35 425.93 251.95 50.00 35.68 77.1308 60.93 272.90 219.04 0.0789 0.2983 0.1726 CFD 69.98% 0.42463435 14557.39 10186.78 17
3 685.80 42.02 362.02 82.60 423.41 256.16 50.00 35.49 84.6452 69.69 273.91 219.04 0.0749 0.2946 0.1678 CFD 75.01% 0.50398469 16118.89 12090.36 17
4 685.80 39.90 359.66 79.41 420.65 261.14 50.00 35.25 94.0739 79.39 275.09 219.04 0.0704 0.2904 0.1625 CFD 79.45% 0.59173727 17867.76 14195.50 17
5 685.80 37.69 357.16 75.80 417.73 266.82 50.00 34.98 105.7958 90.01 276.41 219.04 0.0655 0.2857 0.1568 CFD 82.83% 0.68227319 19760.60 16367.42 17
6 685.80 35.43 356.43 72.79 416.88 273.03 49.23 34.72 120.1378 101.48 277.82 219.04 0.0605 0.2807 0.1481 CFD 84.88% 0.76865148 21725.45 18439.59 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
103227.56 79835.56
Notes: Overall polytropic efficiency = 77.34%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 37771.64
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 8140.96
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
95,428
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 50,980
105% speed46,781
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
25,428
35,428
45,428
55,428
65,428
75,428
85,428
95,428
14,280 16,280 18,280 20,280 22,280 24,280 26,280 28,280 30,280 32,280
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 50,980
surge
Stonewall
105% speed
11,781
16,781
21,781
26,781
31,781
36,781
41,781
46,781
14280 16280 18280 20280 22280 24280 26280 28280 30280 32280
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
1428.2 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 5724.88 meter
Date: Input 45.9 56141.92 J/kg
Process stage: Single 102.0000 2862.44 meter
Driver type: Gas turbine NaceCS 28070.96 J/kg
Number of wheels 2 -
Bearing loss, kW: 65.44 Gas data Mol % Impeller diameter 506.16 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 246.06 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 261.48 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1433 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.59 %
1 1.2877 1.2852 0.8982 0.9018 6100.00 1.7695 1.7682 1.5547 1.5492 Oxygen 0.0000 Rotational speed 9284.60 rpm
2 1.2852 1.2826 0.9018 0.9056 6100.00 1.6793 1.6803 1.5024 1.4968 Methane 82.9700 k1 1.4732 -
3 1.2826 1.2797 0.9056 0.9096 6100.00 1.6054 1.6089 1.4559 1.4503 15822 Ethane 4.2890 k2 1.4537 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:24
3 1.2826 1.2797 0.9056 0.9096 6100.00 1.6054 1.6089 1.4559 1.4503 15822 Ethane 4.2890 k2 1.4537
4 1.2797 1.2765 0.9096 0.9140 6100.00 1.5474 1.5535 1.4158 1.4102 Propane 1.7600 Z1 0.8982 -
5 1.2765 1.2730 0.9140 0.9191 6100.00 1.5049 1.5142 1.3825 1.3769 i-Butane 0.3198 Z2 0.9169 -
6 1.2730 1.2691 0.9191 0.9251 6100.00 1.4780 1.4910 1.3561 1.3504 P2 102 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1428.200 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 25539.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1401734 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 48.56 369.04 90.94 431.63 243.58 50.00 36.05 69.8220 51.72 270.80 219.04 0.0877 0.3061 0.1803 CFD 55.91% 0.25968013 11142.78 6229.61 17
2 685.80 47.24 367.64 89.29 429.98 245.83 50.00 35.95 74.0074 58.09 271.38 219.04 0.0852 0.3039 0.1769 CFD 60.26% 0.30415281 12109.14 7296.49 17
3 685.80 45.75 366.02 87.41 428.10 248.58 50.00 35.83 79.1340 65.08 272.07 219.04 0.0823 0.3013 0.1732 CFD 64.99% 0.35862965 13237.67 8603.36 17
4 685.80 44.07 364.19 85.19 425.95 251.92 50.00 35.68 85.4768 72.78 272.89 219.04 0.0789 0.2983 0.1691 CFD 69.93% 0.42395646 14543.99 10170.52 17
5 685.80 42.22 362.13 82.58 423.55 255.92 50.00 35.50 93.3654 81.29 273.86 219.04 0.0751 0.2948 0.1646 CFD 74.76% 0.49963263 16033.21 11985.96 17
6 685.80 40.19 361.81 80.49 423.17 260.63 50.00 35.32 103.1644 90.65 274.97 219.04 0.0708 0.2908 0.1570 CFD 79.06% 0.58306404 17692.25 13987.44 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
84759.03 58273.36
Notes: Overall polytropic efficiency = 68.75%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 33002.67
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 5942.23
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
68,560
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 44,543
105% speed40,294
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
18,560
28,560
38,560
48,560
58,560
68,560
15,196 20,196 25,196 30,196 35,196
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 44,543
surge
Stonewall
105% speed
10,294
15,294
20,294
25,294
30,294
35,294
40,294
15196 20196 25196 30196 35196
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
993.18 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 16372.15 meter
Date: Input 45.9 160555.91 J/kg
Process stage: Single 191.0000 3274.43 meter
Driver type: Gas turbine NaceCS 32111.18 J/kg
Number of wheels 5 -
Bearing loss, kW: 72.14 Gas data Mol % Impeller diameter 420.84 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 261.31 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 262.33 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1357 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.28 %
1 1.2877 1.2817 0.8982 0.9037 6405.00 1.4095 1.4234 1.3523 1.3433 Oxygen 0.0000 Rotational speed 11858.62 rpm
2 1.2817 1.2752 0.9037 0.9119 6405.00 1.4230 1.4439 1.3430 1.3336 Methane 82.9700 k1 1.4732 -
3 1.2752 1.2684 0.9119 0.9233 6405.00 1.4523 1.4808 1.3384 1.3286 15822 Ethane 4.2890 k2 1.4252 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:27
3 1.2752 1.2684 0.9119 0.9233 6405.00 1.4523 1.4808 1.3384 1.3286 15822 Ethane 4.2890 k2 1.4252
4 1.2684 1.2616 0.9233 0.9385 6405.00 1.4940 1.5303 1.3357 1.3258 Propane 1.7600 Z1 0.8982 -
5 1.2616 1.2548 0.9385 0.9576 6405.00 1.5453 1.5889 1.3335 1.3238 i-Butane 0.3198 Z2 0.9782 -
6 1.2548 1.2483 0.9576 0.9804 6405.00 1.6042 1.6544 1.3313 1.3222 P2 191 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 993.180 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 17760.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 974775 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 33.61 353.41 70.64 413.34 276.08 48.80 34.51 78.7719 60.33 278.51 229.99 0.0581 0.2782 0.1682 CFD 85.38% 0.80637224 24979.80 21327.31 17
2 685.80 30.76 350.09 64.96 409.46 284.80 47.60 34.04 94.4081 75.95 280.48 229.99 0.0514 0.2710 0.1593 CFD 85.45% 0.89878102 27819.12 23771.38 17
3 685.80 28.12 346.98 59.44 405.82 293.18 46.49 33.57 113.4871 92.40 282.37 229.99 0.0453 0.2637 0.1505 CFD 84.16% 0.96857259 30437.61 25617.26 17
4 685.80 25.74 344.13 54.31 402.50 300.74 45.52 33.13 136.1260 109.30 284.08 229.99 0.0400 0.2567 0.1422 CFD 82.29% 1.01834952 32731.47 26933.78 17
5 685.80 23.64 341.57 49.73 399.50 307.25 44.70 32.73 162.3765 126.35 285.57 229.99 0.0355 0.2502 0.1346 CFD 80.32% 1.05309621 34675.62 27852.78 17
6 685.80 21.81 340.73 46.54 398.52 312.71 44.02 32.44 192.2451 143.32 286.85 229.99 0.0317 0.2444 0.1248 CFD 78.51% 1.07740771 36294.25 28495.78 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
186937.88 153998.29
Notes: Overall polytropic efficiency = 82.38%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 50617.34
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 15703.45
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
189,048
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 68,318
105% speed
65,788
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
49,048
69,048
89,048
109,048
129,048
149,048
169,048
189,048
10,567 12,567 14,567 16,567 18,567 20,567 22,567
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 68,318
surge
Stonewall
105% speed
15,788
25,788
35,788
45,788
55,788
65,788
10567 12567 14567 16567 18567 20567 22567
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
1202.33 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 13753.51 meter
Date: Input 45.9 134875.86 J/kg
Process stage: Single 167.0000 3438.38 meter
Driver type: Gas turbine NaceCS 33718.97 J/kg
Number of wheels 4 -
Bearing loss, kW: 72.14 Gas data Mol % Impeller diameter 463.76 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 266.96 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 262.74 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1324 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.57 %
1 1.2877 1.2830 0.8982 0.9029 6405.00 1.4507 1.4597 1.3773 1.3697 Oxygen 0.0000 Rotational speed 10994.17 rpm
2 1.2830 1.2778 0.9029 0.9089 6405.00 1.4316 1.4460 1.3530 1.3452 Methane 82.9700 k1 1.4732 -
3 1.2778 1.2721 0.9089 0.9170 6405.00 1.4332 1.4541 1.3377 1.3295 15822 Ethane 4.2890 k2 1.4333 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:39
3 1.2778 1.2721 0.9089 0.9170 6405.00 1.4332 1.4541 1.3377 1.3295 15822 Ethane 4.2890 k2 1.4333
4 1.2721 1.2661 0.9170 0.9281 6405.00 1.4528 1.4810 1.3288 1.3203 Propane 1.7600 Z1 0.8982 -
5 1.2661 1.2599 0.9281 0.9427 6405.00 1.4875 1.5232 1.3238 1.3151 i-Butane 0.3198 Z2 0.9602 -
6 1.2599 1.2538 0.9427 0.9611 6405.00 1.5343 1.5773 1.3208 1.3121 P2 167 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1202.330 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 21500.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1180049 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 39.36 359.61 79.86 420.60 261.24 50.00 35.25 75.3406 57.10 275.11 229.99 0.0703 0.2903 0.1774 CFD 79.52% 0.59342436 19736.95 15695.16 17
2 685.80 36.68 356.60 75.38 417.08 268.14 49.95 34.91 86.9954 69.63 276.71 229.99 0.0644 0.2847 0.1700 CFD 83.39% 0.70169473 22254.75 18558.75 17
3 685.80 34.01 353.52 70.51 413.47 275.79 48.84 34.52 101.7837 83.36 278.45 229.99 0.0583 0.2785 0.1621 CFD 85.34% 0.80291629 24883.08 21235.90 17
4 685.80 31.43 350.51 65.46 409.95 283.67 47.75 34.10 120.0261 98.06 280.23 229.99 0.0523 0.2719 0.1541 CFD 85.54% 0.88804582 27459.32 23487.45 17
5 685.80 29.02 347.69 60.51 406.66 291.26 46.74 33.68 141.9034 113.41 281.93 229.99 0.0467 0.2654 0.1463 CFD 84.55% 0.95398961 29843.24 25231.56 17
6 685.80 26.82 346.72 56.77 405.52 298.15 45.85 33.34 167.4927 129.13 283.50 229.99 0.0418 0.2591 0.1360 CFD 82.99% 1.00257724 31953.05 26516.63 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
156130.39 130725.46
Notes: Overall polytropic efficiency = 83.73%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 51178.22
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 13330.29
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
161,636
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 69,075
105% speed
65,963
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
41,636
61,636
81,636
101,636
121,636
141,636
161,636
12,792 14,792 16,792 18,792 20,792 22,792 24,792 26,792 28,792
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 69,075
surge
Stonewall
105% speed
15,963
25,963
35,963
45,963
55,963
65,963
12792 14792 16792 18792 20792 22792 24792 26792 28792
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
1342.14 Basic sizing output per Brown's method
Duty: Wheatstone summer 66.3600 10991.19 meter
Date: Input 45.9 107786.77 J/kg
Process stage: Single 143.0000 3663.73 meter
Driver type: Gas turbine NaceCS 35928.92 J/kg
Number of wheels 3 -
Bearing loss, kW: 72.14 Gas data Mol % Impeller diameter 490.42 mm
Gear loss, kW: 0.00 H2 0.0000 Tip speed 274.61 m/s
Casing construction: Barrel type CO2 2.9040 Allowable U2 263.26 m/s
CO 0.0000 Impeller type CFD -
Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1285 -
Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.90 %
1 1.2877 1.2839 0.8982 0.9026 6405.00 1.5338 1.5386 1.4263 1.4193 Oxygen 0.0000 Rotational speed 10694.26 rpm
2 1.2839 1.2798 0.9026 0.9075 6405.00 1.4840 1.4927 1.3877 1.3807 Methane 82.9700 k1 1.4732 -
3 1.2798 1.2751 0.9075 0.9136 6405.00 1.4551 1.4687 1.3588 1.3517 15822 Ethane 4.2890 k2 1.4415 -
Total polytropic
head
Polytropic head
per wheel
mmscfd
Suction pressure, bara
Impeller material
Discharge pressure, bara
Suction temperature, o
C12/29/2010 17:34
3 1.2798 1.2751 0.9075 0.9136 6405.00 1.4551 1.4687 1.3588 1.3517 15822 Ethane 4.2890 k2 1.4415
4 1.2751 1.2700 0.9136 0.9215 6405.00 1.4463 1.4658 1.3388 1.3314 Propane 1.7600 Z1 0.8982 -
5 1.2700 1.2646 0.9215 0.9320 6405.00 1.4561 1.4823 1.3260 1.3183 i-Butane 0.3198 Z2 0.9428 -
6 1.2646 1.2589 0.9320 0.9456 6405.00 1.4823 1.5157 1.3183 1.3104 P2 143 n-Butane 0.5328
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1342.140 i-Pentane 0.1929 EVERYWHEEL ©
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt.
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3
/hr: 24000.0 Hexane 0.1500
0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1317269 Heptane 0.4157
Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm
β2B,
degrees
β1,
degrees Pout, bara Tout, o
C [3]
Allowable
u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg
Polytropic
head [2], J/kg
# of
vanes
1 685.80 43.47 363.94 85.41 425.66 252.39 50.00 35.66 72.8257 54.84 273.01 229.99 0.0785 0.2979 0.1831 CFD 70.56% 0.43303049 16232.28 11452.99 17
2 685.80 41.21 361.48 82.14 422.78 257.26 50.00 35.43 81.1896 64.89 274.18 229.99 0.0739 0.2937 0.1773 CFD 76.13% 0.52408376 18208.21 13861.21 17
3 685.80 38.78 358.76 78.38 419.61 263.12 50.00 35.16 91.9727 76.12 275.55 229.99 0.0687 0.2888 0.1708 CFD 80.81% 0.62452108 20439.28 16517.62 17
4 685.80 36.27 355.90 74.11 416.26 269.83 49.70 34.83 105.6759 88.51 277.09 229.99 0.0630 0.2833 0.1638 CFD 84.01% 0.72566733 22846.72 19192.79 17
5 685.80 33.79 353.02 69.52 412.89 277.06 48.66 34.46 122.6994 101.91 278.74 229.99 0.0573 0.2774 0.1565 CFD 85.48% 0.81789579 25306.43 21632.09 17
6 685.80 31.38 351.98 65.74 411.68 284.37 47.65 34.12 143.3029 116.10 280.38 229.99 0.0518 0.2713 0.1463 CFD 85.49% 0.89473009 27682.23 23664.24 19
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0
130715.16 106320.94
Notes: Overall polytropic efficiency = 81.34%
[1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 47829.71
[2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 10841.72
[3] Polytropic temperature exponent, nt is used to calculate discharge temperature
90%
100% Polytropic efficiency vs flow coefficient
Trip speed
105% d
133,863
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 64,555
105% speed
64,919
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Polytropic efficiency vs flow coefficient
Trip speed
100% speed
90% speed
80% speed
70% speed
105% speed
surge
Stonewall
33,863
53,863
73,863
93,863
113,863
133,863
14,280 16,280 18,280 20,280 22,280 24,280 26,280 28,280 30,280 32,280
Polytropic head (J/kg) vs inlet volume flow rate (m3/hr) 
100% speed
90% speed
80% speed
70% speed
Trip speed, 64,555
surge
Stonewall
105% speed
14,919
24,919
34,919
44,919
54,919
64,919
14280 16280 18280 20280 22280 24280 26280 28280 30280 32280
Gas power (kW) vs actual inlet volume flow rate (m3/hr)
1_Wheatstone Summer_30Dec2010

More Related Content

What's hot

4 na data sheet - 2.2019
4 na   data sheet - 2.20194 na   data sheet - 2.2019
4 na data sheet - 2.2019FrankEasel
 
12 各國離心泵效率標準
12 各國離心泵效率標準12 各國離心泵效率標準
12 各國離心泵效率標準huanjan chien
 
2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...
2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...
2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...Komandur Sunder Raj, P.E.
 
Costo referencial de posecion y operacion
Costo referencial de posecion y operacionCosto referencial de posecion y operacion
Costo referencial de posecion y operacionDeyvis Ubaldo
 
Compresseur hp heatpump
Compresseur hp heatpumpCompresseur hp heatpump
Compresseur hp heatpumpEUROPAGES
 
6 ta data sheet - flypartsguy.com - 8.2018
6 ta   data sheet - flypartsguy.com -  8.20186 ta   data sheet - flypartsguy.com -  8.2018
6 ta data sheet - flypartsguy.com - 8.2018FrankEasel
 
Kawasaki Vulcan S India Specs
Kawasaki Vulcan S India SpecsKawasaki Vulcan S India Specs
Kawasaki Vulcan S India SpecsRushLane
 
Kawasaki India Versys x 300 spec sheet
Kawasaki India Versys x 300 spec sheetKawasaki India Versys x 300 spec sheet
Kawasaki India Versys x 300 spec sheetRushLane
 
2003 Arctic Cat 300 4x4 ATV Service Repair Manual
2003 Arctic Cat 300 4x4 ATV Service Repair Manual2003 Arctic Cat 300 4x4 ATV Service Repair Manual
2003 Arctic Cat 300 4x4 ATV Service Repair Manualyehnmdm jnkmem
 
2005 ASME Power Conference Performance Considerations in Replacement of Low P...
2005 ASME Power Conference Performance Considerations in Replacement of Low P...2005 ASME Power Conference Performance Considerations in Replacement of Low P...
2005 ASME Power Conference Performance Considerations in Replacement of Low P...Komandur Sunder Raj, P.E.
 
Satellite chiller package miu dec 2013 - en
Satellite chiller package miu   dec 2013 - enSatellite chiller package miu   dec 2013 - en
Satellite chiller package miu dec 2013 - enEUROPAGES
 
Groschopp 66360 specsheet
Groschopp 66360 specsheetGroschopp 66360 specsheet
Groschopp 66360 specsheetElectromate
 
HAOTECH SOLAR MODULE
HAOTECH SOLAR MODULEHAOTECH SOLAR MODULE
HAOTECH SOLAR MODULEElmer Wong
 
Caratteristiche tecniche BMW Serie 2 Active Tourer xDrive 225i
Caratteristiche tecniche BMW Serie 2 Active Tourer xDrive 225iCaratteristiche tecniche BMW Serie 2 Active Tourer xDrive 225i
Caratteristiche tecniche BMW Serie 2 Active Tourer xDrive 225iAutoblog.it
 

What's hot (19)

4 na data sheet - 2.2019
4 na   data sheet - 2.20194 na   data sheet - 2.2019
4 na data sheet - 2.2019
 
12 各國離心泵效率標準
12 各國離心泵效率標準12 各國離心泵效率標準
12 各國離心泵效率標準
 
Southern chemicals1
Southern chemicals1Southern chemicals1
Southern chemicals1
 
2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...
2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...
2005 ASME Power Conference Analysis of Turbine Cycle Performance Losses Using...
 
Costo referencial de posecion y operacion
Costo referencial de posecion y operacionCosto referencial de posecion y operacion
Costo referencial de posecion y operacion
 
461
461461
461
 
Compresseur hp heatpump
Compresseur hp heatpumpCompresseur hp heatpump
Compresseur hp heatpump
 
6 ta data sheet - flypartsguy.com - 8.2018
6 ta   data sheet - flypartsguy.com -  8.20186 ta   data sheet - flypartsguy.com -  8.2018
6 ta data sheet - flypartsguy.com - 8.2018
 
Copy of southern chemicals1
Copy of southern chemicals1Copy of southern chemicals1
Copy of southern chemicals1
 
Kawasaki Vulcan S India Specs
Kawasaki Vulcan S India SpecsKawasaki Vulcan S India Specs
Kawasaki Vulcan S India Specs
 
Kawasaki India Versys x 300 spec sheet
Kawasaki India Versys x 300 spec sheetKawasaki India Versys x 300 spec sheet
Kawasaki India Versys x 300 spec sheet
 
2003 Arctic Cat 300 4x4 ATV Service Repair Manual
2003 Arctic Cat 300 4x4 ATV Service Repair Manual2003 Arctic Cat 300 4x4 ATV Service Repair Manual
2003 Arctic Cat 300 4x4 ATV Service Repair Manual
 
CHP Proposal
CHP ProposalCHP Proposal
CHP Proposal
 
2005 ASME Power Conference Performance Considerations in Replacement of Low P...
2005 ASME Power Conference Performance Considerations in Replacement of Low P...2005 ASME Power Conference Performance Considerations in Replacement of Low P...
2005 ASME Power Conference Performance Considerations in Replacement of Low P...
 
Satellite chiller package miu dec 2013 - en
Satellite chiller package miu   dec 2013 - enSatellite chiller package miu   dec 2013 - en
Satellite chiller package miu dec 2013 - en
 
Groschopp 66360 specsheet
Groschopp 66360 specsheetGroschopp 66360 specsheet
Groschopp 66360 specsheet
 
Cat 3512 b-1500_en
Cat 3512 b-1500_enCat 3512 b-1500_en
Cat 3512 b-1500_en
 
HAOTECH SOLAR MODULE
HAOTECH SOLAR MODULEHAOTECH SOLAR MODULE
HAOTECH SOLAR MODULE
 
Caratteristiche tecniche BMW Serie 2 Active Tourer xDrive 225i
Caratteristiche tecniche BMW Serie 2 Active Tourer xDrive 225iCaratteristiche tecniche BMW Serie 2 Active Tourer xDrive 225i
Caratteristiche tecniche BMW Serie 2 Active Tourer xDrive 225i
 

Viewers also liked

Estrategia didactica 3_progrestr
Estrategia didactica 3_progrestrEstrategia didactica 3_progrestr
Estrategia didactica 3_progrestrprofarturogg
 
Lembaran asas
Lembaran asasLembaran asas
Lembaran asaszarinamb
 
APHI535 Fall 16 Opening Session PowerPoint
APHI535 Fall 16 Opening Session PowerPointAPHI535 Fall 16 Opening Session PowerPoint
APHI535 Fall 16 Opening Session PowerPointCharita Alston
 
Combined Cycle Gas Turbine Operations
Combined Cycle Gas Turbine Operations Combined Cycle Gas Turbine Operations
Combined Cycle Gas Turbine Operations PowerEDGE
 
Detalle de Tareas Noveno
Detalle de Tareas NovenoDetalle de Tareas Noveno
Detalle de Tareas Novenoevastacy
 
Detalle de Tareas Primer Año
Detalle de Tareas Primer AñoDetalle de Tareas Primer Año
Detalle de Tareas Primer Añoevastacy
 
Photoshop Basics - Review of All Tools
Photoshop Basics - Review of All ToolsPhotoshop Basics - Review of All Tools
Photoshop Basics - Review of All Toolsnombre thera
 
Habits of Effective Designers - Handout
Habits of Effective Designers - HandoutHabits of Effective Designers - Handout
Habits of Effective Designers - HandoutDUSPviz
 
Seminar Pemanfaatan Board Games sebagai Media Pembelajaran
Seminar Pemanfaatan Board Games sebagai Media PembelajaranSeminar Pemanfaatan Board Games sebagai Media Pembelajaran
Seminar Pemanfaatan Board Games sebagai Media PembelajaranAdhicipta R. Wirawan
 
Waroong Wars Duta Wisata Kuliner Surabaya
Waroong Wars Duta Wisata Kuliner SurabayaWaroong Wars Duta Wisata Kuliner Surabaya
Waroong Wars Duta Wisata Kuliner SurabayaAdhicipta R. Wirawan
 
El cambio de las universidades y su nuevo contrato social
El cambio de las universidades y su nuevo contrato socialEl cambio de las universidades y su nuevo contrato social
El cambio de las universidades y su nuevo contrato socialClaudio Rama
 
DUSPviz Rhino 3D Workshop
DUSPviz Rhino 3D WorkshopDUSPviz Rhino 3D Workshop
DUSPviz Rhino 3D WorkshopDUSPviz
 
Soalan peperiksaan akhir tahun pendidikan muzik tahun 4 2015
Soalan peperiksaan akhir tahun pendidikan muzik tahun 4 2015Soalan peperiksaan akhir tahun pendidikan muzik tahun 4 2015
Soalan peperiksaan akhir tahun pendidikan muzik tahun 4 2015Norsiah Baharin
 
Presentasi peranan kelompok sebaya dalam kehidupan remaja + kenakalan remaja
Presentasi peranan kelompok sebaya dalam kehidupan remaja + kenakalan remajaPresentasi peranan kelompok sebaya dalam kehidupan remaja + kenakalan remaja
Presentasi peranan kelompok sebaya dalam kehidupan remaja + kenakalan remajaeloksksm
 

Viewers also liked (17)

Estrategia didactica 3_progrestr
Estrategia didactica 3_progrestrEstrategia didactica 3_progrestr
Estrategia didactica 3_progrestr
 
COVER PAGE FAIL PROGRAM TRANSISI TAHUN 1 2016
COVER PAGE FAIL PROGRAM TRANSISI TAHUN 1 2016COVER PAGE FAIL PROGRAM TRANSISI TAHUN 1 2016
COVER PAGE FAIL PROGRAM TRANSISI TAHUN 1 2016
 
Lembaran asas
Lembaran asasLembaran asas
Lembaran asas
 
APHI535 Fall 16 Opening Session PowerPoint
APHI535 Fall 16 Opening Session PowerPointAPHI535 Fall 16 Opening Session PowerPoint
APHI535 Fall 16 Opening Session PowerPoint
 
Combined Cycle Gas Turbine Operations
Combined Cycle Gas Turbine Operations Combined Cycle Gas Turbine Operations
Combined Cycle Gas Turbine Operations
 
Inecuaciones cuadraticas
Inecuaciones cuadraticasInecuaciones cuadraticas
Inecuaciones cuadraticas
 
Detalle de Tareas Noveno
Detalle de Tareas NovenoDetalle de Tareas Noveno
Detalle de Tareas Noveno
 
Detalle de Tareas Primer Año
Detalle de Tareas Primer AñoDetalle de Tareas Primer Año
Detalle de Tareas Primer Año
 
Photoshop Basics - Review of All Tools
Photoshop Basics - Review of All ToolsPhotoshop Basics - Review of All Tools
Photoshop Basics - Review of All Tools
 
Habits of Effective Designers - Handout
Habits of Effective Designers - HandoutHabits of Effective Designers - Handout
Habits of Effective Designers - Handout
 
Seminar Pemanfaatan Board Games sebagai Media Pembelajaran
Seminar Pemanfaatan Board Games sebagai Media PembelajaranSeminar Pemanfaatan Board Games sebagai Media Pembelajaran
Seminar Pemanfaatan Board Games sebagai Media Pembelajaran
 
Waroong Wars Duta Wisata Kuliner Surabaya
Waroong Wars Duta Wisata Kuliner SurabayaWaroong Wars Duta Wisata Kuliner Surabaya
Waroong Wars Duta Wisata Kuliner Surabaya
 
El cambio de las universidades y su nuevo contrato social
El cambio de las universidades y su nuevo contrato socialEl cambio de las universidades y su nuevo contrato social
El cambio de las universidades y su nuevo contrato social
 
DUSPviz Rhino 3D Workshop
DUSPviz Rhino 3D WorkshopDUSPviz Rhino 3D Workshop
DUSPviz Rhino 3D Workshop
 
Expansion Joint
Expansion JointExpansion Joint
Expansion Joint
 
Soalan peperiksaan akhir tahun pendidikan muzik tahun 4 2015
Soalan peperiksaan akhir tahun pendidikan muzik tahun 4 2015Soalan peperiksaan akhir tahun pendidikan muzik tahun 4 2015
Soalan peperiksaan akhir tahun pendidikan muzik tahun 4 2015
 
Presentasi peranan kelompok sebaya dalam kehidupan remaja + kenakalan remaja
Presentasi peranan kelompok sebaya dalam kehidupan remaja + kenakalan remajaPresentasi peranan kelompok sebaya dalam kehidupan remaja + kenakalan remaja
Presentasi peranan kelompok sebaya dalam kehidupan remaja + kenakalan remaja
 

Similar to 1_Wheatstone Summer_30Dec2010

Versocald- VERSOL hot water boilers
Versocald- VERSOL hot water boilersVersocald- VERSOL hot water boilers
Versocald- VERSOL hot water boilersPVijayP1
 
VOLVO EC460B LC EC460BLC EXCAVATOR Service Repair Manual
VOLVO EC460B LC EC460BLC EXCAVATOR Service Repair ManualVOLVO EC460B LC EC460BLC EXCAVATOR Service Repair Manual
VOLVO EC460B LC EC460BLC EXCAVATOR Service Repair Manualfujdfjjskrtekme
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfbin971209zhou
 
Volvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair ManualVolvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair Manualfujdfjjskrtekme
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdffujsekddmdmdm
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdffyhsejkdm8u
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfttf99929781
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdff8usejkdmdd8i
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdffjskemdmmded
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdffujsekmdd9dik
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdffujsekmd9idd1
 
Harmonic csg lw_spechseet
Harmonic csg lw_spechseetHarmonic csg lw_spechseet
Harmonic csg lw_spechseetElectromate
 

Similar to 1_Wheatstone Summer_30Dec2010 (12)

Versocald- VERSOL hot water boilers
Versocald- VERSOL hot water boilersVersocald- VERSOL hot water boilers
Versocald- VERSOL hot water boilers
 
VOLVO EC460B LC EC460BLC EXCAVATOR Service Repair Manual
VOLVO EC460B LC EC460BLC EXCAVATOR Service Repair ManualVOLVO EC460B LC EC460BLC EXCAVATOR Service Repair Manual
VOLVO EC460B LC EC460BLC EXCAVATOR Service Repair Manual
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair ManualVolvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair Manual
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Harmonic csg lw_spechseet
Harmonic csg lw_spechseetHarmonic csg lw_spechseet
Harmonic csg lw_spechseet
 

More from CangTo Cheah

Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aPeng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aCangTo Cheah
 
A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...CangTo Cheah
 
1975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B11975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B1CangTo Cheah
 
1975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A11975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A1CangTo Cheah
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009CangTo Cheah
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009CangTo Cheah
 
Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010CangTo Cheah
 
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010CangTo Cheah
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010CangTo Cheah
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...CangTo Cheah
 
Campbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCampbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCangTo Cheah
 
automation of PRNAT phase mapper
automation of PRNAT phase mapperautomation of PRNAT phase mapper
automation of PRNAT phase mapperCangTo Cheah
 
East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014CangTo Cheah
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flashCangTo Cheah
 
Attachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportAttachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportCangTo Cheah
 
Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012CangTo Cheah
 
Attachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressionsAttachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressionsCangTo Cheah
 

More from CangTo Cheah (20)

LP_point_6_(LtR)
LP_point_6_(LtR)LP_point_6_(LtR)
LP_point_6_(LtR)
 
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aPeng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
 
A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...
 
1975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B11975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B1
 
1975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A11975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A1
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009
 
Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010
 
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
 
Campbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCampbell interference plot_Wheatstone
Campbell interference plot_Wheatstone
 
nv and kv
nv and kvnv and kv
nv and kv
 
nt and kt
nt and ktnt and kt
nt and kt
 
automation of PRNAT phase mapper
automation of PRNAT phase mapperautomation of PRNAT phase mapper
automation of PRNAT phase mapper
 
East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flash
 
Attachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportAttachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection report
 
Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012
 
Attachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressionsAttachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressions
 

1_Wheatstone Summer_30Dec2010

  • 1. 200 Wheatstone Initial Plateau, Summer duty: Discharge pressure (bara) vs inlet volume flow rate (m3/hr) 200 Red Line: Dresser Rand Blue Line: Everywheel 180 160 140 120 100 80 8500 10500 12500 14500 16500 18500 20500 22500 24500 26500 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 4270 rpm 4880 rpm 5490 rpm 6100 rpm 6405 rpm By: Cheah CangTo Date: 30 December 2010
  • 2. 890.7 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 9302.39 meter Date: Input 45.9 91225.27 J/kg Process stage: Single 129.0100 3100.80 meter Driver type: Gas turbine NaceCS 30408.42 J/kg Number of wheels 3 - Bearing loss, kW: 47.86 Gas data Mol % Impeller diameter 398.18 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 255.12 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 261.91 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1393 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.96 % 1 1.2877 1.2841 0.8982 0.9014 5217.00 1.4210 1.4284 1.3593 1.3538 Oxygen 0.0000 Rotational speed 12236.84 rpm 2 1.2841 1.2802 0.9014 0.9054 5217.00 1.4187 1.4288 1.3479 1.3422 Methane 82.9700 k1 1.4732 - 3 1.2802 1.2762 0.9054 0.9105 5217.00 1.4255 1.4387 1.3402 1.3344 15822 Ethane 4.2890 k2 1.4448 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:45 3 1.2802 1.2762 0.9054 0.9105 5217.00 1.4255 1.4387 1.3402 1.3344 15822 Ethane 4.2890 k2 1.4448 4 1.2762 1.2720 0.9105 0.9169 5217.00 1.4402 1.4566 1.3352 1.3291 Propane 1.7600 Z1 0.8982 - 5 1.2720 1.2676 0.9169 0.9248 5217.00 1.4616 1.4815 1.3319 1.3257 i-Butane 0.3198 Z2 0.9339 - 6 1.2676 1.2632 0.9248 0.9344 5217.00 1.4888 1.5121 1.3297 1.3234 P2 129.01 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 890.700 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 15927.4 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 874194 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 37.28 356.35 74.73 416.79 268.74 49.86 34.88 73.4382 54.51 276.84 187.33 0.0639 0.2842 0.1407 CFD 83.62% 0.71025548 14903.80 12462.88 17 2 685.80 35.30 354.14 71.24 414.20 274.20 49.06 34.61 81.8384 63.74 278.09 187.33 0.0595 0.2798 0.1361 CFD 85.10% 0.78339592 16152.73 13746.28 17 3 685.80 33.34 351.96 67.68 411.65 279.83 48.27 34.31 91.6697 73.52 279.36 187.33 0.0552 0.2751 0.1314 CFD 85.63% 0.84880255 17393.49 14893.97 17 4 685.80 31.43 349.85 64.10 409.19 285.43 47.51 34.01 103.0112 83.76 280.62 187.33 0.0510 0.2704 0.1267 CFD 85.39% 0.90463039 18589.16 15873.59 17 5 685.80 29.63 347.85 60.60 406.84 290.83 46.80 33.71 115.9171 94.33 281.84 187.33 0.0470 0.2658 0.1222 CFD 84.63% 0.95064104 19711.40 16680.94 17 6 685.80 27.93 347.60 58.14 406.55 295.89 46.14 33.48 130.4220 105.16 282.98 187.33 0.0434 0.2612 0.1154 CFD 83.55% 0.98770287 20742.86 17331.26 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 107493.45 90988.92 Notes: Overall polytropic efficiency = 84.65% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 26102.82 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 9278.29 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 108,980 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 35,231 105% speed 33,142 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 28,980 38,980 48,980 58,980 68,980 78,980 88,980 98,980 108,980 9,477 11,477 13,477 15,477 17,477 19,477 21,477 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 35,231 surge Stonewall 105% speed 8,142 13,142 18,142 23,142 28,142 33,142 9477 11477 13477 15477 17477 19477 21477 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 3. 498.19 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 7494.51 meter Date: Input 45.9 73495.99 J/kg Process stage: Single 115.0000 3747.25 meter Driver type: Gas turbine NaceCS 36748.00 J/kg Number of wheels 2 - Bearing loss, kW: 32.06 Gas data Mol % Impeller diameter 296.39 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 277.86 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 263.19 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1291 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.85 % 1 1.2877 1.2843 0.8982 0.9012 4270.00 1.4208 1.4277 1.3592 1.3541 Oxygen 0.0000 Rotational speed 17904.99 rpm 2 1.2843 1.2809 0.9012 0.9048 4270.00 1.4346 1.4429 1.3582 1.3530 Methane 82.9700 k1 1.4732 - 3 1.2809 1.2775 0.9048 0.9091 4270.00 1.4504 1.4603 1.3573 1.3521 15822 Ethane 4.2890 k2 1.4506 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 16:42 3 1.2809 1.2775 0.9048 0.9091 4270.00 1.4504 1.4603 1.3573 1.3521 15822 Ethane 4.2890 k2 1.4506 4 1.2775 1.2740 0.9091 0.9141 4270.00 1.4680 1.4794 1.3565 1.3512 Propane 1.7600 Z1 0.8982 - 5 1.2740 1.2706 0.9141 0.9199 4270.00 1.4872 1.5003 1.3556 1.3503 i-Butane 0.3198 Z2 0.9243 - 6 1.2706 1.2671 0.9199 0.9264 4270.00 1.5080 1.5225 1.3546 1.3494 P2 115 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 498.190 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 8908.6 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 488958 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 28.18 346.12 57.66 404.81 295.49 46.19 33.44 72.9201 53.91 282.89 153.33 0.0437 0.2616 0.1043 CFD 83.65% 0.98497430 13841.66 11578.25 17 2 685.80 26.82 344.63 54.97 403.07 299.45 45.69 33.20 80.1060 62.07 283.79 153.33 0.0409 0.2579 0.1014 CFD 82.64% 1.01062995 14374.94 11879.83 17 3 685.80 25.53 343.20 52.44 401.41 303.14 45.22 32.98 87.9311 70.35 284.63 153.33 0.0383 0.2544 0.0986 CFD 81.59% 1.03198600 14867.76 12130.86 17 4 685.80 24.33 341.85 50.04 399.83 306.56 44.79 32.77 96.4073 78.71 285.42 153.33 0.0359 0.2509 0.0959 CFD 80.54% 1.04974271 15320.63 12339.59 17 5 685.80 23.21 340.56 47.79 398.32 309.70 44.40 32.57 105.5447 87.12 286.14 153.33 0.0338 0.2477 0.0933 CFD 79.52% 1.06452579 15735.15 12513.37 17 6 685.80 22.17 340.79 46.50 398.59 312.58 44.04 32.45 115.3522 95.55 286.82 153.33 0.0318 0.2446 0.0889 CFD 78.56% 1.07686980 16113.52 12658.47 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 90253.67 73100.37 Notes: Overall polytropic efficiency = 80.99% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 12258.40 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 7454.16 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 83,282 93,282 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 16,545 105% speed 15,824 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 23,282 33,282 43,282 53,282 63,282 73,282 83,282 93,282 5,301 6,301 7,301 8,301 9,301 10,301 11,301 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 16,545 surge Stonewall 105% speed 3,824 5,824 7,824 9,824 11,824 13,824 15,824 5301 6301 7301 8301 9301 10301 11301 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 4. 678.26 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 6144.88 meter Date: Input 45.9 60260.73 J/kg Process stage: Single 105.0000 3072.44 meter Driver type: Gas turbine NaceCS 30130.36 J/kg Number of wheels 2 - Bearing loss, kW: 32.06 Gas data Mol % Impeller diameter 346.70 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 254.22 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 261.79 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1404 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.86 % 1 1.2877 1.2850 0.8982 0.9004 4270.00 1.4111 1.4166 1.3533 1.3493 Oxygen 0.0000 Rotational speed 14004.43 rpm 2 1.2850 1.2823 0.9004 0.9031 4270.00 1.4137 1.4205 1.3476 1.3435 Methane 82.9700 k1 1.4732 - 3 1.2823 1.2795 0.9031 0.9062 4270.00 1.4202 1.4284 1.3434 1.3392 15822 Ethane 4.2890 k2 1.4529 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 16:46 3 1.2823 1.2795 0.9031 0.9062 4270.00 1.4202 1.4284 1.3434 1.3392 15822 Ethane 4.2890 k2 1.4529 4 1.2795 1.2765 0.9062 0.9100 4270.00 1.4302 1.4398 1.3403 1.3360 Propane 1.7600 Z1 0.8982 - 5 1.2765 1.2736 0.9100 0.9143 4270.00 1.4433 1.4544 1.3380 1.3337 i-Butane 0.3198 Z2 0.9186 - 6 1.2736 1.2705 0.9143 0.9194 4270.00 1.4591 1.4718 1.3363 1.3319 P2 105 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 678.260 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 12128.6 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 665691 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 35.83 354.11 71.01 414.17 274.27 49.05 34.60 71.5519 52.21 278.11 153.33 0.0595 0.2797 0.1129 CFD 85.12% 0.78435929 10832.41 9220.04 17 2 685.80 34.40 352.57 68.48 412.36 278.24 48.49 34.40 77.3599 58.80 279.00 153.33 0.0564 0.2764 0.1102 CFD 85.57% 0.83134595 11420.54 9772.37 17 3 685.80 32.99 351.06 65.97 410.59 282.22 47.95 34.18 83.8113 65.63 279.90 153.33 0.0534 0.2731 0.1075 CFD 85.61% 0.87367957 11996.44 10269.99 17 4 685.80 31.62 349.59 63.48 408.88 286.14 47.42 33.97 90.9279 72.68 280.78 153.33 0.0505 0.2698 0.1048 CFD 85.32% 0.91108255 12552.68 10709.66 17 5 685.80 30.30 348.18 61.03 407.22 289.95 46.91 33.76 98.7268 79.91 281.64 153.33 0.0477 0.2665 0.1021 CFD 84.78% 0.94363047 13083.56 11092.26 17 6 685.80 29.03 348.47 59.53 407.57 293.60 46.44 33.61 107.2215 87.28 282.46 153.33 0.0450 0.2633 0.0976 CFD 84.07% 0.97164245 13585.15 11421.53 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 73470.77 62485.85 Notes: Overall polytropic efficiency = 85.05% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 13585.79 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 6371.78 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d69,902 79,902 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 18,337 105% speed 16 238 18,238 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 19,902 29,902 39,902 49,902 59,902 69,902 79,902 7,217 8,217 9,217 10,217 11,217 12,217 13,217 14,217 15,217 16,217 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 18,337 surge Stonewall 105% speed 4,238 6,238 8,238 10,238 12,238 14,238 16,238 18,238 7217 8217 9217 10217 11217 12217 13217 14217 15217 16217 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 5. 826.79 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 4717.30 meter Date: Input 45.9 46260.91 J/kg Process stage: Single 95.0000 2358.65 meter Driver type: Gas turbine NaceCS 23130.46 J/kg Number of wheels 2 - Bearing loss, kW: 32.06 Gas data Mol % Impeller diameter 383.40 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 226.45 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 260.28 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1571 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 82.24 % 1 1.2877 1.2857 0.8982 0.9002 4270.00 1.4669 1.4702 1.3871 1.3837 Oxygen 0.0000 Rotational speed 11280.36 rpm 2 1.2857 1.2836 0.9002 0.9023 4270.00 1.4517 1.4559 1.3727 1.3693 Methane 82.9700 k1 1.4732 - 3 1.2836 1.2814 0.9023 0.9047 4270.00 1.4413 1.4466 1.3607 1.3572 15822 Ethane 4.2890 k2 1.4551 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 16:50 3 1.2836 1.2814 0.9023 0.9047 4270.00 1.4413 1.4466 1.3607 1.3572 15822 Ethane 4.2890 k2 1.4551 4 1.2814 1.2791 0.9047 0.9073 4270.00 1.4357 1.4421 1.3508 1.3473 Propane 1.7600 Z1 0.8982 - 5 1.2791 1.2767 0.9073 0.9104 4270.00 1.4344 1.4421 1.3428 1.3392 i-Butane 0.3198 Z2 0.9133 - 6 1.2767 1.2742 0.9104 0.9139 4270.00 1.4373 1.4464 1.3365 1.3329 P2 95 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 826.790 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 14784.6 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 811469 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 42.02 360.76 80.50 421.95 258.75 50.00 35.36 69.9735 50.64 274.53 153.33 0.0725 0.2924 0.1193 CFD 77.51% 0.55059383 8350.23 6472.16 17 2 685.80 40.82 359.43 78.63 420.38 261.65 50.00 35.23 74.0636 55.66 275.21 153.33 0.0699 0.2900 0.1172 CFD 79.82% 0.60026972 8840.20 7056.09 17 3 685.80 39.58 358.05 76.68 418.77 264.76 50.00 35.08 78.6791 60.95 275.93 153.33 0.0673 0.2874 0.1149 CFD 81.79% 0.65059627 9350.92 7647.68 17 4 685.80 38.30 356.64 74.63 417.12 268.05 49.96 34.92 83.8658 66.51 276.69 153.33 0.0645 0.2848 0.1127 CFD 83.36% 0.70035049 9876.45 8232.53 17 5 685.80 37.01 355.23 72.50 415.47 271.49 49.45 34.74 89.6644 72.34 277.47 153.33 0.0617 0.2820 0.1103 CFD 84.50% 0.74834165 10409.87 8796.66 17 6 685.80 35.70 355.63 71.21 415.94 275.02 48.95 34.62 96.1096 78.40 278.27 153.33 0.0589 0.2791 0.1060 CFD 85.24% 0.79355351 10943.91 9328.12 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 57771.58 47533.25 Notes: Overall polytropic efficiency = 82.28% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 13022.17 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 4847.04 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 55,139 60,139 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 17,576 105% speed16,062 18,062 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 15,139 20,139 25,139 30,139 35,139 40,139 45,139 50,139 55,139 60,139 8,797 10,797 12,797 14,797 16,797 18,797 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 17,576 surge Stonewall 105% speed 4,062 6,062 8,062 10,062 12,062 14,062 16,062 18,062 8797 10797 12797 14797 16797 18797 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 6. 921.35 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 3183.99 meter Date: Input 45.9 31224.27 J/kg Process stage: Single 85.0000 3183.99 meter Driver type: Gas turbine NaceCS 31224.27 J/kg Number of wheels 1 - Bearing loss, kW: 32.06 Gas data Mol % Impeller diameter 405.09 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 258.12 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 262.11 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1376 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.12 % 1 1.2877 1.2861 0.8982 0.9001 4270.00 1.5731 1.5744 1.4487 1.4456 Oxygen 0.0000 Rotational speed 12169.26 rpm 2 1.2861 1.2845 0.9001 0.9020 4270.00 1.5420 1.5441 1.4272 1.4241 Methane 82.9700 k1 1.4732 - 3 1.2845 1.2828 0.9020 0.9041 4270.00 1.5155 1.5184 1.4078 1.4047 15822 Ethane 4.2890 k2 1.4603 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 16:53 3 1.2845 1.2828 0.9020 0.9041 4270.00 1.5155 1.5184 1.4078 1.4047 15822 Ethane 4.2890 k2 1.4603 4 1.2828 1.2810 0.9041 0.9063 4270.00 1.4938 1.4975 1.3905 1.3874 Propane 1.7600 Z1 0.8982 - 5 1.2810 1.2790 0.9063 0.9086 4270.00 1.4766 1.4812 1.3753 1.3722 i-Butane 0.3198 Z2 0.9071 - 6 1.2790 1.2770 0.9086 0.9112 4270.00 1.4640 1.4696 1.3622 1.3590 P2 85 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 921.350 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 16475.5 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 904276 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 46.00 365.20 85.89 427.14 250.04 50.00 35.76 68.8864 49.60 272.43 153.33 0.0808 0.3000 0.1231 CFD 67.26% 0.38734341 6769.98 4553.17 17 2 685.80 45.10 364.17 84.60 425.93 251.94 50.00 35.68 71.7246 53.52 272.90 153.33 0.0789 0.2983 0.1215 CFD 69.96% 0.42444049 7131.24 4989.24 17 3 685.80 44.14 363.07 83.25 424.65 254.05 50.00 35.58 74.9183 57.66 273.41 153.33 0.0769 0.2964 0.1198 CFD 72.64% 0.46468233 7519.60 5462.28 17 4 685.80 43.12 361.92 81.78 423.29 256.36 50.00 35.48 78.5139 62.03 273.96 153.33 0.0747 0.2944 0.1180 CFD 75.22% 0.50771592 7934.27 5968.14 17 5 685.80 42.05 360.70 80.19 421.87 258.89 50.00 35.36 82.5596 66.64 274.56 153.33 0.0724 0.2923 0.1161 CFD 77.63% 0.55297429 8373.48 6500.14 17 6 685.80 40.91 361.35 79.41 422.63 261.61 50.00 35.28 87.1040 71.50 275.20 153.33 0.0700 0.2900 0.1122 CFD 79.79% 0.59967513 8834.26 7049.11 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 46562.84 34522.08 Notes: Overall polytropic efficiency = 74.14% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 11696.02 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 3520.27 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 40,995 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 15,786 105% speed 15,648 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 10,995 15,995 20,995 25,995 30,995 35,995 40,995 9,803 11,803 13,803 15,803 17,803 19,803 21,803 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 15,786 surge Stonewall 105% speed 3,648 5,648 7,648 9,648 11,648 13,648 15,648 9803 11803 13803 15803 17803 19803 21803 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 7. 620.74 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 9671.68 meter Date: Input 45.9 94846.75 J/kg Process stage: Single 132.0000 3223.89 meter Driver type: Gas turbine NaceCS 31615.58 J/kg Number of wheels 3 - Bearing loss, kW: 41.88 Gas data Mol % Impeller diameter 331.43 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 259.73 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 262.10 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1376 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.12 % 1 1.2877 1.2835 0.8982 0.9019 4880.00 1.4134 1.4223 1.3547 1.3484 Oxygen 0.0000 Rotational speed 14967.02 rpm 2 1.2835 1.2793 0.9019 0.9066 4880.00 1.4294 1.4408 1.3527 1.3462 Methane 82.9700 k1 1.4732 - 3 1.2793 1.2750 0.9066 0.9125 4880.00 1.4495 1.4635 1.3513 1.3448 15822 Ethane 4.2890 k2 1.4440 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 16:56 3 1.2793 1.2750 0.9066 0.9125 4880.00 1.4495 1.4635 1.3513 1.3448 15822 Ethane 4.2890 k2 1.4440 4 1.2750 1.2706 0.9125 0.9196 4880.00 1.4730 1.4897 1.3501 1.3436 Propane 1.7600 Z1 0.8982 - 5 1.2706 1.2662 0.9196 0.9281 4880.00 1.4994 1.5188 1.3489 1.3424 i-Butane 0.3198 Z2 0.9358 - 6 1.2662 1.2619 0.9281 0.9378 4880.00 1.5285 1.5505 1.3476 1.3412 P2 132 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 620.740 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 11100.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 609237 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 29.80 348.16 61.36 407.20 290.00 46.91 33.75 74.6395 55.81 281.65 175.23 0.0476 0.2665 0.1218 CFD 84.77% 0.94402749 17097.60 14493.94 17 2 685.80 28.03 346.20 57.84 404.91 295.28 46.22 33.45 84.0030 66.03 282.84 175.23 0.0438 0.2618 0.1174 CFD 83.70% 0.98350715 18041.21 15100.08 17 3 685.80 26.37 344.35 54.53 402.74 300.18 45.59 33.16 94.4813 76.48 283.96 175.23 0.0404 0.2572 0.1133 CFD 82.44% 1.01506989 18903.95 15584.68 17 4 685.80 24.84 342.61 51.42 400.71 304.66 45.03 32.89 106.0990 87.08 284.98 175.23 0.0372 0.2528 0.1094 CFD 81.13% 1.04012944 19683.26 15969.42 17 5 685.80 23.44 340.98 48.55 398.80 308.71 44.52 32.63 118.8754 97.76 285.91 175.23 0.0344 0.2487 0.1057 CFD 79.85% 1.06001311 20381.41 16274.70 17 6 685.80 22.15 340.90 46.72 398.72 312.33 44.07 32.47 132.8252 108.45 286.76 175.23 0.0319 0.2449 0.0999 CFD 78.64% 1.07584725 21003.63 16517.81 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 115111.07 93940.64 Notes: Overall polytropic efficiency = 81.61% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 19480.53 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 9579.28 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 109,920 119,920 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 26,293 105% speed 26,076 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 29,920 39,920 49,920 59,920 69,920 79,920 89,920 99,920 109,920 119,920 6,605 7,605 8,605 9,605 10,605 11,605 12,605 13,605 14,605 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 26,293 surge Stonewall 105% speed 6,076 11,076 16,076 21,076 26,076 6605 7605 8605 9605 10605 11605 12605 13605 14605 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 8. 782.912 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 8548.55 meter Date: Input 45.9 83832.60 J/kg Process stage: Single 123.0000 2849.52 meter Driver type: Gas turbine NaceCS 27944.20 J/kg Number of wheels 3 - Bearing loss, kW: 41.88 Gas data Mol % Impeller diameter 372.92 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 245.87 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 261.32 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1448 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.45 % 1 1.2877 1.2843 0.8982 0.9012 4880.00 1.4120 1.4192 1.3539 1.3487 Oxygen 0.0000 Rotational speed 12591.81 rpm 2 1.2843 1.2807 0.9012 0.9048 4880.00 1.4153 1.4247 1.3464 1.3411 Methane 82.9700 k1 1.4732 - 3 1.2807 1.2770 0.9048 0.9094 4880.00 1.4251 1.4369 1.3413 1.3359 15822 Ethane 4.2890 k2 1.4461 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 16:58 3 1.2807 1.2770 0.9048 0.9094 4880.00 1.4251 1.4369 1.3413 1.3359 15822 Ethane 4.2890 k2 1.4461 4 1.2770 1.2731 0.9094 0.9150 4880.00 1.4405 1.4548 1.3379 1.3323 Propane 1.7600 Z1 0.8982 - 5 1.2731 1.2692 0.9150 0.9218 4880.00 1.4606 1.4776 1.3356 1.3299 i-Butane 0.3198 Z2 0.9302 - 6 1.2692 1.2652 0.9218 0.9299 4880.00 1.4849 1.5046 1.3339 1.3281 P2 123 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 782.912 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 14000.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 768404 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 35.71 354.41 71.67 414.52 273.52 49.16 34.64 73.1083 54.03 277.93 175.23 0.0601 0.2803 0.1294 CFD 84.98% 0.77487085 14000.29 11896.83 17 2 685.80 33.90 352.42 68.41 412.19 278.62 48.44 34.38 80.9096 62.63 279.09 175.23 0.0561 0.2761 0.1254 CFD 85.59% 0.83558704 14989.14 12829.02 17 3 685.80 32.14 350.49 65.16 409.93 283.74 47.74 34.10 89.8234 71.63 280.24 175.23 0.0522 0.2719 0.1214 CFD 85.53% 0.88863967 15951.52 13643.56 17 4 685.80 30.44 348.63 61.95 407.75 288.73 47.07 33.82 99.8937 80.95 281.37 175.23 0.0486 0.2676 0.1175 CFD 84.98% 0.93356922 16867.37 14333.37 17 5 685.80 28.83 346.86 58.84 405.69 293.49 46.45 33.55 111.1520 90.51 282.44 175.23 0.0451 0.2634 0.1136 CFD 84.10% 0.97078374 17722.84 14904.74 17 6 685.80 27.31 346.81 56.75 405.62 297.94 45.88 33.35 123.6205 100.26 283.45 175.23 0.0420 0.2593 0.1077 CFD 83.04% 1.00118703 18510.36 15371.53 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 98041.51 82979.04 Notes: Overall polytropic efficiency = 84.64% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 20926.52 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 8461.51 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 96,429 106,429 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 28,244 105% speed 26,527 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 26,429 36,429 46,429 56,429 66,429 76,429 86,429 96,429 106,429 8,330 10,330 12,330 14,330 16,330 18,330 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 28,244 surge Stonewall 105% speed 6,527 11,527 16,527 21,527 26,527 8330 10330 12330 14330 16330 18330 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 9. 922.72 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 6827.90 meter Date: Input 45.9 66958.84 J/kg Process stage: Single 110.0000 3413.95 meter Driver type: Gas turbine NaceCS 33479.42 J/kg Number of wheels 2 - Bearing loss, kW: 41.88 Gas data Mol % Impeller diameter 405.40 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 266.24 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 262.62 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1334 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.49 % 1 1.2877 1.2850 0.8982 0.9008 4880.00 1.4541 1.4589 1.3794 1.3749 Oxygen 0.0000 Rotational speed 12542.87 rpm 2 1.2850 1.2821 0.9008 0.9038 4880.00 1.4390 1.4455 1.3630 1.3585 Methane 82.9700 k1 1.4732 - 3 1.2821 1.2790 0.9038 0.9073 4880.00 1.4318 1.4403 1.3504 1.3458 15822 Ethane 4.2890 k2 1.4518 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:01 3 1.2821 1.2790 0.9038 0.9073 4880.00 1.4318 1.4403 1.3504 1.3458 15822 Ethane 4.2890 k2 1.4518 4 1.2790 1.2758 0.9073 0.9115 4880.00 1.4319 1.4426 1.3409 1.3361 Propane 1.7600 Z1 0.8982 - 5 1.2758 1.2724 0.9115 0.9166 4880.00 1.4388 1.4519 1.3340 1.3291 i-Butane 0.3198 Z2 0.9214 - 6 1.2724 1.2689 0.9166 0.9226 4880.00 1.4518 1.4673 1.3291 1.3241 P2 110 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 922.720 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 16500.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 905621 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 40.80 359.88 79.55 420.91 260.66 50.00 35.27 71.3968 52.36 274.98 175.23 0.0708 0.2908 0.1354 CFD 79.08% 0.58361017 11330.10 8960.34 17 2 685.80 39.19 358.09 76.98 418.81 264.66 50.00 35.08 77.3008 59.29 275.91 175.23 0.0673 0.2875 0.1321 CFD 81.73% 0.64911296 12193.44 9966.03 17 3 685.80 37.54 356.25 74.27 416.67 268.99 49.82 34.87 84.1741 66.68 276.90 175.23 0.0637 0.2840 0.1287 CFD 83.71% 0.71384006 13091.81 10959.80 17 4 685.80 35.87 354.40 71.42 414.51 273.55 49.16 34.64 92.1049 74.51 277.94 175.23 0.0601 0.2803 0.1251 CFD 84.98% 0.77520064 14005.40 11901.89 17 5 685.80 34.21 352.58 68.48 412.37 278.22 48.50 34.40 101.1642 82.72 279.00 175.23 0.0564 0.2765 0.1215 CFD 85.57% 0.83114505 14913.20 12760.82 17 6 685.80 32.57 352.55 66.43 412.34 282.90 47.85 34.20 111.4051 91.27 280.05 175.23 0.0529 0.2726 0.1157 CFD 85.58% 0.88045777 15795.69 13517.94 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 81329.64 68066.83 Notes: Overall polytropic efficiency = 83.69% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 20459.40 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 6940.88 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 81,679 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 27,614 105% speed 26,381 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 21,679 31,679 41,679 51,679 61,679 71,679 81,679 9,818 11,818 13,818 15,818 17,818 19,818 21,818 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 27,614 surge Stonewall 105% speed 6,381 11,381 16,381 21,381 26,381 9818 11818 13818 15818 17818 19818 21818 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 10. 1081.15 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 4270.94 meter Date: Input 45.9 41883.57 J/kg Process stage: Single 92.0000 2135.47 meter Driver type: Gas turbine NaceCS 20941.79 J/kg Number of wheels 2 - Bearing loss, kW: 41.88 Gas data Mol % Impeller diameter 439.39 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 216.87 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 259.89 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1633 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 81.61 % 1 1.2877 1.2858 0.8982 0.9006 4880.00 1.6192 1.6202 1.4745 1.4706 Oxygen 0.0000 Rotational speed 9426.43 rpm 2 1.2858 1.2838 0.9006 0.9032 4880.00 1.5737 1.5759 1.4447 1.4408 Methane 82.9700 k1 1.4732 - 3 1.2838 1.2817 0.9032 0.9058 4880.00 1.5358 1.5392 1.4181 1.4142 15822 Ethane 4.2890 k2 1.4559 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:03 3 1.2838 1.2817 0.9032 0.9058 4880.00 1.5358 1.5392 1.4181 1.4142 15822 Ethane 4.2890 k2 1.4559 4 1.2817 1.2794 0.9058 0.9087 4880.00 1.5054 1.5101 1.3948 1.3909 Propane 1.7600 Z1 0.8982 - 5 1.2794 1.2769 0.9087 0.9119 4880.00 1.4823 1.4886 1.3748 1.3709 i-Butane 0.3198 Z2 0.9117 - 6 1.2769 1.2743 0.9119 0.9155 4880.00 1.4666 1.4745 1.3582 1.3542 P2 92 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1081.150 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 19333.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1061115 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 46.74 366.40 87.49 428.53 247.93 50.00 35.86 69.3093 50.38 271.91 175.23 0.0830 0.3019 0.1418 CFD 63.93% 0.34576782 8304.25 5308.68 17 2 685.80 45.68 365.19 86.01 427.12 250.07 50.00 35.76 72.7153 55.18 272.44 175.23 0.0808 0.2999 0.1396 CFD 67.31% 0.38803303 8851.26 5957.59 17 3 685.80 44.51 363.87 84.42 425.58 252.52 50.00 35.65 76.6639 60.32 273.04 175.23 0.0783 0.2978 0.1373 CFD 70.73% 0.43553139 9454.38 6686.85 17 4 685.80 43.25 362.45 82.64 423.92 255.29 50.00 35.53 81.2512 65.83 273.71 175.23 0.0757 0.2953 0.1348 CFD 74.07% 0.48790523 10113.62 7490.96 17 5 685.80 41.91 360.93 80.67 422.15 258.39 50.00 35.38 86.5802 71.73 274.44 175.23 0.0728 0.2927 0.1321 CFD 77.19% 0.54427857 10826.00 8356.47 17 6 685.80 40.47 361.25 79.43 422.52 261.82 50.00 35.27 92.7557 78.03 275.25 175.23 0.0698 0.2898 0.1271 CFD 79.94% 0.60322049 11584.89 9261.43 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 59134.41 43061.97 Notes: Overall polytropic efficiency = 72.82% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 17430.11 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 4391.10 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 48,715 53,715 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 23,525 105% speed21,437 23,437 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 13,715 18,715 23,715 28,715 33,715 38,715 43,715 48,715 53,715 11,503 13,503 15,503 17,503 19,503 21,503 23,503 25,503 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 23,525 surge Stonewall 105% speed 5,437 7,437 9,437 11,437 13,437 15,437 17,437 19,437 21,437 23,437 11503 13503 15503 17503 19503 21503 23503 25503 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 11. 754.95 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 12181.32 meter Date: Input 45.9 119457.96 J/kg Process stage: Single 153.0000 3045.33 meter Driver type: Gas turbine NaceCS 29864.49 J/kg Number of wheels 4 - Bearing loss, kW: 53.00 Gas data Mol % Impeller diameter 366.09 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 253.18 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 261.75 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1407 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.83 % 1 1.2877 1.2827 0.8982 0.9026 5490.00 1.4090 1.4201 1.3520 1.3446 Oxygen 0.0000 Rotational speed 13208.02 rpm 2 1.2827 1.2776 0.9026 0.9086 5490.00 1.4261 1.4412 1.3482 1.3406 Methane 82.9700 k1 1.4732 - 3 1.2776 1.2723 0.9086 0.9165 5490.00 1.4506 1.4698 1.3460 1.3382 15822 Ethane 4.2890 k2 1.4365 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:05 3 1.2776 1.2723 0.9086 0.9165 5490.00 1.4506 1.4698 1.3460 1.3382 15822 Ethane 4.2890 k2 1.4365 4 1.2723 1.2670 0.9165 0.9264 5490.00 1.4810 1.5044 1.3444 1.3365 Propane 1.7600 Z1 0.8982 - 5 1.2670 1.2617 0.9264 0.9384 5490.00 1.5163 1.5439 1.3428 1.3350 i-Butane 0.3198 Z2 0.9506 - 6 1.2617 1.2564 0.9384 0.9525 5490.00 1.5558 1.5873 1.3411 1.3336 P2 153 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 754.950 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 13500.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 740960 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 31.26 350.11 64.88 409.49 284.73 47.61 34.05 76.4116 57.74 280.47 197.14 0.0515 0.2710 0.1397 CFD 85.46% 0.89814400 20422.65 17452.31 17 2 685.80 29.06 347.63 60.48 406.59 291.42 46.72 33.67 88.2162 70.14 281.97 197.14 0.0466 0.2653 0.1337 CFD 84.52% 0.95524283 21962.34 18561.83 17 3 685.80 27.01 345.31 56.32 403.87 297.65 45.92 33.31 101.8411 82.94 283.38 197.14 0.0422 0.2596 0.1279 CFD 83.12% 0.99932216 23362.51 19418.35 17 4 685.80 25.15 343.15 52.46 401.35 303.27 45.20 32.97 117.3330 95.98 284.66 197.14 0.0382 0.2542 0.1225 CFD 81.55% 1.03272274 24606.97 20067.38 17 5 685.80 23.47 341.16 48.92 399.02 308.26 44.58 32.66 134.7236 109.12 285.81 197.14 0.0348 0.2492 0.1174 CFD 80.00% 1.05790921 25696.66 20556.79 17 6 685.80 21.96 340.78 46.56 398.57 312.61 44.03 32.45 154.0318 122.26 286.82 197.14 0.0318 0.2445 0.1102 CFD 78.55% 1.07697937 26642.44 20927.35 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 142693.58 116984.01 Notes: Overall polytropic efficiency = 81.98% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 29369.51 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 11929.05 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 137,259 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 39,640 105% speed 34 161 39,161 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 37,259 57,259 77,259 97,259 117,259 137,259 8,032 10,032 12,032 14,032 16,032 18,032 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 39,640 surge Stonewall 105% speed 9,161 14,161 19,161 24,161 29,161 34,161 39,161 8032 10032 12032 14032 16032 18032 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 12. 978.64 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 10036.11 meter Date: Input 45.9 98420.63 J/kg Process stage: Single 135.0000 3345.37 meter Driver type: Gas turbine NaceCS 32806.88 J/kg Number of wheels 3 - Bearing loss, kW: 53.00 Gas data Mol % Impeller diameter 417.70 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 263.82 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 262.48 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1345 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.39 % 1 1.2877 1.2839 0.8982 0.9017 5490.00 1.4315 1.4390 1.3657 1.3598 Oxygen 0.0000 Rotational speed 12062.58 rpm 2 1.2839 1.2799 0.9017 0.9060 5490.00 1.4235 1.4342 1.3505 1.3445 Methane 82.9700 k1 1.4732 - 3 1.2799 1.2756 0.9060 0.9115 5490.00 1.4270 1.4413 1.3403 1.3340 15822 Ethane 4.2890 k2 1.4434 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:08 3 1.2799 1.2756 0.9060 0.9115 5490.00 1.4270 1.4413 1.3403 1.3340 15822 Ethane 4.2890 k2 1.4434 4 1.2756 1.2710 0.9115 0.9186 5490.00 1.4407 1.4588 1.3337 1.3272 Propane 1.7600 Z1 0.8982 - 5 1.2710 1.2664 0.9186 0.9275 5490.00 1.4629 1.4852 1.3295 1.3228 i-Butane 0.3198 Z2 0.9377 - 6 1.2664 1.2616 0.9275 0.9383 5490.00 1.4925 1.5190 1.3267 1.3199 P2 135 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 978.640 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 17500.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 960505 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 38.41 357.79 76.91 418.47 265.35 50.00 35.05 73.6465 54.87 276.07 197.14 0.0668 0.2869 0.1498 CFD 82.11% 0.65985326 15616.37 12821.96 17 2 685.80 36.29 355.42 73.28 415.69 271.02 49.52 34.77 82.4834 64.60 277.37 197.14 0.0621 0.2823 0.1447 CFD 84.37% 0.74200598 17088.80 14418.31 17 3 685.80 34.18 353.04 69.50 412.92 277.01 48.66 34.46 93.0390 75.01 278.73 197.14 0.0573 0.2775 0.1395 CFD 85.48% 0.81730289 18580.02 15881.44 17 4 685.80 32.11 350.73 65.63 410.21 283.08 47.83 34.14 105.4367 86.00 280.09 197.14 0.0527 0.2724 0.1342 CFD 85.57% 0.88228449 20035.12 17144.13 17 5 685.80 30.15 348.53 61.82 407.64 288.99 47.04 33.81 119.7588 97.43 281.42 197.14 0.0484 0.2674 0.1290 CFD 84.94% 0.93577370 21408.43 18183.51 17 6 685.80 28.30 348.11 59.05 407.15 294.55 46.32 33.55 136.0549 109.16 282.68 197.14 0.0444 0.2625 0.1215 CFD 83.87% 0.97841554 22669.89 19012.11 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 115398.63 97461.46 Notes: Overall polytropic efficiency = 84.46% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 30789.15 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 9938.30 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 111,041 121,041 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 41,556 105% speed 39,603 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 31,041 41,041 51,041 61,041 71,041 81,041 91,041 101,041 111,041 121,041 10,412 12,412 14,412 16,412 18,412 20,412 22,412 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 41,556 surge Stonewall 105% speed 9,603 14,603 19,603 24,603 29,603 34,603 39,603 10412 12412 14412 16412 18412 20412 22412 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 13. 1118.45 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 7775.15 meter Date: Input 45.9 76248.19 J/kg Process stage: Single 117.0000 2591.72 meter Driver type: Gas turbine NaceCS 25416.06 J/kg Number of wheels 3 - Bearing loss, kW: 53.00 Gas data Mol % Impeller diameter 447.03 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 235.72 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 260.82 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1502 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 82.93 % 1 1.2877 1.2847 0.8982 0.9014 5490.00 1.5047 1.5089 1.4093 1.4041 Oxygen 0.0000 Rotational speed 10070.89 rpm 2 1.2847 1.2815 0.9014 0.9050 5490.00 1.4718 1.4784 1.3824 1.3771 Methane 82.9700 k1 1.4732 - 3 1.2815 1.2781 0.9050 0.9092 5490.00 1.4512 1.4605 1.3611 1.3557 15822 Ethane 4.2890 k2 1.4476 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:10 3 1.2815 1.2781 0.9050 0.9092 5490.00 1.4512 1.4605 1.3611 1.3557 15822 Ethane 4.2890 k2 1.4476 4 1.2781 1.2743 0.9092 0.9143 5490.00 1.4424 1.4548 1.3452 1.3396 Propane 1.7600 Z1 0.8982 - 5 1.2743 1.2703 0.9143 0.9206 5490.00 1.4445 1.4604 1.3338 1.3281 i-Butane 0.3198 Z2 0.9266 - 6 1.2703 1.2661 0.9206 0.9284 5490.00 1.4566 1.4764 1.3259 1.3201 P2 117 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1118.450 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 20000.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1097724 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 43.04 362.77 83.53 424.29 254.66 50.00 35.55 71.5584 52.93 273.55 197.14 0.0763 0.2959 0.1557 CFD 73.35% 0.47611641 12612.37 9251.67 17 2 685.80 41.27 360.79 80.87 421.98 258.69 50.00 35.37 77.8884 60.63 274.51 197.14 0.0726 0.2925 0.1517 CFD 77.45% 0.54949355 13785.70 10677.50 17 3 685.80 39.38 358.69 77.95 419.52 263.29 50.00 35.15 85.5667 69.01 275.59 197.14 0.0685 0.2886 0.1473 CFD 80.92% 0.62724193 15062.25 12188.27 17 4 685.80 37.43 356.50 74.75 416.96 268.38 49.91 34.90 94.7988 78.07 276.76 197.14 0.0642 0.2845 0.1428 CFD 83.49% 0.70513203 16412.09 13701.79 17 5 685.80 35.47 354.29 71.33 414.38 273.82 49.12 34.62 105.7599 87.76 278.00 197.14 0.0598 0.2801 0.1380 CFD 85.03% 0.77867029 17793.88 15130.75 17 6 685.80 33.51 353.89 68.71 413.91 279.41 48.33 34.39 118.5828 97.99 279.27 197.14 0.0555 0.2755 0.1308 CFD 85.62% 0.84431701 19161.91 16406.37 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 94828.19 77356.34 Notes: Overall polytropic efficiency = 81.58% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 28915.33 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 7888.15 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 94,638 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 39,027 105% speed 34 019 39,019 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 24,638 34,638 44,638 54,638 64,638 74,638 84,638 94,638 11,900 13,900 15,900 17,900 19,900 21,900 23,900 25,900 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 39,027 surge Stonewall 105% speed 9,019 14,019 19,019 24,019 29,019 34,019 39,019 11900 13900 15900 17900 19900 21900 23900 25900 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 14. 1248.93 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 5154.38 meter Date: Input 45.9 50547.16 J/kg Process stage: Single 98.0000 2577.19 meter Driver type: Gas turbine NaceCS 25273.58 J/kg Number of wheels 2 - Bearing loss, kW: 53.00 Gas data Mol % Impeller diameter 472.81 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 235.09 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 260.81 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1503 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 82.92 % 1 1.2877 1.2855 0.8982 0.9012 5490.00 1.6797 1.6801 1.5075 1.5028 Oxygen 0.0000 Rotational speed 9496.26 rpm 2 1.2855 1.2831 0.9012 0.9044 5490.00 1.6154 1.6174 1.4676 1.4629 Methane 82.9700 k1 1.4732 - 3 1.2831 1.2806 0.9044 0.9077 5490.00 1.5625 1.5662 1.4322 1.4275 15822 Ethane 4.2890 k2 1.4546 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:12 3 1.2831 1.2806 0.9044 0.9077 5490.00 1.5625 1.5662 1.4322 1.4275 15822 Ethane 4.2890 k2 1.4546 4 1.2806 1.2778 0.9077 0.9114 5490.00 1.5207 1.5265 1.4016 1.3969 Propane 1.7600 Z1 0.8982 - 5 1.2778 1.2748 0.9114 0.9155 5490.00 1.4901 1.4981 1.3760 1.3712 i-Butane 0.3198 Z2 0.9148 - 6 1.2748 1.2716 0.9155 0.9203 5490.00 1.4704 1.4810 1.3553 1.3504 P2 98 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1248.930 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 22333.3 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1225786 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 47.55 367.64 89.14 429.98 245.83 50.00 35.95 69.6459 51.12 271.38 197.14 0.0852 0.3039 0.1609 CFD 60.26% 0.30417763 9808.83 5910.64 17 2 685.80 46.34 366.29 87.52 428.41 248.11 50.00 35.85 73.5396 56.77 271.95 197.14 0.0828 0.3017 0.1580 CFD 64.23% 0.34937801 10569.88 6788.95 17 3 685.80 44.98 364.79 85.73 426.65 250.80 50.00 35.73 78.1889 62.90 272.62 197.14 0.0800 0.2993 0.1550 CFD 68.38% 0.40229615 11432.81 7817.23 17 4 685.80 43.49 363.12 83.68 424.71 253.95 50.00 35.59 83.7684 69.58 273.38 197.14 0.0770 0.2965 0.1517 CFD 72.53% 0.46288205 12401.70 8994.50 17 5 685.80 41.87 361.31 81.34 422.59 257.60 50.00 35.42 90.4738 76.83 274.26 197.14 0.0736 0.2934 0.1481 CFD 76.45% 0.53011205 13474.05 10300.89 17 6 685.80 40.14 361.29 79.64 422.57 261.74 50.00 35.27 98.5102 84.69 275.23 197.14 0.0699 0.2899 0.1418 CFD 79.88% 0.60176313 14638.05 11693.18 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 72325.32 51505.38 Notes: Overall polytropic efficiency = 71.21% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 24626.49 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 5252.09 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 66,404 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 33,238 105% speed 32,681 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 16,404 26,404 36,404 46,404 56,404 66,404 13,288 15,288 17,288 19,288 21,288 23,288 25,288 27,288 29,288 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 33,238 surge Stonewall 105% speed 7,681 12,681 17,681 22,681 27,681 32,681 13288 15288 17288 19288 21288 23288 25288 27288 29288 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 15. 911.31 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 14955.06 meter Date: Input 45.9 146659.08 J/kg Process stage: Single 178.0000 3738.77 meter Driver type: Gas turbine NaceCS 36664.77 J/kg Number of wheels 4 - Bearing loss, kW: 65.44 Gas data Mol % Impeller diameter 402.84 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 277.30 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 263.32 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1281 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.94 % 1 1.2877 1.2820 0.8982 0.9034 6100.00 1.4081 1.4211 1.3514 1.3430 Oxygen 0.0000 Rotational speed 13146.85 rpm 2 1.2820 1.2760 0.9034 0.9107 6100.00 1.4235 1.4424 1.3444 1.3355 Methane 82.9700 k1 1.4732 - 3 1.2760 1.2697 0.9107 0.9209 6100.00 1.4514 1.4766 1.3407 1.3315 15822 Ethane 4.2890 k2 1.4305 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:15 3 1.2760 1.2697 0.9107 0.9209 6100.00 1.4514 1.4766 1.3407 1.3315 15822 Ethane 4.2890 k2 1.4305 4 1.2697 1.2634 0.9209 0.9341 6100.00 1.4891 1.5207 1.3384 1.3292 Propane 1.7600 Z1 0.8982 - 5 1.2634 1.2571 0.9341 0.9506 6100.00 1.5347 1.5725 1.3365 1.3274 i-Butane 0.3198 Z2 0.9680 - 6 1.2571 1.2510 0.9506 0.9701 6100.00 1.5866 1.6300 1.3344 1.3258 P2 178 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 911.310 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 16296.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 894422 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 32.88 352.34 68.80 412.10 278.83 48.41 34.36 78.0207 59.49 279.14 219.04 0.0559 0.2760 0.1586 CFD 85.60% 0.83790578 23482.86 20100.97 17 2 685.80 30.25 349.31 63.53 408.55 286.90 47.32 33.93 92.3504 74.03 280.95 219.04 0.0499 0.2692 0.1507 CFD 85.23% 0.91788550 25836.01 22019.65 17 3 685.80 27.80 346.46 58.47 405.22 294.56 46.31 33.49 109.4978 89.23 282.68 219.04 0.0444 0.2624 0.1430 CFD 83.86% 0.97849752 27990.74 23473.70 17 4 685.80 25.59 343.86 53.78 402.17 301.46 45.43 33.08 129.5499 104.80 284.25 219.04 0.0395 0.2560 0.1358 CFD 82.08% 1.02256176 29885.78 24530.78 17 5 685.80 23.62 341.49 49.55 399.40 307.46 44.68 32.71 152.5521 120.52 285.62 219.04 0.0353 0.2500 0.1290 CFD 80.25% 1.05413078 31509.71 25288.11 17 6 685.80 21.89 340.80 46.62 398.59 312.57 44.04 32.45 178.5194 136.18 286.81 219.04 0.0318 0.2446 0.1201 CFD 78.56% 1.07681813 32881.37 25832.37 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 171586.46 141245.59 Notes: Overall polytropic efficiency = 82.32% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 42630.77 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 14403.04 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 164,987 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 57,538 105% speed 53,297 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 44,987 64,987 84,987 104,987 124,987 144,987 164,987 9,696 11,696 13,696 15,696 17,696 19,696 21,696 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 57,538 surge Stonewall 105% speed 13,297 18,297 23,297 28,297 33,297 38,297 43,297 48,297 53,297 9696 11696 13696 15696 17696 19696 21696 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 16. 1103.35 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 12748.64 meter Date: Input 45.9 125021.48 J/kg Process stage: Single 158.0000 3187.16 meter Driver type: Gas turbine NaceCS 31255.37 J/kg Number of wheels 4 - Bearing loss, kW: 65.44 Gas data Mol % Impeller diameter 443.95 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 258.14 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 262.16 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1372 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.16 % 1 1.2877 1.2832 0.8982 0.9025 6100.00 1.4361 1.4452 1.3685 1.3613 Oxygen 0.0000 Rotational speed 11105.24 rpm 2 1.2832 1.2782 0.9025 0.9081 6100.00 1.4252 1.4391 1.3494 1.3421 Methane 82.9700 k1 1.4732 - 3 1.2782 1.2729 0.9081 0.9156 6100.00 1.4313 1.4507 1.3375 1.3298 15822 Ethane 4.2890 k2 1.4354 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:18 3 1.2782 1.2729 0.9081 0.9156 6100.00 1.4313 1.4507 1.3375 1.3298 15822 Ethane 4.2890 k2 1.4354 4 1.2729 1.2673 0.9156 0.9257 6100.00 1.4519 1.4774 1.3305 1.3225 Propane 1.7600 Z1 0.8982 - 5 1.2673 1.2615 0.9257 0.9387 6100.00 1.4846 1.5163 1.3264 1.3182 i-Butane 0.3198 Z2 0.9539 - 6 1.2615 1.2558 0.9387 0.9548 6100.00 1.5270 1.5649 1.3237 1.3156 P2 158 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1103.350 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 19730.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1082904 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 38.38 358.29 77.89 419.05 264.20 50.00 35.10 75.1678 56.71 275.80 219.04 0.0677 0.2879 0.1671 CFD 81.47% 0.64177598 18898.16 15395.91 17 2 685.80 35.86 355.44 73.52 415.72 270.97 49.53 34.77 86.3107 68.64 277.35 219.04 0.0621 0.2824 0.1604 CFD 84.36% 0.74132324 21081.48 17784.00 17 3 685.80 33.36 352.57 68.90 412.37 278.23 48.49 34.40 100.1026 81.55 279.00 219.04 0.0564 0.2765 0.1533 CFD 85.57% 0.83124932 23304.65 19941.29 17 4 685.80 30.95 349.81 64.20 409.13 285.56 47.50 34.00 116.7567 95.24 280.65 219.04 0.0509 0.2703 0.1462 CFD 85.38% 0.90575910 25449.62 21728.74 17 5 685.80 28.71 347.22 59.64 406.11 292.53 46.58 33.61 136.3959 109.47 282.22 219.04 0.0458 0.2643 0.1393 CFD 84.30% 0.96368704 27424.21 23118.41 17 6 685.80 26.66 346.44 56.25 405.20 298.87 45.76 33.30 159.0780 123.99 283.66 219.04 0.0413 0.2585 0.1300 CFD 82.80% 1.00706921 29178.43 24159.12 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 145336.54 122127.47 Notes: Overall polytropic efficiency = 84.03% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 43718.19 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 12453.54 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 138,898 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 59,006 105% speed53,636 58,636 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 38,898 58,898 78,898 98,898 118,898 138,898 11,739 13,739 15,739 17,739 19,739 21,739 23,739 25,739 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 59,006 surge Stonewall 105% speed 13,636 18,636 23,636 28,636 33,636 38,636 43,636 48,636 53,636 58,636 11739 13739 15739 17739 19739 21739 23739 25739 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 17. 1258.251 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 10035.52 meter Date: Input 45.9 98414.80 J/kg Process stage: Single 135.0000 3345.17 meter Driver type: Gas turbine NaceCS 32804.93 J/kg Number of wheels 3 - Bearing loss, kW: 65.44 Gas data Mol % Impeller diameter 474.60 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 263.69 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 262.54 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1340 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.44 % 1 1.2877 1.2842 0.8982 0.9022 6100.00 1.5166 1.5215 1.4163 1.4099 Oxygen 0.0000 Rotational speed 10611.38 rpm 2 1.2842 1.2803 0.9022 0.9067 6100.00 1.4748 1.4832 1.3827 1.3763 Methane 82.9700 k1 1.4732 - 3 1.2803 1.2759 0.9067 0.9122 6100.00 1.4508 1.4633 1.3574 1.3508 15822 Ethane 4.2890 k2 1.4434 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:20 3 1.2803 1.2759 0.9067 0.9122 6100.00 1.4508 1.4633 1.3574 1.3508 15822 Ethane 4.2890 k2 1.4434 4 1.2759 1.2713 0.9122 0.9192 6100.00 1.4438 1.4612 1.3396 1.3328 Propane 1.7600 Z1 0.8982 - 5 1.2713 1.2663 0.9192 0.9283 6100.00 1.4524 1.4754 1.3278 1.3208 i-Butane 0.3198 Z2 0.9376 - 6 1.2663 1.2611 0.9283 0.9400 6100.00 1.4749 1.5038 1.3205 1.3132 P2 135 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1258.251 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 22500.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1234934 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 43.07 363.28 84.45 424.88 253.66 50.00 35.60 72.5481 54.33 273.31 219.04 0.0772 0.2968 0.1736 CFD 72.17% 0.45725345 15200.09 10969.30 17 2 685.80 40.95 360.94 81.31 422.15 258.38 50.00 35.38 80.3975 63.71 274.44 219.04 0.0728 0.2927 0.1683 CFD 77.18% 0.54411985 16912.48 13053.18 17 3 685.80 38.68 358.40 77.76 419.18 263.94 50.00 35.12 90.3059 74.11 275.74 219.04 0.0680 0.2881 0.1625 CFD 81.32% 0.63772865 18813.52 15298.82 17 4 685.80 36.34 355.75 73.80 416.08 270.20 49.64 34.81 102.6468 85.48 277.18 219.04 0.0627 0.2830 0.1563 CFD 84.13% 0.73080857 20839.73 17531.76 17 5 685.80 34.02 353.09 69.57 412.97 276.88 48.68 34.47 117.7190 97.72 278.70 219.04 0.0574 0.2776 0.1499 CFD 85.46% 0.81581460 22899.74 19571.02 17 6 685.80 31.76 352.26 66.16 412.00 283.64 47.75 34.16 135.7236 110.64 280.22 219.04 0.0523 0.2720 0.1407 CFD 85.54% 0.88770498 24896.19 21295.63 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 119561.74 97719.71 Notes: Overall polytropic efficiency = 81.73% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 41014.13 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 9964.64 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 111,124 121,124 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 55,356 105% speed 47 793 52,793 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 31,124 41,124 51,124 61,124 71,124 81,124 91,124 101,124 111,124 121,124 13,387 15,387 17,387 19,387 21,387 23,387 25,387 27,387 29,387 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 55,356 surge Stonewall 105% speed 12,793 17,793 22,793 27,793 32,793 37,793 42,793 47,793 52,793 13387 15387 17387 19387 21387 23387 25387 27387 29387 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 18. 1342.135 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 8034.68 meter Date: Input 45.9 78793.31 J/kg Process stage: Single 119.0000 2678.23 meter Driver type: Gas turbine NaceCS 26264.44 J/kg Number of wheels 3 - Bearing loss, kW: 65.44 Gas data Mol % Impeller diameter 490.42 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 239.03 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 261.05 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1476 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.18 % 1 1.2877 1.2847 0.8982 0.9020 6100.00 1.6059 1.6081 1.4671 1.4611 Oxygen 0.0000 Rotational speed 9308.53 rpm 2 1.2847 1.2814 0.9020 0.9061 6100.00 1.5430 1.5479 1.4245 1.4184 Methane 82.9700 k1 1.4732 - 3 1.2814 1.2778 0.9061 0.9108 6100.00 1.4971 1.5052 1.3893 1.3832 15822 Ethane 4.2890 k2 1.4472 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:22 3 1.2814 1.2778 0.9061 0.9108 6100.00 1.4971 1.5052 1.3893 1.3832 15822 Ethane 4.2890 k2 1.4472 4 1.2778 1.2738 0.9108 0.9164 6100.00 1.4680 1.4800 1.3617 1.3556 Propane 1.7600 Z1 0.8982 - 5 1.2738 1.2694 0.9164 0.9232 6100.00 1.4553 1.4718 1.3414 1.3351 i-Butane 0.3198 Z2 0.9277 - 6 1.2694 1.2647 0.9232 0.9320 6100.00 1.4580 1.4797 1.3273 1.3207 P2 119 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1342.135 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 24000.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1317264 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 45.74 366.08 87.74 428.16 248.48 50.00 35.83 71.1496 53.03 272.04 219.04 0.0824 0.3014 0.1769 CFD 64.83% 0.35665137 13197.47 8555.90 17 2 685.80 43.97 364.17 85.35 425.93 251.95 50.00 35.68 77.1308 60.93 272.90 219.04 0.0789 0.2983 0.1726 CFD 69.98% 0.42463435 14557.39 10186.78 17 3 685.80 42.02 362.02 82.60 423.41 256.16 50.00 35.49 84.6452 69.69 273.91 219.04 0.0749 0.2946 0.1678 CFD 75.01% 0.50398469 16118.89 12090.36 17 4 685.80 39.90 359.66 79.41 420.65 261.14 50.00 35.25 94.0739 79.39 275.09 219.04 0.0704 0.2904 0.1625 CFD 79.45% 0.59173727 17867.76 14195.50 17 5 685.80 37.69 357.16 75.80 417.73 266.82 50.00 34.98 105.7958 90.01 276.41 219.04 0.0655 0.2857 0.1568 CFD 82.83% 0.68227319 19760.60 16367.42 17 6 685.80 35.43 356.43 72.79 416.88 273.03 49.23 34.72 120.1378 101.48 277.82 219.04 0.0605 0.2807 0.1481 CFD 84.88% 0.76865148 21725.45 18439.59 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 103227.56 79835.56 Notes: Overall polytropic efficiency = 77.34% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 37771.64 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 8140.96 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 95,428 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 50,980 105% speed46,781 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 25,428 35,428 45,428 55,428 65,428 75,428 85,428 95,428 14,280 16,280 18,280 20,280 22,280 24,280 26,280 28,280 30,280 32,280 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 50,980 surge Stonewall 105% speed 11,781 16,781 21,781 26,781 31,781 36,781 41,781 46,781 14280 16280 18280 20280 22280 24280 26280 28280 30280 32280 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 19. 1428.2 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 5724.88 meter Date: Input 45.9 56141.92 J/kg Process stage: Single 102.0000 2862.44 meter Driver type: Gas turbine NaceCS 28070.96 J/kg Number of wheels 2 - Bearing loss, kW: 65.44 Gas data Mol % Impeller diameter 506.16 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 246.06 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 261.48 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1433 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 83.59 % 1 1.2877 1.2852 0.8982 0.9018 6100.00 1.7695 1.7682 1.5547 1.5492 Oxygen 0.0000 Rotational speed 9284.60 rpm 2 1.2852 1.2826 0.9018 0.9056 6100.00 1.6793 1.6803 1.5024 1.4968 Methane 82.9700 k1 1.4732 - 3 1.2826 1.2797 0.9056 0.9096 6100.00 1.6054 1.6089 1.4559 1.4503 15822 Ethane 4.2890 k2 1.4537 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:24 3 1.2826 1.2797 0.9056 0.9096 6100.00 1.6054 1.6089 1.4559 1.4503 15822 Ethane 4.2890 k2 1.4537 4 1.2797 1.2765 0.9096 0.9140 6100.00 1.5474 1.5535 1.4158 1.4102 Propane 1.7600 Z1 0.8982 - 5 1.2765 1.2730 0.9140 0.9191 6100.00 1.5049 1.5142 1.3825 1.3769 i-Butane 0.3198 Z2 0.9169 - 6 1.2730 1.2691 0.9191 0.9251 6100.00 1.4780 1.4910 1.3561 1.3504 P2 102 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1428.200 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 25539.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1401734 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 48.56 369.04 90.94 431.63 243.58 50.00 36.05 69.8220 51.72 270.80 219.04 0.0877 0.3061 0.1803 CFD 55.91% 0.25968013 11142.78 6229.61 17 2 685.80 47.24 367.64 89.29 429.98 245.83 50.00 35.95 74.0074 58.09 271.38 219.04 0.0852 0.3039 0.1769 CFD 60.26% 0.30415281 12109.14 7296.49 17 3 685.80 45.75 366.02 87.41 428.10 248.58 50.00 35.83 79.1340 65.08 272.07 219.04 0.0823 0.3013 0.1732 CFD 64.99% 0.35862965 13237.67 8603.36 17 4 685.80 44.07 364.19 85.19 425.95 251.92 50.00 35.68 85.4768 72.78 272.89 219.04 0.0789 0.2983 0.1691 CFD 69.93% 0.42395646 14543.99 10170.52 17 5 685.80 42.22 362.13 82.58 423.55 255.92 50.00 35.50 93.3654 81.29 273.86 219.04 0.0751 0.2948 0.1646 CFD 74.76% 0.49963263 16033.21 11985.96 17 6 685.80 40.19 361.81 80.49 423.17 260.63 50.00 35.32 103.1644 90.65 274.97 219.04 0.0708 0.2908 0.1570 CFD 79.06% 0.58306404 17692.25 13987.44 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 84759.03 58273.36 Notes: Overall polytropic efficiency = 68.75% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 33002.67 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 5942.23 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 68,560 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 44,543 105% speed40,294 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 18,560 28,560 38,560 48,560 58,560 68,560 15,196 20,196 25,196 30,196 35,196 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 44,543 surge Stonewall 105% speed 10,294 15,294 20,294 25,294 30,294 35,294 40,294 15196 20196 25196 30196 35196 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 20. 993.18 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 16372.15 meter Date: Input 45.9 160555.91 J/kg Process stage: Single 191.0000 3274.43 meter Driver type: Gas turbine NaceCS 32111.18 J/kg Number of wheels 5 - Bearing loss, kW: 72.14 Gas data Mol % Impeller diameter 420.84 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 261.31 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 262.33 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1357 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.28 % 1 1.2877 1.2817 0.8982 0.9037 6405.00 1.4095 1.4234 1.3523 1.3433 Oxygen 0.0000 Rotational speed 11858.62 rpm 2 1.2817 1.2752 0.9037 0.9119 6405.00 1.4230 1.4439 1.3430 1.3336 Methane 82.9700 k1 1.4732 - 3 1.2752 1.2684 0.9119 0.9233 6405.00 1.4523 1.4808 1.3384 1.3286 15822 Ethane 4.2890 k2 1.4252 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:27 3 1.2752 1.2684 0.9119 0.9233 6405.00 1.4523 1.4808 1.3384 1.3286 15822 Ethane 4.2890 k2 1.4252 4 1.2684 1.2616 0.9233 0.9385 6405.00 1.4940 1.5303 1.3357 1.3258 Propane 1.7600 Z1 0.8982 - 5 1.2616 1.2548 0.9385 0.9576 6405.00 1.5453 1.5889 1.3335 1.3238 i-Butane 0.3198 Z2 0.9782 - 6 1.2548 1.2483 0.9576 0.9804 6405.00 1.6042 1.6544 1.3313 1.3222 P2 191 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 993.180 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 17760.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 974775 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 33.61 353.41 70.64 413.34 276.08 48.80 34.51 78.7719 60.33 278.51 229.99 0.0581 0.2782 0.1682 CFD 85.38% 0.80637224 24979.80 21327.31 17 2 685.80 30.76 350.09 64.96 409.46 284.80 47.60 34.04 94.4081 75.95 280.48 229.99 0.0514 0.2710 0.1593 CFD 85.45% 0.89878102 27819.12 23771.38 17 3 685.80 28.12 346.98 59.44 405.82 293.18 46.49 33.57 113.4871 92.40 282.37 229.99 0.0453 0.2637 0.1505 CFD 84.16% 0.96857259 30437.61 25617.26 17 4 685.80 25.74 344.13 54.31 402.50 300.74 45.52 33.13 136.1260 109.30 284.08 229.99 0.0400 0.2567 0.1422 CFD 82.29% 1.01834952 32731.47 26933.78 17 5 685.80 23.64 341.57 49.73 399.50 307.25 44.70 32.73 162.3765 126.35 285.57 229.99 0.0355 0.2502 0.1346 CFD 80.32% 1.05309621 34675.62 27852.78 17 6 685.80 21.81 340.73 46.54 398.52 312.71 44.02 32.44 192.2451 143.32 286.85 229.99 0.0317 0.2444 0.1248 CFD 78.51% 1.07740771 36294.25 28495.78 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 186937.88 153998.29 Notes: Overall polytropic efficiency = 82.38% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 50617.34 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 15703.45 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 189,048 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 68,318 105% speed 65,788 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 49,048 69,048 89,048 109,048 129,048 149,048 169,048 189,048 10,567 12,567 14,567 16,567 18,567 20,567 22,567 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 68,318 surge Stonewall 105% speed 15,788 25,788 35,788 45,788 55,788 65,788 10567 12567 14567 16567 18567 20567 22567 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 21. 1202.33 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 13753.51 meter Date: Input 45.9 134875.86 J/kg Process stage: Single 167.0000 3438.38 meter Driver type: Gas turbine NaceCS 33718.97 J/kg Number of wheels 4 - Bearing loss, kW: 72.14 Gas data Mol % Impeller diameter 463.76 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 266.96 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 262.74 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1324 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.57 % 1 1.2877 1.2830 0.8982 0.9029 6405.00 1.4507 1.4597 1.3773 1.3697 Oxygen 0.0000 Rotational speed 10994.17 rpm 2 1.2830 1.2778 0.9029 0.9089 6405.00 1.4316 1.4460 1.3530 1.3452 Methane 82.9700 k1 1.4732 - 3 1.2778 1.2721 0.9089 0.9170 6405.00 1.4332 1.4541 1.3377 1.3295 15822 Ethane 4.2890 k2 1.4333 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:39 3 1.2778 1.2721 0.9089 0.9170 6405.00 1.4332 1.4541 1.3377 1.3295 15822 Ethane 4.2890 k2 1.4333 4 1.2721 1.2661 0.9170 0.9281 6405.00 1.4528 1.4810 1.3288 1.3203 Propane 1.7600 Z1 0.8982 - 5 1.2661 1.2599 0.9281 0.9427 6405.00 1.4875 1.5232 1.3238 1.3151 i-Butane 0.3198 Z2 0.9602 - 6 1.2599 1.2538 0.9427 0.9611 6405.00 1.5343 1.5773 1.3208 1.3121 P2 167 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1202.330 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 21500.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1180049 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 39.36 359.61 79.86 420.60 261.24 50.00 35.25 75.3406 57.10 275.11 229.99 0.0703 0.2903 0.1774 CFD 79.52% 0.59342436 19736.95 15695.16 17 2 685.80 36.68 356.60 75.38 417.08 268.14 49.95 34.91 86.9954 69.63 276.71 229.99 0.0644 0.2847 0.1700 CFD 83.39% 0.70169473 22254.75 18558.75 17 3 685.80 34.01 353.52 70.51 413.47 275.79 48.84 34.52 101.7837 83.36 278.45 229.99 0.0583 0.2785 0.1621 CFD 85.34% 0.80291629 24883.08 21235.90 17 4 685.80 31.43 350.51 65.46 409.95 283.67 47.75 34.10 120.0261 98.06 280.23 229.99 0.0523 0.2719 0.1541 CFD 85.54% 0.88804582 27459.32 23487.45 17 5 685.80 29.02 347.69 60.51 406.66 291.26 46.74 33.68 141.9034 113.41 281.93 229.99 0.0467 0.2654 0.1463 CFD 84.55% 0.95398961 29843.24 25231.56 17 6 685.80 26.82 346.72 56.77 405.52 298.15 45.85 33.34 167.4927 129.13 283.50 229.99 0.0418 0.2591 0.1360 CFD 82.99% 1.00257724 31953.05 26516.63 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 156130.39 130725.46 Notes: Overall polytropic efficiency = 83.73% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 51178.22 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 13330.29 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 161,636 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 69,075 105% speed 65,963 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 41,636 61,636 81,636 101,636 121,636 141,636 161,636 12,792 14,792 16,792 18,792 20,792 22,792 24,792 26,792 28,792 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 69,075 surge Stonewall 105% speed 15,963 25,963 35,963 45,963 55,963 65,963 12792 14792 16792 18792 20792 22792 24792 26792 28792 Gas power (kW) vs actual inlet volume flow rate (m3/hr)
  • 22. 1342.14 Basic sizing output per Brown's method Duty: Wheatstone summer 66.3600 10991.19 meter Date: Input 45.9 107786.77 J/kg Process stage: Single 143.0000 3663.73 meter Driver type: Gas turbine NaceCS 35928.92 J/kg Number of wheels 3 - Bearing loss, kW: 72.14 Gas data Mol % Impeller diameter 490.42 mm Gear loss, kW: 0.00 H2 0.0000 Tip speed 274.61 m/s Casing construction: Barrel type CO2 2.9040 Allowable U2 263.26 m/s CO 0.0000 Impeller type CFD - Detail sizing output per Lüdtke's method [1] Water 0.2010 Flow coefficient 0.1285 - Wheel # k1 k2 Z1 Z2 rpm nv1 nv2 nt1 nt2 Nitrogen 6.0810 ηPoly. 84.90 % 1 1.2877 1.2839 0.8982 0.9026 6405.00 1.5338 1.5386 1.4263 1.4193 Oxygen 0.0000 Rotational speed 10694.26 rpm 2 1.2839 1.2798 0.9026 0.9075 6405.00 1.4840 1.4927 1.3877 1.3807 Methane 82.9700 k1 1.4732 - 3 1.2798 1.2751 0.9075 0.9136 6405.00 1.4551 1.4687 1.3588 1.3517 15822 Ethane 4.2890 k2 1.4415 - Total polytropic head Polytropic head per wheel mmscfd Suction pressure, bara Impeller material Discharge pressure, bara Suction temperature, o C12/29/2010 17:34 3 1.2798 1.2751 0.9075 0.9136 6405.00 1.4551 1.4687 1.3588 1.3517 15822 Ethane 4.2890 k2 1.4415 4 1.2751 1.2700 0.9136 0.9215 6405.00 1.4463 1.4658 1.3388 1.3314 Propane 1.7600 Z1 0.8982 - 5 1.2700 1.2646 0.9215 0.9320 6405.00 1.4561 1.4823 1.3260 1.3183 i-Butane 0.3198 Z2 0.9428 - 6 1.2646 1.2589 0.9320 0.9456 6405.00 1.4823 1.5157 1.3183 1.3104 P2 143 n-Butane 0.5328 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 mmscfd 1342.140 i-Pentane 0.1929 EVERYWHEEL © 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Number of wheels: 6 n-Pentane 0.1838 Cheah CangTo, TPGM Rotating Eqpt. 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Inlet volume flow rate, m3 /hr: 24000.0 Hexane 0.1500 0 0.0000 0.0000 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.0000 Mass flow rate, kg/hr: 1317269 Heptane 0.4157 Wheel # d2, mm b2, mm d1, mm b1, mm dE, mm dH,mm β2B, degrees β1, degrees Pout, bara Tout, o C [3] Allowable u2, m/s u2, m/s ϕ Exit ϕ Mgas in Impeller ηPoly. ψ Enthalpy, J/kg Polytropic head [2], J/kg # of vanes 1 685.80 43.47 363.94 85.41 425.66 252.39 50.00 35.66 72.8257 54.84 273.01 229.99 0.0785 0.2979 0.1831 CFD 70.56% 0.43303049 16232.28 11452.99 17 2 685.80 41.21 361.48 82.14 422.78 257.26 50.00 35.43 81.1896 64.89 274.18 229.99 0.0739 0.2937 0.1773 CFD 76.13% 0.52408376 18208.21 13861.21 17 3 685.80 38.78 358.76 78.38 419.61 263.12 50.00 35.16 91.9727 76.12 275.55 229.99 0.0687 0.2888 0.1708 CFD 80.81% 0.62452108 20439.28 16517.62 17 4 685.80 36.27 355.90 74.11 416.26 269.83 49.70 34.83 105.6759 88.51 277.09 229.99 0.0630 0.2833 0.1638 CFD 84.01% 0.72566733 22846.72 19192.79 17 5 685.80 33.79 353.02 69.52 412.89 277.06 48.66 34.46 122.6994 101.91 278.74 229.99 0.0573 0.2774 0.1565 CFD 85.48% 0.81789579 25306.43 21632.09 17 6 685.80 31.38 351.98 65.74 411.68 284.37 47.65 34.12 143.3029 116.10 280.38 229.99 0.0518 0.2713 0.1463 CFD 85.49% 0.89473009 27682.23 23664.24 19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00% 0.00000000 0.00 0.00 0 130715.16 106320.94 Notes: Overall polytropic efficiency = 81.34% [1] Lee Kesler Plocker is used as EoS in this compressor sizing algorithm. Overall gas power, kW = 47829.71 [2] Polytropic volume exponent, nv is used to calculate Polytropic head. Maximum head (in J/kg) per impeller is 37794.86 based on molecular weight of 19.71 kg/kmol. Polytropic head, meter = 10841.72 [3] Polytropic temperature exponent, nt is used to calculate discharge temperature 90% 100% Polytropic efficiency vs flow coefficient Trip speed 105% d 133,863 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  Trip speed, 64,555 105% speed 64,919 Gas power (kW) vs actual inlet volume flow rate (m3/hr) 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Polytropic efficiency vs flow coefficient Trip speed 100% speed 90% speed 80% speed 70% speed 105% speed surge Stonewall 33,863 53,863 73,863 93,863 113,863 133,863 14,280 16,280 18,280 20,280 22,280 24,280 26,280 28,280 30,280 32,280 Polytropic head (J/kg) vs inlet volume flow rate (m3/hr)  100% speed 90% speed 80% speed 70% speed Trip speed, 64,555 surge Stonewall 105% speed 14,919 24,919 34,919 44,919 54,919 64,919 14280 16280 18280 20280 22280 24280 26280 28280 30280 32280 Gas power (kW) vs actual inlet volume flow rate (m3/hr)