SlideShare a Scribd company logo
1 of 31
Download to read offline
1 | P a g e  
Author: CangTo Cheah                    Date: 26th
 May 2016 
Document title: Estimation of settle out pressure of chlorine compression system during an ESD & normal shutdown 
Disclaimer: This technical note is written in the interest of personal development & learning and for the sake of 
posterity for those who appreciates the contributions of thermodynamics and mathematics in the detailed 
engineering phase of turbo‐machinery system. This technical note reflects the author's best judgment and knowledge 
(i.e. fundamental law of physics, thermodynamics and engineering mathematics) in light of the information and 
resources available to him at the time of its preparation. Any use which any party makes of this technical note, on 
any reliance on or decision to be made based on it, are the responsibility of such parties. The author accepts no 
responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on this 
technical note. 
 
Documents in referenced 
Technip PID: CMDI‐5‐PROJ‐25‐6570 revision R1, CMDI‐5‐PROJ‐25‐6560 revision R1, CMDI‐5‐PROJ‐25‐6585 revision 
R1. 
Technip piping isometric drawings (not in MDT’s scope of supply): Refer to appendix 1 
MDT’s piping volume data: Refer to appendix 2 
MDT’s PID: 1975Z‐1‐A0103‐1011‐0001‐0001 revision 3 
Static equipment supplier drawings (not in MDT’s scope of supply): 1975Z‐1‐A1109‐0841‐0001‐0004 revision 0 
(Filters F6570 A/B), 1975Z‐1‐A1109‐0610‐0001‐0006 revision 1 (compressor suction cooler E6570) and 1975Z‐1‐
A1109‐0610‐0001‐0007 revision 1 (compressor discharge cooler E6571). 
Project utility specification: GEN4‐1‐PROJ‐SP‐0001 revision B2 
Thermodynamic literatures: (1) The properties of gases and liquids – 5th
 edition, Bruce E. Poling, John M. Prausnitz 
and John P. O’Connell. (2) Thermo‐physical properties of fluids – 1996, Marc J. Assael, J. P. Martin Trusler and 
Thomas F. Tsolakis. 
 
Introduction 
The main purpose of this note is to calculate settle out pressure (SOP) of process medium trapped in between 
suction isolation valve H656010 (CMDI‐5‐PROJ‐25‐6560), discharge isolation valve H657008 (CMDI‐5‐PROJ‐25‐6570), 
depressurizing valve H657005 (CMDI‐5‐PROJ‐25‐6570) and sampling stream isolation valve H658501 (CMDI‐5‐PROJ‐
25‐6585). Per MDT’s requirement, nitrogen supply pressure 4 bar above the SOP (refer to page 6 of MDT’s PID) is 
needed to ensure positive flow from dry gas seal to compressor (this will prevent process gas leaks into compressor 
lube oil system). 
Sub‐studies (related to SOP) that deemed beneficial to the compressor system which included in this study are listed 
below:‐ 
a) Calculate mass of chlorine trapped in between the same envelope as described above. If total mass of 
chlorine trapped in between the compression system exceeds 850 kg, suction and discharge isolation valves 
shall be added near the compressor skid. 
b) Determine dew point margin at various settle‐out temperatures (both initial phase and lowest ambient 
temperature ‐10 deg. C scenario), so that the compression system will be depressurized to ensure no liquid 
entrainment in the centrifugal compressor. 
c) Gas temperature drop due to Joule‐Thomson effect during blowdown of process gas following an SOP. 
2 | P a g e  
Break‐down of piping volumes 
 
 
 
Estimation of process mass trapped in the compression system 
Process mass for each sections are calculated according to the following formula: PV = ZmRT 
Where: P = pressure in Pascal, V = volume in m3
, Z = compressibility factor, m = mass in kg, R = specific gas constant 
in J/kg‐K and T = temperature in Kelvin. 
Note that compressibility factor is calculated from Lee‐Kesler‐Plocker law of corresponding state, with binary 
interaction parameters dedicated for SLIC chlorine gas mixture extracted from HYSYS (commercially‐available 
process simulation software). 
 
Where: 
 
Newton‐Raphson root‐finding method (https://en.wikipedia.org/wiki/Newton%27s_method) is used tackle the 
above LKP equation, i.e. to solve for reduced volume (ν). Note: ν = [Pc / (R x Tc)] x Vm 
 
Total mass of process medium (chlorine mixture) trapped in the compression system is 263.19 kg with molecular 
weight 51.04 kg/kmol. This is equivalent to 5.1565 kmol of chlorine mixture, which yields 5.1565 kmol x 0.4817 = 
2.4839 kmol of chlorine (process medium consists 48.17 mol% chlorine). 
In term of conventional mass, chlorine in the system is 2.4839 kmol x 70.91 kg/kmol = 176.13 kg (note: molecular 
weight of chlorine is 70.91 kg/kmol).   
to
3 | P a g e  
Estimation of settle out pressure and associated temperature in the 
compression system 
Total mass and total volume obtained in previous step are then used to estimate the SOP. Energy balance (i.e. mass 
multiplied by enthalpy) is used to estimate the settle‐out temperature when the compression system is at SOP. 
 
The idea is based upon the law of conservation of energy (total energy of an isolated system remains constant), i.e. 
energy can neither be created nor destroyed; rather, it transforms from one form to another 
(https://en.wikipedia.org/wiki/Conservation_of_energy). 
Enthalpy is a measurement of energy in a thermodynamic system, it includes the internal energy (which is the 
energy required to create a system, and the amount of energy required to make room for it by displacing its 
environment and establishing its volume and pressure (https://en.wikipedia.org/wiki/Enthalpy). 
Total energy at initial stage (assuming insignificant heat dissipation to environment via convection) of SOP shall 
equal to the sum of energies at various locations of compression path based on steady‐state operating conditions 
(i.e. various pressures and temperatures at different components, e.g. LP compression inlet, LP compression outlet, 
inter‐stage cooler # 1 discharge, inter‐stage cooler # 2 discharge, HP compression inlet, HP compression outlet, and 
after‐cooler discharge). 
Side notes regarding the calculation of enthalpy with LKP law of corresponding state: Residual enthalpy is calculated 
with 4th
 order Gaussian numerical integration method at 200 density discrete at the vertical axis, and each density 
row is further divided into 4 slots according to Gauss’ coefficients. Ideal gas enthalpy for the chlorine mixture is 
converted from property data bank of “The Properties of Gases and Liquids – 5th
 edition by Bruce E. Poling, John M. 
Prausnitz and John P. O’Connell”. Formula for calculating enthalpy is in accordance with AGA report no. 10 (15th
 
November 2002). 
 
 
In LKP law of corresponding state, compressibility factor is defined as (per Thermo‐physical properties of fluids – 
1996, Marc J. Assael, J. P. Martin Trusler and Thomas F. Tsolakis): 
 
 
And the partial derivative of compressibility factor with respect to temperature is derived as follows:‐ 
 
 
   
4 | P a g e  
Calculated settle‐out pressures and enthalpies at various temperatures:‐ 
 
 
A guestimate algorithm is used to calculate the temperature which yields an energy level of 46.23 MJ at settle‐out 
pressure. Settle‐out pressure is calculated to be 5.88 barA at 32.07 deg. C with compressibility factor 0.9777. 
 
 
   
5 | P a g e  
The following graph shows the trend of energy level (J) with respect to SOP (barA), i.e. energy level decays with 
reduction in SOP:‐ 
 
The following graph shows the trend of SOP (barA) with respect to equilibrium temperature (deg. C), i.e. settle‐out 
temperature increases with SOP:‐ 
 
6 | P a g e  
Estimation of dew point margin with respect to SOP 
 
The curve on the left represents the vapor dew point curve for process gas, the line on the right is the SOP curve 
calculated at various temperatures. We can see that dew point margin reduces when SOP reduces. 
 
Vapor saturation curve is calculated with Vapor‐Liquid Equilibrium (VLE) technique based on partial fugacity 
coefficients according to the literature “Thermo‐physical properties of fluids – 1996”. 
 
Equation of state used in the VLE calculation is Redlich‐Kwong‐Soave (RKS) cubic type equation of state (RKS and LKP 
are recommended by Mr. Klaus Lüdtke for chlorine gas in his compressor literature; to be more precise clause 2.2.6 
of Process Centrifugal Compressors) with binary interaction parameters (BIP) extracted from HYSYS software. BIP for 
RKS is tabulated below:‐ 
 
Note: RKS equation of state is used for VLE calculation due to its simplicity in arriving the departure function for 
partial fugacity coefficients.   
Vapor saturation curve
based upon RKS EoS 
SOP curve
Vapor + liquid region  Full vapor region
7 | P a g e  
Validation of vapor saturation curve with compressor OEM’s information 
 
There is a need to verify the validity of vapor saturation curve which is used as reference in the interest of dew point 
margin throughout this study. 
 
Project specific (chlorine gas mixture) vapor saturation curves from compressor OEM and author’s calculation are 
overlapped on the same scale (with background of compressor OEM’s curve being set to transparent), i.e. vapor 
saturation calculation based upon VLE technique is justified (within the ranges of pressure and temperature 
presented above).   
8 | P a g e  
The following curve shows the relationship between dew point margins (deg. C) and SOP (barA). 
 
 
Dew point margin at initial stage of SOP is approximately 40.71 deg. C, it declines with the reduction of SOP (due to 
gradual heat rejection from the metal surface of chlorine compression system to ambient air); dew point margin 
when process medium decays to lowest ambient temperature (‐10 deg. C) is 2.92 deg. C at 5.02 barA. 
 
   
At initial SOP 
condition
SOP at lowest 
ambient temperature  
9 | P a g e  
Gas temperature drop due to Joule‐Thomson effect during blowdown of 
process gas following an SOP 
Joule‐Thomson coefficient at SOP condition (P = 5.88 barA, T = 32.07 deg. C) is estimated as 0.0000101878 Kelvin / 
Pascal. Expected temperature drop when the process gas is relieved to atmospheric pressure (1.01325 barA) is 
approximately 4.96 Kelvin, which means process gas temperature is reduced to 27.11 deg. C. 
 
It can be seen that:‐ 
a) Gas temperature during blow down following an SOP is not the governing case to determine minimum 
design metal temperature (MDMT) of compressor gas path / casing. Current MDMT is ‐10 deg. C which is 
due to lowest ambient temperature. 
 
b) No liquid formation in process gas during blowdown (from 5.88 barA) following an SOP event, refer to 
graphical presentation below. 
 
Note: Joule‐Thomson coefficient used in this study note is in accordance with the formula provided in Perry’s 
chemical engineers’ handbook (7th
 edition), as defined below:‐ 
   
Blowdown line from 
SOP 5.88 barA 
Vapor saturation curve
based upon RKS EoS 
Vapor + liquid region Full vapor region 
Adequate dew point margin, i.e. > 15 Kelvin 
10 | P a g e  
(dV/dT) at constant pressure in LKP law of corresponding state is derived as follows (author’s hand‐written 
derivations in the olden days):‐ 
 
 
Where: Ru = universal gas constant, Tc = critical temperature, Pc = critical pressure, Vm = m3
/mol., T = temperature.
11 | P a g e  
Conclusions 
Settle‐out pressure is estimated at 5.88 barA with settle‐out temperature 32.07 deg. C, this fulfils MDT’s 
requirement on minimum 4 bar differential pressure on N2 supply pressure to dry gas seal system. The available 
margin of N2 supply pressure is 4.62 barD (i.e. subtracting 5.88 barA from 10.5 barA). Note that minimum nitrogen 
supply pressure is 10.5 barA according to clause 15.1 of project utility specification GEN4‐1‐PROJ‐SP‐0001 revision 
B2:‐ 
 
 
Total chlorine trapped in the compression system is estimated at 176.13 kg, below the limitation of 850 kg i.e. 
Category 4 release event per Client’s LOPA matrix. This implies suction and discharge isolation valves near 
compressor skid are unnecessary, refer to item 8 of 1975Z‐C349‐MOM‐049‐F1 (29‐30th
 Oct 2015):‐ 
 
 
The compression system shall be depressurized at standstill condition when gas condition approaches vapor 
saturation point. From machinery protection perspective or perhaps in the interest of equipment warranty, dew 
point margin at standstill condition should be determined by MDT. Preliminary response from MDT dated 24th
 March 
2016, quoted as follows “We have to avoid any liquid in the compressor, in special because of the design with the 
compressor nozzle up direction. Therefore the system should be prepared for depressurization during standstill. MDT 
PLC will deliver the required signal for your depressurization device, probably valve shown on the P&ID.”. 
12 | P a g e  
Further email correspondence from MDT (29th
 March 2016) requires minimum dew point margin of 15 K. 
It is convenient to view dew point margin with respect to settle‐out pressure. With the information of vapor 
saturation curve and SOP curve; dew point margin vs. SOP is obtained, as tabulated below:‐ 
Subtracting temperatures of saturation curve from temperatures of SOP 
curve  yields   
 
The following discrete data sets (2.92, 5.02; 11.85, 5.23, 20.81, 5.43; 29.81, 5.63; 38.84, 5.84; 40.71, 5.88) are 
transformed into an equation which allows us to interpolate SOP values (in between 5.02 barA to 5.88 barA) based 
on dew point margin in a precise manner. 
 
The best fit (applying least squares method) of the above data sets is found to be 3rd
 order polynomial function, see 
comparison tabulated below (of course 4th
 order can also be used, at the expense of additional coefficient):‐ 
 
Note the first column contains dew point margins (i.e. x‐values or input variable). 
The SOP values (y‐values or output variable) calculated with 3rd
 order polynomial function (fifth column) are very 
close to the input data (second column) compared to linear (third column) and quadratic (fourth column) functions. 
13 | P a g e  
Coefficients for 3rd
 order polynomial function are given below (valid for pressure range in between 5.02 barA to 5.88 
barA):‐ 
 
Note that SOP = a0 + (a1 x DPM) + (a2 x DPM2
) + (a3 x DPM3
) 
Where: DPM = dew point margin 
 
 
 
Settle‐out pressure at dew point margin 15 Kelvin is approximately 5.30 barA. Associated settle‐out temperature at 
SOP 5.30 barA is reverse‐calculated, around 3.60 deg. C, as tabulated below:‐ 
 
 
14 | P a g e  
Information obtained above is consolidated and transferred into graphical form for clearer visual understanding. 
 
 
 
The curve on the left represents vapor saturation limit (liquid / vapor mixture on its left, full vapor on its right) for 
project specific gas composition (chlorine mixture). 
The relatively straight line on the right end represents SOP curve calculated at various temperatures (from 85 deg. C 
down to ‐10 deg. C) to cover various scenarios that might be encountered by the compression system during 
pressurized hold. 
The compression system will initially be experiencing an SOP value of 5.88 barA (32 deg. C), due to energy balance 
(mass times enthalpy) from various parts of the compression system i.e. LP [3.013 barA, 15 deg. C], HPHT [12.7 barA, 
85.7 deg. C], HPLT [12.1 barA, 40 deg. C], MPHT [6.303 barA, 93 deg. C], MPMT [6.138 barA, 43 deg. C] and MPLT 
[5.973 barA, 10 deg. C]. 
It is assumed that most parts of the compression system (piping, valves, static equipment, compressor) are not 
thermally‐insulated, heat transfer will occur from hot‐to‐cold medium (fundamental thermodynamics teaching) and 
lead to reduced internally energy of process medium where both pressure and temperature decrease accordingly. 
   
15 Kelvin 
SOP curve
Vapor saturation curve
Full vapor regionLiquid + vapor region
Initial SOP conditions
SOP decay due to heat 
dissipation to ambient air
15 | P a g e  
The compression system will be depressurized once dew point margin reaches the minimum threshold 15 Kelvin. It is 
crucial to ensure no liquid formation occurs during the depressurization process, Joule‐Thomson effect is therefore 
considered; based on initial conditions prior to depressurization, i.e. 5.30 barA at 3.6 deg. C. 
Joule‐Thomson effect due to blow down of process gas from 5.30 barA (at 3.60 deg. C) to atmospheric pressure:‐ 
 
 
Joule‐Thomson coefficient is approximately 0.0000116586 K/Pa. With a pressure differential of 4.29 bar, 
temperature drop is 5 Kelvin. Blowdown line (from 5.30 barA down to 1.01 barA) is plotted together with vapor 
saturation curve, as shown below. 
 
It can be seen that blowing‐down the process gas from 5.30 barA to atmospheric pressure will maintain a positive 
dew point margin; i.e. no liquid formation throughout the entire blow down sequence. 
 
 End of note                                                   CT Cheah (26th
 May 2016) 
15 Kelvin
Vapor saturation curve
Blowdown line from 
SOP 5.30 barA 
Liquid + vapor region Full vapor region 
Page 2
178 mm
110 mm
381 mm
241 mm
381 mm
381 mm
1246 mm
740 mm
30 mm
284 mm
180 mm
381 mm
381 mm
1379 mm
381 mm
381 mm
5083 mm
381 mm
381 mm
1735 mm
381 mm
117 mm
740 mm
284 mm
30 mm
137 mm
See page 14
Appendix 1 - Technip's isometric drawings
To after-cooler
(E6571) inlet nozzle
To compressor
discharge PSV
From after-cooler
(E6571) discharge
nozzle
Newly added
non-return valve
Compressor anti-surge valve
upstream tapping point.
External recycle valve
upstream tapping point
See page 4
See page 5
See page 7
Page 3
137 mm
137 mm
66 mm
381 mm
117 mm
381 mm
381 mm
137 mm
181 mm
1334 mm
381 mm
381 mm
1818 mm
381 mm
137 mm
66 mm 381 mm
2392 mm
381 mm
381 mm
1238 mm
381 mm
381 mm
2338 mm
381 mm
381 mm
238 mm
381 mm
22338 mm
76 mm
76 mm
188 mm
303 mm
Straight pipe or equivalent (inches) Schedule Length (mm)
10 40 117+1334+1818+2392+1238+2338+238+22338
2 80 188+303
1.5 80 181
8 40 66+66
Pressure = 12.1 barA
Temperature = 40 deg. C
To blow down
(depressurizing) valve
Compressor discharge
isolation valve
See page 3
See page 6
Page 4
381 mm
381 mm
5238 mm
381 mm
381 mm
6588 mm
381 mm
178 mm
63 mm
216 mm
500 mm
137 mm
457 mm
2246 mm
Straight pipe or equivalent (inches) Schedule Length (mm)
10 40 5238+6588+2235+2246
4 40 500
2235 mm
Pressure = 12.1 barA
Temperature = 40 deg. C
See page 3
Page 5
See page 12
ASV upstream
ASV return
Compressor ASV
8"
8"
8"
6"
6"
6"
457 mm
457 mm
457 mm
457 mm
457 mm
3119 mm
457 mm
1591 mm
1646 mm
203 mm
152 mm
101 mm
84 mm
291 mm
1861 mm
Straight pipe or equivalent (inches) Schedule Length (mm)
8 40 511+559+111
6 40 101+998+(473/2)
1 80 291
Pressure = 12.1 barA
Temperature = 40 deg. C
Straight pipe or equivalent (inches) Schedule Length (mm)
6 40 (473/2)+1598
12 40 1861+1646+3119+1591
Pressure = 3.013 barA
Temperature = 15 deg. C
3.013 bara
3.013 bara
12.1 bara
See page 4
Discharge blow down valve
Page 6
152 mm
152 mm
152 mm
3058 mm
3746 mm
152 mm
152 mm
1796 mm
152 mm
86 mm
178 mm
Straight pipe or equivalent (inches) Schedule Length (mm)
4 40 3058+3746+1796+86+178
Pressure = 12.1 barA
Temperature = 40 deg. C
See page 3
Page 7
External recycle valve
Upstream
Recycle valve return
See page 8
305 mm
305 mm
305 mm
305 mm
3192 mm
963 mm
2877 mm
3064 mm
110 mm
290 mm
Pressure = 3.013 barA
Temperature = 15 deg. C
Pressure = 12.1 barA
Temperature = 40 deg. C
Straight pipe or equivalent (inches) Schedule Length (mm)
8 40 3192+963+2877
1 80 290
Straight pipe or equivalent (inches) Schedule Length (mm)
8 40 3064
12.1 bara
See page 7
See page 9
See page 10
Page 8
457 mm
457 mm
986 mm
457 mm
178 mm
4699 mm
203 mm
111 mm
330 mm
457 mm
8004 mm
457 mm
457 mm
3286 mm
457 mm
9924 mm
Pressure = 3.013 barA
Temperature = 15 deg. C
Straight pipe or equivalent (inches) Schedule Length (mm)
8 40 111
12 40 986+4699+8004+3286+9924
14 40 280+279
Page 9
See page 8
Suction isolation valve
457 mm
162 mm
114 mm 114 mm
114 mm
114 mm
269 mm
1122 mm
286 mm
457 mm
457 mm
457 mm
457 mm
14736 mm
1786 mm
1448 mm
162 mm
76 mm
230 mm
Pressure = 3.013 barA
Temperature = 15 deg. C
Straight pipe or equivalent (inches) Schedule Length (mm)
12 40 14736+1786+1448
3 40 286+1122+269
2 80 230+70
76 mm
70 mm
3
See page 16
From chlorine sampling return line
Compressor
suction filter inlet
Compressor
suction filter inlet
Page 10
See page 11
533 mm
533 mm
898 mm
533 mm
2998 mm
533 mm
898 mm
279 mm
533 mm
533 mm
533 mm 533 mm
2134 mm
1417 mm
178 mm
840 mm
30 mm
284 mm
Pressure = 3.013 barA
Temperature = 15 deg. C
Straight pipe or equivalent (inches) Schedule Length (mm)
14 40 1417+2134+1604+2998+898
2 80 840
1 80 284
1604 mm
524 mm
Assumed unit offline (standby);
i.e. isolation valve shut.
3
See page 8
Compressor suction
filter outlet
Compressor suction
filter outlet
Page 11
See page 12
533 mm
143 mm
533 mm
533 mm
219 mm
533 mm
533 mm
1239 mm
533 mm
533 mm
533 mm
2997 mm
533 mm
1239 mm
533 mm
533 mm
219 mm
533 mm
143 mm
178 mm
472 mm
178 mm
840 mm
30 mm
284 mm
Pressure = 3.013 barA
Temperature = 15 deg. C
Straight pipe or equivalent (inches) Schedule Length (mm)
14 40 143+219+1239+2997+472
2 80 840
1 80 284
524 mm
Assumed unit offline (standby);
i.e. isolation valve shut.
3
Page 12
Compressor suction
cooler inlet
See page 11
See page 5
Pressure = 3.013 barA
Temperature = 15 deg. C
533 mm
533 mm
533 mm
280 mm
1570 mm
533 mm
533 mm
355 mm
533 mm
143 mm
417 mm
178 mm
840 mm
30 mm
284 mm
Straight pipe or equivalent (inches) Schedule Length (mm)
14 40 417+1570+355+143
2 80 840
1 80 284
12 40 92
178 mm
92 mm
Compressor suction
cooler discharge
To compressor
suction KO pot
Page 13
533 mm
533 mm
143 mm 472 mm
533 mm
1595 mm
533 mm
533 mm
3734 mm
533 mm
3242 mm
222 mm
666 mm
222 mm
178 mm
230 mm
Pressure = 3.013 barA
Temperature = 15 deg. C
Straight pipe or equivalent (inches) Schedule Length (mm)
14 40 472+1595+3734+3242+666
1.5 80 230
Page 14
229 mm
229 mm
229 mm
497 mm
229 mm
1304 mm
See page 2
Compressor
discharge PSV
Rupture disk
See page 15
Page 15
See page 14
Page 16
See page 9
114 mm
79 mm
114 mm
114 mm
1322 mm
114 mm
114 mm
672 mm
114 mm
114 mm
114 mm
114 mm
114 mm
114 mm
114 mm
114 mm
1572 mm
3172 mm
372 mm
9947 mm
114 mm
777 mm
Straight pipe or equivalent (inches) Schedule Length (mm)
3 40 79+1322+672+9947+372+3172+1572+777
Pressure = 3.013 barA
Temperature = 15 deg. C
7
K6570
EN
00110001999795DRW
AFTER HAZOP
05.10.2015Schmitz05.10.2015Schrader
17.02.2016STZ17.02.201603 BPL
TRAIN
OF303
Lange
DOC. PARTDOCUMENT NO.DOC. TYPE
ORIGINAL
INDEX
REV. PAGE
LANG.SIZE
SHEET
RELEASED
CHANGE DESCRIPTIONCHANGE NO.
CHECKED
CHECKEDCHANGED
DATEDATE
DATEDATE
DATEISSUED
REV.
05.10.2015
P&I DIAGRAM CMDI-5-PROJ-25-657
PROCESS
CAOCHLOR
H.3600045.36
R
Q
N
M
L
K
G
E
D
C
B
A
1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 18 20 21 2414 15 19 22 23
F
H
23 241 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
P
J
R
Q
P
N
M
L
K
J
H
G
F
E
D
C
B
A
This document is the property of MAN Diesel & Turbo SE and is solely for the use of the party to which it is handed over.
2"
14"
2"
2"
2"
2"
2"
SET@= 18 bar(g)
4" 4"
F6570 A/B
3/4"
K6570
PROCESS GAS
PROCESS GAS
PI
657407
CR
P+
PI
657407
DCS P+
TI
657408
CR
TI
657408
DCS
FI
657409
CR
FI
657409
DCS
TI
657422B
CR
To+
TI
657422B
DCS
To+
TI
657422C
CR
To+
TI
657422C
DCS
To+
TS
657422
CR 2oo3
To+
TS
657422
DCS
To+
001
PI
657424
CR
P+
PI
657424
DCS
P+
TI
657423
CR
T+
TI
657423
DCS
T+
FO
FCV
657427
010
R10001 PIT
657407
PIT
657424
FIT
657409
E6571
V
D
TI
657422A
DCS
To+
TI
657422A
CR
To+
PDIT
657406
PDI
657406
CR
PD+
PDI
657406
DCS
PD+
LO
LO
LO
R14300
E6574
V
D
TI
657412A
CR
To+
TI
657412A
DCS
To+
TI
657412B
CR
To+
TI
657412B
DCS
To+
TI
657412C
CR
To+
TI
657412C
DCS
To+
TS
657412
CR2oo3
To+
TS
657412
DCS
To+
001
001
PIT
657414
PI
657414
CR
P+
PI
657414
DCS
P+
TI
657418
CR
T+
TI
657418
DCS
T+
PIT
657404
PIC
657404
CR
PI
657404
DCS
R22208
R22207
TE
657412A
TE
657412B
TE
657412C
TE
657418
TE
657422A
TE
657422B
TE
657422C
TE
657408
TE
657423
ZC
657427
S
PI
ZSH
657427
ZAH
657427
CR
ZAH
657427
DCS
ZSL
657427
ZAL
657427
CR
ZAL
657427
DCS
ZT
657427
ZI
657427
CR
ZI
657427
DCS
XY
657427
CR
405
FIC
657X
CR
400
R19445R19446
PIT
657410A
PI
657410A
CR
Po+
PI
657410A
DCS
Po+
PIT
657410B
PIT
657410C
PI
657410B
CR
Po+
PI
657410B
DCS
Po+
PI
657410C
CR
Po+
PI
657410C
DCS
Po+
PS
657410
CR2oo3
Po+
PS
657410
DCS
Po+
PIT
657411A
PI
657411A
CR
Po+
PI
657411A
DCS
Po+
PIT
657411B
PIT
657411C
PI
657411B
CR
Po+
PI
657411B
DCS
Po+
PI
657411C
CR
Po+
PI
657411C
DCS
Po+
PS
657411
CR2oo3
Po+
PS
657411
DCS
Po+
TI
657413
CR
T+
TI
657413
DCS
T+
TE
657413
PI
657417
CR
P+
PI
657417
DCS
P+
PIT
657417
PIT
657420A
PI
657420A
CR
Po+
PI
657420A
DCS
Po+
PIT
657420B
PIT
657420C
PI
657420B
CR
Po+
PI
657420B
DCS
Po+
PI
657420C
CR
Po+
PI
657420C
DCS
Po+
PS
657420
CR
2oo3
Po+
PS
657420
DCS
Po+
PIT
657421A
PIT
657421B
PIT
657421C
PI
657421A
CR
Po+
PI
657421A
DCS
Po+
PI
657421B
CR
Po+
PI
657421B
DCS
Po+
PI
657421C
CR
Po+
PI
657421C
DCS
Po+
P
657421
CR2oo3
Po+
P
657421
DCS
Po+
001
001
001
PDIT
657416
PDI
657416
CR
PD+
PDI
657416
DCS
PD+
E6573
V
D
R21208
R21207
D6570
E6570
V
D
R10607
LIT
657403
LI
657403
CR
L++
LI
657403
DCS
L++
001
010
D6571
LIT
657415
LI
657415
CR
L++
LI
657415
DCS
L++
PCV
657405
ZY
657405
ZSH
657405
ZSL
657405
ZAH
657405
CR
Z+
ZAH
657405
DCS
Z+
ZAL
657405
CR
Z-
ZAL
657405
DCS
Z-
010
R79485
R11617
PROCESSGAS
FLARE
ZSH
657425
ZSL
657425
S
657426
CR
ZSH
657401
ZSL
657401
S
657402
CR
010
ZAH
657401
DCS
ZAL
657401
DCS
ZAH
657425
DCS
ZAL
657425
DCS
INSTRUMENT AIR
001
010
010
R21206
R21205
R22206
R22205
COOLINGWATER
COOLINGWATER
CHILLEDWATER
CHILLEDWATER
FE
657409
LC
LC
ZT
657405
ZI
657405
CR
ZI
657405
DCS
03
REV 03
REV
H
656010
03
REV
TOSAFELOCATION
03
REV
R39007
TO SAFE LOCATION
03
REV
03
REV
PI
????
INSTRUMENT AIR
03
REV
TOSAFELOCATION
03
REV
03
REV
03
REV
H
657008
03
REV
NOTE 2NOTE 2
NOTE 5
NOTES:
CHECK VALVE AS CLOSE AS POSSIBLE TO THE ANTI SURGE LINE
STRAIGHT PIPE LENGTH UPSTREAM / DOWNSTREAM: 5D / 10D
MAXIMUM VOLUME BETWEEN COMPRESSOR DISCHARGE FLANGE, ANTISURGE VALVE
AND CHECK VALVE SHOULD BE LESS THAN EFFECTIVE VOLUME FLOW [m3/s] * 1s
COMPRESSOR BLOWDOWN IN CASE OF SEAL FAILURE
AS CLOSE AS POSSIBLE TO COMPRESSOR DISCHARGE FLANGE
TEMPORARY STRAINER, TO REMOVE AFTER START UP
MECHANICAL MINIMUM POSITION
1.
2.
3.
4.
5.
6.
7.
NOTE 6
NOTE 3
NOTE 5
NOTE 1
NOTE 5
NOTE 5
NOTE 6
NOTE 7
NOTE 4
NOTE 4
NOTE 4
DE NDE
4
NOTE 3
NOTE 3
NOTE 4
3421
FC
V = 3.2m³
V = 0.65m³
V = 0.5 m³
ETEYB/Marcel Poyda
11.03.16
V = 0.65m³
V = 3.5m³
Appendix 2 - MDT's piping volume

More Related Content

Viewers also liked (16)

S3 Lec 2 (Condenser) Note
S3 Lec 2 (Condenser) NoteS3 Lec 2 (Condenser) Note
S3 Lec 2 (Condenser) Note
 
STUDY OF CONDENSER AND ITS DIFFERENT TYPES
STUDY OF CONDENSER  AND ITS DIFFERENT TYPESSTUDY OF CONDENSER  AND ITS DIFFERENT TYPES
STUDY OF CONDENSER AND ITS DIFFERENT TYPES
 
Selection and Design of Condensers
Selection and Design of CondensersSelection and Design of Condensers
Selection and Design of Condensers
 
Condenser and its types
Condenser and its types Condenser and its types
Condenser and its types
 
Steam Condensers
Steam CondensersSteam Condensers
Steam Condensers
 
Boiler
BoilerBoiler
Boiler
 
Standard practices r9
Standard practices r9Standard practices r9
Standard practices r9
 
Condenser in thermal power plants
Condenser in thermal power plantsCondenser in thermal power plants
Condenser in thermal power plants
 
Safety in chlorine ppt
Safety in chlorine pptSafety in chlorine ppt
Safety in chlorine ppt
 
Microscopy
MicroscopyMicroscopy
Microscopy
 
Design of condenser
Design of condenserDesign of condenser
Design of condenser
 
Types of compressors
Types of compressorsTypes of compressors
Types of compressors
 
Compressor basis
Compressor basisCompressor basis
Compressor basis
 
Basics of Compressor
Basics of CompressorBasics of Compressor
Basics of Compressor
 
Compressors
CompressorsCompressors
Compressors
 
Boiler Presentation
Boiler PresentationBoiler Presentation
Boiler Presentation
 

Similar to CL2 compression SOP report_26 May 2016

Ryan Sherman - INST 2450 - HIPPS
Ryan Sherman - INST 2450 - HIPPSRyan Sherman - INST 2450 - HIPPS
Ryan Sherman - INST 2450 - HIPPSRyan Sherman
 
Aesolutions_Understanding_Overpressure_Scenarios_and_RAGAGEP.pdf
Aesolutions_Understanding_Overpressure_Scenarios_and_RAGAGEP.pdfAesolutions_Understanding_Overpressure_Scenarios_and_RAGAGEP.pdf
Aesolutions_Understanding_Overpressure_Scenarios_and_RAGAGEP.pdfERICKMARTINEZAGUIRRE
 
Process safety risk analysis of a gas compression plant in Brindisi, Italy.
Process safety risk analysis of a gas compression plant in Brindisi, Italy.Process safety risk analysis of a gas compression plant in Brindisi, Italy.
Process safety risk analysis of a gas compression plant in Brindisi, Italy.Justice Okoroma
 
Vibration Analysis of an Automotive Silencer for Reduced Incidence of Failure
Vibration Analysis of an Automotive Silencer for Reduced Incidence of FailureVibration Analysis of an Automotive Silencer for Reduced Incidence of Failure
Vibration Analysis of an Automotive Silencer for Reduced Incidence of Failurepaperpublications3
 
CFD ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO IMPROVE PERFORMANCE OF...
CFD ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO IMPROVE PERFORMANCE OF...CFD ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO IMPROVE PERFORMANCE OF...
CFD ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO IMPROVE PERFORMANCE OF...ijiert bestjournal
 
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.Modelling and Stress Analysis of the Pig Loop Module of a Piping System.
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.IJRES Journal
 
Validation of Airblast Damage Predictions Using A Microcomputer Based High Ex...
Validation of Airblast Damage Predictions Using A Microcomputer Based High Ex...Validation of Airblast Damage Predictions Using A Microcomputer Based High Ex...
Validation of Airblast Damage Predictions Using A Microcomputer Based High Ex...BREEZE Software
 
Ch05 howard
Ch05 howardCh05 howard
Ch05 howardpakmek
 
PSRM - Process Safety Information.ppt
PSRM - Process Safety Information.pptPSRM - Process Safety Information.ppt
PSRM - Process Safety Information.pptssuserd03727
 
Analysis & modelling of thermal mechanical fatigue crack propagat
Analysis & modelling of thermal mechanical fatigue crack propagatAnalysis & modelling of thermal mechanical fatigue crack propagat
Analysis & modelling of thermal mechanical fatigue crack propagatIAEME Publication
 
Computational Fluid Dynamic Analysis and Structural Analysis of Ribbed Panel ...
Computational Fluid Dynamic Analysis and Structural Analysis of Ribbed Panel ...Computational Fluid Dynamic Analysis and Structural Analysis of Ribbed Panel ...
Computational Fluid Dynamic Analysis and Structural Analysis of Ribbed Panel ...IRJET Journal
 
CFD ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER
CFD ANALYSIS OF PARALLEL FLOW HEAT EXCHANGERCFD ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER
CFD ANALYSIS OF PARALLEL FLOW HEAT EXCHANGERANSHUMAN BAJPAI
 
IRJET- A Research on Vibration Analysis & Optimization of Housing for ECU in ...
IRJET- A Research on Vibration Analysis & Optimization of Housing for ECU in ...IRJET- A Research on Vibration Analysis & Optimization of Housing for ECU in ...
IRJET- A Research on Vibration Analysis & Optimization of Housing for ECU in ...IRJET Journal
 
Flange Shaft Coupling
Flange Shaft CouplingFlange Shaft Coupling
Flange Shaft CouplingBilal Murtaza
 

Similar to CL2 compression SOP report_26 May 2016 (20)

Ryan Sherman - INST 2450 - HIPPS
Ryan Sherman - INST 2450 - HIPPSRyan Sherman - INST 2450 - HIPPS
Ryan Sherman - INST 2450 - HIPPS
 
Aesolutions_Understanding_Overpressure_Scenarios_and_RAGAGEP.pdf
Aesolutions_Understanding_Overpressure_Scenarios_and_RAGAGEP.pdfAesolutions_Understanding_Overpressure_Scenarios_and_RAGAGEP.pdf
Aesolutions_Understanding_Overpressure_Scenarios_and_RAGAGEP.pdf
 
Process safety risk analysis of a gas compression plant in Brindisi, Italy.
Process safety risk analysis of a gas compression plant in Brindisi, Italy.Process safety risk analysis of a gas compression plant in Brindisi, Italy.
Process safety risk analysis of a gas compression plant in Brindisi, Italy.
 
Vibration Analysis of an Automotive Silencer for Reduced Incidence of Failure
Vibration Analysis of an Automotive Silencer for Reduced Incidence of FailureVibration Analysis of an Automotive Silencer for Reduced Incidence of Failure
Vibration Analysis of an Automotive Silencer for Reduced Incidence of Failure
 
HIPPS
HIPPSHIPPS
HIPPS
 
AMIF2014 – [Aerospazio] Silvio Pappadà, Componenti per elicottero, in materia...
AMIF2014 – [Aerospazio] Silvio Pappadà, Componenti per elicottero, in materia...AMIF2014 – [Aerospazio] Silvio Pappadà, Componenti per elicottero, in materia...
AMIF2014 – [Aerospazio] Silvio Pappadà, Componenti per elicottero, in materia...
 
CFD ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO IMPROVE PERFORMANCE OF...
CFD ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO IMPROVE PERFORMANCE OF...CFD ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO IMPROVE PERFORMANCE OF...
CFD ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO IMPROVE PERFORMANCE OF...
 
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.Modelling and Stress Analysis of the Pig Loop Module of a Piping System.
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.
 
lecture 0.pdf
lecture 0.pdflecture 0.pdf
lecture 0.pdf
 
Validation of Airblast Damage Predictions Using A Microcomputer Based High Ex...
Validation of Airblast Damage Predictions Using A Microcomputer Based High Ex...Validation of Airblast Damage Predictions Using A Microcomputer Based High Ex...
Validation of Airblast Damage Predictions Using A Microcomputer Based High Ex...
 
Ch05 howard
Ch05 howardCh05 howard
Ch05 howard
 
pam_1997
pam_1997pam_1997
pam_1997
 
henry articulo.pdf
henry articulo.pdfhenry articulo.pdf
henry articulo.pdf
 
Minimal Requirements for Relief Systems Documentation
Minimal Requirements for Relief Systems DocumentationMinimal Requirements for Relief Systems Documentation
Minimal Requirements for Relief Systems Documentation
 
PSRM - Process Safety Information.ppt
PSRM - Process Safety Information.pptPSRM - Process Safety Information.ppt
PSRM - Process Safety Information.ppt
 
Analysis & modelling of thermal mechanical fatigue crack propagat
Analysis & modelling of thermal mechanical fatigue crack propagatAnalysis & modelling of thermal mechanical fatigue crack propagat
Analysis & modelling of thermal mechanical fatigue crack propagat
 
Computational Fluid Dynamic Analysis and Structural Analysis of Ribbed Panel ...
Computational Fluid Dynamic Analysis and Structural Analysis of Ribbed Panel ...Computational Fluid Dynamic Analysis and Structural Analysis of Ribbed Panel ...
Computational Fluid Dynamic Analysis and Structural Analysis of Ribbed Panel ...
 
CFD ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER
CFD ANALYSIS OF PARALLEL FLOW HEAT EXCHANGERCFD ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER
CFD ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER
 
IRJET- A Research on Vibration Analysis & Optimization of Housing for ECU in ...
IRJET- A Research on Vibration Analysis & Optimization of Housing for ECU in ...IRJET- A Research on Vibration Analysis & Optimization of Housing for ECU in ...
IRJET- A Research on Vibration Analysis & Optimization of Housing for ECU in ...
 
Flange Shaft Coupling
Flange Shaft CouplingFlange Shaft Coupling
Flange Shaft Coupling
 

More from CangTo Cheah

Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aPeng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aCangTo Cheah
 
A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...CangTo Cheah
 
1975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B11975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B1CangTo Cheah
 
1975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A11975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A1CangTo Cheah
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009CangTo Cheah
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009CangTo Cheah
 
Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010CangTo Cheah
 
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010CangTo Cheah
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010CangTo Cheah
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...CangTo Cheah
 
Campbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCampbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCangTo Cheah
 
automation of PRNAT phase mapper
automation of PRNAT phase mapperautomation of PRNAT phase mapper
automation of PRNAT phase mapperCangTo Cheah
 
East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014CangTo Cheah
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flashCangTo Cheah
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010CangTo Cheah
 
Attachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportAttachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportCangTo Cheah
 
Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012CangTo Cheah
 

More from CangTo Cheah (20)

LP_point_6_(LtR)
LP_point_6_(LtR)LP_point_6_(LtR)
LP_point_6_(LtR)
 
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aPeng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
 
A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...A2_Centrifugal compressor performance estimation using selected manufacture s...
A2_Centrifugal compressor performance estimation using selected manufacture s...
 
1975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B11975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B1
 
1975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A11975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A1
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009
 
Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010
 
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
 
Campbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCampbell interference plot_Wheatstone
Campbell interference plot_Wheatstone
 
nv and kv
nv and kvnv and kv
nv and kv
 
nt and kt
nt and ktnt and kt
nt and kt
 
automation of PRNAT phase mapper
automation of PRNAT phase mapperautomation of PRNAT phase mapper
automation of PRNAT phase mapper
 
East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flash
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010
 
Attachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportAttachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection report
 
Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012Attachment 5_Wheatstone Type 2_6th Aug 2012
Attachment 5_Wheatstone Type 2_6th Aug 2012
 

CL2 compression SOP report_26 May 2016

  • 1. 1 | P a g e   Author: CangTo Cheah                    Date: 26th  May 2016  Document title: Estimation of settle out pressure of chlorine compression system during an ESD & normal shutdown  Disclaimer: This technical note is written in the interest of personal development & learning and for the sake of  posterity for those who appreciates the contributions of thermodynamics and mathematics in the detailed  engineering phase of turbo‐machinery system. This technical note reflects the author's best judgment and knowledge  (i.e. fundamental law of physics, thermodynamics and engineering mathematics) in light of the information and  resources available to him at the time of its preparation. Any use which any party makes of this technical note, on  any reliance on or decision to be made based on it, are the responsibility of such parties. The author accepts no  responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on this  technical note.    Documents in referenced  Technip PID: CMDI‐5‐PROJ‐25‐6570 revision R1, CMDI‐5‐PROJ‐25‐6560 revision R1, CMDI‐5‐PROJ‐25‐6585 revision  R1.  Technip piping isometric drawings (not in MDT’s scope of supply): Refer to appendix 1  MDT’s piping volume data: Refer to appendix 2  MDT’s PID: 1975Z‐1‐A0103‐1011‐0001‐0001 revision 3  Static equipment supplier drawings (not in MDT’s scope of supply): 1975Z‐1‐A1109‐0841‐0001‐0004 revision 0  (Filters F6570 A/B), 1975Z‐1‐A1109‐0610‐0001‐0006 revision 1 (compressor suction cooler E6570) and 1975Z‐1‐ A1109‐0610‐0001‐0007 revision 1 (compressor discharge cooler E6571).  Project utility specification: GEN4‐1‐PROJ‐SP‐0001 revision B2  Thermodynamic literatures: (1) The properties of gases and liquids – 5th  edition, Bruce E. Poling, John M. Prausnitz  and John P. O’Connell. (2) Thermo‐physical properties of fluids – 1996, Marc J. Assael, J. P. Martin Trusler and  Thomas F. Tsolakis.    Introduction  The main purpose of this note is to calculate settle out pressure (SOP) of process medium trapped in between  suction isolation valve H656010 (CMDI‐5‐PROJ‐25‐6560), discharge isolation valve H657008 (CMDI‐5‐PROJ‐25‐6570),  depressurizing valve H657005 (CMDI‐5‐PROJ‐25‐6570) and sampling stream isolation valve H658501 (CMDI‐5‐PROJ‐ 25‐6585). Per MDT’s requirement, nitrogen supply pressure 4 bar above the SOP (refer to page 6 of MDT’s PID) is  needed to ensure positive flow from dry gas seal to compressor (this will prevent process gas leaks into compressor  lube oil system).  Sub‐studies (related to SOP) that deemed beneficial to the compressor system which included in this study are listed  below:‐  a) Calculate mass of chlorine trapped in between the same envelope as described above. If total mass of  chlorine trapped in between the compression system exceeds 850 kg, suction and discharge isolation valves  shall be added near the compressor skid.  b) Determine dew point margin at various settle‐out temperatures (both initial phase and lowest ambient  temperature ‐10 deg. C scenario), so that the compression system will be depressurized to ensure no liquid  entrainment in the centrifugal compressor.  c) Gas temperature drop due to Joule‐Thomson effect during blowdown of process gas following an SOP. 
  • 2. 2 | P a g e   Break‐down of piping volumes        Estimation of process mass trapped in the compression system  Process mass for each sections are calculated according to the following formula: PV = ZmRT  Where: P = pressure in Pascal, V = volume in m3 , Z = compressibility factor, m = mass in kg, R = specific gas constant  in J/kg‐K and T = temperature in Kelvin.  Note that compressibility factor is calculated from Lee‐Kesler‐Plocker law of corresponding state, with binary  interaction parameters dedicated for SLIC chlorine gas mixture extracted from HYSYS (commercially‐available  process simulation software).    Where:    Newton‐Raphson root‐finding method (https://en.wikipedia.org/wiki/Newton%27s_method) is used tackle the  above LKP equation, i.e. to solve for reduced volume (ν). Note: ν = [Pc / (R x Tc)] x Vm    Total mass of process medium (chlorine mixture) trapped in the compression system is 263.19 kg with molecular  weight 51.04 kg/kmol. This is equivalent to 5.1565 kmol of chlorine mixture, which yields 5.1565 kmol x 0.4817 =  2.4839 kmol of chlorine (process medium consists 48.17 mol% chlorine).  In term of conventional mass, chlorine in the system is 2.4839 kmol x 70.91 kg/kmol = 176.13 kg (note: molecular  weight of chlorine is 70.91 kg/kmol).    to
  • 3. 3 | P a g e   Estimation of settle out pressure and associated temperature in the  compression system  Total mass and total volume obtained in previous step are then used to estimate the SOP. Energy balance (i.e. mass  multiplied by enthalpy) is used to estimate the settle‐out temperature when the compression system is at SOP.    The idea is based upon the law of conservation of energy (total energy of an isolated system remains constant), i.e.  energy can neither be created nor destroyed; rather, it transforms from one form to another  (https://en.wikipedia.org/wiki/Conservation_of_energy).  Enthalpy is a measurement of energy in a thermodynamic system, it includes the internal energy (which is the  energy required to create a system, and the amount of energy required to make room for it by displacing its  environment and establishing its volume and pressure (https://en.wikipedia.org/wiki/Enthalpy).  Total energy at initial stage (assuming insignificant heat dissipation to environment via convection) of SOP shall  equal to the sum of energies at various locations of compression path based on steady‐state operating conditions  (i.e. various pressures and temperatures at different components, e.g. LP compression inlet, LP compression outlet,  inter‐stage cooler # 1 discharge, inter‐stage cooler # 2 discharge, HP compression inlet, HP compression outlet, and  after‐cooler discharge).  Side notes regarding the calculation of enthalpy with LKP law of corresponding state: Residual enthalpy is calculated  with 4th  order Gaussian numerical integration method at 200 density discrete at the vertical axis, and each density  row is further divided into 4 slots according to Gauss’ coefficients. Ideal gas enthalpy for the chlorine mixture is  converted from property data bank of “The Properties of Gases and Liquids – 5th  edition by Bruce E. Poling, John M.  Prausnitz and John P. O’Connell”. Formula for calculating enthalpy is in accordance with AGA report no. 10 (15th   November 2002).      In LKP law of corresponding state, compressibility factor is defined as (per Thermo‐physical properties of fluids –  1996, Marc J. Assael, J. P. Martin Trusler and Thomas F. Tsolakis):      And the partial derivative of compressibility factor with respect to temperature is derived as follows:‐         
  • 4. 4 | P a g e   Calculated settle‐out pressures and enthalpies at various temperatures:‐      A guestimate algorithm is used to calculate the temperature which yields an energy level of 46.23 MJ at settle‐out  pressure. Settle‐out pressure is calculated to be 5.88 barA at 32.07 deg. C with compressibility factor 0.9777.         
  • 5. 5 | P a g e   The following graph shows the trend of energy level (J) with respect to SOP (barA), i.e. energy level decays with  reduction in SOP:‐    The following graph shows the trend of SOP (barA) with respect to equilibrium temperature (deg. C), i.e. settle‐out  temperature increases with SOP:‐   
  • 6. 6 | P a g e   Estimation of dew point margin with respect to SOP    The curve on the left represents the vapor dew point curve for process gas, the line on the right is the SOP curve  calculated at various temperatures. We can see that dew point margin reduces when SOP reduces.    Vapor saturation curve is calculated with Vapor‐Liquid Equilibrium (VLE) technique based on partial fugacity  coefficients according to the literature “Thermo‐physical properties of fluids – 1996”.    Equation of state used in the VLE calculation is Redlich‐Kwong‐Soave (RKS) cubic type equation of state (RKS and LKP  are recommended by Mr. Klaus Lüdtke for chlorine gas in his compressor literature; to be more precise clause 2.2.6  of Process Centrifugal Compressors) with binary interaction parameters (BIP) extracted from HYSYS software. BIP for  RKS is tabulated below:‐    Note: RKS equation of state is used for VLE calculation due to its simplicity in arriving the departure function for  partial fugacity coefficients.    Vapor saturation curve based upon RKS EoS  SOP curve Vapor + liquid region  Full vapor region
  • 7. 7 | P a g e   Validation of vapor saturation curve with compressor OEM’s information    There is a need to verify the validity of vapor saturation curve which is used as reference in the interest of dew point  margin throughout this study.    Project specific (chlorine gas mixture) vapor saturation curves from compressor OEM and author’s calculation are  overlapped on the same scale (with background of compressor OEM’s curve being set to transparent), i.e. vapor  saturation calculation based upon VLE technique is justified (within the ranges of pressure and temperature  presented above).   
  • 8. 8 | P a g e   The following curve shows the relationship between dew point margins (deg. C) and SOP (barA).      Dew point margin at initial stage of SOP is approximately 40.71 deg. C, it declines with the reduction of SOP (due to  gradual heat rejection from the metal surface of chlorine compression system to ambient air); dew point margin  when process medium decays to lowest ambient temperature (‐10 deg. C) is 2.92 deg. C at 5.02 barA.        At initial SOP  condition SOP at lowest  ambient temperature  
  • 9. 9 | P a g e   Gas temperature drop due to Joule‐Thomson effect during blowdown of  process gas following an SOP  Joule‐Thomson coefficient at SOP condition (P = 5.88 barA, T = 32.07 deg. C) is estimated as 0.0000101878 Kelvin /  Pascal. Expected temperature drop when the process gas is relieved to atmospheric pressure (1.01325 barA) is  approximately 4.96 Kelvin, which means process gas temperature is reduced to 27.11 deg. C.    It can be seen that:‐  a) Gas temperature during blow down following an SOP is not the governing case to determine minimum  design metal temperature (MDMT) of compressor gas path / casing. Current MDMT is ‐10 deg. C which is  due to lowest ambient temperature.    b) No liquid formation in process gas during blowdown (from 5.88 barA) following an SOP event, refer to  graphical presentation below.    Note: Joule‐Thomson coefficient used in this study note is in accordance with the formula provided in Perry’s  chemical engineers’ handbook (7th  edition), as defined below:‐      Blowdown line from  SOP 5.88 barA  Vapor saturation curve based upon RKS EoS  Vapor + liquid region Full vapor region  Adequate dew point margin, i.e. > 15 Kelvin 
  • 10. 10 | P a g e   (dV/dT) at constant pressure in LKP law of corresponding state is derived as follows (author’s hand‐written  derivations in the olden days):‐      Where: Ru = universal gas constant, Tc = critical temperature, Pc = critical pressure, Vm = m3 /mol., T = temperature.
  • 11. 11 | P a g e   Conclusions  Settle‐out pressure is estimated at 5.88 barA with settle‐out temperature 32.07 deg. C, this fulfils MDT’s  requirement on minimum 4 bar differential pressure on N2 supply pressure to dry gas seal system. The available  margin of N2 supply pressure is 4.62 barD (i.e. subtracting 5.88 barA from 10.5 barA). Note that minimum nitrogen  supply pressure is 10.5 barA according to clause 15.1 of project utility specification GEN4‐1‐PROJ‐SP‐0001 revision  B2:‐      Total chlorine trapped in the compression system is estimated at 176.13 kg, below the limitation of 850 kg i.e.  Category 4 release event per Client’s LOPA matrix. This implies suction and discharge isolation valves near  compressor skid are unnecessary, refer to item 8 of 1975Z‐C349‐MOM‐049‐F1 (29‐30th  Oct 2015):‐      The compression system shall be depressurized at standstill condition when gas condition approaches vapor  saturation point. From machinery protection perspective or perhaps in the interest of equipment warranty, dew  point margin at standstill condition should be determined by MDT. Preliminary response from MDT dated 24th  March  2016, quoted as follows “We have to avoid any liquid in the compressor, in special because of the design with the  compressor nozzle up direction. Therefore the system should be prepared for depressurization during standstill. MDT  PLC will deliver the required signal for your depressurization device, probably valve shown on the P&ID.”. 
  • 12. 12 | P a g e   Further email correspondence from MDT (29th  March 2016) requires minimum dew point margin of 15 K.  It is convenient to view dew point margin with respect to settle‐out pressure. With the information of vapor  saturation curve and SOP curve; dew point margin vs. SOP is obtained, as tabulated below:‐  Subtracting temperatures of saturation curve from temperatures of SOP  curve  yields      The following discrete data sets (2.92, 5.02; 11.85, 5.23, 20.81, 5.43; 29.81, 5.63; 38.84, 5.84; 40.71, 5.88) are  transformed into an equation which allows us to interpolate SOP values (in between 5.02 barA to 5.88 barA) based  on dew point margin in a precise manner.    The best fit (applying least squares method) of the above data sets is found to be 3rd  order polynomial function, see  comparison tabulated below (of course 4th  order can also be used, at the expense of additional coefficient):‐    Note the first column contains dew point margins (i.e. x‐values or input variable).  The SOP values (y‐values or output variable) calculated with 3rd  order polynomial function (fifth column) are very  close to the input data (second column) compared to linear (third column) and quadratic (fourth column) functions. 
  • 13. 13 | P a g e   Coefficients for 3rd  order polynomial function are given below (valid for pressure range in between 5.02 barA to 5.88  barA):‐    Note that SOP = a0 + (a1 x DPM) + (a2 x DPM2 ) + (a3 x DPM3 )  Where: DPM = dew point margin        Settle‐out pressure at dew point margin 15 Kelvin is approximately 5.30 barA. Associated settle‐out temperature at  SOP 5.30 barA is reverse‐calculated, around 3.60 deg. C, as tabulated below:‐     
  • 14. 14 | P a g e   Information obtained above is consolidated and transferred into graphical form for clearer visual understanding.        The curve on the left represents vapor saturation limit (liquid / vapor mixture on its left, full vapor on its right) for  project specific gas composition (chlorine mixture).  The relatively straight line on the right end represents SOP curve calculated at various temperatures (from 85 deg. C  down to ‐10 deg. C) to cover various scenarios that might be encountered by the compression system during  pressurized hold.  The compression system will initially be experiencing an SOP value of 5.88 barA (32 deg. C), due to energy balance  (mass times enthalpy) from various parts of the compression system i.e. LP [3.013 barA, 15 deg. C], HPHT [12.7 barA,  85.7 deg. C], HPLT [12.1 barA, 40 deg. C], MPHT [6.303 barA, 93 deg. C], MPMT [6.138 barA, 43 deg. C] and MPLT  [5.973 barA, 10 deg. C].  It is assumed that most parts of the compression system (piping, valves, static equipment, compressor) are not  thermally‐insulated, heat transfer will occur from hot‐to‐cold medium (fundamental thermodynamics teaching) and  lead to reduced internally energy of process medium where both pressure and temperature decrease accordingly.      15 Kelvin  SOP curve Vapor saturation curve Full vapor regionLiquid + vapor region Initial SOP conditions SOP decay due to heat  dissipation to ambient air
  • 15. 15 | P a g e   The compression system will be depressurized once dew point margin reaches the minimum threshold 15 Kelvin. It is  crucial to ensure no liquid formation occurs during the depressurization process, Joule‐Thomson effect is therefore  considered; based on initial conditions prior to depressurization, i.e. 5.30 barA at 3.6 deg. C.  Joule‐Thomson effect due to blow down of process gas from 5.30 barA (at 3.60 deg. C) to atmospheric pressure:‐      Joule‐Thomson coefficient is approximately 0.0000116586 K/Pa. With a pressure differential of 4.29 bar,  temperature drop is 5 Kelvin. Blowdown line (from 5.30 barA down to 1.01 barA) is plotted together with vapor  saturation curve, as shown below.    It can be seen that blowing‐down the process gas from 5.30 barA to atmospheric pressure will maintain a positive  dew point margin; i.e. no liquid formation throughout the entire blow down sequence.     End of note                                                   CT Cheah (26th  May 2016)  15 Kelvin Vapor saturation curve Blowdown line from  SOP 5.30 barA  Liquid + vapor region Full vapor region 
  • 16. Page 2 178 mm 110 mm 381 mm 241 mm 381 mm 381 mm 1246 mm 740 mm 30 mm 284 mm 180 mm 381 mm 381 mm 1379 mm 381 mm 381 mm 5083 mm 381 mm 381 mm 1735 mm 381 mm 117 mm 740 mm 284 mm 30 mm 137 mm See page 14 Appendix 1 - Technip's isometric drawings To after-cooler (E6571) inlet nozzle To compressor discharge PSV
  • 17. From after-cooler (E6571) discharge nozzle Newly added non-return valve Compressor anti-surge valve upstream tapping point. External recycle valve upstream tapping point See page 4 See page 5 See page 7 Page 3 137 mm 137 mm 66 mm 381 mm 117 mm 381 mm 381 mm 137 mm 181 mm 1334 mm 381 mm 381 mm 1818 mm 381 mm 137 mm 66 mm 381 mm 2392 mm 381 mm 381 mm 1238 mm 381 mm 381 mm 2338 mm 381 mm 381 mm 238 mm 381 mm 22338 mm 76 mm 76 mm 188 mm 303 mm Straight pipe or equivalent (inches) Schedule Length (mm) 10 40 117+1334+1818+2392+1238+2338+238+22338 2 80 188+303 1.5 80 181 8 40 66+66 Pressure = 12.1 barA Temperature = 40 deg. C
  • 18. To blow down (depressurizing) valve Compressor discharge isolation valve See page 3 See page 6 Page 4 381 mm 381 mm 5238 mm 381 mm 381 mm 6588 mm 381 mm 178 mm 63 mm 216 mm 500 mm 137 mm 457 mm 2246 mm Straight pipe or equivalent (inches) Schedule Length (mm) 10 40 5238+6588+2235+2246 4 40 500 2235 mm Pressure = 12.1 barA Temperature = 40 deg. C
  • 19. See page 3 Page 5 See page 12 ASV upstream ASV return Compressor ASV 8" 8" 8" 6" 6" 6" 457 mm 457 mm 457 mm 457 mm 457 mm 3119 mm 457 mm 1591 mm 1646 mm 203 mm 152 mm 101 mm 84 mm 291 mm 1861 mm Straight pipe or equivalent (inches) Schedule Length (mm) 8 40 511+559+111 6 40 101+998+(473/2) 1 80 291 Pressure = 12.1 barA Temperature = 40 deg. C Straight pipe or equivalent (inches) Schedule Length (mm) 6 40 (473/2)+1598 12 40 1861+1646+3119+1591 Pressure = 3.013 barA Temperature = 15 deg. C 3.013 bara 3.013 bara 12.1 bara
  • 20. See page 4 Discharge blow down valve Page 6 152 mm 152 mm 152 mm 3058 mm 3746 mm 152 mm 152 mm 1796 mm 152 mm 86 mm 178 mm Straight pipe or equivalent (inches) Schedule Length (mm) 4 40 3058+3746+1796+86+178 Pressure = 12.1 barA Temperature = 40 deg. C
  • 21. See page 3 Page 7 External recycle valve Upstream Recycle valve return See page 8 305 mm 305 mm 305 mm 305 mm 3192 mm 963 mm 2877 mm 3064 mm 110 mm 290 mm Pressure = 3.013 barA Temperature = 15 deg. C Pressure = 12.1 barA Temperature = 40 deg. C Straight pipe or equivalent (inches) Schedule Length (mm) 8 40 3192+963+2877 1 80 290 Straight pipe or equivalent (inches) Schedule Length (mm) 8 40 3064 12.1 bara
  • 22. See page 7 See page 9 See page 10 Page 8 457 mm 457 mm 986 mm 457 mm 178 mm 4699 mm 203 mm 111 mm 330 mm 457 mm 8004 mm 457 mm 457 mm 3286 mm 457 mm 9924 mm Pressure = 3.013 barA Temperature = 15 deg. C Straight pipe or equivalent (inches) Schedule Length (mm) 8 40 111 12 40 986+4699+8004+3286+9924 14 40 280+279
  • 23. Page 9 See page 8 Suction isolation valve 457 mm 162 mm 114 mm 114 mm 114 mm 114 mm 269 mm 1122 mm 286 mm 457 mm 457 mm 457 mm 457 mm 14736 mm 1786 mm 1448 mm 162 mm 76 mm 230 mm Pressure = 3.013 barA Temperature = 15 deg. C Straight pipe or equivalent (inches) Schedule Length (mm) 12 40 14736+1786+1448 3 40 286+1122+269 2 80 230+70 76 mm 70 mm 3 See page 16 From chlorine sampling return line
  • 24. Compressor suction filter inlet Compressor suction filter inlet Page 10 See page 11 533 mm 533 mm 898 mm 533 mm 2998 mm 533 mm 898 mm 279 mm 533 mm 533 mm 533 mm 533 mm 2134 mm 1417 mm 178 mm 840 mm 30 mm 284 mm Pressure = 3.013 barA Temperature = 15 deg. C Straight pipe or equivalent (inches) Schedule Length (mm) 14 40 1417+2134+1604+2998+898 2 80 840 1 80 284 1604 mm 524 mm Assumed unit offline (standby); i.e. isolation valve shut. 3 See page 8
  • 25. Compressor suction filter outlet Compressor suction filter outlet Page 11 See page 12 533 mm 143 mm 533 mm 533 mm 219 mm 533 mm 533 mm 1239 mm 533 mm 533 mm 533 mm 2997 mm 533 mm 1239 mm 533 mm 533 mm 219 mm 533 mm 143 mm 178 mm 472 mm 178 mm 840 mm 30 mm 284 mm Pressure = 3.013 barA Temperature = 15 deg. C Straight pipe or equivalent (inches) Schedule Length (mm) 14 40 143+219+1239+2997+472 2 80 840 1 80 284 524 mm Assumed unit offline (standby); i.e. isolation valve shut. 3
  • 26. Page 12 Compressor suction cooler inlet See page 11 See page 5 Pressure = 3.013 barA Temperature = 15 deg. C 533 mm 533 mm 533 mm 280 mm 1570 mm 533 mm 533 mm 355 mm 533 mm 143 mm 417 mm 178 mm 840 mm 30 mm 284 mm Straight pipe or equivalent (inches) Schedule Length (mm) 14 40 417+1570+355+143 2 80 840 1 80 284 12 40 92 178 mm 92 mm
  • 27. Compressor suction cooler discharge To compressor suction KO pot Page 13 533 mm 533 mm 143 mm 472 mm 533 mm 1595 mm 533 mm 533 mm 3734 mm 533 mm 3242 mm 222 mm 666 mm 222 mm 178 mm 230 mm Pressure = 3.013 barA Temperature = 15 deg. C Straight pipe or equivalent (inches) Schedule Length (mm) 14 40 472+1595+3734+3242+666 1.5 80 230
  • 28. Page 14 229 mm 229 mm 229 mm 497 mm 229 mm 1304 mm See page 2 Compressor discharge PSV Rupture disk See page 15
  • 30. Page 16 See page 9 114 mm 79 mm 114 mm 114 mm 1322 mm 114 mm 114 mm 672 mm 114 mm 114 mm 114 mm 114 mm 114 mm 114 mm 114 mm 114 mm 1572 mm 3172 mm 372 mm 9947 mm 114 mm 777 mm Straight pipe or equivalent (inches) Schedule Length (mm) 3 40 79+1322+672+9947+372+3172+1572+777 Pressure = 3.013 barA Temperature = 15 deg. C
  • 31. 7 K6570 EN 00110001999795DRW AFTER HAZOP 05.10.2015Schmitz05.10.2015Schrader 17.02.2016STZ17.02.201603 BPL TRAIN OF303 Lange DOC. PARTDOCUMENT NO.DOC. TYPE ORIGINAL INDEX REV. PAGE LANG.SIZE SHEET RELEASED CHANGE DESCRIPTIONCHANGE NO. CHECKED CHECKEDCHANGED DATEDATE DATEDATE DATEISSUED REV. 05.10.2015 P&I DIAGRAM CMDI-5-PROJ-25-657 PROCESS CAOCHLOR H.3600045.36 R Q N M L K G E D C B A 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 18 20 21 2414 15 19 22 23 F H 23 241 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 P J R Q P N M L K J H G F E D C B A This document is the property of MAN Diesel & Turbo SE and is solely for the use of the party to which it is handed over. 2" 14" 2" 2" 2" 2" 2" SET@= 18 bar(g) 4" 4" F6570 A/B 3/4" K6570 PROCESS GAS PROCESS GAS PI 657407 CR P+ PI 657407 DCS P+ TI 657408 CR TI 657408 DCS FI 657409 CR FI 657409 DCS TI 657422B CR To+ TI 657422B DCS To+ TI 657422C CR To+ TI 657422C DCS To+ TS 657422 CR 2oo3 To+ TS 657422 DCS To+ 001 PI 657424 CR P+ PI 657424 DCS P+ TI 657423 CR T+ TI 657423 DCS T+ FO FCV 657427 010 R10001 PIT 657407 PIT 657424 FIT 657409 E6571 V D TI 657422A DCS To+ TI 657422A CR To+ PDIT 657406 PDI 657406 CR PD+ PDI 657406 DCS PD+ LO LO LO R14300 E6574 V D TI 657412A CR To+ TI 657412A DCS To+ TI 657412B CR To+ TI 657412B DCS To+ TI 657412C CR To+ TI 657412C DCS To+ TS 657412 CR2oo3 To+ TS 657412 DCS To+ 001 001 PIT 657414 PI 657414 CR P+ PI 657414 DCS P+ TI 657418 CR T+ TI 657418 DCS T+ PIT 657404 PIC 657404 CR PI 657404 DCS R22208 R22207 TE 657412A TE 657412B TE 657412C TE 657418 TE 657422A TE 657422B TE 657422C TE 657408 TE 657423 ZC 657427 S PI ZSH 657427 ZAH 657427 CR ZAH 657427 DCS ZSL 657427 ZAL 657427 CR ZAL 657427 DCS ZT 657427 ZI 657427 CR ZI 657427 DCS XY 657427 CR 405 FIC 657X CR 400 R19445R19446 PIT 657410A PI 657410A CR Po+ PI 657410A DCS Po+ PIT 657410B PIT 657410C PI 657410B CR Po+ PI 657410B DCS Po+ PI 657410C CR Po+ PI 657410C DCS Po+ PS 657410 CR2oo3 Po+ PS 657410 DCS Po+ PIT 657411A PI 657411A CR Po+ PI 657411A DCS Po+ PIT 657411B PIT 657411C PI 657411B CR Po+ PI 657411B DCS Po+ PI 657411C CR Po+ PI 657411C DCS Po+ PS 657411 CR2oo3 Po+ PS 657411 DCS Po+ TI 657413 CR T+ TI 657413 DCS T+ TE 657413 PI 657417 CR P+ PI 657417 DCS P+ PIT 657417 PIT 657420A PI 657420A CR Po+ PI 657420A DCS Po+ PIT 657420B PIT 657420C PI 657420B CR Po+ PI 657420B DCS Po+ PI 657420C CR Po+ PI 657420C DCS Po+ PS 657420 CR 2oo3 Po+ PS 657420 DCS Po+ PIT 657421A PIT 657421B PIT 657421C PI 657421A CR Po+ PI 657421A DCS Po+ PI 657421B CR Po+ PI 657421B DCS Po+ PI 657421C CR Po+ PI 657421C DCS Po+ P 657421 CR2oo3 Po+ P 657421 DCS Po+ 001 001 001 PDIT 657416 PDI 657416 CR PD+ PDI 657416 DCS PD+ E6573 V D R21208 R21207 D6570 E6570 V D R10607 LIT 657403 LI 657403 CR L++ LI 657403 DCS L++ 001 010 D6571 LIT 657415 LI 657415 CR L++ LI 657415 DCS L++ PCV 657405 ZY 657405 ZSH 657405 ZSL 657405 ZAH 657405 CR Z+ ZAH 657405 DCS Z+ ZAL 657405 CR Z- ZAL 657405 DCS Z- 010 R79485 R11617 PROCESSGAS FLARE ZSH 657425 ZSL 657425 S 657426 CR ZSH 657401 ZSL 657401 S 657402 CR 010 ZAH 657401 DCS ZAL 657401 DCS ZAH 657425 DCS ZAL 657425 DCS INSTRUMENT AIR 001 010 010 R21206 R21205 R22206 R22205 COOLINGWATER COOLINGWATER CHILLEDWATER CHILLEDWATER FE 657409 LC LC ZT 657405 ZI 657405 CR ZI 657405 DCS 03 REV 03 REV H 656010 03 REV TOSAFELOCATION 03 REV R39007 TO SAFE LOCATION 03 REV 03 REV PI ???? INSTRUMENT AIR 03 REV TOSAFELOCATION 03 REV 03 REV 03 REV H 657008 03 REV NOTE 2NOTE 2 NOTE 5 NOTES: CHECK VALVE AS CLOSE AS POSSIBLE TO THE ANTI SURGE LINE STRAIGHT PIPE LENGTH UPSTREAM / DOWNSTREAM: 5D / 10D MAXIMUM VOLUME BETWEEN COMPRESSOR DISCHARGE FLANGE, ANTISURGE VALVE AND CHECK VALVE SHOULD BE LESS THAN EFFECTIVE VOLUME FLOW [m3/s] * 1s COMPRESSOR BLOWDOWN IN CASE OF SEAL FAILURE AS CLOSE AS POSSIBLE TO COMPRESSOR DISCHARGE FLANGE TEMPORARY STRAINER, TO REMOVE AFTER START UP MECHANICAL MINIMUM POSITION 1. 2. 3. 4. 5. 6. 7. NOTE 6 NOTE 3 NOTE 5 NOTE 1 NOTE 5 NOTE 5 NOTE 6 NOTE 7 NOTE 4 NOTE 4 NOTE 4 DE NDE 4 NOTE 3 NOTE 3 NOTE 4 3421 FC V = 3.2m³ V = 0.65m³ V = 0.5 m³ ETEYB/Marcel Poyda 11.03.16 V = 0.65m³ V = 3.5m³ Appendix 2 - MDT's piping volume