SlideShare a Scribd company logo
1 of 12
Download to read offline
Subject: Report for Wheatstone PTC10 Type 2 compressor performance test on Apache (D14) bundle 
Date: 6‐August‐2012 
Time: 9:00 a.m. till 6:30 p.m. 
Venue: Dresser‐Rand test department (Le Havre) 
Author: CangTo Cheah (Rotating equipment engineer, Technip Malaysia) 
Author’s email contact: ctcheah@technip.com 
Review of test procedure with D‐R’s test engineer 
The test was kicked off by D‐R test engineer Mathieu Hebert with a brief introduction to D‐R’s test procedure WS2‐
1230‐QAC‐PCD‐DME‐GCP‐00001‐000. The guaranteed point (i.e. Apache minimum turndown) is normalized to the 
following dimensionless parameters:‐ 
a) Flow coefficient: 0.0148 per PTC10’s definition (see note # 2 below) or 0.6768 per D‐R’s definition (Q/N) 
b) Work input factor: 0.6604 
c) Polytropic efficiency: 0.8130 
d) Polytropic head coefficient: 0.5368 
Notes: 
1. work input factor = polytropic head coefficient / polytropic efficiency 
2. Flow coefficient = Q/(2 x pi x N x (d2/12)^3), where N = rpm; Q = acfm; d2 = inches. Q/N is used by D‐R 
omitting impeller diameter (i.e. d2) to ease calculate step during and after test, as impeller diameter is a 
fixed number. Q/N can be related to PTC’s 10 definition with specific conversion factor provided by D‐R (see 
table provided below). 
 
Using pure CO2 as test gas, the anticipated test speed matching the Apache minimum turndown’s dimensionless 
parameter is 3530 rpm (actual operating speed for Apache minimum turndown compression duty is 5345 rpm per D‐
R’s API 617 data sheet) with the following test conditions:‐ 
a) Suction pressure = 8 barA 
b) Suction temperature = 20 deg. C 
c) Molecular weight = 44.01 kg/kmol 
As advised by D‐R, actual test speed may vary from the predicted test speed (i.e. 3530 rpm in this case) due to actual 
as‐measured temperature at compressor suction flange. The actual test speed can be evaluated by the following 
equation (extracted from D‐R’s test procedure):‐ 
 
The background of speed correction factor with respect to temperature is derived by the author as follows (note: 
Theories stipulated below are based on author’s fundamental understanding of thermodynamics and physics, 
suggestions and comments from readers are welcome): 
CangTo
Cheah
From thermodynamics perspective, energy can be related to temperature; Energy = Cp x temperature. Assuming 
constant Cp due to small change from Tpredicted to Tactual, energy is therefore directly proportional to temperature, i.e. 
Energy ∝ T. 
And in term of Newtonian physics: Kinetic energy added to the gas at impeller exit channel can be related by 
Energykinetic = 0.5 x mass x velocity2
. (0.5 can be omitted as it is a numerical constant, mass can also be eliminated 
from the equation since mass flow within the test loop shall consider constant, i.e. conservation of mass). 
Rotational speed N (in rpm) can be related to impeller tip velocity by the following formula, N = 60 x velocity / (pi x 
diameter); 60, pi and diameter can be omitted from the equation since these are mere numerical constants, then 
Energykinetic ∝ N2
.  
By equating equations of thermodynamics and physics, temperature change is therefore directly proportional to the 
squared of rotational speed, i.e. T ∝ N2
. And T1/T2 = (N1/N2)2
. 
For example, if the actual temperature at compressor suction flange is measured at 23 deg. C, then actual test speed 
shall be adjusted to: Nactual = square root ((273.15+23)/(273.15+20)) x 3530 rpm = 3548 rpm. 
There will be 5 (five) test points covering from the Stonewall to Surge limit of compressor at test speed (or 100% 
similarity speed per D‐R’s terminology), please refer to snap shot (extract from D‐R’s test agenda) provided below. 
 
For 100% similarity speed, first point will be started at the Stonewall limit (i.e. point at the right of performance 
curve), gradually progress towards the guaranteed point on the left by reducing inlet volume flow rate (manually 
closing of suction throttling valve), and finally reaching the surge limit at point 5. 
After completion of 100% similarity speed, next test speeds will be 110% speed (note: do not confuse 110% test 
speed with actual MCOS of turbo‐compressor. 110% is 1.1 x 3530 rpm = 3883 rpm in this case) and 95% speed at 
surge limit, point 6 and 7 respectively. Intent is to derive actual compressor surge limit (defined by the peak of 
polytropic head or polytropic head coefficient, Mu). 
 
Client has specifically requested an additional test point of Apache maximum power compression duty to be 
included, which was not planned per D‐R’s test agenda. This additional point is agreed by D‐R to be added to the test 
and associated test report. The test speed of additional point (Apache maximum power) is calculated at 3810 rpm, 
which is slightly below the 110% test speed. D‐R advised that Apache maximum power test point will be tested prior 
to point 6 as its speed lies between 100% and 110% test speed. 
Prior to the start of performance test, the gas analyser is calibrated with pure CO2. 
 
After the calibration with pure CO2, the gas analyser is disconnected from CO2 bottle and connected to test loop. 
 
 
Commencement of test 
For first test point, polytropic efficiency (Nh) is recorded at 85% (represents by red dot and circle) vs. predicted value 
of 76%. This is anticipated since the steady state has not been reached, as indicated by “temperature variation” 
module of the test program. It measures the difference of discharge temperature (at same location) at 5 seconds 
interval. 
 
   
Steady state is declared once the temperature variation (of 5 seconds interval) is less than or equal to 0.2 deg. C (or 
Kelvin), per D‐R’s experience. 
 
Test points 2, 3, 4, 5, 6, 7 and Apache maximum power are continued. 
 
The test points (1 to 5) of 100% similarity speed are plotted adjacent to the predicted curves (Nh, Wi and Mu for 
polytropic efficiency, work input factor and polytropic head coefficient, respectively).  
 
Special note: flow coefficients appear on the x‐axis are in accordance with D‐R’s definition (i.e. Q/N = ft^3/rev), 
conversion factor of 0.0116 shall be applied if D‐R’s flow coefficient is translated to PTC10’s definition (Q/[2 x pi x N x 
(d2/12)^3], where N = rpm; Q = acfm; d2 = inches). 
From the plot compiled during the test, it appears that as‐tested polytropic efficiency is in good alignment with 
predicted data. However, polytropic head coefficient is low when predicted curve compared with tested data set. 
Post‐test data review on polytropic head, polytropic efficiency, rotational speed and associated gas power 
As‐tested discharge pressure for point 3 (guaranteed point) is 0.17 barA below the predicted pressure of 15.50 barA, 
this is due to lower head coefficient value: predicted Mu is 0.5368 and tested Mu is 0.5220. 
 
Test curves (both Nh and Mu) are reproduced below with curve fitting method using second order polynomial (i.e. 
quadratic) equations (note: dotted lines are predicted curves prior to the performance test):‐ 
 
Polytropic head (or discharge pressure) requirement: Discharge pressure of 15.50 barA can be achieved by increasing 
compressor speed from 3530 rpm to 3569 rpm. Derivation as follows:‐ 
 
Ntest is numerically solved using Newton’s method:‐ 
Equating Mu: 0.48793 + 0.55623 (Qtest / Ntest) – 0.74771 (Qtest / Ntest)^2 = 38418 / (3.142 x Ntest x Deq / 60)^2 [where: 
Qtest = 2389 ft^3/minute and Deq = 1.4474 meters], which is further simplified to: 0 = 0.48793 + (1328.833 / Ntest) – 
(10956408 / Ntest ^2) 
Note: Deq (equivalent impeller diameter) is defined as square root (D1
2
 + D2
2
 + D3
2
 + D4
2
 + D5
2
 + D6
2
 + …), it is used to 
calculate equivalent tip speed in order to evaluate overall polytropic head required for a compression duty. 
To solve the equation, Newton’s method proceeds as follows. 
1. Consider the following equation in one unknown: 0 = 0.48793 + (1328.833/Ntest) – (10956408/Ntest^2) 
2. To apply Newton’s method to the solution of this equation, it is best to re‐write the equation in terms of 
residual, e, where:  e = 0.48793 + (1328.833/Ntest) – (10956408/Ntest^2) 
3. Newton’s method requires an estimate of the total derivative of the residual, J. For this equation, the 
derivative is: J = de/dNtest = 2 x 10956408/(Ntest^3) – 1328.833/(Ntest^2) 
4. An initial guess is made for Ntest, e.g. Ntest = 3000. 
5. The value of e is evaluated using the guess value for Ntest. With Ntest = 3000, e = ‐0.286504333. 
6. The derivate of J is evaluated. With Ntest = 3000, J = 0.000663938. 
7. The change to the guess value for Ntest, i.e. delta Ntest is calculated by solving J x delta Ntest = e. In this 
example, delta Ntest is ‐431.522939151. 
8. A better value for Ntest is then obtained as Ntest – delta Ntest. In this case, the improved value for Ntest is 
3431.522939 (which results in e = ‐0.055279947). 
Number of 
iteration 
1  2  3  4  5  6 
Ntest  3000  3431.522939  3560.246012  3568.690074  3568.723019  3568.723019839
e  ‐0.286504333  ‐0.055279947  ‐0.003215001  ‐0.000012447  0.000000000  0.000000000 
J  0.000663938  0.000429449  0.000380741  0.000377798  0.000377786  0.000377786 
delta Ntest  ‐431.52293915  ‐128.72307249  ‐8.444062559  ‐0.032945134  ‐0.000000498  0.000000000 
   
Results from the above calculation for test point # 3 are transferred into Nh and Mu curves:‐ 
 
Note that:‐ 
a)  Q/N is decreased from 0.6735 to 0.6694, 
b) Polytropic efficiency is increased from 0.8175 to 0.8191, and 
c) Polytropic head coefficient is increased from 0.5220 to 0.5251 
   
For Apache minimum turndown; the predicted operating speed is 5345 rpm and adjusted speed according to test 
curves is calculated at 5405 rpm:‐ 
 
Equating Mu: 0.48793 + 0.55623 (Qtest / Ntest) – 0.74771 (Qtest / Ntest)^2 = 88081 / (3.142 x Ntest x Deq / 60)^2 [where: 
Qtest = 3617 ft^3/minute and Deq = 1.4474 meters], which is further simplified to: 0 = 0.48793 + (2011.88391 / Ntest) – 
(25117907.5109 / Ntest ^2) 
To solve the equation, Newton’s method proceeds as follows. 
1. Consider the following equation in one unknown: 0 = 0.48793 + (2011.88391/Ntest) – (25117907.5109/Ntest^2) 
2. To apply Newton’s method to the solution of this equation, it is best to re‐write the equation in terms of 
residual, e, where:  e = (2011.88391/Ntest) – (25117907.5109/Ntest^2) 
3. Newton’s method requires an estimate of the total derivative of the residual, J. For this equation, the 
derivative is: J = de/dNtest = 2 x 25117907.5109/(Ntest^3) – 2011.88391/(Ntest^2) 
4. An initial guess is made for Ntest, e.g. Ntest = 4000. 
5. The value of e is evaluated using the guess value for Ntest. With Ntest = 4000, e = ‐0.578968242. 
6. The derivate of J is evaluated. With Ntest = 4000, J = 0.000659192. 
7. The change to the guess value for Ntest, i.e. delta Ntest is calculated by solving J x delta Ntest = e. In this 
example, delta Ntest is ‐878.3000404. 
8. A better value for Ntest is then obtained as Ntest – delta Ntest. In this case, the improved value for Ntest is 
4878.30004 (which results in e = ‐0.155126371). 
Number of 
iteration 
1  2  3  4  5  6 
Ntest  4000  4878.30004  5323.834711  5401.616779  5403.526933  5403.52804 
e  ‐0.578968242  ‐0.155126371  ‐0.020374001  ‐0.000477139  0.000000276  0.000000000 
J  0.000659192  0.00034818  0.000261937  0.000249791  0.000249502  0.000249501 
delta Ntest  ‐878.3000404  ‐445.5346709  ‐77.78206763  ‐1.91015418  ‐0.001107191  0.000000000 
 
Results from the above calculation for Apache minimum turndown are transferred into Nh and Mu curves:‐ 
 
Shaft power requirement: Power = mass flow rate x polytropic head / polytropic efficiency; per D‐R’s API 617 data 
sheet, the predicted gas power for Apache minimum turndown is 11340 kW. The gas power calculation based on as‐
tested Mu and Nh curves as follow: 104.6333 kg/s x 88081 J/kg / 0.8191 = 11251 kW (at: Mu = 0.5251, Q/N = 0.6693 
and Nh = 0.8191), i.e. calculated gas power based on test curves is 88 kW (0.7793%) less than predicted gas power, 
the reduction of gas power is due to improved polytropic efficiency (with test curves) at required polytropic head. 
 
Conclusion 
The reduction of polytropic head coefficient causes the following:‐ 
a) Power (energy) saving of 88 kW due to improved efficiency (i.e. from 0.8120 to 0.8191) occurs at lower flow 
coefficient (or Q/N). 
b) Increased operating speed (rpm) of 60 rpm (or 1.12%), i.e. from 5345 rpm to 5404 rpm. This is deemed 
acceptable as the design speed of high speed power turbine (of PGT25+G4) is rated at 6100 rpm (and 
maximum continuous operating speed of PGT25+G4 is 6405 rpm). 
Based on dimensionless parameters obtained from the test (i.e. Nh, Wi and Mu), D‐R will then develop as‐tested 
compressor performance curves, namely polytropic head vs. actual inlet volume flow rate, discharge pressure vs. 
inlet volume flow rate, polytropic efficiency vs. actual inlet volume flow rate. 
   
Picture of Datum compressor D16 casing with D14 bundle 
 
 
 
Discussion of technical issues with D‐R on 7‐August‐2012 
1) D‐R advised that flow induction vibration on anti‐surge piping is not within D‐R’s bailiwick. Anyhow, D‐R is 
willing to check with their valve specialist (instrument engineer) and revert to Wheatstone Project. 
2) Maintenance data sheet. The latest mineral lube oil console general arrangement drawing doesn’t reflect 
the individual weight (and dimension) of mechanical items that require maintenance (e.g. pump, motor, 
filter, valve, electric heater, etc). D‐R is asked to provide the weight data to Wheatstone Project as soon as 
the revised GA drawing is submitted by D‐R’s sub‐vendor. 
3) Mineral lube oil bypass from rundown tank to power turbine bearing. D‐R proposed to implement 
accumulator (bladder type) on the mineral lube oil line to GE’s power turbine (and delete bypass line from 
RDT to PT). Technical and commercial proposal will be submitted. 
End of report 
 

More Related Content

Similar to Attachment 5_Wheatstone Type 2_6th Aug 2012

PID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan DeminarPID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan DeminarJim Cahill
 
05 tuning.pid.controllers
05 tuning.pid.controllers05 tuning.pid.controllers
05 tuning.pid.controllersMahmoud Hussein
 
Mitigating SIP Overload Using a Control-Theoretic Approach
Mitigating SIP Overload Using a Control-Theoretic ApproachMitigating SIP Overload Using a Control-Theoretic Approach
Mitigating SIP Overload Using a Control-Theoretic ApproachYang Hong
 
28. de Funcionalidad - DCCC.pptx
28.  de Funcionalidad - DCCC.pptx28.  de Funcionalidad - DCCC.pptx
28. de Funcionalidad - DCCC.pptxob700586
 
PID Control of True Integrating Processes - Greg McMillan Deminar
PID Control of True Integrating Processes - Greg McMillan DeminarPID Control of True Integrating Processes - Greg McMillan Deminar
PID Control of True Integrating Processes - Greg McMillan DeminarJim Cahill
 
PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)Tsuyoshi Horigome
 
Bldg 6071 Project Presentation Final
Bldg 6071 Project Presentation   FinalBldg 6071 Project Presentation   Final
Bldg 6071 Project Presentation FinalSherif Hafez
 
Isa saint-louis-exceptional-opportunities-short-course-day-2
Isa saint-louis-exceptional-opportunities-short-course-day-2Isa saint-louis-exceptional-opportunities-short-course-day-2
Isa saint-louis-exceptional-opportunities-short-course-day-2Jim Cahill
 
HGSC Technique Presentation2.pptx
HGSC Technique Presentation2.pptxHGSC Technique Presentation2.pptx
HGSC Technique Presentation2.pptxhansinagengprakoso1
 
Proj mgmt definition of project
Proj mgmt definition of projectProj mgmt definition of project
Proj mgmt definition of projectychang69
 
Proj mgmt definition of project
Proj mgmt definition of projectProj mgmt definition of project
Proj mgmt definition of projectychang69
 
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...six sigma DMAIC approach for reducing quality defects of camshaft binding pro...
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...Niranjana B
 
LTG_Job Status_25May10.ppt
LTG_Job Status_25May10.pptLTG_Job Status_25May10.ppt
LTG_Job Status_25May10.pptEhtishamAndrAbi1
 

Similar to Attachment 5_Wheatstone Type 2_6th Aug 2012 (20)

Lecture 3a analog to digital converter
Lecture 3a   analog to digital converterLecture 3a   analog to digital converter
Lecture 3a analog to digital converter
 
PID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan DeminarPID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan Deminar
 
Acc shams
Acc shamsAcc shams
Acc shams
 
22 levine
22 levine22 levine
22 levine
 
05 tuning.pid.controllers
05 tuning.pid.controllers05 tuning.pid.controllers
05 tuning.pid.controllers
 
Mitigating SIP Overload Using a Control-Theoretic Approach
Mitigating SIP Overload Using a Control-Theoretic ApproachMitigating SIP Overload Using a Control-Theoretic Approach
Mitigating SIP Overload Using a Control-Theoretic Approach
 
PRATIK PATEL
PRATIK PATELPRATIK PATEL
PRATIK PATEL
 
28. de Funcionalidad - DCCC.pptx
28.  de Funcionalidad - DCCC.pptx28.  de Funcionalidad - DCCC.pptx
28. de Funcionalidad - DCCC.pptx
 
PID Control of True Integrating Processes - Greg McMillan Deminar
PID Control of True Integrating Processes - Greg McMillan DeminarPID Control of True Integrating Processes - Greg McMillan Deminar
PID Control of True Integrating Processes - Greg McMillan Deminar
 
Rpm indicator catalog
Rpm indicator catalogRpm indicator catalog
Rpm indicator catalog
 
PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)
 
Bldg 6071 Project Presentation Final
Bldg 6071 Project Presentation   FinalBldg 6071 Project Presentation   Final
Bldg 6071 Project Presentation Final
 
Isa saint-louis-exceptional-opportunities-short-course-day-2
Isa saint-louis-exceptional-opportunities-short-course-day-2Isa saint-louis-exceptional-opportunities-short-course-day-2
Isa saint-louis-exceptional-opportunities-short-course-day-2
 
Pascual icoms10
Pascual icoms10Pascual icoms10
Pascual icoms10
 
HGSC Technique Presentation2.pptx
HGSC Technique Presentation2.pptxHGSC Technique Presentation2.pptx
HGSC Technique Presentation2.pptx
 
Proj mgmt definition of project
Proj mgmt definition of projectProj mgmt definition of project
Proj mgmt definition of project
 
Proj mgmt definition of project
Proj mgmt definition of projectProj mgmt definition of project
Proj mgmt definition of project
 
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...six sigma DMAIC approach for reducing quality defects of camshaft binding pro...
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...
 
LTG_Job Status_25May10.ppt
LTG_Job Status_25May10.pptLTG_Job Status_25May10.ppt
LTG_Job Status_25May10.ppt
 
Quaker final presentation
Quaker final presentationQuaker final presentation
Quaker final presentation
 

More from CangTo Cheah

Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aPeng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aCangTo Cheah
 
1975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B11975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B1CangTo Cheah
 
1975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A11975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A1CangTo Cheah
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009CangTo Cheah
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009CangTo Cheah
 
Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010CangTo Cheah
 
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010CangTo Cheah
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010CangTo Cheah
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...CangTo Cheah
 
Campbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCampbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCangTo Cheah
 
automation of PRNAT phase mapper
automation of PRNAT phase mapperautomation of PRNAT phase mapper
automation of PRNAT phase mapperCangTo Cheah
 
East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014CangTo Cheah
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flashCangTo Cheah
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010CangTo Cheah
 
Attachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportAttachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportCangTo Cheah
 
Attachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressionsAttachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressionsCangTo Cheah
 

More from CangTo Cheah (20)

LP_point_6_(LtR)
LP_point_6_(LtR)LP_point_6_(LtR)
LP_point_6_(LtR)
 
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002aPeng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
Peng-Robinson-Nishiumi-Arai-Takeuchi_phase map_Avila2002a
 
1975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B11975Z-1-TBT-1011-0001-B1
1975Z-1-TBT-1011-0001-B1
 
1975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A11975Z-1-TBT-4150-0001-A1
1975Z-1-TBT-4150-0001-A1
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009
 
Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010Gas turbine efficiency - 7th January 2010
Gas turbine efficiency - 7th January 2010
 
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
Axial compressor theory - stage-wise isentropic efficiency - 18th March 2010
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
 
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...Axial compressor - variation of rotor and stator angles from root to tip - 4t...
Axial compressor - variation of rotor and stator angles from root to tip - 4t...
 
Campbell interference plot_Wheatstone
Campbell interference plot_WheatstoneCampbell interference plot_Wheatstone
Campbell interference plot_Wheatstone
 
nv and kv
nv and kvnv and kv
nv and kv
 
nt and kt
nt and ktnt and kt
nt and kt
 
automation of PRNAT phase mapper
automation of PRNAT phase mapperautomation of PRNAT phase mapper
automation of PRNAT phase mapper
 
East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014East Area GT fuel study_3 July 2014
East Area GT fuel study_3 July 2014
 
Notes for Isothermal flash
Notes for Isothermal flashNotes for Isothermal flash
Notes for Isothermal flash
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010
 
Attachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection reportAttachment 1_SLIC CL2 compressor selection report
Attachment 1_SLIC CL2 compressor selection report
 
Attachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressionsAttachment 4_How to trim LP stage flow limits for 2-stage compressions
Attachment 4_How to trim LP stage flow limits for 2-stage compressions
 
Final stage T2
Final stage T2Final stage T2
Final stage T2
 

Attachment 5_Wheatstone Type 2_6th Aug 2012