SlideShare a Scribd company logo
1 of 14
2018
Plant succession
Plant succession
Page 1
Contents
Introduction………………………….0-1
History……………………………….0-2
Types of succession………………….2-3
Stages of Plant sucession……………4-7
Process of Plant succession…………8-9
Major trends during Succecssion……0-9
Causes of Plant succession………….9-10
Reference……………………………0-12
Plant succession
Page 2
Plant succession
Introduction
Succession is a directional non-seasonal cumulative change in the types of plant species that
occupy a given area through time. It involves the processes of colonization, establishment, and
extinction which act on the participating plant species. Most successions contain a number of
stages that can be recognized by the collection of species that dominate at that point in the
succession. Succession begins when an area is made partially or completely devoid of vegetation
because of a disturbance. Some common mechanisms of disturbance are fires, wind storms,
volcanic eruptions, logging, climate change, severe flooding, disease, and pest infestation.
Succession stops when species composition changes no longer occur with time, and this
community is said to be a climax community.
The concept of a climax community assumes that the plants colonizing and establishing
themselves in a given region can achieve stable equilibrium. The idea that succession ends in the
development of a climax community has had a long history in the fields of biogeography and
ecology. One of the earliest proponents of this idea was Frederic Clements who studied
succession at the beginning of the 20th century. However, beginning in the 1920s scientists
began refuting the notion of a climax state. By 1950, many scientists began viewing succession
as a phenomenon that rarely attains equilibrium. The reason why equilibrium is not reached is
related to the nature of disturbance. Disturbance acts on communities at a variety of spatial and
temporal scales. Further, the effect of disturbance is not always 100 percent. Many disturbances
remove only a part of the previous plant community. As a result of these new ideas, plant
communities are now generally seen as being composed of numerous patches of various size at
different stages of successional development.
History
Mechanisms of succession has been produced by Connell and Slatyer (1977, American
Naturalist. Connell and Slatyer propose three models, of which the first (facilitation) is the
classical explanation most often invoked in the past, while the other two
(toleranceand inhibition) may be equally important but have frequently been overlooked.
The essential feature of facilitation succession, in contrast with either the tolerance or inhibition
models, is that changes in the abiotic environment are imposed by the
developing plant community. Thus, the entry and growth of the later species depends on earlier
species preparing the ground.
The tolerance model suggests that a predictable sequence is produced because different species
have different strategies for exploiting resources. Later species are able to tolerate lower
Plant succession
Page 3
resource levels due to competition and can grow to maturity in the presence of early species,
eventually out competing them.
The inhibition model applies when all species resist invasions of competitors. Later species
gradually accumulate by replacing early individuals when they die. An important distinction
between models is the cause of death of the early colonists. In the case of facilitation and
tolerance, they are killed in competition for resources, notably light and nutrients. In the case of
the inhibition model, however, the early species are killed by very local disturbancescaused by
extreme physical conditions or the action of predators.
Types of Succession
1. Primary succession : Lava has streamed down
over the lush landscape for thousands of years,
leaving smooth, black rock behind. However,
life can still take hold here through primary
succession, which starts in a barren environment.
Primary succession usually takes a long time,
since the ecosystem has to start from scratch.
2. Secondary succession:is like primary
succession fast forwarded. It doesn't start from a
barren location, but rather an ecosystem that has
been through a natural or man-made disaster,
such as a fire, clear-cutting, or a flood. The soil
and seeds present aren't destroyed, so species that appear much later in primary
succession, like shrubs and trees appear rapidly. Secondary succession skips the early
stages where rock needs to be broken down into soil.
3. Allogenic succession - is caused by a change in environmental c0onditions which in turn
influences the composition of the plant community. In Cornwall England, observations
on the estuary of the FalRiver suggest that
the deposition of silt may be causing an
allogenic succession from salt marsh to
woodland. Measurements indicate
sedimentation rates of about 1 cm per year
on the mud flats that are found 15
kilometers (9 miles) into the estuary. Over
Plant succession
Page 4
the last 100 years, this salt marsh has increased its elevation and has extended itself
seaward by 800 meters (2600 feet). The adjacent woodland has followed the salt marsh
by invading its landward limit.
4. Autogenic succession - is a succession where both the plant community and environment
change, and this change is caused by the activities of the plants over time. Mt. St. Helens
after the last volcanic eruption.
5. Progressive succession - is a succession where the community becomes complex and
contains more species and biomass over time.
6. Retrogressive succession - is a succession where the community becomes simplistic and
contains fewer species and less biomass over time. Some retrogressive successions are
allogenic in nature. For example, the introduction of grazing animals results in
degenerated rangeland.
Depending upon the nature of the habitat on which the plant
succession begins seven types of seres may be distinguished:
A. Hydrosere:
When succession start in aquatic habitat.It is succession occurring in the aquatic environment.
Such a type of succession does not necessarily lead the aquatic communities toward the
development ofl land communities
Plant succession
Page 5
A sere beginning on a wet area is often referred to as a hydrosere. It may proceed in open bodies
of water, such as ponds, lakes, and marshes etc.
Stages
Hydrosere consists following six seral stages:
I. Submerged stage:
In this initial seral stage, a number of submerged aquatic plants, such as Hydrilla, Elodea,
Potamogeton, Ceratophyllum, Najas, Vallisnaria, Utricularia, Ranunculus and several algae
occupy the shallow pond or lake, which, accumulating after death and decay, gradually raise the
bottom of the pond or lake. Silting may also be associated with this accumulation. The
inadequate oxidation of flora and fauna remains of the lake results in the formation of humus-
which makes the bottom of the lake firmer.
II. Floating stage:
As the bottom of the lake is raised, a second, or floating, stage follows, characterized by plants
like Nymphaea, Polygonum, Limnanthemum and Castalia etc. These plants are rooted in the
mud, and their broad leaves float on the surface of the water shading the submerged plants
below. Besides these, free floating plants like Azolla, Eichornia and Lemna may also make their
appearance. The death and decay of the submerged and free floating plants further raise the level
of the lake bottom and contribute further to the soil-building process. This initiates the next reed-
swamp stage.
Plant succession
Page 6
III. Reed-Swamp stage:
This stage is initiated in extremely shallow waters (i.e., hardly one to four feet deep). The area is
invaded by amphibious plants like Scirpus, Typha, Phragmites etc. These plants remain only
partly submerged in water.
Their rhizomes are profusely branched and they are rooted in the bottom of the lake. These
plants prevent light to reach submerged and floating plants which consequently die, and their
dead remains settle down on the lake bottom raising its level further.
Now a second group of plants, such as Sagittaria, Alisma and Acorus etc., invades the area.
Eventually the habitat is made unfit for the growth of the plants of reed-swamp stage. The soil
becomes dry enough to afford a foothold for terrestrial species.
(4) Sedge meadow stage:
Reed-swamp stage is followed by sedge-meadow stage which is characterized by plants like
Carex, Juncus and Eleocharis. The soil level continues to rise and soil organic matter continues
to increase. More competent and dominant plants, such as Mentha, Caltha, Iris, Galium,
Campanula and Teuricum etc., invade the area. By excessive transpiration and soil binding, these
species make the area too dry for any hydrophytic plant. This eventually leads to other-sub-
climax vegetation.
(5) Woodland stage:
Plant succession
Page 7
The sedge-meadow stage leads to the formation of heath land which remains saturated with
water in spring and early summer. A new sub-climax vegetation dominated by shrubs and small
trees make their appearance in this area. Important among these plants are Salix, Cornus,
Cephalanthus, Alnus and Populus etc. Due to shade of these plants grasses and sedges disappear
from the area. Shrubs and trees further lower the water table and bind the soil.
(6) Climax forest stage:
As more and more plants appear in the area, competition among these plants also intensify and
soil organic matter further increases, soil becomes more fertile and consequently the area is
invaded by larger trees. Competition then becomes less intense as the community becomes stable
and a climax state is reached. It may also be pointed out here that succession in water always
does not necessarily lead to land community. When succession starts in deep and large open
water it may lead to a stable aquatic vegetation.
B. Xerosere:
When succession initiates on a dry bare land.The succession occur in dry condition is called
Xerosere. Xerosere is a plant succession that is limited by water availability.
A xerosere usually includes the following six seral stages.
(1) Crustose lichen stage:
Succession on the bare rock surfaces begins with crustose lichens as pioneers. These lichens
migrate to the rocks by means of wind-borne spores and soredia. The lichens grow only when
enough moisture is available, but they can withstand drought conditions for long.
The lichens release carbon dioxide during respiration which after combining with water forms a
weak acid. The mechanical and chemical action of the lichens on the underlying rock, loosens
particles, which, together with decaying lichen remains form a thin layer of soil on the soil
Plant succession
Page 8
surface. The requisite nitrogen is brought in by rain and wind-blown dust. These lichen form
pioneer community.
(2) Foliose lichen stage:
Simple crustose lichens may be followed by larger, leafy forms, such as Parmelia,
Dermatocarpon. Umbilicaria, which grow on the slight accumulation of soil and humus Foliose
lichens further loosen the rock particles. They overshadow the crustose lichens which eventually
die and decay thus increasing the amount of humus in the soil.
(3) Moss stage:
Lichens are succeeded by mosses, which, like lichens, are able to survive in dry environment.
These mosses are xerophytic in nature and important among these are the species of Polytrichum
and Tortula.These mosses form an open community connected with a dense rhizoid system
which passes through and binds together a few millimeters of soil particles. Among the shoots of
these mosses wind and water borne soil continues to accumulate. The primary role of these
mosses is to stabilize the soil surface and to increase its water-holding capacity.
(4) Herbaceous stage:
The moss plants increase in number until a close carpet of moss is formed over the soil. The
mosses shade the lichens and successfully compote with them for water and nutrients which
eventually result in the death of the lichens. The death and decay of the lichens and old mosses
add to the amount of organic matter in the soil and still further increases its water- holding
capacity.
In his way the habitat is rendered suitable for the growth of higher plants and consequently a new
community of herbaceous plants, such as Festuca, Verbascum, Poa, Potentilla and Solidago etc.,
invade the area. The herbaceous plants over shadow the mosses, compete successfully with them
for space, water and nutrients. The soil increases in thickness by disintegration of the rock and
the decay of the various plant parts, more nutrients become available and next higher
community, dominated by shrubs, appear.
(5) Shrub stage:
Shruby plants, such as Rhus, Physocarpus, Symphocicarpous, invade the area, erstwhile
dominated by herbaceous plants, by means of seeds and underground rhizomes. The herbaceous
plants of the preceding stage, now shaded, tend to disappear. The death and decay of the
herbaceous plants further enrich the soil. As the shrubs grow in size and number, they continue
to modify the soil and make the habitat more and more suitable for the support of still higher
plants i.e., trees.
(6) Climax forest stage:
Plant succession
Page 9
The first tree species to invade the area are usually xerophytic in character, but as the soil
moisture increases, these are gradually replaced by mesophytic ones. The mesophytic species
compete successfully and become dominant because their seedlings are much more shade-
tolerant. Competition gradually becomes less intense as the community becomes stable and a
climax state is reached.
C. Lithosere:
It starts on a bare rock surface.A plantsuccessionthatoriginates on a rocksurface.An ecological
sere originating on rock.
D. Psammosere:
Initiating on sandy habitats. Here the pioneer community comprises sand-binding grasses with
runners, e.g. Spinifex and Ipomoea biloba.
E. Halosere:
It starts in saline soil or water. Here the pioneer plants usually have succulent leaves and stem
e.g., Suaedamaritima, Acanthus ilicifolius, Chenopodium, Basella and some species of
Asclapias.
Differences between Succession on Land and in Water:
Succession on Land:
1. It begins with lichens or blue green algae.
2. Initial succession is a slow process.
3. The whole of the area is involved in formation of climax community.
4. Succession converts xeric environment to mesic environment.
5. It reduces bare land area and converts it into fertile forest area.
Succession in Water:
1. begins with phytoplankton’s.It
2. Initial succession is quite fast.
3. Climax community develops on the edge only.
4. It converts aquatic environment into mesic environment.
5. It fills up water body and changes it into forest land.
Process of Plant Succession:
Major steps in a autotrophic succession are as follows:
1. Nudation:
An area is exposed.
2. Migration:
The process of dispersal of seeds, spores and other structures of propagation of the species to
bare area is known as migration.
3. Germination:
It occurs when conditions are favourable.
Plant succession
Page
10
4. Ecesis:
Successful germination of propagules and their establishment in a bare area is known as ecesis.
5. Colonisation and Aggregation:
After ecesis, the individuals of the species increase in number as the result of reproduction.
6. Competition and Co-action:
Due to limited resources, species show both inter and intraspecific competition. This results into
elimination of unsuitable and weaker plants.
7. Invasion:
Various other types of plants try to establish in the spaces left by the elimination of plants due to
competition.
8. Reaction:
The newly arrived plants interrupt with the existing ones. As a result of reaction, environment is
modified and becomes unsuitable for the existing community which sooner or later is replaced
by another community.
9. Stabilisation:
Finally, there occurs a stage in the process when the climax community becomes more or less
stabilized for a longer period of time and it can maintain itself in equilibrium with the climate of
the area. As compared to seral stage community, the climax community has larger size of
individuals, complex organization, complex food chains and food webs, more efficient energy
use and more nutrient conservation.
Major Trends during Succession:
1. There is an increase in structural complexity.
2. Diversity of species tends to increase.
3. Biomass and standing crop increase.
4. There is a decrease in net community production.
5. Increase in non-living matter.
6. Food chain relationship becomes complex.
7. Niche becomes special and narrower.
8. Energy use and nutrient conservation efficiency increases.
9. Stability increases.
Causes of Succession:
The main causes of succession are as follows:
(1) Climatic causes,
(2) Topographic causes, and
(3) Biotic causes.
1. Climatic causes:
Plants cannot adjust with the long range variations in the climate. The fluctuating climate
sometimes leads the vegetation towards total or partial destruction and, as a result, the bare area
develops which becomes occupied by such plants as are better adapted for changed climatic
Plant succession
Page
11
conditions. Drought, heavy snowfall, hails and lightning’s are some of the important factors for
the destruction of vegetation. Sometimes new bare ground is formed by emersion of land from
the bodies of water (ponds, rivers etc.).
2. Topographic causes:
These are concerned with the changes in the soil.
The following are two important soil factors which bring about changes in the habitat:
(i) Erosion of the soil:
Sometimes surface soil is removed by a number of agents, such as wind, water currents, and
rainfall. This process is known as soil erosion. In the process of erosion new and bare area is
exposed in which new plant communities begin to appear one after another.
(ii) Soil deposition:
It is one of the important causes that initiates succession. Soil deposition results owing to heavy
storms, glaciers, snowfalls and landslides. If the deposition of soil takes place over an area
already covered with vegetation, the plants occurring over there may be suppressed and
destroyed. Deposition results in a new bare area on which succession of vegetation starts.
3. Biotic causes:
Many biological or living agencies also affect the vegetation in many respects. Grazing, cutting,
clearing, cultivation, harvesting, and deforestation, all caused by living agencies, are directly
responsible for vegetational change. The parasitic plants and animals also affect the vegetation
and destroy it.
Five Stages of Plant Succession
Herb Stage
Herbaceous plants form the first stage of plant succession following a disturbance. Flowering
plants and grasses are usually the first plants to emerge following forest clearing or plowing a
field. Ferns and vines often emerge first following a fire.
Shrub Stage
The shrub stage follows the herb stage in plant
succession. Cane plants such as berries, woody-
stemmed shrubs and small, sun-loving trees
such as cedars spring up from the ground that
has been stabilized by the herbaceous plant
layer. Young white pines, aspens, and birches
begin to appear as the shrub stage transitions to
a young forest.
Plant succession
Page
12
Young Forest Stage
The young forest stage is characterized by thick
growth of thin-trunk young trees. Aspens and birch
are followed by specimens of maple, pine, and
other species depending on the forest location and
climate. Young forest trees climb quickly skyward,
attempting to out-compete one another for sunlight.
Slower trees are shaded out by their faster-growing
neighbors and die off as the system moves toward
the mature forest stage.
Mature Forest Stage
A mature forest includes diverse species of diverse
ages, from ground cover and undergrowth plants to
trees with low, mid- and upper-story canopies. Sun-
loving successional varieties such as birch and
aspen will die off, and varieties of hardwoods and
straight-trunk conifers that need protected shade to
germinate and grow will begin to dominate the
forest system.
Climax Forest Stage
A climax or "old growth" forest is not an even-
age forest of enormous old trees. Rather, a
climax forest is the most diverse forest system.
Trees left undisturbed to reach their full life
span will then die and fall, serving as 'nurse
trees' to new growth. This creates sunlit
openings in the canopy that foster herbaceous
growth, starting the stages of plant succession
over again in a patchwork throughout the forest.
Forests rarely reach the climax stage because
disturbances such as fire, clearing, or timber
Plant succession
Page
13
management usually interrupt succession at the mature forest stage.
REFERENCE
Pidwirny, M. (2006)."Plant Succession". Fundamentals of Physical Geography, 2nd Edition.
Date Viewed. http://www.physicalgeography.net/fundamentals/9i.html
Allama W.F.1984.Nice gusys finish first.Science 84 5(8):24-32
Axelsod,R.1984.The Evolution of coopration.Basic Books,New York
Clements F.E,and V.E. shelford.1939.Bio ecology.Jhon Wiley,New York
Berkner,N.V. and L.C.Mashall 1965.Histroy of major atmospheric components.Proc.Natal Acad
Sci.USA 53:1215-1226
http://www.biologydiscussion.com/plants/plant-succession-causes-concepts-and-theories/6808
http://www.biology-pages.info/S/Succession.html

More Related Content

What's hot (20)

PLANT ECOLOGY
PLANT ECOLOGYPLANT ECOLOGY
PLANT ECOLOGY
 
Succsion in plants
Succsion in plantsSuccsion in plants
Succsion in plants
 
Succession ,its types ,causes and theories
 Succession ,its types ,causes and theories  Succession ,its types ,causes and theories
Succession ,its types ,causes and theories
 
water, temperature and wind factor
water, temperature and wind factorwater, temperature and wind factor
water, temperature and wind factor
 
Community Ecology.pdf
Community Ecology.pdfCommunity Ecology.pdf
Community Ecology.pdf
 
Leaf litter decomposition in agroforestry systems
Leaf litter decomposition in agroforestry systemsLeaf litter decomposition in agroforestry systems
Leaf litter decomposition in agroforestry systems
 
Analysis of community
Analysis of community Analysis of community
Analysis of community
 
Ecological succession
Ecological successionEcological succession
Ecological succession
 
Concept of Climax
Concept of ClimaxConcept of Climax
Concept of Climax
 
Plant Succession
Plant SuccessionPlant Succession
Plant Succession
 
Community ecology...1
Community ecology...1Community ecology...1
Community ecology...1
 
Methods of sampling vegetation.pptx
Methods of sampling vegetation.pptxMethods of sampling vegetation.pptx
Methods of sampling vegetation.pptx
 
Ecotones
EcotonesEcotones
Ecotones
 
Litter decomposition and nutrient dynamics
Litter decomposition and nutrient dynamicsLitter decomposition and nutrient dynamics
Litter decomposition and nutrient dynamics
 
Ecological niche
Ecological niche Ecological niche
Ecological niche
 
Metapopulation
MetapopulationMetapopulation
Metapopulation
 
Plant succession
Plant successionPlant succession
Plant succession
 
PALYNOLOGY Scope and Importance.pdf
PALYNOLOGY Scope and Importance.pdfPALYNOLOGY Scope and Importance.pdf
PALYNOLOGY Scope and Importance.pdf
 
Introduction to ecology
Introduction to ecologyIntroduction to ecology
Introduction to ecology
 
Soil formation - Factors and Processes
Soil formation -  Factors and ProcessesSoil formation -  Factors and Processes
Soil formation - Factors and Processes
 

Similar to plant succession

Ecological Succession.pptx
Ecological Succession.pptxEcological Succession.pptx
Ecological Succession.pptxSeemaGaikwad15
 
Insect ecological succession
Insect ecological successionInsect ecological succession
Insect ecological successionFrancis Matu
 
Ecosystems - Succession and Key Terms
Ecosystems - Succession and Key TermsEcosystems - Succession and Key Terms
Ecosystems - Succession and Key TermsRCha
 
Biology chapter 8 colonisation and succession in a pond
Biology chapter 8  colonisation and succession in a pondBiology chapter 8  colonisation and succession in a pond
Biology chapter 8 colonisation and succession in a pondAdrian Tay
 
Water biomes and succession
Water biomes and successionWater biomes and succession
Water biomes and successionmikeu74
 
best ever ppt on ecological succession by nagesh
best ever ppt on  ecological succession by nageshbest ever ppt on  ecological succession by nagesh
best ever ppt on ecological succession by nageshNagesh sadili
 
hydrosere succession.pptx
hydrosere succession.pptxhydrosere succession.pptx
hydrosere succession.pptxNaushad Ahamad
 
L5-6-Energy flow.pdf
L5-6-Energy flow.pdfL5-6-Energy flow.pdf
L5-6-Energy flow.pdfAnshulTyagi72
 
Ecological Succession & Ecological Pyramids.pptx
Ecological Succession & Ecological Pyramids.pptxEcological Succession & Ecological Pyramids.pptx
Ecological Succession & Ecological Pyramids.pptxhlKh4
 
Unit 5, Lesson 5.7- Ecological Succession
Unit 5, Lesson 5.7- Ecological SuccessionUnit 5, Lesson 5.7- Ecological Succession
Unit 5, Lesson 5.7- Ecological Successionjudan1970
 
What is ecology
What is ecologyWhat is ecology
What is ecologypcalabri
 

Similar to plant succession (20)

Ecological Succession.pptx
Ecological Succession.pptxEcological Succession.pptx
Ecological Succession.pptx
 
Succession Definitions
Succession   DefinitionsSuccession   Definitions
Succession Definitions
 
Insect ecological succession
Insect ecological successionInsect ecological succession
Insect ecological succession
 
Ecosystems - Succession and Key Terms
Ecosystems - Succession and Key TermsEcosystems - Succession and Key Terms
Ecosystems - Succession and Key Terms
 
Biology chapter 8 colonisation and succession in a pond
Biology chapter 8  colonisation and succession in a pondBiology chapter 8  colonisation and succession in a pond
Biology chapter 8 colonisation and succession in a pond
 
Ecological sucession,SUCESSION,HYDROXERE
Ecological sucession,SUCESSION,HYDROXEREEcological sucession,SUCESSION,HYDROXERE
Ecological sucession,SUCESSION,HYDROXERE
 
Water biomes and succession
Water biomes and successionWater biomes and succession
Water biomes and succession
 
best ever ppt on ecological succession by nagesh
best ever ppt on  ecological succession by nageshbest ever ppt on  ecological succession by nagesh
best ever ppt on ecological succession by nagesh
 
Succession
SuccessionSuccession
Succession
 
hydrosere succession.pptx
hydrosere succession.pptxhydrosere succession.pptx
hydrosere succession.pptx
 
08 succession
08 succession08 succession
08 succession
 
L5-6-Energy flow.pdf
L5-6-Energy flow.pdfL5-6-Energy flow.pdf
L5-6-Energy flow.pdf
 
Biomes
BiomesBiomes
Biomes
 
Ecological Succession & Ecological Pyramids.pptx
Ecological Succession & Ecological Pyramids.pptxEcological Succession & Ecological Pyramids.pptx
Ecological Succession & Ecological Pyramids.pptx
 
Succession(Bio1)
Succession(Bio1)Succession(Bio1)
Succession(Bio1)
 
Unit 5, Lesson 5.7- Ecological Succession
Unit 5, Lesson 5.7- Ecological SuccessionUnit 5, Lesson 5.7- Ecological Succession
Unit 5, Lesson 5.7- Ecological Succession
 
Ecology ecological succession
Ecology  ecological successionEcology  ecological succession
Ecology ecological succession
 
Succession
SuccessionSuccession
Succession
 
Community Dynamics & ecological succession in biological world pdf
Community Dynamics & ecological succession in biological world pdfCommunity Dynamics & ecological succession in biological world pdf
Community Dynamics & ecological succession in biological world pdf
 
What is ecology
What is ecologyWhat is ecology
What is ecology
 

Recently uploaded

Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 

Recently uploaded (20)

Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 

plant succession

  • 2. Plant succession Page 1 Contents Introduction………………………….0-1 History……………………………….0-2 Types of succession………………….2-3 Stages of Plant sucession……………4-7 Process of Plant succession…………8-9 Major trends during Succecssion……0-9 Causes of Plant succession………….9-10 Reference……………………………0-12
  • 3. Plant succession Page 2 Plant succession Introduction Succession is a directional non-seasonal cumulative change in the types of plant species that occupy a given area through time. It involves the processes of colonization, establishment, and extinction which act on the participating plant species. Most successions contain a number of stages that can be recognized by the collection of species that dominate at that point in the succession. Succession begins when an area is made partially or completely devoid of vegetation because of a disturbance. Some common mechanisms of disturbance are fires, wind storms, volcanic eruptions, logging, climate change, severe flooding, disease, and pest infestation. Succession stops when species composition changes no longer occur with time, and this community is said to be a climax community. The concept of a climax community assumes that the plants colonizing and establishing themselves in a given region can achieve stable equilibrium. The idea that succession ends in the development of a climax community has had a long history in the fields of biogeography and ecology. One of the earliest proponents of this idea was Frederic Clements who studied succession at the beginning of the 20th century. However, beginning in the 1920s scientists began refuting the notion of a climax state. By 1950, many scientists began viewing succession as a phenomenon that rarely attains equilibrium. The reason why equilibrium is not reached is related to the nature of disturbance. Disturbance acts on communities at a variety of spatial and temporal scales. Further, the effect of disturbance is not always 100 percent. Many disturbances remove only a part of the previous plant community. As a result of these new ideas, plant communities are now generally seen as being composed of numerous patches of various size at different stages of successional development. History Mechanisms of succession has been produced by Connell and Slatyer (1977, American Naturalist. Connell and Slatyer propose three models, of which the first (facilitation) is the classical explanation most often invoked in the past, while the other two (toleranceand inhibition) may be equally important but have frequently been overlooked. The essential feature of facilitation succession, in contrast with either the tolerance or inhibition models, is that changes in the abiotic environment are imposed by the developing plant community. Thus, the entry and growth of the later species depends on earlier species preparing the ground. The tolerance model suggests that a predictable sequence is produced because different species have different strategies for exploiting resources. Later species are able to tolerate lower
  • 4. Plant succession Page 3 resource levels due to competition and can grow to maturity in the presence of early species, eventually out competing them. The inhibition model applies when all species resist invasions of competitors. Later species gradually accumulate by replacing early individuals when they die. An important distinction between models is the cause of death of the early colonists. In the case of facilitation and tolerance, they are killed in competition for resources, notably light and nutrients. In the case of the inhibition model, however, the early species are killed by very local disturbancescaused by extreme physical conditions or the action of predators. Types of Succession 1. Primary succession : Lava has streamed down over the lush landscape for thousands of years, leaving smooth, black rock behind. However, life can still take hold here through primary succession, which starts in a barren environment. Primary succession usually takes a long time, since the ecosystem has to start from scratch. 2. Secondary succession:is like primary succession fast forwarded. It doesn't start from a barren location, but rather an ecosystem that has been through a natural or man-made disaster, such as a fire, clear-cutting, or a flood. The soil and seeds present aren't destroyed, so species that appear much later in primary succession, like shrubs and trees appear rapidly. Secondary succession skips the early stages where rock needs to be broken down into soil. 3. Allogenic succession - is caused by a change in environmental c0onditions which in turn influences the composition of the plant community. In Cornwall England, observations on the estuary of the FalRiver suggest that the deposition of silt may be causing an allogenic succession from salt marsh to woodland. Measurements indicate sedimentation rates of about 1 cm per year on the mud flats that are found 15 kilometers (9 miles) into the estuary. Over
  • 5. Plant succession Page 4 the last 100 years, this salt marsh has increased its elevation and has extended itself seaward by 800 meters (2600 feet). The adjacent woodland has followed the salt marsh by invading its landward limit. 4. Autogenic succession - is a succession where both the plant community and environment change, and this change is caused by the activities of the plants over time. Mt. St. Helens after the last volcanic eruption. 5. Progressive succession - is a succession where the community becomes complex and contains more species and biomass over time. 6. Retrogressive succession - is a succession where the community becomes simplistic and contains fewer species and less biomass over time. Some retrogressive successions are allogenic in nature. For example, the introduction of grazing animals results in degenerated rangeland. Depending upon the nature of the habitat on which the plant succession begins seven types of seres may be distinguished: A. Hydrosere: When succession start in aquatic habitat.It is succession occurring in the aquatic environment. Such a type of succession does not necessarily lead the aquatic communities toward the development ofl land communities
  • 6. Plant succession Page 5 A sere beginning on a wet area is often referred to as a hydrosere. It may proceed in open bodies of water, such as ponds, lakes, and marshes etc. Stages Hydrosere consists following six seral stages: I. Submerged stage: In this initial seral stage, a number of submerged aquatic plants, such as Hydrilla, Elodea, Potamogeton, Ceratophyllum, Najas, Vallisnaria, Utricularia, Ranunculus and several algae occupy the shallow pond or lake, which, accumulating after death and decay, gradually raise the bottom of the pond or lake. Silting may also be associated with this accumulation. The inadequate oxidation of flora and fauna remains of the lake results in the formation of humus- which makes the bottom of the lake firmer. II. Floating stage: As the bottom of the lake is raised, a second, or floating, stage follows, characterized by plants like Nymphaea, Polygonum, Limnanthemum and Castalia etc. These plants are rooted in the mud, and their broad leaves float on the surface of the water shading the submerged plants below. Besides these, free floating plants like Azolla, Eichornia and Lemna may also make their appearance. The death and decay of the submerged and free floating plants further raise the level of the lake bottom and contribute further to the soil-building process. This initiates the next reed- swamp stage.
  • 7. Plant succession Page 6 III. Reed-Swamp stage: This stage is initiated in extremely shallow waters (i.e., hardly one to four feet deep). The area is invaded by amphibious plants like Scirpus, Typha, Phragmites etc. These plants remain only partly submerged in water. Their rhizomes are profusely branched and they are rooted in the bottom of the lake. These plants prevent light to reach submerged and floating plants which consequently die, and their dead remains settle down on the lake bottom raising its level further. Now a second group of plants, such as Sagittaria, Alisma and Acorus etc., invades the area. Eventually the habitat is made unfit for the growth of the plants of reed-swamp stage. The soil becomes dry enough to afford a foothold for terrestrial species. (4) Sedge meadow stage: Reed-swamp stage is followed by sedge-meadow stage which is characterized by plants like Carex, Juncus and Eleocharis. The soil level continues to rise and soil organic matter continues to increase. More competent and dominant plants, such as Mentha, Caltha, Iris, Galium, Campanula and Teuricum etc., invade the area. By excessive transpiration and soil binding, these species make the area too dry for any hydrophytic plant. This eventually leads to other-sub- climax vegetation. (5) Woodland stage:
  • 8. Plant succession Page 7 The sedge-meadow stage leads to the formation of heath land which remains saturated with water in spring and early summer. A new sub-climax vegetation dominated by shrubs and small trees make their appearance in this area. Important among these plants are Salix, Cornus, Cephalanthus, Alnus and Populus etc. Due to shade of these plants grasses and sedges disappear from the area. Shrubs and trees further lower the water table and bind the soil. (6) Climax forest stage: As more and more plants appear in the area, competition among these plants also intensify and soil organic matter further increases, soil becomes more fertile and consequently the area is invaded by larger trees. Competition then becomes less intense as the community becomes stable and a climax state is reached. It may also be pointed out here that succession in water always does not necessarily lead to land community. When succession starts in deep and large open water it may lead to a stable aquatic vegetation. B. Xerosere: When succession initiates on a dry bare land.The succession occur in dry condition is called Xerosere. Xerosere is a plant succession that is limited by water availability. A xerosere usually includes the following six seral stages. (1) Crustose lichen stage: Succession on the bare rock surfaces begins with crustose lichens as pioneers. These lichens migrate to the rocks by means of wind-borne spores and soredia. The lichens grow only when enough moisture is available, but they can withstand drought conditions for long. The lichens release carbon dioxide during respiration which after combining with water forms a weak acid. The mechanical and chemical action of the lichens on the underlying rock, loosens particles, which, together with decaying lichen remains form a thin layer of soil on the soil
  • 9. Plant succession Page 8 surface. The requisite nitrogen is brought in by rain and wind-blown dust. These lichen form pioneer community. (2) Foliose lichen stage: Simple crustose lichens may be followed by larger, leafy forms, such as Parmelia, Dermatocarpon. Umbilicaria, which grow on the slight accumulation of soil and humus Foliose lichens further loosen the rock particles. They overshadow the crustose lichens which eventually die and decay thus increasing the amount of humus in the soil. (3) Moss stage: Lichens are succeeded by mosses, which, like lichens, are able to survive in dry environment. These mosses are xerophytic in nature and important among these are the species of Polytrichum and Tortula.These mosses form an open community connected with a dense rhizoid system which passes through and binds together a few millimeters of soil particles. Among the shoots of these mosses wind and water borne soil continues to accumulate. The primary role of these mosses is to stabilize the soil surface and to increase its water-holding capacity. (4) Herbaceous stage: The moss plants increase in number until a close carpet of moss is formed over the soil. The mosses shade the lichens and successfully compote with them for water and nutrients which eventually result in the death of the lichens. The death and decay of the lichens and old mosses add to the amount of organic matter in the soil and still further increases its water- holding capacity. In his way the habitat is rendered suitable for the growth of higher plants and consequently a new community of herbaceous plants, such as Festuca, Verbascum, Poa, Potentilla and Solidago etc., invade the area. The herbaceous plants over shadow the mosses, compete successfully with them for space, water and nutrients. The soil increases in thickness by disintegration of the rock and the decay of the various plant parts, more nutrients become available and next higher community, dominated by shrubs, appear. (5) Shrub stage: Shruby plants, such as Rhus, Physocarpus, Symphocicarpous, invade the area, erstwhile dominated by herbaceous plants, by means of seeds and underground rhizomes. The herbaceous plants of the preceding stage, now shaded, tend to disappear. The death and decay of the herbaceous plants further enrich the soil. As the shrubs grow in size and number, they continue to modify the soil and make the habitat more and more suitable for the support of still higher plants i.e., trees. (6) Climax forest stage:
  • 10. Plant succession Page 9 The first tree species to invade the area are usually xerophytic in character, but as the soil moisture increases, these are gradually replaced by mesophytic ones. The mesophytic species compete successfully and become dominant because their seedlings are much more shade- tolerant. Competition gradually becomes less intense as the community becomes stable and a climax state is reached. C. Lithosere: It starts on a bare rock surface.A plantsuccessionthatoriginates on a rocksurface.An ecological sere originating on rock. D. Psammosere: Initiating on sandy habitats. Here the pioneer community comprises sand-binding grasses with runners, e.g. Spinifex and Ipomoea biloba. E. Halosere: It starts in saline soil or water. Here the pioneer plants usually have succulent leaves and stem e.g., Suaedamaritima, Acanthus ilicifolius, Chenopodium, Basella and some species of Asclapias. Differences between Succession on Land and in Water: Succession on Land: 1. It begins with lichens or blue green algae. 2. Initial succession is a slow process. 3. The whole of the area is involved in formation of climax community. 4. Succession converts xeric environment to mesic environment. 5. It reduces bare land area and converts it into fertile forest area. Succession in Water: 1. begins with phytoplankton’s.It 2. Initial succession is quite fast. 3. Climax community develops on the edge only. 4. It converts aquatic environment into mesic environment. 5. It fills up water body and changes it into forest land. Process of Plant Succession: Major steps in a autotrophic succession are as follows: 1. Nudation: An area is exposed. 2. Migration: The process of dispersal of seeds, spores and other structures of propagation of the species to bare area is known as migration. 3. Germination: It occurs when conditions are favourable.
  • 11. Plant succession Page 10 4. Ecesis: Successful germination of propagules and their establishment in a bare area is known as ecesis. 5. Colonisation and Aggregation: After ecesis, the individuals of the species increase in number as the result of reproduction. 6. Competition and Co-action: Due to limited resources, species show both inter and intraspecific competition. This results into elimination of unsuitable and weaker plants. 7. Invasion: Various other types of plants try to establish in the spaces left by the elimination of plants due to competition. 8. Reaction: The newly arrived plants interrupt with the existing ones. As a result of reaction, environment is modified and becomes unsuitable for the existing community which sooner or later is replaced by another community. 9. Stabilisation: Finally, there occurs a stage in the process when the climax community becomes more or less stabilized for a longer period of time and it can maintain itself in equilibrium with the climate of the area. As compared to seral stage community, the climax community has larger size of individuals, complex organization, complex food chains and food webs, more efficient energy use and more nutrient conservation. Major Trends during Succession: 1. There is an increase in structural complexity. 2. Diversity of species tends to increase. 3. Biomass and standing crop increase. 4. There is a decrease in net community production. 5. Increase in non-living matter. 6. Food chain relationship becomes complex. 7. Niche becomes special and narrower. 8. Energy use and nutrient conservation efficiency increases. 9. Stability increases. Causes of Succession: The main causes of succession are as follows: (1) Climatic causes, (2) Topographic causes, and (3) Biotic causes. 1. Climatic causes: Plants cannot adjust with the long range variations in the climate. The fluctuating climate sometimes leads the vegetation towards total or partial destruction and, as a result, the bare area develops which becomes occupied by such plants as are better adapted for changed climatic
  • 12. Plant succession Page 11 conditions. Drought, heavy snowfall, hails and lightning’s are some of the important factors for the destruction of vegetation. Sometimes new bare ground is formed by emersion of land from the bodies of water (ponds, rivers etc.). 2. Topographic causes: These are concerned with the changes in the soil. The following are two important soil factors which bring about changes in the habitat: (i) Erosion of the soil: Sometimes surface soil is removed by a number of agents, such as wind, water currents, and rainfall. This process is known as soil erosion. In the process of erosion new and bare area is exposed in which new plant communities begin to appear one after another. (ii) Soil deposition: It is one of the important causes that initiates succession. Soil deposition results owing to heavy storms, glaciers, snowfalls and landslides. If the deposition of soil takes place over an area already covered with vegetation, the plants occurring over there may be suppressed and destroyed. Deposition results in a new bare area on which succession of vegetation starts. 3. Biotic causes: Many biological or living agencies also affect the vegetation in many respects. Grazing, cutting, clearing, cultivation, harvesting, and deforestation, all caused by living agencies, are directly responsible for vegetational change. The parasitic plants and animals also affect the vegetation and destroy it. Five Stages of Plant Succession Herb Stage Herbaceous plants form the first stage of plant succession following a disturbance. Flowering plants and grasses are usually the first plants to emerge following forest clearing or plowing a field. Ferns and vines often emerge first following a fire. Shrub Stage The shrub stage follows the herb stage in plant succession. Cane plants such as berries, woody- stemmed shrubs and small, sun-loving trees such as cedars spring up from the ground that has been stabilized by the herbaceous plant layer. Young white pines, aspens, and birches begin to appear as the shrub stage transitions to a young forest.
  • 13. Plant succession Page 12 Young Forest Stage The young forest stage is characterized by thick growth of thin-trunk young trees. Aspens and birch are followed by specimens of maple, pine, and other species depending on the forest location and climate. Young forest trees climb quickly skyward, attempting to out-compete one another for sunlight. Slower trees are shaded out by their faster-growing neighbors and die off as the system moves toward the mature forest stage. Mature Forest Stage A mature forest includes diverse species of diverse ages, from ground cover and undergrowth plants to trees with low, mid- and upper-story canopies. Sun- loving successional varieties such as birch and aspen will die off, and varieties of hardwoods and straight-trunk conifers that need protected shade to germinate and grow will begin to dominate the forest system. Climax Forest Stage A climax or "old growth" forest is not an even- age forest of enormous old trees. Rather, a climax forest is the most diverse forest system. Trees left undisturbed to reach their full life span will then die and fall, serving as 'nurse trees' to new growth. This creates sunlit openings in the canopy that foster herbaceous growth, starting the stages of plant succession over again in a patchwork throughout the forest. Forests rarely reach the climax stage because disturbances such as fire, clearing, or timber
  • 14. Plant succession Page 13 management usually interrupt succession at the mature forest stage. REFERENCE Pidwirny, M. (2006)."Plant Succession". Fundamentals of Physical Geography, 2nd Edition. Date Viewed. http://www.physicalgeography.net/fundamentals/9i.html Allama W.F.1984.Nice gusys finish first.Science 84 5(8):24-32 Axelsod,R.1984.The Evolution of coopration.Basic Books,New York Clements F.E,and V.E. shelford.1939.Bio ecology.Jhon Wiley,New York Berkner,N.V. and L.C.Mashall 1965.Histroy of major atmospheric components.Proc.Natal Acad Sci.USA 53:1215-1226 http://www.biologydiscussion.com/plants/plant-succession-causes-concepts-and-theories/6808 http://www.biology-pages.info/S/Succession.html