SlideShare a Scribd company logo
1 of 61
Download to read offline
5|	
  Func(on	
  of	
  Globular	
  Proteins	
  
© 2013 W. H. Freeman and Company
Func(ons	
  of	
  Globular	
  Proteins	
  
•  Storage	
  of	
  ions	
  and	
  molecules	
  	
  
–  myoglobin,	
  ferri7n	
  	
  
•  Transport	
  of	
  ions	
  and	
  molecules	
  	
  
–  hemoglobin,	
  glucose	
  transporter	
  
•  Defense	
  against	
  pathogens	
  	
  
–  an7bodies,	
  cytokines	
  	
  
•  Muscle	
  contrac7on	
  	
  
–  ac7n,	
  myosin	
  	
  
•  Biological	
  catalysis	
  	
  
–  chymotrypsin,	
  lysozyme	
  
Interac(on	
  with	
  Other	
  Molecules	
  
•  Reversible,	
  transient	
  process	
  of	
  chemical	
  equilibrium:	
  	
  
A	
  +	
  B	
  	
  à	
  	
  AB	
  
•  A	
  molecule	
  that	
  binds	
  to	
  a	
  protein	
  is	
  called	
  a	
  ligand	
  
–  Typically	
  a	
  small	
  molecule	
  
•  A	
  region	
  in	
  the	
  protein	
  where	
  the	
  ligand	
  binds	
  is	
  called	
  
the	
  binding	
  site	
  	
  
•  Ligand	
  binds	
  via	
  same	
  noncovalent	
  forces	
  that	
  dictate	
  
protein	
  structure	
  (see	
  Chapter	
  4)	
  
–  Allows	
  the	
  interac7ons	
  to	
  be	
  transient	
  
–  (this	
  is	
  key	
  to	
  life	
  à	
  organism	
  can	
  respond	
  quickly	
  and	
  
reversibly	
  to	
  changes)	
  
ß	
  
Interac(on	
  with	
  Other	
  Molecules	
  
•  When	
  ligands	
  bind	
  to	
  proteins,	
  some	
  conforma7onal	
  
changes	
  occur	
  permiMng	
  7ghter	
  binding	
  à	
  this	
  is	
  called	
  
induced	
  fit	
  
–	
  In	
  mul7subunit	
  proteins,	
  a	
  conforma7onal	
  change	
  of	
  
one	
  subunit	
  oOen	
  affects	
  the	
  others	
  
•  Enzymes	
  are	
  special	
  kinds	
  of	
  proteins.	
  They	
  bind	
  and	
  
transform	
  other	
  molecules.	
  Enzyme	
  ligands	
  are	
  called	
  
substrates	
  
•  The	
  binding	
  site	
  is	
  called	
  cataly(c	
  site	
  (ac(ve	
  site)	
  
Binding:	
  Quan(ta(ve	
  Descrip(on	
  
•  Consider	
  a	
  process	
  in	
  which	
  a	
  ligand	
  (L)	
  binds	
  reversibly	
  to	
  a	
  site	
  in	
  a	
  protein	
  (P)	
  	
  
	
  
	
  
	
  
	
  
•  The	
  kine7cs	
  of	
  such	
  a	
  process	
  is	
  described	
  by:	
  
–  the	
  associa7on	
  rate	
  constant	
  ka	
  or	
  the	
  dissocia7on	
  rate	
  constant	
  kd	
  	
  
•  AOer	
  some	
  7me,	
  the	
  process	
  will	
  reach	
  the	
  equilibrium	
  	
  
where	
  the	
  associa7on	
  and	
  dissocia7on	
  rates	
  are	
  equal	
  
•  The	
  equilibrium	
  composi7on	
  is	
  characterized	
  	
  
by	
  the	
  equilibrium	
  associa7on	
  constant	
  Ka	
  
+
ka
kd
PLP
L
d
a
a
k
k
K =
⋅
=
]L[]P[
]PL[
]PL[]L[]P[ da kk =⋅
Binding:	
  	
  
Analysis	
  in	
  Terms	
  of	
  the	
  Bound	
  Frac(on	
  
•  In	
  prac7ce,	
  we	
  can	
  oOen	
  determine	
  the	
  
frac7on	
  of	
  occupied	
  binding	
  sites	
  (θ)	
  
•  Subs7tu7ng	
  [PL]	
  with	
  Ka[L][P],	
  	
  we’ll	
  
eliminate	
  [PL]	
  
•  Elimina7ng	
  [P]	
  and	
  rearranging	
  gives	
  the	
  
result	
  in	
  terms	
  of	
  equilibrium	
  associa7on	
  
constant	
  
•  In	
  terms	
  of	
  the	
  more	
  commonly	
  used	
  
equilibrium	
  dissocia7on	
  constant	
  
]P[PL][
]PL[
+
=θ
]P[]P][L[
]P][L[
+
=
a
a
K
K
θ
aK
1
]L[
]L[
+
=θ
dK+
=
]L[
]L[
θ
Protein-­‐Ligand	
  Interac(ons	
  
•  PloMng	
  θ	
  as	
  a	
  func7on	
  of	
  [L]	
  can	
  give	
  the	
  value	
  of	
  
Ka	
  
•  At	
  θ	
  =	
  0.5	
  è	
  [L]	
  =	
  1/Ka	
  
•  Normally	
  we	
  use	
  the	
  dissocia(on	
  constant	
  (Kd	
  =	
  1/
Ka)è	
  θ	
  =	
  [L]	
  /	
  [L]	
  +	
  Kd)	
  
•  When	
  [L]	
  >	
  Kd	
  by	
  9	
  x	
  à	
  90%	
  of	
  sites	
  are	
  occupied	
  
•  Note:	
  ↑	
  Kd	
  ↓	
  affinity	
  of	
  L	
  for	
  P	
  
•  Kd	
  is	
  the	
  molar	
  concentra1on	
  of	
  ligand	
  at	
  which	
  half	
  
of	
  the	
  binding	
  sites	
  are	
  occupied	
  
•  The	
  more	
  7ghtly	
  L	
  is	
  bound	
  to	
  P,	
  the	
  lower	
  [L]	
  
needed	
  for	
  ½	
  binding	
  sites	
  to	
  be	
  filled	
  à	
  lower	
  
value	
  of	
  K
Binding:	
  Graphical	
  Analysis	
  
•  The	
  frac7on	
  of	
  bound	
  sites	
  depends	
  on	
  	
  
the	
  free	
  ligand	
  concentra7on	
  and	
  Kd	
  
•  Experimentally	
  
–  Ligand	
  concentra7on	
  is	
  known	
  
–  Kd	
  can	
  be	
  determined	
  graphically	
  
dK+
=
]L[
]L[
θ
[L] ≈ [L]total
In cells, normally
[L] >> binding sites
for L à binding of
L to P does not
change [L]
Example:	
  Oxygen	
  Binding	
  to	
  Myoglobin	
  
[L]
[L]
d +
=
K
θ
250
2
O
O
pp
p
+
=θ
When	
  ligand	
  is	
  a	
  gas,	
  binding	
  is	
  
expressed	
  in	
  terms	
  of	
  par(al	
  pressures.	
  
	
  
Lungs:
pO2 ~ 13.3 kPa
Tissues:
pO2 ~ 4 kPa
Examples	
  of	
  Binding	
  Strength	
  
Specificity:	
  Lock-­‐and-­‐Key	
  Model	
  
•  Proteins	
  typically	
  have	
  high	
  specificity:	
  only	
  certain	
  ligands	
  bind	
  
	
  
•  High	
  specificity	
  can	
  be	
  explained	
  by	
  the	
  complementary	
  of	
  the	
  
binding	
  site	
  and	
  the	
  ligand.	
  
•  Complementary	
  in	
  
–  size,	
  	
  
–  shape,	
  	
  
–  charge,	
  	
  
–  or	
  hydrophobic/hydrophilic	
  	
  character	
  
•  “Lock	
  and	
  Key”	
  model	
  by	
  Emil	
  Fisher	
  (1894)	
  assumes	
  that	
  complementary	
  
surfaces	
  are	
  preformed.	
  
+
Specificity:	
  Induced	
  Fit	
  
•  Conforma7onal	
  changes	
  may	
  occur	
  upon	
  ligand	
  binding	
  
(Daniel	
  Koshland	
  in	
  1958)	
  	
  
–  This	
  adapta7on	
  is	
  called	
  the	
  induced	
  fit	
  	
  
–  Induced	
  fit	
  allows	
  for	
  7ghter	
  binding	
  of	
  the	
  ligand	
  
–  Induced	
  fit	
  allows	
  for	
  high	
  affinity	
  for	
  different	
  ligands	
  	
  
	
  
•  Both	
  the	
  ligand	
  and	
  the	
  protein	
  can	
  change	
  their	
  
conforma7ons	
  
+
Globins	
  are	
  oxygen-­‐binding	
  proteins	
  
•  Protein	
  side	
  chains	
  lack	
  affinity	
  for	
  O2	
  
•  Some	
  transi7on	
  metals	
  bind	
  O2	
  well	
  but	
  would	
  generate	
  free	
  
radicals	
  if	
  free	
  in	
  solu7on	
  
•  Organometallic	
  compounds	
  such	
  as	
  heme	
  are	
  more	
  suitable,	
  but	
  
Fe2+	
  in	
  free	
  heme	
  could	
  be	
  oxidized	
  to	
  Fe3+	
  	
  
•  Solu7on	
  	
  
–  Capture	
  the	
  oxygen	
  molecule	
  with	
  heme	
  that	
  is	
  protein	
  bound	
  
–  Myoglobin	
  is	
  the	
  main	
  oxygen	
  storage	
  protein	
  
–  Hemoglobin	
  is	
  a	
  circula7ng	
  oxygen-­‐binding	
  protein	
  
Example:	
  Oxygen	
  Binding	
  to	
  Myoglobin	
  
•  O2	
  dissolves	
  poorly	
  in	
  aqueous	
  solu7ons	
  
•  Its	
  diffusion	
  is	
  not	
  effec7ve	
  
•  Evolu7on	
  of	
  larger	
  animals	
  needed	
  evolu7on	
  of	
  
proteins	
  that	
  carry	
  O2	
  
•  However,	
  none	
  of	
  the	
  aa	
  can	
  reversibly	
  bind	
  O2	
  
•  There	
  is	
  a	
  need	
  for	
  transi7on	
  elements	
  like	
  Fe	
  
and	
  Cu	
  which	
  can	
  do	
  that	
  
•  Fe	
  is	
  incorporated	
  into	
  a	
  protein-­‐bound	
  
prosthe7c	
  group	
  called	
  heme	
  
Structures	
  of	
  Porphyrin	
  and	
  Heme	
  
The iron atom of heme has six
coordination bonds: four in the plane
of, and bonded to, the flat porphyrin
ring system, and two perpendicular
to it
Porphyrin
family
Heme
four pyrrole rings linked
by methene bridges
Example:	
  Oxygen	
  Binding	
  to	
  Myoglobin	
  
•  Free	
  heme	
  molecules	
  not	
  bound	
  in	
  proteins	
  à	
  2	
  open	
  
coordina7on	
  bonds	
  
•  Reac7on	
  of	
  1	
  O2	
  molecule	
  with	
  two	
  hemes	
  will	
  lead	
  to	
  
irreversible	
  conversion	
  of	
  Fe2+	
  to	
  Fe3+	
  which	
  does	
  not	
  
bind	
  O2	
  
•  This	
  reac7on	
  is	
  prevented	
  in	
  heme-­‐containing	
  proteins	
  
because	
  one	
  of	
  the	
  coordina7on	
  bonds	
  is	
  aoached	
  to	
  a	
  
His	
  side	
  chain	
  and	
  the	
  other	
  is	
  free	
  to	
  bond	
  O2	
  
•  When	
  O2	
  binds,	
  electronic	
  proper7es	
  of	
  heme	
  changes	
  
(color	
  changes	
  from	
  dark	
  purple	
  to	
  bright	
  red)	
  
•  CO	
  and	
  NO	
  bind	
  more	
  7ghtly	
  to	
  heme	
  than	
  O2	
  è	
  toxic	
  
to	
  aerobic	
  organisms	
  
Structure	
  of	
  Myoglobin	
  
•  Mb	
  is	
  a	
  single	
  polypep7de	
  of	
  153	
  aa	
  and	
  1	
  heme	
  
molecule	
  
•  It	
  is	
  part	
  of	
  a	
  family	
  of	
  	
  
proteins	
  called	
  globins	
  
•  8	
  α	
  helices	
  
•  His	
  residue	
  coordinated	
  to	
  
heme	
  is	
  His93	
  (or	
  His	
  F8)	
  
Bends reflecting
the a helices they
connect
Binding	
  of	
  Carbon	
  Monoxide	
  
•  CO	
  has	
  similar	
  size	
  and	
  shape	
  to	
  O2;	
  it	
  can	
  fit	
  to	
  the	
  same	
  
binding	
  site	
  
•  CO	
  binds	
  over	
  20,000	
  7mes	
  beoer	
  than	
  O2	
  because	
  the	
  carbon	
  
in	
  CO	
  has	
  a	
  filled	
  lone	
  electron	
  pair	
  that	
  can	
  be	
  donated	
  to	
  
vacant	
  d-­‐orbitals	
  on	
  the	
  Fe2+	
  
•  Protein	
  pocket	
  decreases	
  affinity	
  for	
  CO,	
  but	
  it	
  s7ll	
  binds	
  about	
  
250	
  7mes	
  beoer	
  than	
  oxygen	
  
•  CO	
  is	
  highly	
  toxic	
  as	
  it	
  competes	
  with	
  oxygen.	
  It	
  blocks	
  the	
  
func7on	
  of	
  myoglobin,	
  hemoglobin,	
  and	
  mitochondrial	
  
cytochromes	
  that	
  are	
  involved	
  in	
  oxida7ve	
  phosphoryla7on	
  
CO	
  vs.	
  O2	
  Binding	
  to	
  Free	
  Heme	
  
Heme	
  binding	
  to	
  protein	
  affects	
  	
  
CO	
  vs.	
  O2	
  binding	
  	
  
When binding to the heme in
myoglobin, CO is forced to
adopt a slight angle because
the perpendicular
arrangement is sterically
blocked by His E7, the distal
His. This effect weakens the
binding of CO to myoglobin.
Spectroscopic	
  Detec(on	
  of	
  	
  
Oxygen	
  Binding	
  to	
  Myoglobin	
  
•  The	
  heme	
  group	
  is	
  a	
  strong	
  chromophore	
  that	
  absorbs	
  both	
  in	
  
ultraviolet	
  and	
  visible	
  range	
  
•  Ferrous	
  form	
  (Fe2+	
  )	
  without	
  oxygen	
  has	
  an	
  intense	
  Soret	
  band	
  at	
  
429	
  nm	
  	
  
•  Oxygen	
  binding	
  alters	
  the	
  electronic	
  proper7es	
  of	
  the	
  heme,	
  and	
  
shiOs	
  the	
  posi7on	
  of	
  the	
  Soret	
  band	
  to	
  414	
  nm	
  	
  	
  
•  Binding	
  of	
  oxygen	
  can	
  be	
  monitored	
  by	
  UV-­‐Vis	
  spectrophotometry	
  
•  Deoxyhemoglobin	
  (in	
  venous	
  blood)	
  appears	
  purplish	
  in	
  color	
  and	
  
oxyhemoglobin	
  (in	
  arterial	
  blood)	
  is	
  red	
  
•  pO2	
  in	
  lungs	
  is	
  about	
  13	
  kPa:	
  it	
  sure	
  binds	
  oxygen	
  well	
  
•  pO2	
  in	
  7ssues	
  is	
  about	
  4	
  kPa:	
  it	
  will	
  not	
  release	
  it!	
  
•  Would	
  lowering	
  the	
  affinity	
  (P50)	
  of	
  myoglobin	
  to	
  oxygen	
  help?	
  
Could	
  myoglobin	
  transport	
  O2?	
  
For	
  effec(ve	
  transport	
  	
  
affinity	
  must	
  vary	
  with	
  pO2	
  
How	
  can	
  affinity	
  to	
  oxygen	
  change?	
  
•  Must	
  be	
  a	
  protein	
  with	
  mul7ple	
  binding	
  sites	
  
•  Binding	
  sites	
  must	
  be	
  able	
  to	
  interact	
  with	
  each	
  other	
  
•  This	
  phenomenon	
  is	
  called	
  coopera7vity	
  
–  posi7ve	
  coopera7vity	
  	
  
• first	
  binding	
  event	
  increases	
  affinity	
  at	
  remaining	
  sites	
  
• recognized	
  by	
  sigmoidal	
  binding	
  curves	
  
–  nega7ve	
  coopera7vity	
  	
  
• first	
  binding	
  event	
  reduces	
  affinity	
  at	
  remaining	
  sites	
  
Coopera(vity	
  
Coopera(vity:	
  Quan(ta(ve	
  Descrip(on	
  
naK
]L][P[
]PL[ n
=
d
n
n
K+
=
]L[
]L[
θ
̶ 	
  	
  n	
  =	
  1	
  à	
  no	
  coopera7vity	
  
̶ 	
  	
  Hill	
  plot:	
  ploMng	
  log	
  (θ	
  /	
  1	
  –	
  θ)	
  vs.	
  log	
  [L].	
  Gives	
  the	
  Hill	
  
coefficient	
  (nH)	
  which	
  measures	
  the	
  degree	
  of	
  coopera7vity	
  
The	
  Hill	
  Plot	
  of	
  Coopera(vity	
  	
  
Coopera(vity	
  is	
  a	
  	
  
special	
  case	
  of	
  allosteric	
  regula(on	
  
•  Allosteric	
  protein	
  
–  Binding	
  of	
  a	
  ligand	
  (a	
  modulator)	
  to	
  one	
  site	
  affects	
  
the	
  binding	
  proper7es	
  of	
  a	
  different	
  site,	
  on	
  the	
  
same	
  protein	
  
–  Can	
  be	
  posi7ve	
  or	
  nega7ve	
  
–  Homotropic	
  	
  
• Normal	
  ligand	
  of	
  the	
  protein	
  is	
  the	
  allosteric	
  regulator	
  
–  Heterotropic	
  
• Different	
  ligand	
  affects	
  binding	
  of	
  the	
  normal	
  ligand	
  
•  Coopera7vity	
  =	
  posi7ve	
  homotropic	
  regula7on	
  
•  Red	
  blood	
  cells	
  (erythrocytes)	
  are	
  special	
  
incomplete	
  cells	
  filled	
  with	
  Hb	
  (and	
  no	
  nucleus	
  or	
  
organelles).	
  They	
  are	
  biconcave	
  discs.	
  Their	
  
lifespan	
  is	
  120	
  days	
  
•  In	
  arterial	
  blood	
  (from	
  the	
  lungs),	
  Hb	
  is	
  96%	
  
saturated	
  with	
  O2.	
  In	
  venous	
  blood	
  (to	
  the	
  heart	
  
and	
  lungs),	
  Hb	
  is	
  ~64%	
  
•  Mb	
  is	
  insensi7ve	
  to	
  small	
  changes	
  in	
  [O2]	
  (O2-­‐
storage	
  protein)	
  
•  Hb	
  is	
  sensi7ve	
  to	
  small	
  changes	
  à	
  O2-­‐transport	
  
protein	
  (mul7ple	
  subunits)	
  
Hemoglobin	
  binds	
  oxygen	
  coopera(vely	
  
Hemoglobin	
  binds	
  oxygen	
  coopera(vely	
  
•  Hemoglobin	
  (Hb)	
  is	
  a	
  tetramer	
  of	
  two	
  subunits	
  (α2β2)	
  
•  Each	
  subunit	
  is	
  similar	
  to	
  myoglobin	
  
•  Hb	
  (Mr	
  64,500)	
  is	
  spherical	
  
•  Tetramer	
  
•  4	
  heme	
  prosthe7c	
  groups	
  
•  2	
  α	
  chains	
  (141	
  aa	
  each)	
  and	
  2	
  β	
  chains	
  (146	
  aa	
  each)	
  
•  3D	
  structure	
  of	
  both	
  α	
  and	
  β	
  is	
  similar	
  
•  aa	
  sequences	
  of	
  Mb	
  and	
  α	
  and	
  β	
  Hb	
  are	
  iden7cal	
  in	
  
27	
  posi7ons	
  
•  The	
  helix-­‐naming	
  system	
  for	
  Mb	
  is	
  also	
  used	
  for	
  Hb	
  
polypep7des	
  
•  Hbα	
  does	
  not	
  have	
  D	
  helix	
  
Hb	
  Subunits	
  are	
  Similar	
  to	
  Mb	
  
Sequence	
  Similarity	
  between	
  	
  
Hemoglobin	
  and	
  Myoglobin	
  
•  4o	
  structure	
  of	
  Hb	
  shows	
  strong	
  interac7ons	
  
between	
  unlike	
  subunits	
  
•  The	
  α1β1	
  interface	
  (and	
  also	
  α2β2)	
  involve	
  >	
  30	
  aa	
  
•  The	
  α1β2	
  interface	
  (and	
  also	
  α2β1)	
  involve	
  19	
  aa	
  
•  These	
  interfaces	
  make	
  strong	
  interac7ons	
  à	
  mild	
  
treatment	
  of	
  Hb	
  with	
  urea	
  breaks	
  the	
  tetramer	
  
into	
  αβ	
  dimers	
  
Hb	
  is	
  a	
  dimer	
  of	
  two	
  αβ	
  protomers	
  
Subunit	
  Interac(ons	
  in	
  Hemoglobin	
  
R	
  and	
  T	
  States	
  of	
  Hemoglobin	
  	
  
•  Two	
  major	
  conforma7ons	
  of	
  Hb:	
  	
  
R	
  state	
  and	
  T	
  state	
  	
  
•  O2	
  binds	
  to	
  Hb	
  in	
  either	
  one,	
  but	
  it	
  has	
  to	
  R	
  state	
  
•  T	
  =	
  Tense	
  state	
  	
  
–  More	
  interac7ons,	
  more	
  stable	
  	
  
–  Lower	
  affinity	
  for	
  O2	
  
•  R	
  =	
  Relaxed	
  state	
  	
  
–  Fewer	
  Interac7ons,	
  more	
  flexible	
  
–  Higher	
  affinity	
  for	
  O2	
  	
  
	
  
Hb	
  Changes	
  Structure	
  a[er	
  O2	
  Binding	
  
•  O2	
  binding	
  stabilizes	
  R	
  state	
  
•  T	
  state	
  is	
  more	
  stable	
  when	
  not	
  bound	
  to	
  O2	
  
(deoxyhemoglobin)	
  	
  
•  O2	
  binding	
  to	
  a	
  Hb	
  subunit	
  at	
  the	
  T	
  state	
  converts	
  the	
  
subunit	
  to	
  R	
  state	
  
•  Therefore,	
  O2	
  binding	
  triggers	
  a	
  T	
  à	
  R	
  conforma7onal	
  
change	
  
•  Conforma7onal	
  change	
  from	
  the	
  T	
  state	
  to	
  the	
  R	
  state	
  
involves	
  breaking	
  ion	
  pairs	
  between	
  the	
  α1-­‐β2	
  interface	
  	
  	
  	
  
The transition from the T state to the R state shifts the subunit pairs, affecting certain ion pairs. Most
noticeably, the His HC3 residues at the carboxyl termini of the β subunits, which are involved in ion pairs
in the T state, rotate in the R state toward the center of the molecule, where they are no longer in ion
pairs. Another dramatic result of the T → R transition is a narrowing of the pocket between the β subunits.
R	
  and	
  T	
  States	
  of	
  Hemoglobin	
  	
  
pH	
  Effect	
  on	
  O2	
  Binding	
  to	
  Hemoglobin	
  
• Ac7vely	
  metabolizing	
  7ssues	
  generate	
  H+,	
  lowering	
  the	
  
pH	
  of	
  the	
  blood	
  near	
  the	
  7ssues	
  rela7ve	
  to	
  the	
  lungs	
  
• Hb	
  Affinity	
  for	
  oxygen	
  depends	
  on	
  the	
  pH	
  
–  H+	
  binds	
  to	
  Hb	
  and	
  stabilizes	
  the	
  T	
  state	
  
•  Protonates	
  His146	
  which	
  then	
  forms	
  a	
  salt	
  bridge	
  with	
  Asp94	
  
•  Leads	
  to	
  the	
  release	
  of	
  O2	
  (in	
  the	
  7ssues)	
  
• The	
  pH	
  difference	
  between	
  lungs	
  and	
  metabolic	
  7ssues	
  
increases	
  efficiency	
  of	
  the	
  O2	
  transport	
  
• 	
  This	
  is	
  known	
  as	
  the	
  Bohr	
  effect	
  
pH	
  Effect	
  on	
  O2	
  Binding	
  to	
  Hemoglobin	
  
lungs
tissues
Hemoglobin	
  and	
  CO2	
  Export	
  
•  CO2	
  is	
  produced	
  by	
  metabolism	
  in	
  7ssues	
  and	
  must	
  be	
  exported	
  
•  15–20%	
  of	
  CO2	
  is	
  exported	
  in	
  the	
  form	
  of	
  a	
  carbamate	
  on	
  the	
  
amino	
  terminal	
  residues	
  of	
  each	
  of	
  the	
  polypep7de	
  subunits.	
  	
  	
  
•  No7ce:	
  
–  the	
  forma7on	
  of	
  a	
  carbamate	
  yields	
  a	
  proton	
  which	
  can	
  
contribute	
  to	
  the	
  Bohr	
  Effect	
  	
  
–  the	
  carbamate	
  forms	
  addi7onal	
  salt	
  bridges	
  stabilizing	
  the	
  T	
  state	
  
•  The	
  rest	
  of	
  the	
  CO2	
  is	
  exported	
  as	
  dissolved	
  bicarbonate	
  	
  
–  Formed	
  by	
  carbonic	
  anhydrase,	
  and	
  also	
  producing	
  a	
  proton	
  	
  
2,3-­‐Bisphosphoglycerate	
  regulates	
  O2	
  binding	
  	
  
•  Nega7ve	
  heterotropic	
  regulator	
  of	
  Hb	
  func7on	
  
•  Present	
  at	
  mM	
  concentra7ons	
  in	
  erythrocytes	
  
–  Produced	
  from	
  an	
  intermediate	
  in	
  glycolysis	
  
–  Plays	
  an	
  important	
  role	
  in	
  physiological	
  adapta7ons	
  
for	
  low	
  oxygen	
  concentra7on	
  (like	
  at	
  high	
  al7tudes	
  
or	
  in	
  cases	
  of	
  hypoxia)	
  
•  Small	
  nega7vely	
  charged	
  molecule,	
  	
  
binds	
  to	
  the	
  posi7vely	
  charged	
  	
  
central	
  cavity	
  of	
  Hb	
  
•  Stabilizes	
  the	
  T	
  states	
  
2,3-­‐BPG	
  binds	
  to	
  the	
  central	
  cavity	
  of	
  hB	
  	
  
The binding pocket for BPG
disappears on oxygenation
BPG binding stabilizes the T state
of deoxyhemoglobin
+
2,3-­‐BPG	
  allows	
  for	
  O2	
  release	
  in	
  the	
  (ssues	
  	
  
and	
  adapta(on	
  to	
  changes	
  in	
  al(tude	
  
« At	
  sea	
  level,	
  Hb	
  is	
  nearly	
  saturated	
  
with	
  O2	
  in	
  the	
  lungs	
  
« Hb	
  is	
  just	
  over	
  60%	
  saturated	
  in	
  
the	
  7ssues	
  
« The	
  amount	
  of	
  O2	
  released	
  in	
  the	
  
7ssues	
  is	
  about	
  38%	
  of	
  the	
  
maximum	
  that	
  can	
  be	
  carried	
  in	
  
the	
  blood	
  
« At	
  high	
  al7tudes,	
  O2	
  delivery	
  
declines	
  to	
  30%	
  of	
  maximum	
  	
  
« An	
  increase	
  in	
  [BPG]	
  decreases	
  the	
  
affinity	
  of	
  Hb	
  for	
  O2,	
  so	
  ~	
  37%	
  of	
  
what	
  can	
  be	
  carried	
  is	
  again	
  
delivered	
  to	
  the	
  7ssues	
  
 
Either all
circles (low
affinity or
inactive) or
all squares
(high affinity
or active).
Each individual subunit can be in either the or form. A
very large number of conformations is thus possible
Two	
  Models	
  of	
  Coopera(vity:	
  
Concerted	
  (MWC)	
  vs.	
  Sequen(al	
  
Sickle-­‐cell	
  anemia	
  is	
  due	
  to	
  	
  
a	
  muta(on	
  in	
  hemoglobin	
  
•  Sickle-­‐cell	
  disease	
  occurs	
  in	
  individuals	
  	
  
homozygous	
  for	
  the	
  sickle	
  cell	
  allele	
  of	
  	
  
the	
  gene	
  encoding	
  the	
  β	
  subunit	
  of	
  Hb	
  
•  When	
  Hb	
  from	
  a	
  sick	
  pa7ent	
  is	
  	
  
deoxygenated	
  (Hb	
  S)	
  it	
  aggregates	
  and	
  	
  
precipitates	
  (normal	
  Hb,	
  Hb	
  A	
  does	
  not	
  	
  
precipitate	
  upon	
  deoxygena7on)	
  
•  The	
  difference	
  is	
  a	
  single	
  aa	
  subs7tu7on	
  	
  
Glu6	
  à	
  Val	
  in	
  the	
  β	
  chain	
  of	
  Hb	
  
•  The	
  new	
  Val	
  (hydrophobic)	
  side	
  chain	
  	
  
can	
  bind	
  to	
  a	
  different	
  Hb	
  molecule	
  to	
  	
  
form	
  a	
  strand	
  
•  Untreated	
  homozygous	
  individuals	
  generally	
  die	
  in	
  childhood	
  
•  Heterozygous	
  individuals	
  exhibit	
  a	
  resistance	
  to	
  malaria	
  
Forma(on	
  of	
  Hb	
  Strands	
  	
  
in	
  Sickle-­‐Cell	
  Anemia	
  
deoxyhemoglobin S
has a hydrophobic
patch on its surface,
which causes the
molecules to
aggregate into
strands that align into
insoluble fibers
•  The	
  main	
  oxygen	
  transport	
  protein	
  in	
  the	
  fetus	
  during	
  the	
  last	
  
seven	
  months	
  of	
  development	
  in	
  the	
  uterus	
  and	
  in	
  the	
  
newborn	
  un7l	
  ~	
  6	
  months	
  old	
  	
  
•  2	
  α,	
  2	
  γ	
  subunits	
  (fewer	
  posi7ve	
  charges	
  than	
  the	
  adult	
  
hemoglobin	
  β	
  subunit;	
  2,3-­‐BPG	
  binds	
  less)	
  
•  Binds	
  O2	
  at	
  a	
  greater	
  affinity	
  that	
  HbA	
  (adult)	
  
à	
  fetus	
  can	
  extract	
  O2	
  from	
  his/her	
  mother	
  bloodstream	
  
easily	
  
•  The	
  affinity	
  of	
  HbF	
  for	
  oxygen	
  >	
  that	
  of	
  HbA	
  	
  
(P50	
  HbF	
  ~	
  2.5	
  kPa;	
  P50	
  HbA	
  ~	
  3.7	
  kPa)	
  
•  The	
  oxygen	
  satura7on	
  curve	
  is	
  shiOed	
  to	
  the	
  leO	
  for	
  HbF	
  
•  HbF	
  does	
  not	
  interact	
  with	
  2,3-­‐BPG	
  (which	
  decreases	
  the	
  
affinity	
  of	
  HbA	
  for	
  oxygen)	
  à	
  HbF	
  binds	
  O2	
  (ghter	
  than	
  HbA	
  
Fetal	
  Hemoglobin	
  (HbF)	
  
O2 flows from maternal oxyhemoglobin
to fetal deoxyhemoglobin
2.7 5.3 8 10.7 13.3 17
PO2
mmHgkPa
5.2	
  The	
  Immune	
  System	
  and	
  Immunoglobulins	
  
•  Most	
  interac7ons	
  between	
  a	
  P	
  and	
  L	
  is	
  in	
  pockets	
  in	
  the	
  
protein	
  lined	
  with	
  aa	
  arranged	
  to	
  make	
  this	
  interac7on	
  
specific	
  
•  The	
  immune	
  system	
  in	
  vertebrates	
  can	
  discriminate	
  
between	
  “self”	
  and	
  “nonself”	
  en77es	
  and	
  can	
  destroy	
  
the	
  nonself	
  ones	
  
•  Leukocytes	
  (WBC)	
  are	
  immunity	
  cells	
  developing	
  in	
  the	
  
bone	
  marrow	
  (including	
  macrophages	
  and	
  lymphocytes)	
  
•  Any	
  molecule	
  that	
  can	
  induce	
  an	
  immune	
  response	
  is	
  
called	
  an	
  an(gen	
  	
  
Two	
  Types	
  of	
  Immune	
  Systems	
  
• 	
  Cellular	
  immune	
  system	
  
-­‐  targets	
  own	
  cells	
  that	
  have	
  been	
  infected	
  
-­‐  also	
  clears	
  up	
  virus	
  par7cles	
  and	
  infec7ng	
  bacteria	
  
-­‐  key	
  players:	
  Macrophages,	
  killer	
  (cytotoxic)	
  T	
  cells	
  (Tc),	
  	
  
	
  	
  	
  and	
  inflammatory	
  helper	
  T	
  cells	
  (TH1)	
  
	
  
• 	
  Humoral	
  “fluid”	
  immune	
  system	
  
-­‐  targets	
  extracellular	
  pathogens	
  and	
  infec7ous	
  agents	
  like	
  
bacteria	
  and	
  viruses	
  
-­‐  can	
  also	
  recognize	
  foreign	
  proteins	
  
-­‐  makes	
  soluble	
  an7bodies	
  	
  	
  	
  	
  
-­‐  keeps	
  “memory”	
  of	
  past	
  infec7ons	
  
-­‐  key	
  players:	
  B-­‐lymphocytes	
  and	
  helper	
  T-­‐cells	
  (TH2)	
  
-­‐  soluble	
  proteins	
  called	
  an(bodies	
  (immunoglobulins,	
  Ig)	
  
Cellular	
  Immune	
  System	
  
•  An7bodies	
  bind	
  to	
  fragments	
  displayed	
  on	
  the	
  surface	
  of	
  invading	
  
cells	
  
•  Phagocytes:	
  specialized	
  cells	
  that	
  eat	
  invaders	
  
•  Macrophages:	
  large	
  phagocytes	
  that	
  ingest	
  bacteria	
  that	
  are	
  
tagged	
  by	
  an7bodies	
  
Humoral	
  Immune	
  System	
  
•  Vertebrates	
  also	
  fight	
  infec7ons	
  with	
  soluble	
  an7bodies	
  
that	
  specifically	
  bind	
  an7gens	
  
–  An7gens	
  are	
  substances	
  that	
  s7mulate	
  produc7on	
  of	
  
an7bodies	
  
•  Typically	
  macromolecular	
  in	
  nature	
  
•  Recognized	
  as	
  foreign	
  by	
  the	
  immune	
  system	
  
•  Coat	
  proteins	
  of	
  bacteria	
  and	
  viruses	
  
•  Surface	
  carbohydrates	
  of	
  cells	
  or	
  viruses	
  
–  An7bodies	
  are	
  proteins	
  that	
  are	
  produced	
  by	
  B	
  cells	
  and	
  
specifically	
  bind	
  to	
  an7gens	
  
•  Binding	
  will	
  mark	
  the	
  an7gen	
  for	
  destruc7on	
  or	
  interfere	
  with	
  its	
  
func7on	
  
•  A	
  given	
  an7body	
  will	
  bind	
  to	
  a	
  small	
  region	
  (epitope)	
  of	
  the	
  an7gen	
  
•  One	
  an7gen	
  can	
  have	
  several	
  epitopes	
  
An(bodies:	
  Immunoglobulin	
  G	
  
•  Composed	
  of	
  two	
  heavy	
  chains	
  and	
  two	
  light	
  chains	
  
•  Composed	
  of	
  constant	
  domains	
  and	
  variable	
  domains	
  
	
  
•  Light	
  chains:	
  one	
  constant	
  and	
  one	
  variable	
  domain	
  
•  Heavy	
  chains:	
  three	
  constant	
  and	
  one	
  variable	
  domain	
  
•  Variable	
  domains	
  of	
  each	
  chain	
  make	
  up	
  an7gen-­‐	
  
binding	
  site	
  (two/an7body)	
  	
  
•  Variable	
  domains	
  contain	
  regions	
  that	
  are	
  
hypervariable	
  (specifically	
  the	
  an7gen-­‐binding	
  site)	
  
•  Confers	
  high	
  an7gen	
  specificity	
  
An(bodies:	
  Immunoglobulin	
  G	
  
Antibodies have 2
identical antigen-
binding sites
An(gens	
  bind	
  via	
  induced	
  fit	
  
An7gen	
  binding	
  causes	
  significant	
  structural	
  changes	
  to	
  the	
  an7body	
  
	
  
	
  
Antibodies bind tightly and specifically to antigens
(Kd ~ 10–10 M)
An(gen-­‐An(body	
  Interac(ons	
  in	
  Analy(cal	
  
Procedures	
  
•  Polyclonal	
  an(bodies	
  –	
  produced	
  by	
  different	
  B	
  
lymphocytes	
  responding	
  to	
  one	
  an7gen	
  (e.g.	
  an7gen	
  
injected	
  in	
  an	
  animal)	
  
–	
  contain	
  a	
  mixture	
  of	
  Ab	
  that	
  recognize	
  different	
  parts	
  
of	
  the	
  an7gen	
  
•  Monoclonal	
  an(bodies	
  –	
  produced	
  by	
  iden7cal	
  (cloned)	
  
B	
  cells	
  grown	
  in	
  cell	
  culture	
  
–	
  Homogeneous,	
  recognize	
  the	
  same	
  part	
  of	
  the	
  an7gen	
  
•  Can	
  be	
  used	
  for	
  affinity	
  chromatography	
  (aoached	
  to	
  
beads)	
  
•  Also	
  in	
  ELISA	
  and	
  immunoblot	
  assays	
  
An(body	
  specificity	
  is	
  an	
  	
  
important	
  analy(cal	
  reagent	
  
An(body	
  detec(on	
  can	
  be	
  	
  
colormetric	
  or	
  luminescent	
  
Immunoblot

More Related Content

What's hot

Biological oxidation and reduction
Biological oxidation and reductionBiological oxidation and reduction
Biological oxidation and reductionWishal Butt
 
Oxidation and reduction
Oxidation and reductionOxidation and reduction
Oxidation and reductionsom allul
 
Biological oxidation by Dr.Sohil Takodara
Biological oxidation by Dr.Sohil TakodaraBiological oxidation by Dr.Sohil Takodara
Biological oxidation by Dr.Sohil TakodaraSohil Takodara
 
Biological oxidation
Biological oxidationBiological oxidation
Biological oxidationhussamdr
 
Proteins chp-4-bioc-361-version-oct-2012b
Proteins chp-4-bioc-361-version-oct-2012bProteins chp-4-bioc-361-version-oct-2012b
Proteins chp-4-bioc-361-version-oct-2012bJody Haddow
 
Biological oxidation Bioenergetics and general concepts (part - I)
Biological oxidation    Bioenergetics and general concepts (part - I)Biological oxidation    Bioenergetics and general concepts (part - I)
Biological oxidation Bioenergetics and general concepts (part - I)Ashok Katta
 
BIOLOGICAL OXIDATION/ ETC/ OXIDATIVE PHOSPHORYLATION
BIOLOGICAL OXIDATION/ ETC/ OXIDATIVE PHOSPHORYLATIONBIOLOGICAL OXIDATION/ ETC/ OXIDATIVE PHOSPHORYLATION
BIOLOGICAL OXIDATION/ ETC/ OXIDATIVE PHOSPHORYLATIONYESANNA
 
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- BiochemistryChapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- BiochemistryAreej Abu Hanieh
 
Biological oxidation
Biological oxidationBiological oxidation
Biological oxidationIAU Dent
 
Oxidative phosphorylation for medical school
Oxidative phosphorylation for medical schoolOxidative phosphorylation for medical school
Oxidative phosphorylation for medical schoolRavi Kiran
 
Electron Transport Chain and oxidative phosphorylation @meetpadhiyar
Electron Transport Chain and oxidative phosphorylation @meetpadhiyarElectron Transport Chain and oxidative phosphorylation @meetpadhiyar
Electron Transport Chain and oxidative phosphorylation @meetpadhiyarmeetpadhiyar88
 
01 bioenergetics lecture
01 bioenergetics lecture01 bioenergetics lecture
01 bioenergetics lectureUzma Irfan
 
Lecture 1 bioenergetics
Lecture 1   bioenergeticsLecture 1   bioenergetics
Lecture 1 bioenergeticsVictoria Hong
 
Oxidative phosphorylation
Oxidative phosphorylationOxidative phosphorylation
Oxidative phosphorylationMohammedLuqman9
 

What's hot (18)

Biological oxidation and reduction
Biological oxidation and reductionBiological oxidation and reduction
Biological oxidation and reduction
 
Oxidation and reduction
Oxidation and reductionOxidation and reduction
Oxidation and reduction
 
Biological oxidation -1
Biological oxidation -1Biological oxidation -1
Biological oxidation -1
 
Biological oxidation by Dr.Sohil Takodara
Biological oxidation by Dr.Sohil TakodaraBiological oxidation by Dr.Sohil Takodara
Biological oxidation by Dr.Sohil Takodara
 
Biological oxidation
Biological oxidationBiological oxidation
Biological oxidation
 
Proteins chp-4-bioc-361-version-oct-2012b
Proteins chp-4-bioc-361-version-oct-2012bProteins chp-4-bioc-361-version-oct-2012b
Proteins chp-4-bioc-361-version-oct-2012b
 
Biological oxidation Bioenergetics and general concepts (part - I)
Biological oxidation    Bioenergetics and general concepts (part - I)Biological oxidation    Bioenergetics and general concepts (part - I)
Biological oxidation Bioenergetics and general concepts (part - I)
 
BIOLOGICAL OXIDATION/ ETC/ OXIDATIVE PHOSPHORYLATION
BIOLOGICAL OXIDATION/ ETC/ OXIDATIVE PHOSPHORYLATIONBIOLOGICAL OXIDATION/ ETC/ OXIDATIVE PHOSPHORYLATION
BIOLOGICAL OXIDATION/ ETC/ OXIDATIVE PHOSPHORYLATION
 
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- BiochemistryChapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry
 
Biological oxidation
Biological oxidationBiological oxidation
Biological oxidation
 
Bioenergetics
BioenergeticsBioenergetics
Bioenergetics
 
Biological oxidation
Biological oxidationBiological oxidation
Biological oxidation
 
Biological oxidation ppt
Biological oxidation pptBiological oxidation ppt
Biological oxidation ppt
 
Oxidative phosphorylation for medical school
Oxidative phosphorylation for medical schoolOxidative phosphorylation for medical school
Oxidative phosphorylation for medical school
 
Electron Transport Chain and oxidative phosphorylation @meetpadhiyar
Electron Transport Chain and oxidative phosphorylation @meetpadhiyarElectron Transport Chain and oxidative phosphorylation @meetpadhiyar
Electron Transport Chain and oxidative phosphorylation @meetpadhiyar
 
01 bioenergetics lecture
01 bioenergetics lecture01 bioenergetics lecture
01 bioenergetics lecture
 
Lecture 1 bioenergetics
Lecture 1   bioenergeticsLecture 1   bioenergetics
Lecture 1 bioenergetics
 
Oxidative phosphorylation
Oxidative phosphorylationOxidative phosphorylation
Oxidative phosphorylation
 

Similar to Chapter 5

Protein ligand interaction by KK Sahu sir
Protein ligand interaction by KK Sahu sirProtein ligand interaction by KK Sahu sir
Protein ligand interaction by KK Sahu sirKAUSHAL SAHU
 
Protein Function - General Biology 2 Lesson
Protein Function - General Biology 2 LessonProtein Function - General Biology 2 Lesson
Protein Function - General Biology 2 LessonCyrusEsguerra6
 
Hemoglobin -structure and functions
Hemoglobin -structure and functionsHemoglobin -structure and functions
Hemoglobin -structure and functionsRawat DA Greatt
 
[Brief]Structure and functions of hemoglobin and myglobin (Bio-Inorganic chem...
[Brief]Structure and functions of hemoglobin and myglobin (Bio-Inorganic chem...[Brief]Structure and functions of hemoglobin and myglobin (Bio-Inorganic chem...
[Brief]Structure and functions of hemoglobin and myglobin (Bio-Inorganic chem...Anim60
 
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...sana shaikh
 
Chapter 4 (part 3) protein 3-d structure- structure function
Chapter 4 (part 3)   protein 3-d structure- structure functionChapter 4 (part 3)   protein 3-d structure- structure function
Chapter 4 (part 3) protein 3-d structure- structure functionAmmedicine Medicine
 
Protien Metabolism
Protien MetabolismProtien Metabolism
Protien Metabolismraj kumar
 
Protien Metabolism
Protien MetabolismProtien Metabolism
Protien Metabolismraj kumar
 
7xkvfxwiqdaxzqaaxydl-signature-091447bade647bc70325d98b994f7c3a3901d946a34a45...
7xkvfxwiqdaxzqaaxydl-signature-091447bade647bc70325d98b994f7c3a3901d946a34a45...7xkvfxwiqdaxzqaaxydl-signature-091447bade647bc70325d98b994f7c3a3901d946a34a45...
7xkvfxwiqdaxzqaaxydl-signature-091447bade647bc70325d98b994f7c3a3901d946a34a45...bnvj
 
protein ligend interaction by kk sahu
protein ligend interaction by kk sahuprotein ligend interaction by kk sahu
protein ligend interaction by kk sahuKAUSHAL SAHU
 
lecture 1.pdfrgzdfghzdfhgzdfhfdhdzhzdhdhdhd
lecture 1.pdfrgzdfghzdfhgzdfhfdhdzhzdhdhdhdlecture 1.pdfrgzdfghzdfhgzdfhfdhdzhzdhdhdhd
lecture 1.pdfrgzdfghzdfhgzdfhfdhdzhzdhdhdhdSriRam071
 
Tertiary protetin and its stucture
Tertiary protetin  and its stucture Tertiary protetin  and its stucture
Tertiary protetin and its stucture Muti Ullah Makhmal
 
Hemoglobin and myoglobin
Hemoglobin and myoglobinHemoglobin and myoglobin
Hemoglobin and myoglobinVarinderKhepar
 
Protein Structure
Protein StructureProtein Structure
Protein StructureRafeeqCM1
 

Similar to Chapter 5 (20)

Protein ligand interaction by KK Sahu sir
Protein ligand interaction by KK Sahu sirProtein ligand interaction by KK Sahu sir
Protein ligand interaction by KK Sahu sir
 
Protein Function - General Biology 2 Lesson
Protein Function - General Biology 2 LessonProtein Function - General Biology 2 Lesson
Protein Function - General Biology 2 Lesson
 
Hemoglobin -structure and functions
Hemoglobin -structure and functionsHemoglobin -structure and functions
Hemoglobin -structure and functions
 
[Brief]Structure and functions of hemoglobin and myglobin (Bio-Inorganic chem...
[Brief]Structure and functions of hemoglobin and myglobin (Bio-Inorganic chem...[Brief]Structure and functions of hemoglobin and myglobin (Bio-Inorganic chem...
[Brief]Structure and functions of hemoglobin and myglobin (Bio-Inorganic chem...
 
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...
 
GLOBULAR PROTEINS
GLOBULAR PROTEINSGLOBULAR PROTEINS
GLOBULAR PROTEINS
 
Chapter 4 (part 3) protein 3-d structure- structure function
Chapter 4 (part 3)   protein 3-d structure- structure functionChapter 4 (part 3)   protein 3-d structure- structure function
Chapter 4 (part 3) protein 3-d structure- structure function
 
Campbell6e lecture ch4
Campbell6e lecture ch4Campbell6e lecture ch4
Campbell6e lecture ch4
 
protein
protein protein
protein
 
proteins.pdf
proteins.pdfproteins.pdf
proteins.pdf
 
Protien Metabolism
Protien MetabolismProtien Metabolism
Protien Metabolism
 
Protien Metabolism
Protien MetabolismProtien Metabolism
Protien Metabolism
 
7xkvfxwiqdaxzqaaxydl-signature-091447bade647bc70325d98b994f7c3a3901d946a34a45...
7xkvfxwiqdaxzqaaxydl-signature-091447bade647bc70325d98b994f7c3a3901d946a34a45...7xkvfxwiqdaxzqaaxydl-signature-091447bade647bc70325d98b994f7c3a3901d946a34a45...
7xkvfxwiqdaxzqaaxydl-signature-091447bade647bc70325d98b994f7c3a3901d946a34a45...
 
Lecture 4
Lecture 4Lecture 4
Lecture 4
 
protein ligend interaction by kk sahu
protein ligend interaction by kk sahuprotein ligend interaction by kk sahu
protein ligend interaction by kk sahu
 
lecture 1.pdfrgzdfghzdfhgzdfhfdhdzhzdhdhdhd
lecture 1.pdfrgzdfghzdfhgzdfhfdhdzhzdhdhdhdlecture 1.pdfrgzdfghzdfhgzdfhfdhdzhzdhdhdhd
lecture 1.pdfrgzdfghzdfhgzdfhfdhdzhzdhdhdhd
 
Tertiary protetin and its stucture
Tertiary protetin  and its stucture Tertiary protetin  and its stucture
Tertiary protetin and its stucture
 
Hemoglobin and myoglobin
Hemoglobin and myoglobinHemoglobin and myoglobin
Hemoglobin and myoglobin
 
Atindra-protein.pptx
Atindra-protein.pptxAtindra-protein.pptx
Atindra-protein.pptx
 
Protein Structure
Protein StructureProtein Structure
Protein Structure
 

More from Baraah Jafari

More from Baraah Jafari (8)

Chapters 17 & 21
Chapters 17 & 21 Chapters 17 & 21
Chapters 17 & 21
 
Chapter7 carbs
Chapter7 carbsChapter7 carbs
Chapter7 carbs
 
Chapter6 enzymes
Chapter6 enzymesChapter6 enzymes
Chapter6 enzymes
 
Ch 3 نفسه
Ch 3 نفسهCh 3 نفسه
Ch 3 نفسه
 
Chapter14 160419080639
Chapter14 160419080639Chapter14 160419080639
Chapter14 160419080639
 
Chapter15 160419075517
Chapter15 160419075517Chapter15 160419075517
Chapter15 160419075517
 
Chapter19 160419084945
Chapter19 160419084945Chapter19 160419084945
Chapter19 160419084945
 
Chapter16 160419082018
Chapter16 160419082018Chapter16 160419082018
Chapter16 160419082018
 

Recently uploaded

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 

Recently uploaded (20)

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 

Chapter 5

  • 1. 5|  Func(on  of  Globular  Proteins   © 2013 W. H. Freeman and Company
  • 2. Func(ons  of  Globular  Proteins   •  Storage  of  ions  and  molecules     –  myoglobin,  ferri7n     •  Transport  of  ions  and  molecules     –  hemoglobin,  glucose  transporter   •  Defense  against  pathogens     –  an7bodies,  cytokines     •  Muscle  contrac7on     –  ac7n,  myosin     •  Biological  catalysis     –  chymotrypsin,  lysozyme  
  • 3. Interac(on  with  Other  Molecules   •  Reversible,  transient  process  of  chemical  equilibrium:     A  +  B    à    AB   •  A  molecule  that  binds  to  a  protein  is  called  a  ligand   –  Typically  a  small  molecule   •  A  region  in  the  protein  where  the  ligand  binds  is  called   the  binding  site     •  Ligand  binds  via  same  noncovalent  forces  that  dictate   protein  structure  (see  Chapter  4)   –  Allows  the  interac7ons  to  be  transient   –  (this  is  key  to  life  à  organism  can  respond  quickly  and   reversibly  to  changes)   ß  
  • 4. Interac(on  with  Other  Molecules   •  When  ligands  bind  to  proteins,  some  conforma7onal   changes  occur  permiMng  7ghter  binding  à  this  is  called   induced  fit   –  In  mul7subunit  proteins,  a  conforma7onal  change  of   one  subunit  oOen  affects  the  others   •  Enzymes  are  special  kinds  of  proteins.  They  bind  and   transform  other  molecules.  Enzyme  ligands  are  called   substrates   •  The  binding  site  is  called  cataly(c  site  (ac(ve  site)  
  • 5. Binding:  Quan(ta(ve  Descrip(on   •  Consider  a  process  in  which  a  ligand  (L)  binds  reversibly  to  a  site  in  a  protein  (P)             •  The  kine7cs  of  such  a  process  is  described  by:   –  the  associa7on  rate  constant  ka  or  the  dissocia7on  rate  constant  kd     •  AOer  some  7me,  the  process  will  reach  the  equilibrium     where  the  associa7on  and  dissocia7on  rates  are  equal   •  The  equilibrium  composi7on  is  characterized     by  the  equilibrium  associa7on  constant  Ka   + ka kd PLP L d a a k k K = ⋅ = ]L[]P[ ]PL[ ]PL[]L[]P[ da kk =⋅
  • 6. Binding:     Analysis  in  Terms  of  the  Bound  Frac(on   •  In  prac7ce,  we  can  oOen  determine  the   frac7on  of  occupied  binding  sites  (θ)   •  Subs7tu7ng  [PL]  with  Ka[L][P],    we’ll   eliminate  [PL]   •  Elimina7ng  [P]  and  rearranging  gives  the   result  in  terms  of  equilibrium  associa7on   constant   •  In  terms  of  the  more  commonly  used   equilibrium  dissocia7on  constant   ]P[PL][ ]PL[ + =θ ]P[]P][L[ ]P][L[ + = a a K K θ aK 1 ]L[ ]L[ + =θ dK+ = ]L[ ]L[ θ
  • 7. Protein-­‐Ligand  Interac(ons   •  PloMng  θ  as  a  func7on  of  [L]  can  give  the  value  of   Ka   •  At  θ  =  0.5  è  [L]  =  1/Ka   •  Normally  we  use  the  dissocia(on  constant  (Kd  =  1/ Ka)è  θ  =  [L]  /  [L]  +  Kd)   •  When  [L]  >  Kd  by  9  x  à  90%  of  sites  are  occupied   •  Note:  ↑  Kd  ↓  affinity  of  L  for  P   •  Kd  is  the  molar  concentra1on  of  ligand  at  which  half   of  the  binding  sites  are  occupied   •  The  more  7ghtly  L  is  bound  to  P,  the  lower  [L]   needed  for  ½  binding  sites  to  be  filled  à  lower   value  of  K
  • 8. Binding:  Graphical  Analysis   •  The  frac7on  of  bound  sites  depends  on     the  free  ligand  concentra7on  and  Kd   •  Experimentally   –  Ligand  concentra7on  is  known   –  Kd  can  be  determined  graphically   dK+ = ]L[ ]L[ θ [L] ≈ [L]total In cells, normally [L] >> binding sites for L à binding of L to P does not change [L]
  • 9. Example:  Oxygen  Binding  to  Myoglobin   [L] [L] d + = K θ 250 2 O O pp p + =θ When  ligand  is  a  gas,  binding  is   expressed  in  terms  of  par(al  pressures.     Lungs: pO2 ~ 13.3 kPa Tissues: pO2 ~ 4 kPa
  • 10. Examples  of  Binding  Strength  
  • 11. Specificity:  Lock-­‐and-­‐Key  Model   •  Proteins  typically  have  high  specificity:  only  certain  ligands  bind     •  High  specificity  can  be  explained  by  the  complementary  of  the   binding  site  and  the  ligand.   •  Complementary  in   –  size,     –  shape,     –  charge,     –  or  hydrophobic/hydrophilic    character   •  “Lock  and  Key”  model  by  Emil  Fisher  (1894)  assumes  that  complementary   surfaces  are  preformed.   +
  • 12. Specificity:  Induced  Fit   •  Conforma7onal  changes  may  occur  upon  ligand  binding   (Daniel  Koshland  in  1958)     –  This  adapta7on  is  called  the  induced  fit     –  Induced  fit  allows  for  7ghter  binding  of  the  ligand   –  Induced  fit  allows  for  high  affinity  for  different  ligands       •  Both  the  ligand  and  the  protein  can  change  their   conforma7ons   +
  • 13. Globins  are  oxygen-­‐binding  proteins   •  Protein  side  chains  lack  affinity  for  O2   •  Some  transi7on  metals  bind  O2  well  but  would  generate  free   radicals  if  free  in  solu7on   •  Organometallic  compounds  such  as  heme  are  more  suitable,  but   Fe2+  in  free  heme  could  be  oxidized  to  Fe3+     •  Solu7on     –  Capture  the  oxygen  molecule  with  heme  that  is  protein  bound   –  Myoglobin  is  the  main  oxygen  storage  protein   –  Hemoglobin  is  a  circula7ng  oxygen-­‐binding  protein  
  • 14. Example:  Oxygen  Binding  to  Myoglobin   •  O2  dissolves  poorly  in  aqueous  solu7ons   •  Its  diffusion  is  not  effec7ve   •  Evolu7on  of  larger  animals  needed  evolu7on  of   proteins  that  carry  O2   •  However,  none  of  the  aa  can  reversibly  bind  O2   •  There  is  a  need  for  transi7on  elements  like  Fe   and  Cu  which  can  do  that   •  Fe  is  incorporated  into  a  protein-­‐bound   prosthe7c  group  called  heme  
  • 15. Structures  of  Porphyrin  and  Heme   The iron atom of heme has six coordination bonds: four in the plane of, and bonded to, the flat porphyrin ring system, and two perpendicular to it Porphyrin family Heme four pyrrole rings linked by methene bridges
  • 16. Example:  Oxygen  Binding  to  Myoglobin   •  Free  heme  molecules  not  bound  in  proteins  à  2  open   coordina7on  bonds   •  Reac7on  of  1  O2  molecule  with  two  hemes  will  lead  to   irreversible  conversion  of  Fe2+  to  Fe3+  which  does  not   bind  O2   •  This  reac7on  is  prevented  in  heme-­‐containing  proteins   because  one  of  the  coordina7on  bonds  is  aoached  to  a   His  side  chain  and  the  other  is  free  to  bond  O2   •  When  O2  binds,  electronic  proper7es  of  heme  changes   (color  changes  from  dark  purple  to  bright  red)   •  CO  and  NO  bind  more  7ghtly  to  heme  than  O2  è  toxic   to  aerobic  organisms  
  • 17. Structure  of  Myoglobin   •  Mb  is  a  single  polypep7de  of  153  aa  and  1  heme   molecule   •  It  is  part  of  a  family  of     proteins  called  globins   •  8  α  helices   •  His  residue  coordinated  to   heme  is  His93  (or  His  F8)   Bends reflecting the a helices they connect
  • 18. Binding  of  Carbon  Monoxide   •  CO  has  similar  size  and  shape  to  O2;  it  can  fit  to  the  same   binding  site   •  CO  binds  over  20,000  7mes  beoer  than  O2  because  the  carbon   in  CO  has  a  filled  lone  electron  pair  that  can  be  donated  to   vacant  d-­‐orbitals  on  the  Fe2+   •  Protein  pocket  decreases  affinity  for  CO,  but  it  s7ll  binds  about   250  7mes  beoer  than  oxygen   •  CO  is  highly  toxic  as  it  competes  with  oxygen.  It  blocks  the   func7on  of  myoglobin,  hemoglobin,  and  mitochondrial   cytochromes  that  are  involved  in  oxida7ve  phosphoryla7on  
  • 19. CO  vs.  O2  Binding  to  Free  Heme  
  • 20. Heme  binding  to  protein  affects     CO  vs.  O2  binding     When binding to the heme in myoglobin, CO is forced to adopt a slight angle because the perpendicular arrangement is sterically blocked by His E7, the distal His. This effect weakens the binding of CO to myoglobin.
  • 21. Spectroscopic  Detec(on  of     Oxygen  Binding  to  Myoglobin   •  The  heme  group  is  a  strong  chromophore  that  absorbs  both  in   ultraviolet  and  visible  range   •  Ferrous  form  (Fe2+  )  without  oxygen  has  an  intense  Soret  band  at   429  nm     •  Oxygen  binding  alters  the  electronic  proper7es  of  the  heme,  and   shiOs  the  posi7on  of  the  Soret  band  to  414  nm       •  Binding  of  oxygen  can  be  monitored  by  UV-­‐Vis  spectrophotometry   •  Deoxyhemoglobin  (in  venous  blood)  appears  purplish  in  color  and   oxyhemoglobin  (in  arterial  blood)  is  red  
  • 22. •  pO2  in  lungs  is  about  13  kPa:  it  sure  binds  oxygen  well   •  pO2  in  7ssues  is  about  4  kPa:  it  will  not  release  it!   •  Would  lowering  the  affinity  (P50)  of  myoglobin  to  oxygen  help?   Could  myoglobin  transport  O2?  
  • 23. For  effec(ve  transport     affinity  must  vary  with  pO2  
  • 24. How  can  affinity  to  oxygen  change?   •  Must  be  a  protein  with  mul7ple  binding  sites   •  Binding  sites  must  be  able  to  interact  with  each  other   •  This  phenomenon  is  called  coopera7vity   –  posi7ve  coopera7vity     • first  binding  event  increases  affinity  at  remaining  sites   • recognized  by  sigmoidal  binding  curves   –  nega7ve  coopera7vity     • first  binding  event  reduces  affinity  at  remaining  sites  
  • 26. Coopera(vity:  Quan(ta(ve  Descrip(on   naK ]L][P[ ]PL[ n = d n n K+ = ]L[ ]L[ θ ̶     n  =  1  à  no  coopera7vity   ̶     Hill  plot:  ploMng  log  (θ  /  1  –  θ)  vs.  log  [L].  Gives  the  Hill   coefficient  (nH)  which  measures  the  degree  of  coopera7vity  
  • 27. The  Hill  Plot  of  Coopera(vity    
  • 28. Coopera(vity  is  a     special  case  of  allosteric  regula(on   •  Allosteric  protein   –  Binding  of  a  ligand  (a  modulator)  to  one  site  affects   the  binding  proper7es  of  a  different  site,  on  the   same  protein   –  Can  be  posi7ve  or  nega7ve   –  Homotropic     • Normal  ligand  of  the  protein  is  the  allosteric  regulator   –  Heterotropic   • Different  ligand  affects  binding  of  the  normal  ligand   •  Coopera7vity  =  posi7ve  homotropic  regula7on  
  • 29. •  Red  blood  cells  (erythrocytes)  are  special   incomplete  cells  filled  with  Hb  (and  no  nucleus  or   organelles).  They  are  biconcave  discs.  Their   lifespan  is  120  days   •  In  arterial  blood  (from  the  lungs),  Hb  is  96%   saturated  with  O2.  In  venous  blood  (to  the  heart   and  lungs),  Hb  is  ~64%   •  Mb  is  insensi7ve  to  small  changes  in  [O2]  (O2-­‐ storage  protein)   •  Hb  is  sensi7ve  to  small  changes  à  O2-­‐transport   protein  (mul7ple  subunits)   Hemoglobin  binds  oxygen  coopera(vely  
  • 30. Hemoglobin  binds  oxygen  coopera(vely   •  Hemoglobin  (Hb)  is  a  tetramer  of  two  subunits  (α2β2)   •  Each  subunit  is  similar  to  myoglobin  
  • 31. •  Hb  (Mr  64,500)  is  spherical   •  Tetramer   •  4  heme  prosthe7c  groups   •  2  α  chains  (141  aa  each)  and  2  β  chains  (146  aa  each)   •  3D  structure  of  both  α  and  β  is  similar   •  aa  sequences  of  Mb  and  α  and  β  Hb  are  iden7cal  in   27  posi7ons   •  The  helix-­‐naming  system  for  Mb  is  also  used  for  Hb   polypep7des   •  Hbα  does  not  have  D  helix   Hb  Subunits  are  Similar  to  Mb  
  • 32. Sequence  Similarity  between     Hemoglobin  and  Myoglobin  
  • 33. •  4o  structure  of  Hb  shows  strong  interac7ons   between  unlike  subunits   •  The  α1β1  interface  (and  also  α2β2)  involve  >  30  aa   •  The  α1β2  interface  (and  also  α2β1)  involve  19  aa   •  These  interfaces  make  strong  interac7ons  à  mild   treatment  of  Hb  with  urea  breaks  the  tetramer   into  αβ  dimers   Hb  is  a  dimer  of  two  αβ  protomers  
  • 34. Subunit  Interac(ons  in  Hemoglobin  
  • 35. R  and  T  States  of  Hemoglobin     •  Two  major  conforma7ons  of  Hb:     R  state  and  T  state     •  O2  binds  to  Hb  in  either  one,  but  it  has  to  R  state   •  T  =  Tense  state     –  More  interac7ons,  more  stable     –  Lower  affinity  for  O2   •  R  =  Relaxed  state     –  Fewer  Interac7ons,  more  flexible   –  Higher  affinity  for  O2      
  • 36. Hb  Changes  Structure  a[er  O2  Binding   •  O2  binding  stabilizes  R  state   •  T  state  is  more  stable  when  not  bound  to  O2   (deoxyhemoglobin)     •  O2  binding  to  a  Hb  subunit  at  the  T  state  converts  the   subunit  to  R  state   •  Therefore,  O2  binding  triggers  a  T  à  R  conforma7onal   change   •  Conforma7onal  change  from  the  T  state  to  the  R  state   involves  breaking  ion  pairs  between  the  α1-­‐β2  interface        
  • 37. The transition from the T state to the R state shifts the subunit pairs, affecting certain ion pairs. Most noticeably, the His HC3 residues at the carboxyl termini of the β subunits, which are involved in ion pairs in the T state, rotate in the R state toward the center of the molecule, where they are no longer in ion pairs. Another dramatic result of the T → R transition is a narrowing of the pocket between the β subunits. R  and  T  States  of  Hemoglobin    
  • 38. pH  Effect  on  O2  Binding  to  Hemoglobin   • Ac7vely  metabolizing  7ssues  generate  H+,  lowering  the   pH  of  the  blood  near  the  7ssues  rela7ve  to  the  lungs   • Hb  Affinity  for  oxygen  depends  on  the  pH   –  H+  binds  to  Hb  and  stabilizes  the  T  state   •  Protonates  His146  which  then  forms  a  salt  bridge  with  Asp94   •  Leads  to  the  release  of  O2  (in  the  7ssues)   • The  pH  difference  between  lungs  and  metabolic  7ssues   increases  efficiency  of  the  O2  transport   •   This  is  known  as  the  Bohr  effect  
  • 39. pH  Effect  on  O2  Binding  to  Hemoglobin   lungs tissues
  • 40. Hemoglobin  and  CO2  Export   •  CO2  is  produced  by  metabolism  in  7ssues  and  must  be  exported   •  15–20%  of  CO2  is  exported  in  the  form  of  a  carbamate  on  the   amino  terminal  residues  of  each  of  the  polypep7de  subunits.       •  No7ce:   –  the  forma7on  of  a  carbamate  yields  a  proton  which  can   contribute  to  the  Bohr  Effect     –  the  carbamate  forms  addi7onal  salt  bridges  stabilizing  the  T  state   •  The  rest  of  the  CO2  is  exported  as  dissolved  bicarbonate     –  Formed  by  carbonic  anhydrase,  and  also  producing  a  proton    
  • 41. 2,3-­‐Bisphosphoglycerate  regulates  O2  binding     •  Nega7ve  heterotropic  regulator  of  Hb  func7on   •  Present  at  mM  concentra7ons  in  erythrocytes   –  Produced  from  an  intermediate  in  glycolysis   –  Plays  an  important  role  in  physiological  adapta7ons   for  low  oxygen  concentra7on  (like  at  high  al7tudes   or  in  cases  of  hypoxia)   •  Small  nega7vely  charged  molecule,     binds  to  the  posi7vely  charged     central  cavity  of  Hb   •  Stabilizes  the  T  states  
  • 42. 2,3-­‐BPG  binds  to  the  central  cavity  of  hB     The binding pocket for BPG disappears on oxygenation BPG binding stabilizes the T state of deoxyhemoglobin +
  • 43. 2,3-­‐BPG  allows  for  O2  release  in  the  (ssues     and  adapta(on  to  changes  in  al(tude   « At  sea  level,  Hb  is  nearly  saturated   with  O2  in  the  lungs   « Hb  is  just  over  60%  saturated  in   the  7ssues   « The  amount  of  O2  released  in  the   7ssues  is  about  38%  of  the   maximum  that  can  be  carried  in   the  blood   « At  high  al7tudes,  O2  delivery   declines  to  30%  of  maximum     « An  increase  in  [BPG]  decreases  the   affinity  of  Hb  for  O2,  so  ~  37%  of   what  can  be  carried  is  again   delivered  to  the  7ssues  
  • 44.   Either all circles (low affinity or inactive) or all squares (high affinity or active). Each individual subunit can be in either the or form. A very large number of conformations is thus possible Two  Models  of  Coopera(vity:   Concerted  (MWC)  vs.  Sequen(al  
  • 45. Sickle-­‐cell  anemia  is  due  to     a  muta(on  in  hemoglobin   •  Sickle-­‐cell  disease  occurs  in  individuals     homozygous  for  the  sickle  cell  allele  of     the  gene  encoding  the  β  subunit  of  Hb   •  When  Hb  from  a  sick  pa7ent  is     deoxygenated  (Hb  S)  it  aggregates  and     precipitates  (normal  Hb,  Hb  A  does  not     precipitate  upon  deoxygena7on)   •  The  difference  is  a  single  aa  subs7tu7on     Glu6  à  Val  in  the  β  chain  of  Hb   •  The  new  Val  (hydrophobic)  side  chain     can  bind  to  a  different  Hb  molecule  to     form  a  strand   •  Untreated  homozygous  individuals  generally  die  in  childhood   •  Heterozygous  individuals  exhibit  a  resistance  to  malaria  
  • 46. Forma(on  of  Hb  Strands     in  Sickle-­‐Cell  Anemia   deoxyhemoglobin S has a hydrophobic patch on its surface, which causes the molecules to aggregate into strands that align into insoluble fibers
  • 47. •  The  main  oxygen  transport  protein  in  the  fetus  during  the  last   seven  months  of  development  in  the  uterus  and  in  the   newborn  un7l  ~  6  months  old     •  2  α,  2  γ  subunits  (fewer  posi7ve  charges  than  the  adult   hemoglobin  β  subunit;  2,3-­‐BPG  binds  less)   •  Binds  O2  at  a  greater  affinity  that  HbA  (adult)   à  fetus  can  extract  O2  from  his/her  mother  bloodstream   easily   •  The  affinity  of  HbF  for  oxygen  >  that  of  HbA     (P50  HbF  ~  2.5  kPa;  P50  HbA  ~  3.7  kPa)   •  The  oxygen  satura7on  curve  is  shiOed  to  the  leO  for  HbF   •  HbF  does  not  interact  with  2,3-­‐BPG  (which  decreases  the   affinity  of  HbA  for  oxygen)  à  HbF  binds  O2  (ghter  than  HbA   Fetal  Hemoglobin  (HbF)  
  • 48. O2 flows from maternal oxyhemoglobin to fetal deoxyhemoglobin 2.7 5.3 8 10.7 13.3 17 PO2 mmHgkPa
  • 49. 5.2  The  Immune  System  and  Immunoglobulins   •  Most  interac7ons  between  a  P  and  L  is  in  pockets  in  the   protein  lined  with  aa  arranged  to  make  this  interac7on   specific   •  The  immune  system  in  vertebrates  can  discriminate   between  “self”  and  “nonself”  en77es  and  can  destroy   the  nonself  ones   •  Leukocytes  (WBC)  are  immunity  cells  developing  in  the   bone  marrow  (including  macrophages  and  lymphocytes)   •  Any  molecule  that  can  induce  an  immune  response  is   called  an  an(gen    
  • 50. Two  Types  of  Immune  Systems   •   Cellular  immune  system   -­‐  targets  own  cells  that  have  been  infected   -­‐  also  clears  up  virus  par7cles  and  infec7ng  bacteria   -­‐  key  players:  Macrophages,  killer  (cytotoxic)  T  cells  (Tc),          and  inflammatory  helper  T  cells  (TH1)     •   Humoral  “fluid”  immune  system   -­‐  targets  extracellular  pathogens  and  infec7ous  agents  like   bacteria  and  viruses   -­‐  can  also  recognize  foreign  proteins   -­‐  makes  soluble  an7bodies           -­‐  keeps  “memory”  of  past  infec7ons   -­‐  key  players:  B-­‐lymphocytes  and  helper  T-­‐cells  (TH2)   -­‐  soluble  proteins  called  an(bodies  (immunoglobulins,  Ig)  
  • 51.
  • 52. Cellular  Immune  System   •  An7bodies  bind  to  fragments  displayed  on  the  surface  of  invading   cells   •  Phagocytes:  specialized  cells  that  eat  invaders   •  Macrophages:  large  phagocytes  that  ingest  bacteria  that  are   tagged  by  an7bodies  
  • 53. Humoral  Immune  System   •  Vertebrates  also  fight  infec7ons  with  soluble  an7bodies   that  specifically  bind  an7gens   –  An7gens  are  substances  that  s7mulate  produc7on  of   an7bodies   •  Typically  macromolecular  in  nature   •  Recognized  as  foreign  by  the  immune  system   •  Coat  proteins  of  bacteria  and  viruses   •  Surface  carbohydrates  of  cells  or  viruses   –  An7bodies  are  proteins  that  are  produced  by  B  cells  and   specifically  bind  to  an7gens   •  Binding  will  mark  the  an7gen  for  destruc7on  or  interfere  with  its   func7on   •  A  given  an7body  will  bind  to  a  small  region  (epitope)  of  the  an7gen   •  One  an7gen  can  have  several  epitopes  
  • 54. An(bodies:  Immunoglobulin  G   •  Composed  of  two  heavy  chains  and  two  light  chains   •  Composed  of  constant  domains  and  variable  domains     •  Light  chains:  one  constant  and  one  variable  domain   •  Heavy  chains:  three  constant  and  one  variable  domain   •  Variable  domains  of  each  chain  make  up  an7gen-­‐   binding  site  (two/an7body)     •  Variable  domains  contain  regions  that  are   hypervariable  (specifically  the  an7gen-­‐binding  site)   •  Confers  high  an7gen  specificity  
  • 55. An(bodies:  Immunoglobulin  G   Antibodies have 2 identical antigen- binding sites
  • 56. An(gens  bind  via  induced  fit   An7gen  binding  causes  significant  structural  changes  to  the  an7body      
  • 57. Antibodies bind tightly and specifically to antigens (Kd ~ 10–10 M)
  • 58. An(gen-­‐An(body  Interac(ons  in  Analy(cal   Procedures   •  Polyclonal  an(bodies  –  produced  by  different  B   lymphocytes  responding  to  one  an7gen  (e.g.  an7gen   injected  in  an  animal)   –  contain  a  mixture  of  Ab  that  recognize  different  parts   of  the  an7gen   •  Monoclonal  an(bodies  –  produced  by  iden7cal  (cloned)   B  cells  grown  in  cell  culture   –  Homogeneous,  recognize  the  same  part  of  the  an7gen   •  Can  be  used  for  affinity  chromatography  (aoached  to   beads)   •  Also  in  ELISA  and  immunoblot  assays  
  • 59. An(body  specificity  is  an     important  analy(cal  reagent  
  • 60. An(body  detec(on  can  be     colormetric  or  luminescent