SlideShare a Scribd company logo
1 of 72
Download to read offline
7	
  |	
  Carbohydrates	
  and	
  Glycobiology	
  
© 2013 W. H. Freeman and Company
Carbohydrates	
  
•  Named	
  so	
  because	
  many	
  have	
  formula	
  Cn(H2O)n	
  
•  Produced	
  from	
  CO2	
  and	
  H2O	
  via	
  photosynthesis	
  in	
  plants	
  	
  
•  Range	
  from	
  as	
  small	
  as	
  glyceraldehyde	
  (Mw	
  =	
  90	
  g/mol)	
  to	
  as	
  
large	
  as	
  amylopecIn	
  (Mw	
  =	
  200,000,000	
  g/mol)	
  	
  
•  Fulfill	
  a	
  variety	
  of	
  funcIons	
  including:	
  
–  energy	
  source	
  and	
  energy	
  storage	
  
–  structural	
  component	
  of	
  cell	
  walls	
  and	
  exoskeletons	
  
–  informaIonal	
  molecules	
  in	
  cell-­‐cell	
  signaling	
  
•  Can	
  be	
  covalently	
  linked	
  with	
  proteins	
  to	
  form	
  glycoproteins	
  
and	
  proteoglycans	
  
3	
  
Carbohydrates	
  
•  Monosaccharides (simple sugars) – one
polyhydroxy aldehyde or ketone unit (glucose)
•  Disaccharides – two monosaccharide units
joined together by a glycosidic linkage (sucrose)
•  Oligosaccharides – few monosaccharide units
joined together (in cells, most oligosaccharides
are joined to nonsugar molecule)
•  Polysaccharides – sugar polymers consisting of
>20 monosaccharide units
4	
  
Monosaccharide	
  Carbon	
  backbone	
  
•  3 C è triose
•  4 C è tetrose
•  5 C è pentose
•  6 C è hexose
•  7 C è heptose
Aldoses	
  and	
  Ketoses	
  
•  An	
  aldose	
  contains	
  an	
  aldehyde	
  funcIonal	
  group	
  	
  
•  A	
  ketose	
  contains	
  a	
  ketone	
  funcIonal	
  group	
  	
  	
  
6	
  
Stereoisomers	
  
•  All monosaccharides (except dihydroxyacetone)
are chiral compounds, with at least one chiral
carbon
•  A molecule with n chiral centers can have 2n
stereoisomers
•  E.g. glyceraldehyde has 21 = 2
aldohexoses have 24 = 16 stereoisomers
Enan8omers	
  
•  Enan8omers	
  	
  
–  Stereoisomers	
  that	
  are	
  nonsuperimposable	
  mirror	
  images	
  	
  
•  In	
  sugars	
  that	
  contain	
  many	
  chiral	
  centers,	
  only	
  the	
  one	
  
that	
  is	
  most	
  distant	
  from	
  the	
  carbonyl	
  carbon	
  is	
  
designated	
  as	
  D	
  (right)	
  or	
  L	
  (leZ)	
  
•  D	
  and	
  L	
  isomers	
  of	
  a	
  sugar	
  are	
  enanIomers	
  
–  For	
  example,	
  L	
  and	
  D	
  glucose	
  have	
  the	
  same	
  water	
  solubility	
  
•  Most	
  hexoses	
  in	
  living	
  organisms	
  are	
  D	
  stereoisomers	
  
•  Some	
  simple	
  sugars	
  occur	
  in	
  the	
  L-­‐form,	
  such	
  as	
  L-­‐
arabinose	
  
Drawing	
  	
  Monosaccharides	
  
•  Chiral	
  compounds	
  can	
  be	
  
drawn	
  using	
  perspec8ve	
  
formulas	
  
•  However,	
  chiral	
  
carbohydrates	
  are	
  usually	
  
represented	
  by	
  Fischer	
  
projec8ons	
  
•  Horizontal	
  bonds	
  are	
  
poinIng	
  toward	
  you;	
  verIcal	
  
bonds	
  are	
  projecIng	
  away	
  
from	
  you	
  
Diastereomers	
  
•  Diastereomers:	
  stereoisomers	
  that	
  are	
  not	
  mirror	
  
images	
  
•  Diastereomers	
  have	
  different	
  physical	
  properIes	
  
–  For	
  example,	
  water	
  solubiliIes	
  of	
  threose	
  and	
  erythrose	
  are	
  
different	
  
Epimers	
  
•  Epimers	
  are	
  two	
  sugars	
  that	
  differ	
  only	
  in	
  the	
  
configuraIon	
  around	
  one	
  carbon	
  atom	
  
Structures	
  to	
  Know	
  
•  Glyceraldehyde & dihydroxyacetone are the
standard three-carbon sugars
•  Ribose is the standard five-carbon sugar
•  Glucose is the standard six-carbon sugar
•  Galactose is an epimer of glucose
•  Mannose is an epimer of glucose
•  Fructose is the ketose form of glucose
Common	
  Monosaccharides	
  Have	
  Cyclic	
  
Structures	
  
•  In solution, monosaccharides with 4 or more
carbons form cyclic compounds (ring structures)
•  Carbonyl C is attacked by the hydroxyl O forming
a covalent bond
Hemiacetals	
  and	
  Hemiketals	
  
•  Aldehyde	
  and	
  ketone	
  carbons	
  are	
  electrophilic	
  	
  
•  Alcohol	
  oxygen	
  atom	
  is	
  nucleophilic	
  
•  When	
  aldehydes	
  are	
  aaacked	
  by	
  alcohols,	
  hemiacetals	
  form	
  
•  When	
  ketones	
  are	
  aaacked	
  by	
  alcohols,	
  hemiketals	
  form	
  
When the second alcohol is part of another sugar
molecule, the bond produced is a glycosidic bond.
Cycliza8on	
  of	
  Monosaccharides	
  
•  Pentoses and hexoses readily undergo intramolecular ring
formation
•  The former carbonyl carbon becomes a new chiral center,
called the anomeric carbon
•  The former carbonyl oxygen becomes a hydroxyl group; the
position of this group determines if the anomer is α or β
•  If the hydroxyl group is on the opposite side (trans) of the
ring as the CH2OH moiety the configuration is α
•  In the hydroxyl group is on the same side (cis) of the ring as
the CH2OH moiety, the configuration is β
Mutarotation – the
interconversion of α and β
anomers.
Pyranoses	
  and	
  Furanoses	
  
•  Six-membered oxygen-containing rings are
called pyranoses
•  Five-membered oxygen-containing rings are
called furanoses	
  	
  
•  The anomeric carbon is usually drawn on the
right side
•  Cyclic sugar structures
are more accurately
represented in Haworth
perspective formulas
Conver8ng	
  linear	
  to	
  cyclic	
  structures	
  
•  For any linear hexose:
1.  Draw 6-membered ring (O at the upper right)
2.  Number C’s clockwise (start with anomeric)
3.  Insert the –OH
a. if –OH is on the right, draw it pointing down
b. if –OH is on the left, draw it pointing up
4.  Insert the terminal –CH2OH
a. if the sugar is the D-isomer, draw it upwards
b. if it is the L-isomer, draw it downwards
5.  Draw the –OH on the anomeric C
a. if it faces the same side as the –CH2OH, it’s β
b. if it faces the opposite side, it’s α
The	
  ring	
  is	
  not	
  planar	
  
•  In	
  soluIon	
  pyranose	
  ring	
  is	
  
not	
  planar	
  but	
  it	
  can	
  
assume	
  two	
  chair	
  
conformaIons	
  
•  Boat	
  conformaIon	
  is	
  
possible	
  but	
  very	
  rare	
  
•  The	
  two	
  chair	
  
conformaIons	
  are	
  not	
  
readily	
  interconverIble	
  
(one	
  conformer	
  is	
  more	
  
stable	
  than	
  the	
  other)	
  
Chain-­‐Ring	
  Equilibrium	
  	
  
and	
  Reducing	
  Sugars	
  
•  The	
  ring	
  forms	
  exist	
  in	
  equilibrium	
  with	
  the	
  open-­‐chain	
  
forms	
  
•  Aldehyde	
  can	
  reduce	
  Cu2+	
  to	
  Cu+	
  (Fehling’s	
  test)	
  
•  Aldehyde	
  can	
  reduce	
  Ag+	
  to	
  Ag0	
  (Tollens’	
  test)	
  
•  Allows	
  detecIon	
  of	
  reducing	
  sugars,	
  such	
  as	
  glucose	
  (by	
  
measuring	
  the	
  amount	
  of	
  oxidizing	
  agent	
  reduced	
  by	
  a	
  
sugar	
  soluIon,	
  the	
  sugar	
  concentraIon	
  can	
  be	
  
esImated)	
  
The cuprous ion (Cu+) produced forms a red cuprous oxide
precipitate.
Colorimetric	
  Glucose	
  Analysis	
  
•  Nowadays,	
  enzymaIc	
  methods	
  are	
  
used	
  to	
  quanIfy	
  reducing	
  sugars	
  such	
  
as	
  glucose	
  
–  The	
  enzyme	
  glucose	
  oxidase	
  
catalyzes	
  the	
  conversion	
  of	
  
glucose	
  to	
  glucono-­‐δ-­‐lactone	
  and	
  
hydrogen	
  peroxide	
  
–  Hydrogen	
  peroxide	
  oxidizes	
  
organic	
  molecules	
  into	
  highly	
  
colored	
  compounds	
  
–  ConcentraIons	
  of	
  such	
  
compounds	
  is	
  measured	
  
colorimetrically	
  	
  	
  
	
  
O
OH
OH
OH
OH
CH2OH
O
OH
OH O
OH
CH2OH
NH2
NH2
OCH3
OCH3
NH
NH
OCH3
OCH3
β-D-Glucose
δ-D-Gluconolactone
Glucose oxidase
O2
H2O2
Peroxidase
2 H2O
Reduced
o-dianisidine
(faint orange)
Oxidized
o-dianisidine
(bright orange)
•  Electrochemical	
  detecIon	
  is	
  used	
  in	
  
portable	
  glucose	
  sensors	
  
Blood	
  glucose	
  measurements	
  in	
  the	
  
diagnosis	
  and	
  treatment	
  of	
  diabetes	
  
•  Untreated	
  diabetes	
  has	
  several	
  long-­‐term	
  consequences:	
  
kidney	
  failure,	
  cardiovascular	
  disease,	
  blindness,	
  impaired	
  
wound	
  healing,	
  etc.	
  
•  Average	
  [glc]blood	
  	
  over	
  days	
  can	
  be	
  measured	
  because	
  of	
  a	
  
nonenzymaIc	
  reacIon	
  between	
  glc	
  and	
  primary	
  amino	
  
groups	
  in	
  Hb	
  
•  The	
  amount	
  of	
  glycated	
  Hb	
  (GHB)	
  reflects	
  the	
  average	
  
[glc]blood	
  over	
  the	
  circulaIng	
  lifeIme	
  of	
  RBC	
  (~120	
  days)	
  
•  Normal	
  levels	
  ~5%	
  of	
  Hb	
  is	
  GHB	
  
•  DiabeIc	
  people	
  may	
  have	
  it	
  as	
  high	
  as	
  13%	
  
•  Advanced	
  glycaIon	
  endproducts	
  (AGEs)	
  contribute	
  to	
  the	
  
long	
  term	
  problems	
  associated	
  with	
  diabetes	
  
Organisms	
  contain	
  many	
  hexose	
  deriva8ves	
  
The	
  Glycosidic	
  Bond	
  
•  Two	
  sugar	
  molecules	
  can	
  be	
  joined	
  via	
  a	
  glycosidic	
  bond	
  
between	
  an	
  anomeric	
  carbon	
  and	
  a	
  hydroxyl	
  carbon	
  	
  	
  
•  The	
  resulIng	
  compound	
  is	
  a	
  glycoside	
  
•  The	
  glycosidic	
  bond	
  (an	
  acetal)	
  between	
  monomers	
  is	
  less	
  
reacIve	
  than	
  the	
  hemiacetal	
  at	
  the	
  second	
  monomer	
  
–  Second	
  monomer,	
  with	
  the	
  hemiacetal,	
  is	
  reducing	
  
–  Anomeric	
  carbon	
  involved	
  in	
  the	
  glycosidic	
  linkage	
  is	
  nonreducing	
  	
  
•  The	
  disaccharide	
  formed	
  upon	
  condensaIon	
  of	
  two	
  glucose	
  
molecules	
  via	
  1	
  →	
  4	
  bond	
  is	
  called	
  maltose	
  
Nonreducing	
  Disaccharides	
  
•  Two	
  sugar	
  molecules	
  can	
  be	
  also	
  joined	
  via	
  a	
  glycosidic	
  
bond	
  between	
  two	
  anomeric	
  carbons	
  	
  	
  
•  The	
  product	
  has	
  two	
  acetal	
  groups	
  and	
  no	
  hemiacetals	
  
•  There	
  are	
  no	
  reducing	
  ends,	
  this	
  is	
  a	
  nonreducing	
  sugar	
  
•  Trehalose	
  is	
  a	
  consItuent	
  of	
  hemolymph	
  of	
  insects	
  
–  Provides	
  protecIon	
  from	
  drying	
  
Naming	
  disaccharides	
  
1.  Find the nonreducing end
2.  Give the configuration (α or β) at the anomeric C joining
the first monosaccharide to the other
3.  Name the nonreducing residue (use “furano” for 5-
membered rings or “pyrano” for 6-membered rings)
4.  Add the glycosidic bond in parenthesis (from which C to
which C)
5.  Name the second residue
6.  If there are more residues, repeat step 2
* Abbreviations can be used (Glc, Fru, Gal, Man, GlcN, etc.)
Sweet	
  tooth?	
  Anyone?	
  
•  Most	
  people	
  like	
  sweets	
  
•  Sweetness	
  is	
  one	
  of	
  5	
  tastes	
  
humans	
  can	
  taste	
  
•  Due	
  to	
  receptors	
  on	
  gustatory	
  
cells	
  on	
  the	
  surface	
  of	
  
tongues…	
  T1R2	
  and	
  T1R3	
  
•  Binding	
  of	
  molecules	
  to	
  these	
  
receptors,	
  signals	
  are	
  
transduced	
  to	
  give	
  the	
  sweet	
  
taste	
  
L,L-­‐Aspartame	
  is	
  sweet;	
  	
  
D,L-­‐Aspartame	
  is	
  biSer	
  
Polysaccharides	
  
•  Natural	
  carbohydrates	
  are	
  usually	
  found	
  as	
  polymers	
  
•  These	
  polysaccharides	
  can	
  be	
  
–  homopolysaccharides	
  
–  heteropolysaccharides	
  	
  
–  linear	
  	
  
–  branched	
  
•  Polysaccharides	
  do	
  not	
  have	
  a	
  defined	
  molecular	
  weight.	
  
–  This	
  is	
  in	
  contrast	
  to	
  proteins	
  because	
  unlike	
  proteins,	
  
no	
  template	
  is	
  used	
  to	
  make	
  polysaccharides	
  
40	
  
Can be:
1)  Storage forms of monosaccharides, used
for fuel (starch and glycogen)
2)  Structural elements in plant cell walls and
animal exoskeletons (cellulose and chitin)
Provide extracellular support for organisms
of all kingdoms,
E.g.
1)  Bacterial cell envelope is composed in
part of a heteropolysaccharide
2)  Extracellular matrix in animal cells
Glycogen	
  
•  Glycogen	
  is	
  a	
  branched	
  homopolysaccharide	
  of	
  glucose	
  
–  Glucose	
  monomers	
  form	
  (α1	
  →	
  4)	
  linked	
  chains	
  
–  Branch-­‐points	
  with	
  (α1	
  →	
  6)	
  linkers	
  every	
  8–12	
  residues	
  
–  Molecular	
  weight	
  reaches	
  several	
  millions	
  
–  FuncIons	
  as	
  the	
  main	
  storage	
  polysaccharide	
  in	
  animals	
  
42	
  
Starch	
  
•  Starch	
  is	
  a	
  mixture	
  of	
  two	
  homopolysaccharides	
  of	
  glucose	
  
•  Amylose	
  is	
  an	
  unbranched	
  polymer	
  of	
  (α1	
  →	
  4)	
  linked	
  
residues	
  
•  AmylopecIn	
  is	
  branched	
  like	
  glycogen	
  but	
  the	
  branch-­‐
points	
  with	
  (α1	
  →	
  6)	
  linkers	
  occur	
  every	
  24–30	
  residues	
  
•  Molecular	
  weight	
  of	
  amylopecIn	
  is	
  up	
  to	
  200	
  million	
  
•  Starch	
  is	
  the	
  main	
  storage	
  polysaccharide	
  in	
  plants	
  
Glycosidic	
  Linkages	
  in	
  Glycogen	
  and	
  Starch	
  
Mixture	
  of	
  Amylose	
  and	
  Amylopec8n	
  in	
  Starch	
  
In starch granules, strands of amylopectin (blue) form double-helical structures
with each other or with amylose strands (blue). Glucose residues at the
nonreducing ends of the outer branches are removed enzymatically during the
mobilization of starch for energy production.
Glycogen has a similar structure but is more highly branched and more
compact.
Metabolism	
  of	
  Glycogen	
  and	
  Starch	
  
•  Glycogen	
  and	
  starch	
  oZen	
  form	
  granules	
  in	
  cells	
  
•  Granules	
  contain	
  enzymes	
  that	
  synthesize	
  and	
  
degrade	
  these	
  polymers	
  
•  Glycogen	
  and	
  amylopecIn	
  have	
  one	
  reducing	
  end	
  
but	
  many	
  nonreducing	
  ends	
  (a	
  polymer	
  with	
  n	
  
branches	
  has	
  n	
  +	
  1	
  nonreducing	
  ends	
  and	
  only	
  1	
  
reducing	
  end)	
  
•  EnzymaIc	
  processing	
  occurs	
  simultaneously	
  in	
  many	
  
nonreducing	
  ends	
  	
  
Dextrans	
  
•  Bacterial and yeast polysaccharides
•  (α1 → 6)-linked poly-D-glucose
•  All units have (α1 → 3) branches
•  Some have also (α1 → 2) or (α1 → 4)
branches
•  Dental plaque (formed by bacteria on the
surface of teeth) is rich in dextrans
Cellulose	
  
•  Cellulose	
  is	
  a	
  branched	
  homopolysaccharide	
  of	
  glucose	
  
–  Glucose	
  monomers	
  form	
  (β1	
  →	
  4)	
  linked	
  chains	
  
–  Hydrogen	
  bonds	
  form	
  between	
  adjacent	
  monomers	
  
–  AddiIonal	
  H-­‐bonds	
  between	
  chains	
  
–  Structure	
  is	
  now	
  tough	
  and	
  water-­‐insoluble	
  
–  Most	
  abundant	
  polysaccharide	
  in	
  nature	
  
–  Coaon	
  is	
  nearly	
  pure	
  fibrous	
  cellulose	
  
	
  
Hydrogen	
  Bonding	
  in	
  Cellulose	
  
Cellulose	
  Metabolism	
  
•  The	
  fibrous	
  structure	
  and	
  water-­‐insolubility	
  make	
  cellulose	
  a	
  
difficult	
  substrate	
  to	
  act	
  on	
  
•  Fungi,	
  bacteria,	
  and	
  protozoa	
  secrete	
  cellulase,	
  which	
  allows	
  them	
  
to	
  use	
  wood	
  as	
  source	
  of	
  glucose	
  
•  Most	
  animals	
  cannot	
  use	
  cellulose	
  as	
  a	
  fuel	
  source	
  because	
  they	
  
lack	
  the	
  enzyme	
  to	
  hydrolyze	
  (β1	
  →4)	
  linkages	
  	
  
•  Ruminants	
  and	
  termites	
  live	
  symbioIcally	
  with	
  microorganisms	
  that	
  
produces	
  cellulase	
  
•  Cellulases	
  hold	
  promise	
  in	
  the	
  fermentaIon	
  of	
  biomass	
  into	
  biofuels	
  	
  
A wood fungus growing on an oak log
Chi8n	
  
•  ChiIn	
  is	
  a	
  linear	
  homopolysaccharide	
  of	
  N-­‐acetylglucosamine	
  	
  
–  N-­‐acetylglucosamine	
  monomers	
  form	
  (β1	
  →	
  4)-­‐linked	
  chains	
  
–  Forms	
  extended	
  fibers	
  that	
  are	
  similar	
  to	
  those	
  of	
  cellulose	
  
–  Hard,	
  insoluble,	
  cannot	
  be	
  digested	
  by	
  vertebrates	
  
–  Structure	
  is	
  tough	
  but	
  flexible,	
  and	
  water-­‐insoluble	
  
–  Found	
  in	
  cell	
  walls	
  in	
  mushrooms,	
  and	
  in	
  exoskeletons	
  of	
  
insects,	
  spiders,	
  crabs,	
  and	
  other	
  arthropods	
  
–  1	
  billion	
  tons	
  of	
  chiIn	
  is	
  produced	
  in	
  the	
  biosphere	
  per	
  year	
  
	
  
Chi8n	
  
Agar	
  and	
  Agarose	
  
•  Agar	
  is	
  a	
  complex	
  mixture	
  of	
  hetereopolysaccharides	
  containing	
  
modified	
  galactose	
  units	
  
•  Agar	
  serves	
  as	
  a	
  component	
  of	
  cell	
  wall	
  in	
  some	
  seaweeds	
  
•  Agarose	
  is	
  one	
  component	
  of	
  agar	
  
•  Agar	
  soluIons	
  form	
  gels	
  that	
  are	
  commonly	
  used	
  in	
  the	
  
laboratory	
  as	
  a	
  surface	
  for	
  growing	
  bacteria	
  
•  Agar	
  is	
  also	
  used	
  for	
  capsules	
  in	
  which	
  some	
  drugs	
  and	
  vitamins	
  
are	
  packaged	
  
•  Agarose	
  soluIons	
  form	
  gels	
  that	
  are	
  commonly	
  used	
  in	
  the	
  
laboratory	
  for	
  separaIon	
  DNA	
  by	
  electrophoresis	
  
Agar	
  and	
  Agarose	
  
Glycosaminoglycans	
  
•  Linear	
  polymers	
  of	
  repeaIng	
  disaccharide	
  units	
  
•  One	
  monomer	
  is	
  either	
  	
  
–  N-­‐acetyl-­‐glucosamine	
  or	
  
–  N-­‐acetyl-­‐galactosamine	
  
•  NegaIvely	
  charged	
  
–  Uronic	
  acids	
  (C6	
  oxidaIon)	
  
–  Sulfate	
  esters	
  
•  Extended	
  hydrated	
  molecule	
  
–  Minimizes	
  charge	
  repulsion	
  
•  Forms	
  meshwork	
  with	
  fibrous	
  proteins	
  to	
  form	
  extracellular	
  matrix	
  
–  ConnecIve	
  Issue	
  
–  LubricaIon	
  of	
  joints	
  
Heparin	
  and	
  Heparan	
  Sulfate	
  	
  
•  Heparin	
  is	
  linear	
  polymer,	
  3–40	
  kDa	
  	
  
•  Heparan	
  sulfate	
  is	
  heparin-­‐like	
  polysaccharide	
  but	
  
aaached	
  to	
  proteins	
  
•  Highest	
  negaIve	
  charge	
  density	
  biomolecules	
  
•  Prevent	
  blood	
  closng	
  by	
  acIvaIng	
  protease	
  
inhibitor	
  anIthrombin	
  
•  Binding	
  to	
  various	
  cells	
  regulates	
  development	
  and	
  
formaIon	
  of	
  blood	
  vessels	
  	
  
•  Can	
  also	
  bind	
  to	
  viruses	
  and	
  bacteria	
  and	
  decrease	
  
their	
  virulence	
  
Glycoconjugates:	
  Glycoprotein	
  
•  A	
  protein	
  with	
  small	
  oligosaccharides	
  aaached	
  
–  Carbohydrate	
  aaached	
  via	
  its	
  anomeric	
  carbon	
  
–  About	
  half	
  of	
  mammalian	
  proteins	
  are	
  glycoproteins	
  
–  Carbohydrates	
  play	
  role	
  in	
  protein-­‐protein	
  recogniIon	
  	
  
–  Only	
  some	
  bacteria	
  glycosylate	
  few	
  of	
  their	
  proteins	
  	
  
–  Viral	
  proteins	
  heavily	
  glycosylated;	
  helps	
  evade	
  the	
  immune	
  
system	
  
Glycoconjugates:	
  Glycolipids	
  
•  A	
  lipid	
  with	
  covalently	
  bound	
  oligosaccharide	
  
–  Parts	
  of	
  plant	
  and	
  animal	
  cell	
  membranes	
  
–  In	
  vertebrates,	
  ganglioside	
  carbohydrate	
  
composiIon	
  determines	
  blood	
  groups	
  
–  In	
  gram-­‐negaIve	
  bacteria,	
  lipopolysaccharides	
  cover	
  
the	
  pepIdoglycan	
  layer	
  
Glycoconjugates:	
  Proteoglycans	
  
•  Sulfated	
  glucoseaminoglycans	
  aaached	
  to	
  a	
  large	
  rod-­‐
shaped	
  protein	
  in	
  cell	
  membrane	
  
–  Syndecans:	
  protein	
  has	
  a	
  single	
  transmembrane	
  
domain	
  
–  Glypicans:	
  protein	
  is	
  anchored	
  to	
  a	
  lipid	
  membrane	
  
–  Interact	
  with	
  a	
  variety	
  of	
  receptors	
  from	
  
neighboring	
  cells	
  and	
  regulate	
  cell	
  growth	
  
	
  
Proteoglycans	
  
•  Different	
  glycosaminoglycans	
  are	
  linked	
  to	
  the	
  core	
  
protein	
  
•  Linkage	
  from	
  anomeric	
  carbon	
  of	
  xylose	
  to	
  serine	
  
hydroxyl	
  
•  Our	
  Issues	
  have	
  many	
  different	
  core	
  proteins;	
  aggrecan	
  
is	
  the	
  best	
  studied	
  
Proteoglycan	
  Aggregates	
  
•  Hyaluronan	
  and	
  aggrecan	
  form	
  huge	
  (Mr	
  >	
  2•108)	
  
noncovalent	
  aggregates	
  
•  Hold	
  lots	
  of	
  water	
  (1000×	
  its	
  weight);	
  provides	
  
lubricaIon	
  
•  Very	
  low	
  fricIon	
  material	
  
•  Covers	
  joint	
  surfaces:	
  arIcular	
  carIlage	
  
–  Reduced	
  fricIon	
  
–  Load	
  balancing	
  
Chapter7 carbs

More Related Content

What's hot

Biological oxidation
Biological oxidationBiological oxidation
Biological oxidationIAU Dent
 
Citric acid cycle ( TCA )
Citric acid cycle ( TCA )Citric acid cycle ( TCA )
Citric acid cycle ( TCA )OMEED AKBAR
 
Chapter 4 Cellular Metabolism
Chapter 4   Cellular MetabolismChapter 4   Cellular Metabolism
Chapter 4 Cellular Metabolismsgossett5757
 
amino asid,peptides and proteins
amino asid,peptides and proteins amino asid,peptides and proteins
amino asid,peptides and proteins ryanifar
 
Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Chapters 17,21 Fatty acid catabolism , Lipid biosynthesisChapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Chapters 17,21 Fatty acid catabolism , Lipid biosynthesisAreej Abu Hanieh
 
Enzymes - The biological catalysts
Enzymes - The biological catalystsEnzymes - The biological catalysts
Enzymes - The biological catalystsRamesh Gupta
 
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- BiochemistryChapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- BiochemistryAreej Abu Hanieh
 
Oxidative phosphorylation
Oxidative phosphorylationOxidative phosphorylation
Oxidative phosphorylationRamesh Gupta
 
Biological oxidationppt1
Biological oxidationppt1Biological oxidationppt1
Biological oxidationppt1Genevia Vincent
 
Chapters 18 , 22 - Biochemistry
Chapters 18 , 22 - BiochemistryChapters 18 , 22 - Biochemistry
Chapters 18 , 22 - BiochemistryAreej Abu Hanieh
 
Cell Respiration &Metabolism
Cell Respiration &MetabolismCell Respiration &Metabolism
Cell Respiration &Metabolismraj kumar
 
Chapter 5 globularproteins - Biochemistry
Chapter 5 globularproteins - Biochemistry Chapter 5 globularproteins - Biochemistry
Chapter 5 globularproteins - Biochemistry Areej Abu Hanieh
 
Cell and ph lec 37
Cell and ph lec 37Cell and ph lec 37
Cell and ph lec 37mariagul6
 
Chapters 18 - Amino acid Oxidation , production of urea Biochemistry
Chapters 18 - Amino acid Oxidation , production of urea Biochemistry Chapters 18 - Amino acid Oxidation , production of urea Biochemistry
Chapters 18 - Amino acid Oxidation , production of urea Biochemistry Areej Abu Hanieh
 

What's hot (17)

Biological oxidation
Biological oxidationBiological oxidation
Biological oxidation
 
Citric acid cycle ( TCA )
Citric acid cycle ( TCA )Citric acid cycle ( TCA )
Citric acid cycle ( TCA )
 
Bioenergetics
BioenergeticsBioenergetics
Bioenergetics
 
Chapter 4 Cellular Metabolism
Chapter 4   Cellular MetabolismChapter 4   Cellular Metabolism
Chapter 4 Cellular Metabolism
 
amino asid,peptides and proteins
amino asid,peptides and proteins amino asid,peptides and proteins
amino asid,peptides and proteins
 
Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Chapters 17,21 Fatty acid catabolism , Lipid biosynthesisChapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
 
Enzymes - The biological catalysts
Enzymes - The biological catalystsEnzymes - The biological catalysts
Enzymes - The biological catalysts
 
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- BiochemistryChapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry
Chapter 19 - Oxidative Phosphorylation and Photophosphorylation- Biochemistry
 
Oxidative phosphorylation
Oxidative phosphorylationOxidative phosphorylation
Oxidative phosphorylation
 
Biological oxidationppt1
Biological oxidationppt1Biological oxidationppt1
Biological oxidationppt1
 
Chapters 18 , 22 - Biochemistry
Chapters 18 , 22 - BiochemistryChapters 18 , 22 - Biochemistry
Chapters 18 , 22 - Biochemistry
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
Amino acid metabolism
Amino acid metabolismAmino acid metabolism
Amino acid metabolism
 
Cell Respiration &Metabolism
Cell Respiration &MetabolismCell Respiration &Metabolism
Cell Respiration &Metabolism
 
Chapter 5 globularproteins - Biochemistry
Chapter 5 globularproteins - Biochemistry Chapter 5 globularproteins - Biochemistry
Chapter 5 globularproteins - Biochemistry
 
Cell and ph lec 37
Cell and ph lec 37Cell and ph lec 37
Cell and ph lec 37
 
Chapters 18 - Amino acid Oxidation , production of urea Biochemistry
Chapters 18 - Amino acid Oxidation , production of urea Biochemistry Chapters 18 - Amino acid Oxidation , production of urea Biochemistry
Chapters 18 - Amino acid Oxidation , production of urea Biochemistry
 

Similar to Chapter7 carbs

Lehninger_Ch07.ppt
Lehninger_Ch07.pptLehninger_Ch07.ppt
Lehninger_Ch07.pptssuser47bc37
 
Metabolism of Carbohydrates
Metabolism of CarbohydratesMetabolism of Carbohydrates
Metabolism of CarbohydratesPave Medicine
 
CARBOHYDRATES FOR TEACHING CHEMISTRY.ppt
CARBOHYDRATES FOR TEACHING CHEMISTRY.pptCARBOHYDRATES FOR TEACHING CHEMISTRY.ppt
CARBOHYDRATES FOR TEACHING CHEMISTRY.pptMoyoAshiwaju
 
Lehninger_Ch07.ppt
Lehninger_Ch07.pptLehninger_Ch07.ppt
Lehninger_Ch07.pptssuser47bc37
 
chapter 2 carbohydrates.ppt
chapter 2 carbohydrates.pptchapter 2 carbohydrates.ppt
chapter 2 carbohydrates.pptFatima117039
 
CARBOHYDRATE CHEMISTRY
CARBOHYDRATE CHEMISTRYCARBOHYDRATE CHEMISTRY
CARBOHYDRATE CHEMISTRYYESANNA
 
Introduction to carbohydrates
Introduction to carbohydratesIntroduction to carbohydrates
Introduction to carbohydratesAbhishek Sanyal
 
Chemistry of carbohydrates and isomerism
Chemistry of carbohydrates and isomerismChemistry of carbohydrates and isomerism
Chemistry of carbohydrates and isomerismmuti ullah
 
PBS-FCH-322._L1._Carbohydrates_Chemistry.pdf
PBS-FCH-322._L1._Carbohydrates_Chemistry.pdfPBS-FCH-322._L1._Carbohydrates_Chemistry.pdf
PBS-FCH-322._L1._Carbohydrates_Chemistry.pdfChido64
 
Carbohydrate chemistry dr.sohil
Carbohydrate chemistry dr.sohilCarbohydrate chemistry dr.sohil
Carbohydrate chemistry dr.sohilSohil Takodara
 
5. Carbohydrates and Glycobiology.pptx
5. Carbohydrates and Glycobiology.pptx5. Carbohydrates and Glycobiology.pptx
5. Carbohydrates and Glycobiology.pptxmathewcasimiro1
 
Carbohydrates
CarbohydratesCarbohydrates
CarbohydratesSai Ardra
 
A578624247_23691_25_2019_Lecture1 -6 Carbohydrates.pdf
A578624247_23691_25_2019_Lecture1 -6 Carbohydrates.pdfA578624247_23691_25_2019_Lecture1 -6 Carbohydrates.pdf
A578624247_23691_25_2019_Lecture1 -6 Carbohydrates.pdfRahulSharma123800
 

Similar to Chapter7 carbs (20)

Lehninger_Ch07.ppt
Lehninger_Ch07.pptLehninger_Ch07.ppt
Lehninger_Ch07.ppt
 
Metabolism of Carbohydrates
Metabolism of CarbohydratesMetabolism of Carbohydrates
Metabolism of Carbohydrates
 
CARBOHYDRATES FOR TEACHING CHEMISTRY.ppt
CARBOHYDRATES FOR TEACHING CHEMISTRY.pptCARBOHYDRATES FOR TEACHING CHEMISTRY.ppt
CARBOHYDRATES FOR TEACHING CHEMISTRY.ppt
 
Lehninger_Ch07.ppt
Lehninger_Ch07.pptLehninger_Ch07.ppt
Lehninger_Ch07.ppt
 
chapter 2 carbohydrates.ppt
chapter 2 carbohydrates.pptchapter 2 carbohydrates.ppt
chapter 2 carbohydrates.ppt
 
CARBOHYDRATE CHEMISTRY
CARBOHYDRATE CHEMISTRYCARBOHYDRATE CHEMISTRY
CARBOHYDRATE CHEMISTRY
 
Introduction to carbohydrates
Introduction to carbohydratesIntroduction to carbohydrates
Introduction to carbohydrates
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 
Chemistry of carbohydrates and isomerism
Chemistry of carbohydrates and isomerismChemistry of carbohydrates and isomerism
Chemistry of carbohydrates and isomerism
 
Carbohydrates - k.pptx
Carbohydrates - k.pptxCarbohydrates - k.pptx
Carbohydrates - k.pptx
 
L6 Carbohydrates.pptx
L6 Carbohydrates.pptxL6 Carbohydrates.pptx
L6 Carbohydrates.pptx
 
Carbohydrates, introduction, types and importance
Carbohydrates, introduction, types and importanceCarbohydrates, introduction, types and importance
Carbohydrates, introduction, types and importance
 
Carbohydrate
CarbohydrateCarbohydrate
Carbohydrate
 
PBS-FCH-322._L1._Carbohydrates_Chemistry.pdf
PBS-FCH-322._L1._Carbohydrates_Chemistry.pdfPBS-FCH-322._L1._Carbohydrates_Chemistry.pdf
PBS-FCH-322._L1._Carbohydrates_Chemistry.pdf
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 
Carbohydrate chemistry dr.sohil
Carbohydrate chemistry dr.sohilCarbohydrate chemistry dr.sohil
Carbohydrate chemistry dr.sohil
 
5. Carbohydrates and Glycobiology.pptx
5. Carbohydrates and Glycobiology.pptx5. Carbohydrates and Glycobiology.pptx
5. Carbohydrates and Glycobiology.pptx
 
Carbohydrates
CarbohydratesCarbohydrates
Carbohydrates
 
A578624247_23691_25_2019_Lecture1 -6 Carbohydrates.pdf
A578624247_23691_25_2019_Lecture1 -6 Carbohydrates.pdfA578624247_23691_25_2019_Lecture1 -6 Carbohydrates.pdf
A578624247_23691_25_2019_Lecture1 -6 Carbohydrates.pdf
 

More from Baraah Jafari

More from Baraah Jafari (8)

Chapters 17 & 21
Chapters 17 & 21 Chapters 17 & 21
Chapters 17 & 21
 
Chapter6 enzymes
Chapter6 enzymesChapter6 enzymes
Chapter6 enzymes
 
Chapter 5
Chapter 5 Chapter 5
Chapter 5
 
Ch 3 نفسه
Ch 3 نفسهCh 3 نفسه
Ch 3 نفسه
 
Chapter14 160419080639
Chapter14 160419080639Chapter14 160419080639
Chapter14 160419080639
 
Chapter15 160419075517
Chapter15 160419075517Chapter15 160419075517
Chapter15 160419075517
 
Chapter19 160419084945
Chapter19 160419084945Chapter19 160419084945
Chapter19 160419084945
 
Chapter16 160419082018
Chapter16 160419082018Chapter16 160419082018
Chapter16 160419082018
 

Recently uploaded

Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 

Recently uploaded (20)

Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 

Chapter7 carbs

  • 1. 7  |  Carbohydrates  and  Glycobiology   © 2013 W. H. Freeman and Company
  • 2. Carbohydrates   •  Named  so  because  many  have  formula  Cn(H2O)n   •  Produced  from  CO2  and  H2O  via  photosynthesis  in  plants     •  Range  from  as  small  as  glyceraldehyde  (Mw  =  90  g/mol)  to  as   large  as  amylopecIn  (Mw  =  200,000,000  g/mol)     •  Fulfill  a  variety  of  funcIons  including:   –  energy  source  and  energy  storage   –  structural  component  of  cell  walls  and  exoskeletons   –  informaIonal  molecules  in  cell-­‐cell  signaling   •  Can  be  covalently  linked  with  proteins  to  form  glycoproteins   and  proteoglycans  
  • 3. 3   Carbohydrates   •  Monosaccharides (simple sugars) – one polyhydroxy aldehyde or ketone unit (glucose) •  Disaccharides – two monosaccharide units joined together by a glycosidic linkage (sucrose) •  Oligosaccharides – few monosaccharide units joined together (in cells, most oligosaccharides are joined to nonsugar molecule) •  Polysaccharides – sugar polymers consisting of >20 monosaccharide units
  • 4. 4   Monosaccharide  Carbon  backbone   •  3 C è triose •  4 C è tetrose •  5 C è pentose •  6 C è hexose •  7 C è heptose
  • 5. Aldoses  and  Ketoses   •  An  aldose  contains  an  aldehyde  funcIonal  group     •  A  ketose  contains  a  ketone  funcIonal  group      
  • 6. 6   Stereoisomers   •  All monosaccharides (except dihydroxyacetone) are chiral compounds, with at least one chiral carbon •  A molecule with n chiral centers can have 2n stereoisomers •  E.g. glyceraldehyde has 21 = 2 aldohexoses have 24 = 16 stereoisomers
  • 7. Enan8omers   •  Enan8omers     –  Stereoisomers  that  are  nonsuperimposable  mirror  images     •  In  sugars  that  contain  many  chiral  centers,  only  the  one   that  is  most  distant  from  the  carbonyl  carbon  is   designated  as  D  (right)  or  L  (leZ)   •  D  and  L  isomers  of  a  sugar  are  enanIomers   –  For  example,  L  and  D  glucose  have  the  same  water  solubility   •  Most  hexoses  in  living  organisms  are  D  stereoisomers   •  Some  simple  sugars  occur  in  the  L-­‐form,  such  as  L-­‐ arabinose  
  • 8.
  • 9. Drawing    Monosaccharides   •  Chiral  compounds  can  be   drawn  using  perspec8ve   formulas   •  However,  chiral   carbohydrates  are  usually   represented  by  Fischer   projec8ons   •  Horizontal  bonds  are   poinIng  toward  you;  verIcal   bonds  are  projecIng  away   from  you  
  • 10. Diastereomers   •  Diastereomers:  stereoisomers  that  are  not  mirror   images   •  Diastereomers  have  different  physical  properIes   –  For  example,  water  solubiliIes  of  threose  and  erythrose  are   different  
  • 11. Epimers   •  Epimers  are  two  sugars  that  differ  only  in  the   configuraIon  around  one  carbon  atom  
  • 12. Structures  to  Know   •  Glyceraldehyde & dihydroxyacetone are the standard three-carbon sugars •  Ribose is the standard five-carbon sugar •  Glucose is the standard six-carbon sugar •  Galactose is an epimer of glucose •  Mannose is an epimer of glucose •  Fructose is the ketose form of glucose
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18. Common  Monosaccharides  Have  Cyclic   Structures   •  In solution, monosaccharides with 4 or more carbons form cyclic compounds (ring structures) •  Carbonyl C is attacked by the hydroxyl O forming a covalent bond
  • 19. Hemiacetals  and  Hemiketals   •  Aldehyde  and  ketone  carbons  are  electrophilic     •  Alcohol  oxygen  atom  is  nucleophilic   •  When  aldehydes  are  aaacked  by  alcohols,  hemiacetals  form   •  When  ketones  are  aaacked  by  alcohols,  hemiketals  form   When the second alcohol is part of another sugar molecule, the bond produced is a glycosidic bond.
  • 20. Cycliza8on  of  Monosaccharides   •  Pentoses and hexoses readily undergo intramolecular ring formation •  The former carbonyl carbon becomes a new chiral center, called the anomeric carbon •  The former carbonyl oxygen becomes a hydroxyl group; the position of this group determines if the anomer is α or β •  If the hydroxyl group is on the opposite side (trans) of the ring as the CH2OH moiety the configuration is α •  In the hydroxyl group is on the same side (cis) of the ring as the CH2OH moiety, the configuration is β
  • 21. Mutarotation – the interconversion of α and β anomers.
  • 22. Pyranoses  and  Furanoses   •  Six-membered oxygen-containing rings are called pyranoses •  Five-membered oxygen-containing rings are called furanoses     •  The anomeric carbon is usually drawn on the right side •  Cyclic sugar structures are more accurately represented in Haworth perspective formulas
  • 23.
  • 24. Conver8ng  linear  to  cyclic  structures   •  For any linear hexose: 1.  Draw 6-membered ring (O at the upper right) 2.  Number C’s clockwise (start with anomeric) 3.  Insert the –OH a. if –OH is on the right, draw it pointing down b. if –OH is on the left, draw it pointing up 4.  Insert the terminal –CH2OH a. if the sugar is the D-isomer, draw it upwards b. if it is the L-isomer, draw it downwards 5.  Draw the –OH on the anomeric C a. if it faces the same side as the –CH2OH, it’s β b. if it faces the opposite side, it’s α
  • 25. The  ring  is  not  planar   •  In  soluIon  pyranose  ring  is   not  planar  but  it  can   assume  two  chair   conformaIons   •  Boat  conformaIon  is   possible  but  very  rare   •  The  two  chair   conformaIons  are  not   readily  interconverIble   (one  conformer  is  more   stable  than  the  other)  
  • 26. Chain-­‐Ring  Equilibrium     and  Reducing  Sugars   •  The  ring  forms  exist  in  equilibrium  with  the  open-­‐chain   forms   •  Aldehyde  can  reduce  Cu2+  to  Cu+  (Fehling’s  test)   •  Aldehyde  can  reduce  Ag+  to  Ag0  (Tollens’  test)   •  Allows  detecIon  of  reducing  sugars,  such  as  glucose  (by   measuring  the  amount  of  oxidizing  agent  reduced  by  a   sugar  soluIon,  the  sugar  concentraIon  can  be   esImated)  
  • 27. The cuprous ion (Cu+) produced forms a red cuprous oxide precipitate.
  • 28. Colorimetric  Glucose  Analysis   •  Nowadays,  enzymaIc  methods  are   used  to  quanIfy  reducing  sugars  such   as  glucose   –  The  enzyme  glucose  oxidase   catalyzes  the  conversion  of   glucose  to  glucono-­‐δ-­‐lactone  and   hydrogen  peroxide   –  Hydrogen  peroxide  oxidizes   organic  molecules  into  highly   colored  compounds   –  ConcentraIons  of  such   compounds  is  measured   colorimetrically         O OH OH OH OH CH2OH O OH OH O OH CH2OH NH2 NH2 OCH3 OCH3 NH NH OCH3 OCH3 β-D-Glucose δ-D-Gluconolactone Glucose oxidase O2 H2O2 Peroxidase 2 H2O Reduced o-dianisidine (faint orange) Oxidized o-dianisidine (bright orange) •  Electrochemical  detecIon  is  used  in   portable  glucose  sensors  
  • 29. Blood  glucose  measurements  in  the   diagnosis  and  treatment  of  diabetes   •  Untreated  diabetes  has  several  long-­‐term  consequences:   kidney  failure,  cardiovascular  disease,  blindness,  impaired   wound  healing,  etc.   •  Average  [glc]blood    over  days  can  be  measured  because  of  a   nonenzymaIc  reacIon  between  glc  and  primary  amino   groups  in  Hb   •  The  amount  of  glycated  Hb  (GHB)  reflects  the  average   [glc]blood  over  the  circulaIng  lifeIme  of  RBC  (~120  days)   •  Normal  levels  ~5%  of  Hb  is  GHB   •  DiabeIc  people  may  have  it  as  high  as  13%   •  Advanced  glycaIon  endproducts  (AGEs)  contribute  to  the   long  term  problems  associated  with  diabetes  
  • 30.
  • 31. Organisms  contain  many  hexose  deriva8ves  
  • 32. The  Glycosidic  Bond   •  Two  sugar  molecules  can  be  joined  via  a  glycosidic  bond   between  an  anomeric  carbon  and  a  hydroxyl  carbon       •  The  resulIng  compound  is  a  glycoside   •  The  glycosidic  bond  (an  acetal)  between  monomers  is  less   reacIve  than  the  hemiacetal  at  the  second  monomer   –  Second  monomer,  with  the  hemiacetal,  is  reducing   –  Anomeric  carbon  involved  in  the  glycosidic  linkage  is  nonreducing     •  The  disaccharide  formed  upon  condensaIon  of  two  glucose   molecules  via  1  →  4  bond  is  called  maltose  
  • 33.
  • 34. Nonreducing  Disaccharides   •  Two  sugar  molecules  can  be  also  joined  via  a  glycosidic   bond  between  two  anomeric  carbons       •  The  product  has  two  acetal  groups  and  no  hemiacetals   •  There  are  no  reducing  ends,  this  is  a  nonreducing  sugar   •  Trehalose  is  a  consItuent  of  hemolymph  of  insects   –  Provides  protecIon  from  drying  
  • 35. Naming  disaccharides   1.  Find the nonreducing end 2.  Give the configuration (α or β) at the anomeric C joining the first monosaccharide to the other 3.  Name the nonreducing residue (use “furano” for 5- membered rings or “pyrano” for 6-membered rings) 4.  Add the glycosidic bond in parenthesis (from which C to which C) 5.  Name the second residue 6.  If there are more residues, repeat step 2 * Abbreviations can be used (Glc, Fru, Gal, Man, GlcN, etc.)
  • 36.
  • 37. Sweet  tooth?  Anyone?   •  Most  people  like  sweets   •  Sweetness  is  one  of  5  tastes   humans  can  taste   •  Due  to  receptors  on  gustatory   cells  on  the  surface  of   tongues…  T1R2  and  T1R3   •  Binding  of  molecules  to  these   receptors,  signals  are   transduced  to  give  the  sweet   taste  
  • 38. L,L-­‐Aspartame  is  sweet;     D,L-­‐Aspartame  is  biSer  
  • 39. Polysaccharides   •  Natural  carbohydrates  are  usually  found  as  polymers   •  These  polysaccharides  can  be   –  homopolysaccharides   –  heteropolysaccharides     –  linear     –  branched   •  Polysaccharides  do  not  have  a  defined  molecular  weight.   –  This  is  in  contrast  to  proteins  because  unlike  proteins,   no  template  is  used  to  make  polysaccharides  
  • 40. 40   Can be: 1)  Storage forms of monosaccharides, used for fuel (starch and glycogen) 2)  Structural elements in plant cell walls and animal exoskeletons (cellulose and chitin) Provide extracellular support for organisms of all kingdoms, E.g. 1)  Bacterial cell envelope is composed in part of a heteropolysaccharide 2)  Extracellular matrix in animal cells
  • 41. Glycogen   •  Glycogen  is  a  branched  homopolysaccharide  of  glucose   –  Glucose  monomers  form  (α1  →  4)  linked  chains   –  Branch-­‐points  with  (α1  →  6)  linkers  every  8–12  residues   –  Molecular  weight  reaches  several  millions   –  FuncIons  as  the  main  storage  polysaccharide  in  animals  
  • 42. 42  
  • 43. Starch   •  Starch  is  a  mixture  of  two  homopolysaccharides  of  glucose   •  Amylose  is  an  unbranched  polymer  of  (α1  →  4)  linked   residues   •  AmylopecIn  is  branched  like  glycogen  but  the  branch-­‐ points  with  (α1  →  6)  linkers  occur  every  24–30  residues   •  Molecular  weight  of  amylopecIn  is  up  to  200  million   •  Starch  is  the  main  storage  polysaccharide  in  plants  
  • 44. Glycosidic  Linkages  in  Glycogen  and  Starch  
  • 45. Mixture  of  Amylose  and  Amylopec8n  in  Starch   In starch granules, strands of amylopectin (blue) form double-helical structures with each other or with amylose strands (blue). Glucose residues at the nonreducing ends of the outer branches are removed enzymatically during the mobilization of starch for energy production. Glycogen has a similar structure but is more highly branched and more compact.
  • 46. Metabolism  of  Glycogen  and  Starch   •  Glycogen  and  starch  oZen  form  granules  in  cells   •  Granules  contain  enzymes  that  synthesize  and   degrade  these  polymers   •  Glycogen  and  amylopecIn  have  one  reducing  end   but  many  nonreducing  ends  (a  polymer  with  n   branches  has  n  +  1  nonreducing  ends  and  only  1   reducing  end)   •  EnzymaIc  processing  occurs  simultaneously  in  many   nonreducing  ends    
  • 47. Dextrans   •  Bacterial and yeast polysaccharides •  (α1 → 6)-linked poly-D-glucose •  All units have (α1 → 3) branches •  Some have also (α1 → 2) or (α1 → 4) branches •  Dental plaque (formed by bacteria on the surface of teeth) is rich in dextrans
  • 48. Cellulose   •  Cellulose  is  a  branched  homopolysaccharide  of  glucose   –  Glucose  monomers  form  (β1  →  4)  linked  chains   –  Hydrogen  bonds  form  between  adjacent  monomers   –  AddiIonal  H-­‐bonds  between  chains   –  Structure  is  now  tough  and  water-­‐insoluble   –  Most  abundant  polysaccharide  in  nature   –  Coaon  is  nearly  pure  fibrous  cellulose    
  • 49. Hydrogen  Bonding  in  Cellulose  
  • 50. Cellulose  Metabolism   •  The  fibrous  structure  and  water-­‐insolubility  make  cellulose  a   difficult  substrate  to  act  on   •  Fungi,  bacteria,  and  protozoa  secrete  cellulase,  which  allows  them   to  use  wood  as  source  of  glucose   •  Most  animals  cannot  use  cellulose  as  a  fuel  source  because  they   lack  the  enzyme  to  hydrolyze  (β1  →4)  linkages     •  Ruminants  and  termites  live  symbioIcally  with  microorganisms  that   produces  cellulase   •  Cellulases  hold  promise  in  the  fermentaIon  of  biomass  into  biofuels    
  • 51. A wood fungus growing on an oak log
  • 52. Chi8n   •  ChiIn  is  a  linear  homopolysaccharide  of  N-­‐acetylglucosamine     –  N-­‐acetylglucosamine  monomers  form  (β1  →  4)-­‐linked  chains   –  Forms  extended  fibers  that  are  similar  to  those  of  cellulose   –  Hard,  insoluble,  cannot  be  digested  by  vertebrates   –  Structure  is  tough  but  flexible,  and  water-­‐insoluble   –  Found  in  cell  walls  in  mushrooms,  and  in  exoskeletons  of   insects,  spiders,  crabs,  and  other  arthropods   –  1  billion  tons  of  chiIn  is  produced  in  the  biosphere  per  year    
  • 54.
  • 55. Agar  and  Agarose   •  Agar  is  a  complex  mixture  of  hetereopolysaccharides  containing   modified  galactose  units   •  Agar  serves  as  a  component  of  cell  wall  in  some  seaweeds   •  Agarose  is  one  component  of  agar   •  Agar  soluIons  form  gels  that  are  commonly  used  in  the   laboratory  as  a  surface  for  growing  bacteria   •  Agar  is  also  used  for  capsules  in  which  some  drugs  and  vitamins   are  packaged   •  Agarose  soluIons  form  gels  that  are  commonly  used  in  the   laboratory  for  separaIon  DNA  by  electrophoresis  
  • 57. Glycosaminoglycans   •  Linear  polymers  of  repeaIng  disaccharide  units   •  One  monomer  is  either     –  N-­‐acetyl-­‐glucosamine  or   –  N-­‐acetyl-­‐galactosamine   •  NegaIvely  charged   –  Uronic  acids  (C6  oxidaIon)   –  Sulfate  esters   •  Extended  hydrated  molecule   –  Minimizes  charge  repulsion   •  Forms  meshwork  with  fibrous  proteins  to  form  extracellular  matrix   –  ConnecIve  Issue   –  LubricaIon  of  joints  
  • 58.
  • 59.
  • 60. Heparin  and  Heparan  Sulfate     •  Heparin  is  linear  polymer,  3–40  kDa     •  Heparan  sulfate  is  heparin-­‐like  polysaccharide  but   aaached  to  proteins   •  Highest  negaIve  charge  density  biomolecules   •  Prevent  blood  closng  by  acIvaIng  protease   inhibitor  anIthrombin   •  Binding  to  various  cells  regulates  development  and   formaIon  of  blood  vessels     •  Can  also  bind  to  viruses  and  bacteria  and  decrease   their  virulence  
  • 61.
  • 62. Glycoconjugates:  Glycoprotein   •  A  protein  with  small  oligosaccharides  aaached   –  Carbohydrate  aaached  via  its  anomeric  carbon   –  About  half  of  mammalian  proteins  are  glycoproteins   –  Carbohydrates  play  role  in  protein-­‐protein  recogniIon     –  Only  some  bacteria  glycosylate  few  of  their  proteins     –  Viral  proteins  heavily  glycosylated;  helps  evade  the  immune   system  
  • 63.
  • 64. Glycoconjugates:  Glycolipids   •  A  lipid  with  covalently  bound  oligosaccharide   –  Parts  of  plant  and  animal  cell  membranes   –  In  vertebrates,  ganglioside  carbohydrate   composiIon  determines  blood  groups   –  In  gram-­‐negaIve  bacteria,  lipopolysaccharides  cover   the  pepIdoglycan  layer  
  • 65.
  • 66. Glycoconjugates:  Proteoglycans   •  Sulfated  glucoseaminoglycans  aaached  to  a  large  rod-­‐ shaped  protein  in  cell  membrane   –  Syndecans:  protein  has  a  single  transmembrane   domain   –  Glypicans:  protein  is  anchored  to  a  lipid  membrane   –  Interact  with  a  variety  of  receptors  from   neighboring  cells  and  regulate  cell  growth    
  • 67.
  • 68.
  • 69. Proteoglycans   •  Different  glycosaminoglycans  are  linked  to  the  core   protein   •  Linkage  from  anomeric  carbon  of  xylose  to  serine   hydroxyl   •  Our  Issues  have  many  different  core  proteins;  aggrecan   is  the  best  studied  
  • 70.
  • 71. Proteoglycan  Aggregates   •  Hyaluronan  and  aggrecan  form  huge  (Mr  >  2•108)   noncovalent  aggregates   •  Hold  lots  of  water  (1000×  its  weight);  provides   lubricaIon   •  Very  low  fricIon  material   •  Covers  joint  surfaces:  arIcular  carIlage   –  Reduced  fricIon   –  Load  balancing