SlideShare a Scribd company logo
1 of 127
Microbiology, Virology, and Immunology
Department
Causative agents of bacterial
enteric infections:
escherichiosis, klebsiellosis, typhoid
fever, paratyphoid, salmonellosis.
Shigella. Causative agents of
cholera
Lecturer As.Prof. O.V. Pokryshko
Classification of the Enterobacteriaceae
Genera
Escherichia Shigella
Edwardsiella Salmonella
Citrobacter Klebsiella
Enterobacter Hafnia
Serratia Proteus
Providencia Morganella
Yersinia Erwinia
The organism was isolated from feces in
1885 by T. Escherich. E. coli is a common
inhabitant of the large intestine of humans
and mammals. It is also found in the guts of
birds, reptiles, amphibians, and insects. The
bacteria are excreted in great numbers with
the feces and are always present in the
external environment (soil, water, foodstuffs,
and other objects).
Morphology. E coli are
straight rods measuring 0.4-
0.7 in breadth and 1-3 in
length. There are motile and
non-motile types.
Escherichia coli.
Scanning electron micrograph
Colonies of E. coli on meat-peptone agar
Cultivation.
Colonies of E. coli on Endo's medium
Colonies of E. coli on Ploskirev's medium
Colonies of E. coli on blood agar
Escherichia coli
is highly motile
and will show turbidity
throughout the tube.
Fermentative properties.
Positive (left)
reactions of
isolates E. coli
in glucose
fermentation
broth. Note the
formation of
acid (yellow
color) and gas.
Observe the
bubble in the
Durham tube.
“+” -ve test “—” -ve test
Indole reaction
B. E. coli
is the positive microbe.
A. Salmonella
A B
E. coli
can reduce nitrate to nitrite.
Note the bubble
formation. Catalase
positive
Toxin production.
a gluco-lipo-protein complex with which their
toxic, antigenic, and immunogenic properties
endotoxins
thermolabile neurotropic exotoxins
haemotoxins
pyrogenic substances,
proteinases,
deoxyribonucleases, urease,
phosphatase
hyaluronidase
aminoacid decarboxylases
Antigenic structure.
The antigenic structure of E. coli is characterized
by variability and marked individuality. Along with
the H- and O-antigens, the presence of other
antigens has been shown in some strains, i.e. the
surface somatic (membranous, capsular) K-antigens
which contain the thermolabile L- and B-antigens
and the thermostable A- and M-antigens.
On the basis of antigenic structure an antigenic
formula is derived which fully reflects the antigenic
properties of the strain For example, one of the
most widely spread serotypes is designated 0111 :
K58 : H2.
Pathogenesis of E. coli diarrheal disease
Pathogenesis and diseases in man.
Definite E. coli serogroups are capable of causing
various acute intestinal diseases in humans:
 the causative agents of colienteritis in children are O-
groups-25, -26, -44, -55, -86, -91, -111, -114, -119, -125,
-126, -127, -128, -141, -146, and others (they cause
diseases in infants of the first months of life and in older
infants);
 the causative agents of dysentery-like diseases are
E. coli of the O-groups-23, -32, -115, -124, -136, -143, -
144, -151, and others;
 the causative agents of cholera-like diarrhoea are the
O-groups-6, -15, -78, -148, and others, they produce
thermolabile and thermoresistant enterotoxins.
Escherichia coli Virulence Factors
Diarrhea-producing
E. coli
Virulence Factors
Enteroroxigenic E. coli Heat-labile toxin (LT)
Heat-stable toxin (ST)
Colonization factors (fimbriae)
Enterohernorrhagic E. coli Shiga like toxin (SLT-I)
Shiga like toxin II (SLF-II)
Colonisation factors (fimbriae)
Enteroinvasive E. coli Shiga like toxin (SLT-I)
Shiga like toxin II (SLF-II)
Ability to invade epithelial cells
Enteropathogenic E. coli Adhesin factor for epithelial cells
Urinary trace infections P- fimbriae
Meningitis K-1 capsule
Enterotoxigenic Escherichia coli.
Enterotoxin-producing E coli, called enterotoxigenic
E.coli (ETEC), produce one or both of two different
toxins – a heat labile toxin called LT and a heat-
stable toxin called ST.
Enterohemorrhagic Escherichia coli
(EHEC)
is the etiologic agent of hemorrhagic colitis, a
disease characterized by severe abdominal cramps
and a copious, bloody diarrhea. These organisms are
also known to cause a condition termed hemolytic-
uremic syndrome (HUS), which is manifested by a
hemolytic anemia, thrombocytopenia (decrease in
the number of blood platelets), and acute renal
failure.
Enteroinvasive Escherichia coli.
The disease produced by the enteroinvasive E. coli
(EIEC) is indistinguishable from the dysentery
produced by members of the genus Shigella,
although the shigellae seem to be more virulent
because considerably fewer shigellae are required
than EIEC to cause diarrhea. The key virulence
factor required by the EIEC is the ability to invade
the epithelial
Enteropathogenic Escherichia coli (EPEC).
The ability of the EPEC to cause diarrhea. EPEC
strains routinely have been considered noninvasive,
but data have indicated that such strains can invade
epithelial cells in culture. However, EPEC strains do
not typically cause a bloody diarrhea, and the
significance of cell invasion during infection
remains uncertain.
Immunity.
In individuals who had suffered from diseases
caused by pathogenic E. coli serovars, cross
immunity is not produced owing to which re-
infection may occur.
Laboratory diagnosis.
Tested material: the patients' faeces, throat and
nasal discharges, material obtained at autopsy
(blood, bile, liver, spleen, lungs, contents of the
small and large intestine, pus), water, foodstuffs, and
samples of washings from objects and hands of staff
of maternity hospitals, hospitals, and dairy kitchens
The tested material is inoculated onto solid
nutrient media (Endo's, Levin's) and,
simultaneously, onto Ploskirev's media. Blood is
first inoculated into broth and then subcultured on
solid media when development of a septic process is
suspected.
The pure culture isolate is identified by its
morphological, cultural, biochemical, serological,
and biological properties.
The corresponding O-group to which an
enteropathogenic-serovars belong is determined by
means of the agglutination reaction.
Besides, the immunofluorescence method
employing type specific labelled sera is also used. It
yields a preliminary answer in one to two hours.
In serological diagnosis of colienteritis beginning
with the third to fifth day of the disease the indirect
haemagglutination reaction is used which excels the
agglutination reaction in sensitivity.
E. coli by immunofluorescence method
Treatment.
Patients with colienteritis are prescribed
 antibiotics (tetracycline with vitamins C,
B1 and B2)
 biopreparations (coli autovaccine, coli
bacteriophage, colicin, bacterin, lactobacterin,
bificol, bifidumbacterin).
 Physiological solutions with glucose are
injected for controlling toxicosis.
Prophylaxis.
To prevent diseases caused by pathogenic serovars of
E. coli, special attention is given to early identification
of individuals suffering from colienteritis, and also to
their hospitalization and effective treatment. Regular
examination of personnel is necessary in children's
institutions as well as of mothers whose children are
suffering from dyspepsia. Considerable importance is
assigned to observation of sanitary regulations in
children's institutions, infant-feeding centres, maternity
hospitals, and children's nurseries. Protection of water
and foodstuff's from contamination with faeces, the
control of flies, and gradual improvement of standards
of hygiene of the population are also particularly
important.
Sanitary significance of E. coli.
This organism is widely spread in nature. It occurs in
soil, water, foodstuff's, and on various objects. For this
reason E. coli serves as an indicator of faecal
contamination of the external environment.
Detection of E. coli is of great importance in
estimating the sanitary index of faecal contamination of
water, foodstuff's, soil, beverages, objects, and hand-
washings. The degree of contamination of water, soil
and foodstuff's is determined by the coli titre or coli
index (these terms have been discussed in the chapter
concerning the spread of microbes in nature).
Salmonella
Enteric Fever and Paratyphoid Salmonellae:
Salmonella typhi
Salmonella paratyphi A
Salmonella schottmuelleri (S. paratyphi B)
Morphology.
The morphology of the
typhoid and paratyphoid
salmonella corresponds
with the general
characteristics of the
Enterobacteriaceae family.
Most of the strains are
motile and possess flagella,
from 8 to 20 in number.
Salmonella
Salmonella typhi
Scanning electron micrograph
Gram’s staining
Colonies of S. paratyphi on Ploskirev's medium
Cultivation.
Colonies of S. typhus on Ploskirev's medium
Colonies of Salmonella on Mac-Conkey medium
Colonies of Salmonella on CLED medium
Colonies of S. typhus on on bismuth-sulphite agar
Fermentative properties.
Toxin production.
S. typhi contains gluco-lipo-protein complexes. The
endotoxin is obtained by extracting the bacterial
emulsion with trichloracetic acid. This endotoxin is
thermostable, surviving a temperature of 120° C for
30 minutes, and is characterized by a highly specific
precipitin reaction and pronounced toxic and
antigenic properties. Investigations have shown the
presence of exotoxic substances in S. typhi which
are inactivated by light, air, and heat (80° C), as well
as enterotropic toxin phosphatase, and pyrogenic
substances.
Antigenic structure.
S. typhi possesses a flagella H-antigen and
thermostable somatic O- and Vi-antigens. All three
antigens give rise to the production of specific
antibodies in the body, i. e. H-, O-, and Vi-
agglutinins. H-agglutinins bring about a large-
flocculent agglutination, while 0- and Vi-agglutinins
produce fine-granular agglutination.
Classification.
The salmonellae of typhoid fever and paratyphoids
together with the causative agents of toxinfections have
been included in the genus Salmonella (named after the
bacteriologist D. Salmon) on the basis of their antigenic
structure and other properties. At present, about 2000
species and types of this genus are known.
F. Kauffmann and P. White classified the typhoid-
paratyphoid salmonellae into a number of groups
according to antigenic structure and determined 65
somatic O-antigens. For instance, S. typhi (group D)
contains three different O-antigens — 9, 12, and Vi. S.
paratyphi A alone constitutes group A, and S.
schottmuelleri belongs to group B.
Pathogenesis and diseases in man.
The causative agent is primarily located in the
intestinal tract. Infection takes place through the
mouth (digestive stage).
Cyclic recurrences and development of certain
pathophysiological changes characterize the
pathogenesis of typhoid fever and paratyphoids.
There is a certain time interval after the
salmonellae penetrate into the intestine, during
which inflammatory processes develop in the
isolated follicles and Peyer's patches of the lower
region of the small intestine (invasive stage).
As a result of deterioration of the defence
mechanism of the lymphatic apparatus in the small
intestine the organisms enter the blood
(bacteriemia stage). Here they are partially
destroyed by the bactericidal substances contained
in the blood, with endotoxin formation.
During bacteraemia typhoid salmonellae invade
the patient's body, penetrating into the lymph nodes,
spleen, bone marrow, liver, and other organs
(parenchymal diffusion stage). This period
coincides with the early symptoms of the disease
and lasts for a week.
During the second week of the disease endotoxins
accumulate in Peyer's patches, are absorbed by the
blood, and cause intoxication. The general clinical
picture of the disease is characterized by status
typhosus, disturbances of thermoregulation, activity
of the central and vegetative nervous systems,
cardiovascular activity, etc.
On the third week of the disease a large
number of typhoid bacteria enter the intestine
from the bile ducts and Lieberkuhn's glands.
Some of these bacteria are excreted in the faeces,
while others reenter the Peyer's patches and
solitary follicles, which had been previously
sensitized by the salmonellae in the initial stage.
This results in the development of hyperergia and
ulcerative processes. Lesions are most
pronounced in Peyer's patches and solitary
follicles and may be followed by perforation of
the intestine and peritonitis (excretory and
allergic stage).
The typhoid-paratyphoid salmonellae together
with products of their metabolism induce antibody
production and promote phagocytosis. These
processes reach their peak on the fifth-sixth week of
the disease and eventually lead to recovery from the
disease.
Clinical recovery (recovery stage) does not
coincide with the elimination of the pathogenic
bacteria from the body. The majority of
convalescents become carriers during the first weeks
following recovery, and 3-5 per cent of the cases
continue to excrete the organisms for many months
and years after the attack and, sometimes, for life.
Inflammatory processes in the gall
bladder (cholecystitis) and liver are the main
causes of a carrier state since these organs
serve as favourable media for the bacteria,
where the latter multiply and live for long
periods. Besides this, typhoid-paratyphoid
salmonellae may affect the kidneys and
urinary bladder, giving rise to pyelitis and
cystitis. In such lesions the organisms are
excreted in the urine.
Immunity.
Immunity acquired after typhoid fever and
paratyphoids is relatively stable but relapses and
reinfections sometimes occur.
Antibiotics, used as therapeutic agents, inhibit
the immunogenic activity of the pathogens,
which change rapidly and lose their O- and Vi-
antigens.
Laboratory diagnosis.
The present laboratory diagnosis of typhoid fever
and paratyphoids is based on the pathogenesis of
these diseases.
1. Isolation of haemoculture. Bacteraemia appears
during the first days of the infection. Thus, for
culture isolation 10-15 ml of blood (15-20 ml during
the second week of the disease and 30-40 ml during
the third week) are inoculated into 100, 150 and 200
ml of 10 per cent bile broth, after which cultures are
incubated at 37° C and on the second day
subcultured onto one of the differential media
(Ploskirev's, Endo's, Levin’s) or common meat-
peptone agar.
The isolated culture is identified by inoculation
into a series of differential media and by the
agglutination reaction. The latter is performed by the
glass-slide method using monoreceptor sera or by the
test-tube method using purified specific sera.
2. Serological method. Sufficient number of agglutinins
accumulate in the blood on the second week of the disease,
and they are detected by the Widal reaction. Diagnostic
typhoid and paratyphoid A and B suspensions are employed
in this reaction. The fact that individuals treated with
antibiotics may yield a low titre reaction must be taken into
consideration. The reaction is valued positive in patient's
serum in dilution 1 : 200 and higher.
The Widal reaction may be positive not only in patients but
also in those who had suffered the disease in the past and in
vaccinated individuals. For this reason diagnostic
suspensions of O- and H-antigens are employed in this
reaction. The sera of vaccinated people and convalescents
contain H-agglutinins for a long time, while the sera of
patients contain O-agglutinins at the height of the disease.
In typhoid fever and paratyphoids the agglutination
reaction may sometimes be of a group character
since the patient's serum contains agglutinins not
only to specific but also to group antigens which
occur in other bacteria. In such cases the patient's
blood must be sampled again in 5-6 days and the
Widal reaction repeated. Increase of the agglutinin
titre makes laboratory diagnosis easier. In cases
when the serum titre shows an equal rise with
several antigens, 0-, H-, and Vi-agglutinins are
detected separately.
3. A pure culture is isolated from faeces and urine
during the first, second, and third weeks of the
disease. The test material is inoculated into bile
broth, Muller's medium, Ploskirev's medium, or
bismuth sulphite agar.
Isolation and identification of the pure culture are
performed in the same way as in blood examination.
Selective media are recommended for isolation of
the typhoid-paratyphoid organisms from water,
sewage, milk, and faeces of healthy individuals.
These media slightly inhibit the growth of
pathogenic strains of typhoid-paratyphoid organisms
and greatly suppress the-growth of saprophytic
microflora.
A reaction for the detection of a rise in the phage titre is
employed in typhoid fever and paratyphoid diagnosis.
This reaction is based on the fact that the specific
(indicator) phage multiplies only when it is in contact
with homologous salmonellae. An increase in the
number of phage corpuscles in the test tube as
compared to the control tube is indicative of the
presence of organisms homologous to the phage used.
This reaction is highly sensitive and specific and
permits to reveal the presence of the salmonellae in
various substrates in 11-22 hours without the necessity
of isolating the organisms in a pure culture. The
reaction is valued positive if the increase in the number
of corpuscles in the tube containing the test specimen is
not less than 5-10 times that in the control tube.
Treatment.
chloramphenicol, oxytetracycline, and
nitrofuran preparations
general non-specific treatment (dietetic and
symptomatic)
Prophylaxis.
 timely diagnosis
 hospitalization of patients, disinfection of the sources,
and identification
 treatment of carriers
 disinfection of water, safeguarding water supplies from
pollution, systematic and thorough cleaning of inhabited
areas, fly control, and protection of foodstuff's and water
from flies
 Washing of hands before meals and after using the toilet
is necessary
 regular examination of personnel in food-processing
factories for identification of carriers is also extremely
important.
 several varieties of vaccines are prepared: typhoid
vaccine (monovaccine), typhoid and paratyphoid B vaccine
(divaccine).
Shigella
a. Slender, gram-negative rod; non lactose-
fermenting (except for S. sonnei)
b. In contrast to E. coli: no H2S production, no
lysine decarboxylation, no acetate utilization
c. Invasive (key to pathogenesis)
d. In contrast to Salmonella: non-motile; no gas
from glucose fermentation; no H2S production
e. Toxin production limited to a few strains
f. All have O antigens-four groups (A-D)
g. Differentiating species ( S. dysenteriae - no
mannitol fermentation; S. boydii - C antigen group;
S. flexneri - B antigen group; S. sonnei-orniltine
decarbexylase production)
h. Specimens
i. Rectal swab from colonic ulcer is best for culture.
j. Fecal specimen - must be immediately
innoculated onto transport media or culture media.
k. Sensitive to acids present in feces.
Morphologically
dysentery bacilli
correspond to the
organisms of the family
Enterobacteriaceae.
Dysentery bacilli have
no flagella and this is
one of the differential
characters between
these organisms and
bacteria of the coli-
typhoid-paratyphoid
group.
Morphology.
Dysentery bacilli
Intracellular
Shigella
Colonies of dysentery bacilli on Ploskirev's medium
Cultivation.
Colonies of Salmonella on Mac-Conkey medium
Fermentative properties.
None of the species of dysentery bacilli
liquefy gelatin nor produce hydrogen sulphide.
They ferment glucose, with acid formation,
with the exception of the Newcastle subspecies
which sometimes produce both acid and gas
during this reaction. With the exception of the
Sonne bacilli, none of them ferment lactose.
Subgroup Fermentation of
carbohydrates
Indole
production
Catalase
lactose
glucose
mannite
succrose
succrose
S. dysenteriae
– A
– + – – – – –
S. fiexneri – B – + + + – – +
S. boydii – C – + + + – + –
S. sonnei – D +
slowly
+ + – +
slowly
– +
Shigellae Biochemical Properties
Test for determination of motility and producing hydrogen sulphide
1. S. flexneri – nonmotile, no produce hydrogen sulphide;
2. Enterobacter cloacea – motile, no produce hydrogen sulphide;
3. Proteus mirabilis – motile, produce hydrogen sulphide.
Toxin production.
S. dysenteriae produce thermolabile
exotoxin which displays marked tropism to the
nervous system and intestinal mucous
membrane. This toxin may be found in old
meat broth cultures, lysates of a 24-hour-old
agar culture, and in desiccated bacterial cells.
An intravenous injection of small doses of
the exotoxin is fatal to rabbits and white mice.
Such an injection produces diarrhoea, paralysis
of the hind limbs, and collapse.
The dysentery exotoxin causes the
production of a corresponding antitoxin. The
remaining types of dysentery bacilli produce no
soluble toxins. They contain endotoxins, which
are of a gluco-lipo-protein nature, and occur in
the smooth but not in the rough variants.
Thermolabile substances exerting a
neurotropic effect were revealed in some S.
sonnei strains. They were extracted from old
cultures by treating the latter with trichloracetic
acid.
Antigenic structure.
Dysentery bacilli are subdivided into 4
subgroups within which serovars may be
distinguished. The antigenic structure of
shigellae is associated with somatic O-
antigens and surface K-antigens.
Subgroup Species and
serotype
Subse-
rotypes
Antigenic formula
Type
antigen
Group
antigen
s
A. Does not
ferment mannite
S.dysenteria
1-12
B. Ferments
mannite as a rule
S. flexneri
1, 2, 3, 4, 5,
6, X variant
Y variant
1a, 1b,
2a, 2b,
3a, 3b,
4a, 4b
I, II, III,
IV, V, VI
2, 3, 4,
6, 7, 8
C. Ferments
mannite as a rule
S. boydii,
1-18
D. Ferments
mannite, slowly
lactose and
saccharose
S. sonnei
Antigens
Classification.
Dysentery bacilli are differentiated on the
basis of the whole complex of antigenic and
biochemical properties. S. sonnei have four
fermentative types which differ in the activity
of ramnose and xylose and in sensitivity to
phages and colicins.
Epidemiology and Pathogenesis of
Shigellosis.
Humans seem to be the only natural hosts for the
shigellae, becoming infected after the ingestion of
contaminated food or water. Unlike Salmonella, the
shigellae remain localized in the intestinal epithelial
cells, and the debilitating effects of shigellosis are
mostly attributed to the loss of fluids, electrolytes, and
nutrients and to the ulceration that occurs in the colon
wall.
Pathogenesis
of shigellosis in humans
Shigella dysenteriae type 1 secreted one or more
exotoxins (called Shiga toxins), which would cause
death when injected into experimental animals and
fluid accumulation when placed in ligated segments
of rabbit ileum.
The mechanism whereby Shiga toxin causes fluid
secretion is thought to occur by blocking fluid
absorption in the intestine. In this model, Shiga toxin
kills absorptive epithelial cells, and the diarrhea
results from an inhibition of absorption rather than
from active secretion.
To cause intestinal disease, shigellae must
invade the epithelial cells lining of the
intestine. After escaping from the phagocytic
vacuole, they multiply within the epithelial
cells. Thus, Shigella virulence requires that the
organisms invade epithelial cells, multiply
intracellularly, and spread from cell to cell by
way of finger-like projections to expand the
focus of infection, leading to ulceration and
destruction of the epithelial layer of the colon.
Gross pathology of shigellosis
Histopathology of acute
colitis following peroral
infection with shigellae.
Immunity.
Immunity acquired after dysentery is specific
and type-specific but relatively weak and of a
short duration. For this reason the disease may
recur many times and, in some cases, may
become chronic. This is probably explained by
the fact that Shigella organisms share an antigen
with human tissues.
Laboratory diagnosis.
Reliable results of laboratory examination
depend, to a large extent, on correct sampling
of stool specimens and its immediate
inoculation onto a selective differential
medium. The procedure should be carried out
at the patient's bedside, and the plate sent to the
laboratory.
Rules the correct procedure of material collection :
carry out bacteriological examination of faeces before
aetiotropic therapy has been initiated;
 collect faecal samples (mucus, mucosal admixtures)
from the bedpan and with swabs (loops) directly from
the rectum (the presence in the bedpan of even the
traces of disinfectants affects the results of
examination);
 inoculate without delay the collected material onto
enrichment media, place them into an incubator or store
them in preserving medium in the cold;
send the material to the laboratory as soon as
possible.
Bacteriological examination.
Faecal samples are streaked onto plates with Ploskirev's
medium and onto a selenite medium containing phenol
derivatives, beta-galactosides, which retard the growth of
the attendant flora, in particular E. coli. The inoculated
cultures are placed into a 37 °C incubator for 1S-24 hrs. The
nature of tile colonies is examined on the second day.
Colourless lactose-negative colonies are subcultured to
Olkenitsky's medium or to an agar slant to enrich for pure
cultures. On the third day, examine the nature of the growth
on Olkenitsky's medium for changes in the colour of the
medium column without gas formation. Subculture the
material to Hiss' media with malonate, arabinose, rhamnose,
xylose, dulcite, salicine, and phenylalanine. Read the results
indicative of biochemical activity on the following day.
Shigellae ferment carbohydrates with the formation of acid
To determine the species of Shigellae, one can employ the
following tests:
1.The agglutination test is performed first with a mixture
of sera containing those species, and variants of Shigellae
that are prevalent in a given area, and then the slide
agglutination test with monoreceptor species sera.
2. The coagglutination test which allows to determine the
specificity of the causative agent by a positive reaction with
protein A of staphylococci coated with specific antibodies.
On a suspected colony put a drop of specific sensitized
protein A of Staphylococcus aureus, then rock the dish and
15 min later examine it microscopically for the appearance
of the agglutinate (these tests may also be carried out on the
second day of the investigation with the material from
lactose-negative colonies).
3. Direct and indirect immunofluorescence test.
IFT: Salmonella enterica serovar Typhimurium inside (green)
and on the surface (blue) of human intestinal epithelial cells.
Actin is labelled in red.
4. The indirect haemagglutination (IHA) test with
erythrocyte diagnosticums with the titre of 1:160 and
higher is performed. The test. is repeated after at least
seven days. Diagnostically important is a four-fold rise in
the antibody litre, which can be elicited from the 10th-
12th day of the disease. To distinguish between patients
with subclinical forms of the disease and Shigella carriers,
identify immunoglobulins of the G class.
5. ELISA. For the epidemiological purpose the phagovar
and colicinovar of Shigellae are also identified.
6. To determine whether the isolated cultures belong to
the genus Shigella, perform the keratoconjunctival test on
guinea pigs. In contrast to causal organisms of other
intestinal infections, the dysentery Shigellae cause marked
keratitis.
7. An allergic test consisting in intracutaneous injection
of 0.1 ml of dysenterin is applied in the diagnosis of
dysentery in adults and children. Hyperaemia and a papule
2 to 3.5 cm in diameter develop at the site of the injection
in 24 hours in a person who has dysentery. The test is
strictly specific.
8. An allergy intracutaneous test with Tsuverkalov's
dysenterine is of supplementary significance. It becomes
positive in dysentery patients beginning with the fourth day
of the disease. The result is read in 24 hrs by the size of the
formed papula. The test is considered markedly positive in
the presence of oedema and skin hyperaemia 35 mm or
more in diameter, moderately positive if this diameter is
20-34 mm, doubtful if there is no papula and the diameter
of skin hyperaemia measures 10-15 mm, and negative if
the hyperaemic area is less than 10 mm.
9. The nature of the isolated culture may be determined
in some cases by its lysis by a polyvalent dysentery phage
Treatment of Shigellosis
Intravenous replacement of fluids and
electrolytes;
antibiotic therapy (ampicillin frequently is not
effective, and alternative therapies include
sulfamethoxazole / trimethoprim and, the
quinolone antibiotics such as nalidixic acid and
ciprofloxacin)
Dysentery control is ensured by a complex of general and
specific measures; (1) early and a completely effective
clinical, epidemiological, and laboratory diagnosis; (2)
hospitalization of patients or their isolation at home with
observance of the required regimen; (3) thorough
disinfection of sources of the disease; (4) adequate
treatment of patients with highly effective antibiotics and
use of chemotherapy and immunotherapy; (5) control of
disease centres with employment of prophylaxis measures;
(6) surveillance over foci and the application of
prophylactic measures there; (7) treatment with a phage of
all persons who were in contact with the sick individuals;
(8) observance of sanitary and hygienic regimens in
children's institutions, at home and at places of work, in
food industry establishments, at catering establishments, in
food stores.
Morphology. Cholera
vibrios are shaped like
a comma or a curved
rod measuring 1-5
mcm in length and 0.3
mcm in breadth
They are very actively
motile, monotrichous,
nonsporeforming,
noncapsulated, and
Gram-negative.
Vibrio Cholerae
Scanning electron
micrograph V. cholerae
Gram’s stain
Colonies of V. cholerae on bismuth-sulphit-agar
Cultivation.
Colonies of V. cholerae on blood agar
Fermentative properties.
The cholera vibrio liquefies coagulated serum and
gelatin; it forms indole and ammonia, reduces
nitrates to nitrites, breaks down urea, ferments
glucose, levulose, galactose, maltose, saccharose,
mannose, mannite, starch, and glycerine (slowly)
with acid formation but does not ferment lactose in
the first 48 hours, and always coagulates milk. The
cholera vibrio possesses lysin and ornithine
decarboxylases and oxidase activity. B. Heiberg
differentiated vibrios into biochemical types
according to their property of fermenting mannose,
arabinose, and saccharose.
Vibrio
Fermentatio
n
within 24
hrs
Sheep
erythrocyte
hemolysis
Lysis
by
specific
O-1
subgroup
phages
Agglutination
by
O-1
cholera
serum
Sensitivity
to
polymixin
B
sacharose
mannose
arabinose
Vibrio cholerae
biovar cholerae
A A – – + + +
Vibrio cholerae
biovar El Tor
A A – + + + –
Vibrio cholerae
biovar Proteus
A A – + – – –
Vibrio cholerae
biovar albensis
А – – – – – –
Toxin production.
an exotoxin (cholerogen) which is
marked by an enterotoxic effect
the endotoxin also exerts a powerful
toxic effect fibrinolysin
hyaluronidase
collagenase
mucinase
lecithinase
neuraminidase
proteinases
Mechanism of action of cholera enterotoxin according to Finkelstein. Cholera toxin
approaches target cell surface. B subunits bind to oligosaccharide of GM1 ganglioside.
Conformational alteration of holotoxin occurs, allowing the presentation of the A
subunit to cell surface. The A subunit enters the cell. The disulfide bond of the A subunit
is reduced by intracellular glutathione, freeing A1 and A2. NAD is hydrolyzed by A1,
yielding ADP-ribose and nicotinamide. One of the G proteins of adenylate cyclase is
ADP-ribosylated, inhibiting the action of GTPase and locking adenylate cyclase in the
"on" mode.
Cholera toxin activates the adenylate cyclase enzyme in
cells of the intestinal mucosa leading to increased levels of
intracellular cAMP, and the secretion of H20, Na+, K+, Cl-,
and HCO3- into the lumen of the small intestine.
Antigenic Determinants of Vibrio cholerae
Cholera is undoubtedly
the most dramatic of the
water-borne diseases.
The cholera vibrios are
transmitted from sick
persons and carriers by
food, water, flies, and
contaminated hands.
Pathogenesis and diseases in man.
Cholera is characterized by a short incubation
period of several hours to up to 6 days (in a
disease caused by the El Tor vibrio it lasts three to
five days), and the disease symptoms include
general weakness, vomiting, and a frequent loose
stool. The stools resemble rice-water and contain
enormous numbers of torn-off intestinal epithelial
cells and cholera vibrios. The major symptom of
cholera is a severe diarrhea in which a patient may
lose as much as 10 to 20 L or more of liquid per
day. Death, which may occur in as many as 60% of
untreated patients, results from severe dehydration
and loss of electrolytes.
Phases in the development of the disease:
1. Cholera enteritis (choleric diarrhoea) which lasts 1
or 2 days. In some cases the infectious process
terminates in this period and the patient recovers.
2. Cholera gastroenteritis is the second phase of the
disease. Profuse diarrhoea and continuous vomiting
lead to dehydration of the patient's body and this
results in lowering of body temperature, decrease in
the amount of urine excreted, drastic decrease in the
number of mineral and protein substance, and the
appearance of convulsions. The presence of cholera
vibrios is revealed guite frequently in the vomit and
particularly in the stools which have the appearance of
rice water.
3. Cholera algid which is characterized by severe
symptoms. The skin becomes wrinkled due to the
loss of water, cyanosis appears, and the voice
becomes husky and is sometimes lost completely.
The body temperature falls to 35.5-34° C. As a
result of blood concentration cardiac activity is
drastically weakened and urination is suppressed.
Immunity
acquired after cholera is high-grade but of short
duration and is of an anti-infectious
(antibacterial and antitoxic) character. It is
associated mainly with the presence of
antibodies (lysins, agglutinins, and opsonins).
The cholera vibrios rapidly undergo lysis under
the influence of immune sera which contain
bacteriolysins.
Laboratory diagnosis.
A strict regimen is established in the
laboratory. Examinations are carried out in
accordance with the general rules observed for
particularly hazardous diseases.
Test specimens are collected from stools,
vomit, organs obtained at autopsy, water,
objects contaminated by patient's stools, and,
in some cases, from foodstuffs. Certain rules
are observed when the material is collected
and transported to the laboratory, and
examination is made in the following stages.
1. Stool smears stained by a water solution of
fuchsin are examined microscopically. In the
smears, the cholera vibrios occur in groups similar
to shoals of fish.
2. A stool sample is inoculated into 1 per cent
peptone water and alkaline agar. After 6 hours
incubation at 37°C the cholera vibrios form a thin
pellicle in the peptone water, which adheres to the
glass. The pellicle smears are Gram stained, and
the culture is examined for motility. A slide
agglutination reaction is performed with specific
agglutinating O-serum diluted in a ratio of 1 in
100.
Vibrio cholerae (stool smear)
The organisms are then transferred from the
peptone water onto alkaline agar for isolation of
the pure culture. If the first generation of the
vibrios in peptone water is not visible, a drop
taken from the surface layer is re-inoculated into
another tube of peptone water. In some cases
with such re-inoculations, an increase in the
number of vibrios is achieved.
The vibrio culture grown on solid media is
examined for motility and agglutinable
properties. Then it is subcultured on an agar
slant to obtain the pure culture.
3. The organism is identified finally by its
agglutination reaction with specific O-serum,
determination of its fermentative properties
(fermentation of mannose, saccharose, and
arabinose), and its susceptibility to phagolysis.
Colonies of Vibrio cholerae of font varying opacity
(increasing from top right, left bottom right) pseudocoloured
to accentuate differences in gray-scale intensity. Of varying
opacity (increasing from top left to top right, to bottom left to
bottom right) pseudocoloured to accentuate differences in
grey-scale intensity.
The following procedures are undertaken for rapid
diagnosis: (1) dark field microscopy of the stool; (2) stool
culture by the method of tampons incubated for 16-18
hours in an enrichment medium with repeated dark field
microscopy; (3) agglutination reaction by the method of
fluorescent antibodies; (4) bacterial diagnosis by isolation
of cholera vibrios (the faecal mass is seeded as a thin
layer into a dish containing non-inhibiting nutrient agar
and grown for 4-5 hours, the vibrio colonies are detected
with a stereoscopic microscope, and the culture is tested
by the agglutination reaction with O-serum on glass; (5)
since neuraminidase is discharged by the cholera vibrios
and enters the intestine, a test for this enzyme is
considered expedient as a means of early diagnosis (it is
demonstrated in 66-76 per cent of patients, in 50-68 per
cent of vibrio carriers, and occasionally in healthy
individuals).
Treatment.
 antibiotics of the tetracycline group (tetracycline,
sigmamycin), amphenicol, and streptomycin are
prescribed at first intravenously and then by mouth.
 pathogenetic therapy is very important: control of
dehydration, hypoproteinaemia, metabolic disorders,
and the consequences of toxicosis, acidosis in
particular, by infusion of saline (sodium and
potassium) solutions, infusion of plasma or dry serum,
glucose, the use of warm bath, administration of drugs
which improve the tone of the heart and vessels.
Prophylaxis.
Cholera patients and vibrio carriers are the source
of the disease. Individuals remain carriers of the El
Tor vibrio for a lengthy period of time, for several
years. Vibrios of this biotype are widely
distributed in countries with a low sanitary level.
They survive in water reservoirs for a long time
and have been found in the bodies of frogs and
oysters. Infection may occur from bathing in
contaminated water and fishing for and eating
shrimps, oysters, and fish infected with El Tor
vibrio.The following measures are applied in a
cholera focus:
1. detection of the first cases with cholera,
careful registration of all sick individuals,
immediate information of health protection
organs;
2. isolation and hospitalization, according to
special rules, of all sick individuals and
carriers, observation and laboratory testing of
all contacts;
3. concurrent and final disinfection in
departments for cholera patients and in the
focus;
4. protection of sources of water supply,
stricter sanitary control over catering
establishments, control of flies; in view of the
possibility of El Tor vibrio reproducing in
water reservoirs under favourable conditions
(temperature, the presence of nutrient
substrates) systematic bacteriological control
over water reservoirs has become necessary,
especially in places of mass rest and recreation
of the population in the summer;
5. strict observance of individual hygiene;
boiling or proper chlorination of water,
decontamination of dishes, hand washing;
6. specific prophylaxis: immunization with the
cholera monovaccine containing 8 thousand
million microbial bodies per 1 ml or with
the cholera anatoxin. Chemoprophylaxis
with oral tetracycline is conducted for
persons who were in contact with the sick
individual or for patients with suspected
cholera.

More Related Content

Similar to Enterobacteria Microbiology

Picornaviruses. Enteroviruses. Polyviruses. Coxsackieviruses. Echoviruses
Picornaviruses. Enteroviruses. Polyviruses. Coxsackieviruses. EchovirusesPicornaviruses. Enteroviruses. Polyviruses. Coxsackieviruses. Echoviruses
Picornaviruses. Enteroviruses. Polyviruses. Coxsackieviruses. EchovirusesEneutron
 
LINDA TORKUMA POWER POINT SEMINAR PRESENTATION
LINDA TORKUMA POWER POINT SEMINAR PRESENTATIONLINDA TORKUMA POWER POINT SEMINAR PRESENTATION
LINDA TORKUMA POWER POINT SEMINAR PRESENTATIONamee terdue
 
Characterization of shiga toxin in escherichia coli during
Characterization of shiga toxin in escherichia coli duringCharacterization of shiga toxin in escherichia coli during
Characterization of shiga toxin in escherichia coli duringLuz Marie
 
Gastro intestinal infections
Gastro intestinal infectionsGastro intestinal infections
Gastro intestinal infectionsmagi_mahe
 
E. coli diagnosis in broiler and layer bird.
E. coli diagnosis in broiler and layer bird.E. coli diagnosis in broiler and layer bird.
E. coli diagnosis in broiler and layer bird.Abdullah Masud
 
Bohomolets Microbiology Lecture #19
Bohomolets Microbiology Lecture #19Bohomolets Microbiology Lecture #19
Bohomolets Microbiology Lecture #19Dr. Rubz
 
sinh bệnh học escherichia coli
sinh bệnh học escherichia colisinh bệnh học escherichia coli
sinh bệnh học escherichia coliSoM
 
Opportunistic Infections. Genera Proteus. Klebsiella & Pseudomonas. Hospital ...
Opportunistic Infections. Genera Proteus. Klebsiella & Pseudomonas. Hospital ...Opportunistic Infections. Genera Proteus. Klebsiella & Pseudomonas. Hospital ...
Opportunistic Infections. Genera Proteus. Klebsiella & Pseudomonas. Hospital ...Eneutron
 
Bohomolets Microbiology Lesson #6
Bohomolets Microbiology Lesson #6Bohomolets Microbiology Lesson #6
Bohomolets Microbiology Lesson #6Dr. Rubz
 
Salmonellae, causing agents of food Toxin infections
Salmonellae, causing agents of food Toxin infectionsSalmonellae, causing agents of food Toxin infections
Salmonellae, causing agents of food Toxin infectionsEneutron
 
E.coli and others dr .ihsan alsaimary
E.coli and others dr .ihsan alsaimaryE.coli and others dr .ihsan alsaimary
E.coli and others dr .ihsan alsaimarydr.Ihsan alsaimary
 

Similar to Enterobacteria Microbiology (20)

Enterobacteriaceae
EnterobacteriaceaeEnterobacteriaceae
Enterobacteriaceae
 
Git2
Git2Git2
Git2
 
Git2
Git2Git2
Git2
 
Picornaviruses. Enteroviruses. Polyviruses. Coxsackieviruses. Echoviruses
Picornaviruses. Enteroviruses. Polyviruses. Coxsackieviruses. EchovirusesPicornaviruses. Enteroviruses. Polyviruses. Coxsackieviruses. Echoviruses
Picornaviruses. Enteroviruses. Polyviruses. Coxsackieviruses. Echoviruses
 
Enterobacteriacae
EnterobacteriacaeEnterobacteriacae
Enterobacteriacae
 
LINDA TORKUMA POWER POINT SEMINAR PRESENTATION
LINDA TORKUMA POWER POINT SEMINAR PRESENTATIONLINDA TORKUMA POWER POINT SEMINAR PRESENTATION
LINDA TORKUMA POWER POINT SEMINAR PRESENTATION
 
Entero bacteriaceae
Entero bacteriaceaeEntero bacteriaceae
Entero bacteriaceae
 
Characterization of shiga toxin in escherichia coli during
Characterization of shiga toxin in escherichia coli duringCharacterization of shiga toxin in escherichia coli during
Characterization of shiga toxin in escherichia coli during
 
Gastro intestinal infections
Gastro intestinal infectionsGastro intestinal infections
Gastro intestinal infections
 
E. coli diagnosis in broiler and layer bird.
E. coli diagnosis in broiler and layer bird.E. coli diagnosis in broiler and layer bird.
E. coli diagnosis in broiler and layer bird.
 
Enterobacteriacae
EnterobacteriacaeEnterobacteriacae
Enterobacteriacae
 
Enterobacteriacae
EnterobacteriacaeEnterobacteriacae
Enterobacteriacae
 
Bohomolets Microbiology Lecture #19
Bohomolets Microbiology Lecture #19Bohomolets Microbiology Lecture #19
Bohomolets Microbiology Lecture #19
 
sinh bệnh học escherichia coli
sinh bệnh học escherichia colisinh bệnh học escherichia coli
sinh bệnh học escherichia coli
 
Opportunistic Infections. Genera Proteus. Klebsiella & Pseudomonas. Hospital ...
Opportunistic Infections. Genera Proteus. Klebsiella & Pseudomonas. Hospital ...Opportunistic Infections. Genera Proteus. Klebsiella & Pseudomonas. Hospital ...
Opportunistic Infections. Genera Proteus. Klebsiella & Pseudomonas. Hospital ...
 
Colibacillosis
ColibacillosisColibacillosis
Colibacillosis
 
Bohomolets Microbiology Lesson #6
Bohomolets Microbiology Lesson #6Bohomolets Microbiology Lesson #6
Bohomolets Microbiology Lesson #6
 
E. coli
E. coliE. coli
E. coli
 
Salmonellae, causing agents of food Toxin infections
Salmonellae, causing agents of food Toxin infectionsSalmonellae, causing agents of food Toxin infections
Salmonellae, causing agents of food Toxin infections
 
E.coli and others dr .ihsan alsaimary
E.coli and others dr .ihsan alsaimaryE.coli and others dr .ihsan alsaimary
E.coli and others dr .ihsan alsaimary
 

Recently uploaded

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 

Recently uploaded (20)

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 

Enterobacteria Microbiology

  • 1. Microbiology, Virology, and Immunology Department Causative agents of bacterial enteric infections: escherichiosis, klebsiellosis, typhoid fever, paratyphoid, salmonellosis. Shigella. Causative agents of cholera Lecturer As.Prof. O.V. Pokryshko
  • 2. Classification of the Enterobacteriaceae Genera Escherichia Shigella Edwardsiella Salmonella Citrobacter Klebsiella Enterobacter Hafnia Serratia Proteus Providencia Morganella Yersinia Erwinia
  • 3.
  • 4.
  • 5. The organism was isolated from feces in 1885 by T. Escherich. E. coli is a common inhabitant of the large intestine of humans and mammals. It is also found in the guts of birds, reptiles, amphibians, and insects. The bacteria are excreted in great numbers with the feces and are always present in the external environment (soil, water, foodstuffs, and other objects).
  • 6. Morphology. E coli are straight rods measuring 0.4- 0.7 in breadth and 1-3 in length. There are motile and non-motile types. Escherichia coli.
  • 8.
  • 9. Colonies of E. coli on meat-peptone agar Cultivation.
  • 10. Colonies of E. coli on Endo's medium
  • 11. Colonies of E. coli on Ploskirev's medium
  • 12. Colonies of E. coli on blood agar
  • 13. Escherichia coli is highly motile and will show turbidity throughout the tube.
  • 14. Fermentative properties. Positive (left) reactions of isolates E. coli in glucose fermentation broth. Note the formation of acid (yellow color) and gas. Observe the bubble in the Durham tube. “+” -ve test “—” -ve test
  • 15. Indole reaction B. E. coli is the positive microbe. A. Salmonella A B
  • 16. E. coli can reduce nitrate to nitrite. Note the bubble formation. Catalase positive
  • 17. Toxin production. a gluco-lipo-protein complex with which their toxic, antigenic, and immunogenic properties endotoxins thermolabile neurotropic exotoxins haemotoxins pyrogenic substances, proteinases, deoxyribonucleases, urease, phosphatase hyaluronidase aminoacid decarboxylases
  • 18. Antigenic structure. The antigenic structure of E. coli is characterized by variability and marked individuality. Along with the H- and O-antigens, the presence of other antigens has been shown in some strains, i.e. the surface somatic (membranous, capsular) K-antigens which contain the thermolabile L- and B-antigens and the thermostable A- and M-antigens. On the basis of antigenic structure an antigenic formula is derived which fully reflects the antigenic properties of the strain For example, one of the most widely spread serotypes is designated 0111 : K58 : H2.
  • 19. Pathogenesis of E. coli diarrheal disease
  • 20. Pathogenesis and diseases in man. Definite E. coli serogroups are capable of causing various acute intestinal diseases in humans:  the causative agents of colienteritis in children are O- groups-25, -26, -44, -55, -86, -91, -111, -114, -119, -125, -126, -127, -128, -141, -146, and others (they cause diseases in infants of the first months of life and in older infants);  the causative agents of dysentery-like diseases are E. coli of the O-groups-23, -32, -115, -124, -136, -143, - 144, -151, and others;  the causative agents of cholera-like diarrhoea are the O-groups-6, -15, -78, -148, and others, they produce thermolabile and thermoresistant enterotoxins.
  • 21.
  • 22.
  • 23. Escherichia coli Virulence Factors Diarrhea-producing E. coli Virulence Factors Enteroroxigenic E. coli Heat-labile toxin (LT) Heat-stable toxin (ST) Colonization factors (fimbriae) Enterohernorrhagic E. coli Shiga like toxin (SLT-I) Shiga like toxin II (SLF-II) Colonisation factors (fimbriae) Enteroinvasive E. coli Shiga like toxin (SLT-I) Shiga like toxin II (SLF-II) Ability to invade epithelial cells Enteropathogenic E. coli Adhesin factor for epithelial cells Urinary trace infections P- fimbriae Meningitis K-1 capsule
  • 24. Enterotoxigenic Escherichia coli. Enterotoxin-producing E coli, called enterotoxigenic E.coli (ETEC), produce one or both of two different toxins – a heat labile toxin called LT and a heat- stable toxin called ST.
  • 25. Enterohemorrhagic Escherichia coli (EHEC) is the etiologic agent of hemorrhagic colitis, a disease characterized by severe abdominal cramps and a copious, bloody diarrhea. These organisms are also known to cause a condition termed hemolytic- uremic syndrome (HUS), which is manifested by a hemolytic anemia, thrombocytopenia (decrease in the number of blood platelets), and acute renal failure.
  • 26. Enteroinvasive Escherichia coli. The disease produced by the enteroinvasive E. coli (EIEC) is indistinguishable from the dysentery produced by members of the genus Shigella, although the shigellae seem to be more virulent because considerably fewer shigellae are required than EIEC to cause diarrhea. The key virulence factor required by the EIEC is the ability to invade the epithelial
  • 27. Enteropathogenic Escherichia coli (EPEC). The ability of the EPEC to cause diarrhea. EPEC strains routinely have been considered noninvasive, but data have indicated that such strains can invade epithelial cells in culture. However, EPEC strains do not typically cause a bloody diarrhea, and the significance of cell invasion during infection remains uncertain.
  • 28.
  • 29.
  • 30.
  • 31. Immunity. In individuals who had suffered from diseases caused by pathogenic E. coli serovars, cross immunity is not produced owing to which re- infection may occur.
  • 32. Laboratory diagnosis. Tested material: the patients' faeces, throat and nasal discharges, material obtained at autopsy (blood, bile, liver, spleen, lungs, contents of the small and large intestine, pus), water, foodstuffs, and samples of washings from objects and hands of staff of maternity hospitals, hospitals, and dairy kitchens
  • 33. The tested material is inoculated onto solid nutrient media (Endo's, Levin's) and, simultaneously, onto Ploskirev's media. Blood is first inoculated into broth and then subcultured on solid media when development of a septic process is suspected. The pure culture isolate is identified by its morphological, cultural, biochemical, serological, and biological properties.
  • 34. The corresponding O-group to which an enteropathogenic-serovars belong is determined by means of the agglutination reaction. Besides, the immunofluorescence method employing type specific labelled sera is also used. It yields a preliminary answer in one to two hours. In serological diagnosis of colienteritis beginning with the third to fifth day of the disease the indirect haemagglutination reaction is used which excels the agglutination reaction in sensitivity.
  • 35. E. coli by immunofluorescence method
  • 36. Treatment. Patients with colienteritis are prescribed  antibiotics (tetracycline with vitamins C, B1 and B2)  biopreparations (coli autovaccine, coli bacteriophage, colicin, bacterin, lactobacterin, bificol, bifidumbacterin).  Physiological solutions with glucose are injected for controlling toxicosis.
  • 37. Prophylaxis. To prevent diseases caused by pathogenic serovars of E. coli, special attention is given to early identification of individuals suffering from colienteritis, and also to their hospitalization and effective treatment. Regular examination of personnel is necessary in children's institutions as well as of mothers whose children are suffering from dyspepsia. Considerable importance is assigned to observation of sanitary regulations in children's institutions, infant-feeding centres, maternity hospitals, and children's nurseries. Protection of water and foodstuff's from contamination with faeces, the control of flies, and gradual improvement of standards of hygiene of the population are also particularly important.
  • 38. Sanitary significance of E. coli. This organism is widely spread in nature. It occurs in soil, water, foodstuff's, and on various objects. For this reason E. coli serves as an indicator of faecal contamination of the external environment. Detection of E. coli is of great importance in estimating the sanitary index of faecal contamination of water, foodstuff's, soil, beverages, objects, and hand- washings. The degree of contamination of water, soil and foodstuff's is determined by the coli titre or coli index (these terms have been discussed in the chapter concerning the spread of microbes in nature).
  • 39. Salmonella Enteric Fever and Paratyphoid Salmonellae: Salmonella typhi Salmonella paratyphi A Salmonella schottmuelleri (S. paratyphi B)
  • 40. Morphology. The morphology of the typhoid and paratyphoid salmonella corresponds with the general characteristics of the Enterobacteriaceae family. Most of the strains are motile and possess flagella, from 8 to 20 in number. Salmonella
  • 41. Salmonella typhi Scanning electron micrograph Gram’s staining
  • 42. Colonies of S. paratyphi on Ploskirev's medium Cultivation.
  • 43. Colonies of S. typhus on Ploskirev's medium
  • 44. Colonies of Salmonella on Mac-Conkey medium
  • 45. Colonies of Salmonella on CLED medium
  • 46. Colonies of S. typhus on on bismuth-sulphite agar
  • 48. Toxin production. S. typhi contains gluco-lipo-protein complexes. The endotoxin is obtained by extracting the bacterial emulsion with trichloracetic acid. This endotoxin is thermostable, surviving a temperature of 120° C for 30 minutes, and is characterized by a highly specific precipitin reaction and pronounced toxic and antigenic properties. Investigations have shown the presence of exotoxic substances in S. typhi which are inactivated by light, air, and heat (80° C), as well as enterotropic toxin phosphatase, and pyrogenic substances.
  • 49. Antigenic structure. S. typhi possesses a flagella H-antigen and thermostable somatic O- and Vi-antigens. All three antigens give rise to the production of specific antibodies in the body, i. e. H-, O-, and Vi- agglutinins. H-agglutinins bring about a large- flocculent agglutination, while 0- and Vi-agglutinins produce fine-granular agglutination.
  • 50.
  • 51. Classification. The salmonellae of typhoid fever and paratyphoids together with the causative agents of toxinfections have been included in the genus Salmonella (named after the bacteriologist D. Salmon) on the basis of their antigenic structure and other properties. At present, about 2000 species and types of this genus are known. F. Kauffmann and P. White classified the typhoid- paratyphoid salmonellae into a number of groups according to antigenic structure and determined 65 somatic O-antigens. For instance, S. typhi (group D) contains three different O-antigens — 9, 12, and Vi. S. paratyphi A alone constitutes group A, and S. schottmuelleri belongs to group B.
  • 52. Pathogenesis and diseases in man. The causative agent is primarily located in the intestinal tract. Infection takes place through the mouth (digestive stage). Cyclic recurrences and development of certain pathophysiological changes characterize the pathogenesis of typhoid fever and paratyphoids. There is a certain time interval after the salmonellae penetrate into the intestine, during which inflammatory processes develop in the isolated follicles and Peyer's patches of the lower region of the small intestine (invasive stage).
  • 53. As a result of deterioration of the defence mechanism of the lymphatic apparatus in the small intestine the organisms enter the blood (bacteriemia stage). Here they are partially destroyed by the bactericidal substances contained in the blood, with endotoxin formation. During bacteraemia typhoid salmonellae invade the patient's body, penetrating into the lymph nodes, spleen, bone marrow, liver, and other organs (parenchymal diffusion stage). This period coincides with the early symptoms of the disease and lasts for a week.
  • 54. During the second week of the disease endotoxins accumulate in Peyer's patches, are absorbed by the blood, and cause intoxication. The general clinical picture of the disease is characterized by status typhosus, disturbances of thermoregulation, activity of the central and vegetative nervous systems, cardiovascular activity, etc.
  • 55. On the third week of the disease a large number of typhoid bacteria enter the intestine from the bile ducts and Lieberkuhn's glands. Some of these bacteria are excreted in the faeces, while others reenter the Peyer's patches and solitary follicles, which had been previously sensitized by the salmonellae in the initial stage. This results in the development of hyperergia and ulcerative processes. Lesions are most pronounced in Peyer's patches and solitary follicles and may be followed by perforation of the intestine and peritonitis (excretory and allergic stage).
  • 56. The typhoid-paratyphoid salmonellae together with products of their metabolism induce antibody production and promote phagocytosis. These processes reach their peak on the fifth-sixth week of the disease and eventually lead to recovery from the disease. Clinical recovery (recovery stage) does not coincide with the elimination of the pathogenic bacteria from the body. The majority of convalescents become carriers during the first weeks following recovery, and 3-5 per cent of the cases continue to excrete the organisms for many months and years after the attack and, sometimes, for life.
  • 57. Inflammatory processes in the gall bladder (cholecystitis) and liver are the main causes of a carrier state since these organs serve as favourable media for the bacteria, where the latter multiply and live for long periods. Besides this, typhoid-paratyphoid salmonellae may affect the kidneys and urinary bladder, giving rise to pyelitis and cystitis. In such lesions the organisms are excreted in the urine.
  • 58. Immunity. Immunity acquired after typhoid fever and paratyphoids is relatively stable but relapses and reinfections sometimes occur. Antibiotics, used as therapeutic agents, inhibit the immunogenic activity of the pathogens, which change rapidly and lose their O- and Vi- antigens.
  • 59. Laboratory diagnosis. The present laboratory diagnosis of typhoid fever and paratyphoids is based on the pathogenesis of these diseases. 1. Isolation of haemoculture. Bacteraemia appears during the first days of the infection. Thus, for culture isolation 10-15 ml of blood (15-20 ml during the second week of the disease and 30-40 ml during the third week) are inoculated into 100, 150 and 200 ml of 10 per cent bile broth, after which cultures are incubated at 37° C and on the second day subcultured onto one of the differential media (Ploskirev's, Endo's, Levin’s) or common meat- peptone agar.
  • 60. The isolated culture is identified by inoculation into a series of differential media and by the agglutination reaction. The latter is performed by the glass-slide method using monoreceptor sera or by the test-tube method using purified specific sera.
  • 61. 2. Serological method. Sufficient number of agglutinins accumulate in the blood on the second week of the disease, and they are detected by the Widal reaction. Diagnostic typhoid and paratyphoid A and B suspensions are employed in this reaction. The fact that individuals treated with antibiotics may yield a low titre reaction must be taken into consideration. The reaction is valued positive in patient's serum in dilution 1 : 200 and higher. The Widal reaction may be positive not only in patients but also in those who had suffered the disease in the past and in vaccinated individuals. For this reason diagnostic suspensions of O- and H-antigens are employed in this reaction. The sera of vaccinated people and convalescents contain H-agglutinins for a long time, while the sera of patients contain O-agglutinins at the height of the disease.
  • 62. In typhoid fever and paratyphoids the agglutination reaction may sometimes be of a group character since the patient's serum contains agglutinins not only to specific but also to group antigens which occur in other bacteria. In such cases the patient's blood must be sampled again in 5-6 days and the Widal reaction repeated. Increase of the agglutinin titre makes laboratory diagnosis easier. In cases when the serum titre shows an equal rise with several antigens, 0-, H-, and Vi-agglutinins are detected separately.
  • 63. 3. A pure culture is isolated from faeces and urine during the first, second, and third weeks of the disease. The test material is inoculated into bile broth, Muller's medium, Ploskirev's medium, or bismuth sulphite agar. Isolation and identification of the pure culture are performed in the same way as in blood examination. Selective media are recommended for isolation of the typhoid-paratyphoid organisms from water, sewage, milk, and faeces of healthy individuals. These media slightly inhibit the growth of pathogenic strains of typhoid-paratyphoid organisms and greatly suppress the-growth of saprophytic microflora.
  • 64. A reaction for the detection of a rise in the phage titre is employed in typhoid fever and paratyphoid diagnosis. This reaction is based on the fact that the specific (indicator) phage multiplies only when it is in contact with homologous salmonellae. An increase in the number of phage corpuscles in the test tube as compared to the control tube is indicative of the presence of organisms homologous to the phage used. This reaction is highly sensitive and specific and permits to reveal the presence of the salmonellae in various substrates in 11-22 hours without the necessity of isolating the organisms in a pure culture. The reaction is valued positive if the increase in the number of corpuscles in the tube containing the test specimen is not less than 5-10 times that in the control tube.
  • 65. Treatment. chloramphenicol, oxytetracycline, and nitrofuran preparations general non-specific treatment (dietetic and symptomatic)
  • 66. Prophylaxis.  timely diagnosis  hospitalization of patients, disinfection of the sources, and identification  treatment of carriers  disinfection of water, safeguarding water supplies from pollution, systematic and thorough cleaning of inhabited areas, fly control, and protection of foodstuff's and water from flies  Washing of hands before meals and after using the toilet is necessary  regular examination of personnel in food-processing factories for identification of carriers is also extremely important.  several varieties of vaccines are prepared: typhoid vaccine (monovaccine), typhoid and paratyphoid B vaccine (divaccine).
  • 67. Shigella a. Slender, gram-negative rod; non lactose- fermenting (except for S. sonnei) b. In contrast to E. coli: no H2S production, no lysine decarboxylation, no acetate utilization c. Invasive (key to pathogenesis) d. In contrast to Salmonella: non-motile; no gas from glucose fermentation; no H2S production e. Toxin production limited to a few strains
  • 68. f. All have O antigens-four groups (A-D) g. Differentiating species ( S. dysenteriae - no mannitol fermentation; S. boydii - C antigen group; S. flexneri - B antigen group; S. sonnei-orniltine decarbexylase production) h. Specimens i. Rectal swab from colonic ulcer is best for culture. j. Fecal specimen - must be immediately innoculated onto transport media or culture media. k. Sensitive to acids present in feces.
  • 69. Morphologically dysentery bacilli correspond to the organisms of the family Enterobacteriaceae. Dysentery bacilli have no flagella and this is one of the differential characters between these organisms and bacteria of the coli- typhoid-paratyphoid group. Morphology.
  • 71. Colonies of dysentery bacilli on Ploskirev's medium Cultivation.
  • 72. Colonies of Salmonella on Mac-Conkey medium
  • 73. Fermentative properties. None of the species of dysentery bacilli liquefy gelatin nor produce hydrogen sulphide. They ferment glucose, with acid formation, with the exception of the Newcastle subspecies which sometimes produce both acid and gas during this reaction. With the exception of the Sonne bacilli, none of them ferment lactose.
  • 74. Subgroup Fermentation of carbohydrates Indole production Catalase lactose glucose mannite succrose succrose S. dysenteriae – A – + – – – – – S. fiexneri – B – + + + – – + S. boydii – C – + + + – + – S. sonnei – D + slowly + + – + slowly – + Shigellae Biochemical Properties
  • 75. Test for determination of motility and producing hydrogen sulphide 1. S. flexneri – nonmotile, no produce hydrogen sulphide; 2. Enterobacter cloacea – motile, no produce hydrogen sulphide; 3. Proteus mirabilis – motile, produce hydrogen sulphide.
  • 76. Toxin production. S. dysenteriae produce thermolabile exotoxin which displays marked tropism to the nervous system and intestinal mucous membrane. This toxin may be found in old meat broth cultures, lysates of a 24-hour-old agar culture, and in desiccated bacterial cells. An intravenous injection of small doses of the exotoxin is fatal to rabbits and white mice. Such an injection produces diarrhoea, paralysis of the hind limbs, and collapse.
  • 77. The dysentery exotoxin causes the production of a corresponding antitoxin. The remaining types of dysentery bacilli produce no soluble toxins. They contain endotoxins, which are of a gluco-lipo-protein nature, and occur in the smooth but not in the rough variants. Thermolabile substances exerting a neurotropic effect were revealed in some S. sonnei strains. They were extracted from old cultures by treating the latter with trichloracetic acid.
  • 78. Antigenic structure. Dysentery bacilli are subdivided into 4 subgroups within which serovars may be distinguished. The antigenic structure of shigellae is associated with somatic O- antigens and surface K-antigens.
  • 79. Subgroup Species and serotype Subse- rotypes Antigenic formula Type antigen Group antigen s A. Does not ferment mannite S.dysenteria 1-12 B. Ferments mannite as a rule S. flexneri 1, 2, 3, 4, 5, 6, X variant Y variant 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b I, II, III, IV, V, VI 2, 3, 4, 6, 7, 8 C. Ferments mannite as a rule S. boydii, 1-18 D. Ferments mannite, slowly lactose and saccharose S. sonnei Antigens
  • 80. Classification. Dysentery bacilli are differentiated on the basis of the whole complex of antigenic and biochemical properties. S. sonnei have four fermentative types which differ in the activity of ramnose and xylose and in sensitivity to phages and colicins.
  • 81. Epidemiology and Pathogenesis of Shigellosis. Humans seem to be the only natural hosts for the shigellae, becoming infected after the ingestion of contaminated food or water. Unlike Salmonella, the shigellae remain localized in the intestinal epithelial cells, and the debilitating effects of shigellosis are mostly attributed to the loss of fluids, electrolytes, and nutrients and to the ulceration that occurs in the colon wall.
  • 83. Shigella dysenteriae type 1 secreted one or more exotoxins (called Shiga toxins), which would cause death when injected into experimental animals and fluid accumulation when placed in ligated segments of rabbit ileum. The mechanism whereby Shiga toxin causes fluid secretion is thought to occur by blocking fluid absorption in the intestine. In this model, Shiga toxin kills absorptive epithelial cells, and the diarrhea results from an inhibition of absorption rather than from active secretion.
  • 84. To cause intestinal disease, shigellae must invade the epithelial cells lining of the intestine. After escaping from the phagocytic vacuole, they multiply within the epithelial cells. Thus, Shigella virulence requires that the organisms invade epithelial cells, multiply intracellularly, and spread from cell to cell by way of finger-like projections to expand the focus of infection, leading to ulceration and destruction of the epithelial layer of the colon.
  • 85. Gross pathology of shigellosis
  • 86. Histopathology of acute colitis following peroral infection with shigellae.
  • 87. Immunity. Immunity acquired after dysentery is specific and type-specific but relatively weak and of a short duration. For this reason the disease may recur many times and, in some cases, may become chronic. This is probably explained by the fact that Shigella organisms share an antigen with human tissues.
  • 88. Laboratory diagnosis. Reliable results of laboratory examination depend, to a large extent, on correct sampling of stool specimens and its immediate inoculation onto a selective differential medium. The procedure should be carried out at the patient's bedside, and the plate sent to the laboratory.
  • 89. Rules the correct procedure of material collection : carry out bacteriological examination of faeces before aetiotropic therapy has been initiated;  collect faecal samples (mucus, mucosal admixtures) from the bedpan and with swabs (loops) directly from the rectum (the presence in the bedpan of even the traces of disinfectants affects the results of examination);  inoculate without delay the collected material onto enrichment media, place them into an incubator or store them in preserving medium in the cold; send the material to the laboratory as soon as possible.
  • 90. Bacteriological examination. Faecal samples are streaked onto plates with Ploskirev's medium and onto a selenite medium containing phenol derivatives, beta-galactosides, which retard the growth of the attendant flora, in particular E. coli. The inoculated cultures are placed into a 37 °C incubator for 1S-24 hrs. The nature of tile colonies is examined on the second day. Colourless lactose-negative colonies are subcultured to Olkenitsky's medium or to an agar slant to enrich for pure cultures. On the third day, examine the nature of the growth on Olkenitsky's medium for changes in the colour of the medium column without gas formation. Subculture the material to Hiss' media with malonate, arabinose, rhamnose, xylose, dulcite, salicine, and phenylalanine. Read the results indicative of biochemical activity on the following day. Shigellae ferment carbohydrates with the formation of acid
  • 91. To determine the species of Shigellae, one can employ the following tests: 1.The agglutination test is performed first with a mixture of sera containing those species, and variants of Shigellae that are prevalent in a given area, and then the slide agglutination test with monoreceptor species sera. 2. The coagglutination test which allows to determine the specificity of the causative agent by a positive reaction with protein A of staphylococci coated with specific antibodies. On a suspected colony put a drop of specific sensitized protein A of Staphylococcus aureus, then rock the dish and 15 min later examine it microscopically for the appearance of the agglutinate (these tests may also be carried out on the second day of the investigation with the material from lactose-negative colonies). 3. Direct and indirect immunofluorescence test.
  • 92. IFT: Salmonella enterica serovar Typhimurium inside (green) and on the surface (blue) of human intestinal epithelial cells. Actin is labelled in red.
  • 93. 4. The indirect haemagglutination (IHA) test with erythrocyte diagnosticums with the titre of 1:160 and higher is performed. The test. is repeated after at least seven days. Diagnostically important is a four-fold rise in the antibody litre, which can be elicited from the 10th- 12th day of the disease. To distinguish between patients with subclinical forms of the disease and Shigella carriers, identify immunoglobulins of the G class. 5. ELISA. For the epidemiological purpose the phagovar and colicinovar of Shigellae are also identified. 6. To determine whether the isolated cultures belong to the genus Shigella, perform the keratoconjunctival test on guinea pigs. In contrast to causal organisms of other intestinal infections, the dysentery Shigellae cause marked keratitis.
  • 94. 7. An allergic test consisting in intracutaneous injection of 0.1 ml of dysenterin is applied in the diagnosis of dysentery in adults and children. Hyperaemia and a papule 2 to 3.5 cm in diameter develop at the site of the injection in 24 hours in a person who has dysentery. The test is strictly specific. 8. An allergy intracutaneous test with Tsuverkalov's dysenterine is of supplementary significance. It becomes positive in dysentery patients beginning with the fourth day of the disease. The result is read in 24 hrs by the size of the formed papula. The test is considered markedly positive in the presence of oedema and skin hyperaemia 35 mm or more in diameter, moderately positive if this diameter is 20-34 mm, doubtful if there is no papula and the diameter of skin hyperaemia measures 10-15 mm, and negative if the hyperaemic area is less than 10 mm. 9. The nature of the isolated culture may be determined in some cases by its lysis by a polyvalent dysentery phage
  • 95. Treatment of Shigellosis Intravenous replacement of fluids and electrolytes; antibiotic therapy (ampicillin frequently is not effective, and alternative therapies include sulfamethoxazole / trimethoprim and, the quinolone antibiotics such as nalidixic acid and ciprofloxacin)
  • 96. Dysentery control is ensured by a complex of general and specific measures; (1) early and a completely effective clinical, epidemiological, and laboratory diagnosis; (2) hospitalization of patients or their isolation at home with observance of the required regimen; (3) thorough disinfection of sources of the disease; (4) adequate treatment of patients with highly effective antibiotics and use of chemotherapy and immunotherapy; (5) control of disease centres with employment of prophylaxis measures; (6) surveillance over foci and the application of prophylactic measures there; (7) treatment with a phage of all persons who were in contact with the sick individuals; (8) observance of sanitary and hygienic regimens in children's institutions, at home and at places of work, in food industry establishments, at catering establishments, in food stores.
  • 97. Morphology. Cholera vibrios are shaped like a comma or a curved rod measuring 1-5 mcm in length and 0.3 mcm in breadth They are very actively motile, monotrichous, nonsporeforming, noncapsulated, and Gram-negative. Vibrio Cholerae
  • 98. Scanning electron micrograph V. cholerae Gram’s stain
  • 99.
  • 100. Colonies of V. cholerae on bismuth-sulphit-agar Cultivation.
  • 101. Colonies of V. cholerae on blood agar
  • 102. Fermentative properties. The cholera vibrio liquefies coagulated serum and gelatin; it forms indole and ammonia, reduces nitrates to nitrites, breaks down urea, ferments glucose, levulose, galactose, maltose, saccharose, mannose, mannite, starch, and glycerine (slowly) with acid formation but does not ferment lactose in the first 48 hours, and always coagulates milk. The cholera vibrio possesses lysin and ornithine decarboxylases and oxidase activity. B. Heiberg differentiated vibrios into biochemical types according to their property of fermenting mannose, arabinose, and saccharose.
  • 103. Vibrio Fermentatio n within 24 hrs Sheep erythrocyte hemolysis Lysis by specific O-1 subgroup phages Agglutination by O-1 cholera serum Sensitivity to polymixin B sacharose mannose arabinose Vibrio cholerae biovar cholerae A A – – + + + Vibrio cholerae biovar El Tor A A – + + + – Vibrio cholerae biovar Proteus A A – + – – – Vibrio cholerae biovar albensis А – – – – – –
  • 104. Toxin production. an exotoxin (cholerogen) which is marked by an enterotoxic effect the endotoxin also exerts a powerful toxic effect fibrinolysin hyaluronidase collagenase mucinase lecithinase neuraminidase proteinases
  • 105. Mechanism of action of cholera enterotoxin according to Finkelstein. Cholera toxin approaches target cell surface. B subunits bind to oligosaccharide of GM1 ganglioside. Conformational alteration of holotoxin occurs, allowing the presentation of the A subunit to cell surface. The A subunit enters the cell. The disulfide bond of the A subunit is reduced by intracellular glutathione, freeing A1 and A2. NAD is hydrolyzed by A1, yielding ADP-ribose and nicotinamide. One of the G proteins of adenylate cyclase is ADP-ribosylated, inhibiting the action of GTPase and locking adenylate cyclase in the "on" mode.
  • 106. Cholera toxin activates the adenylate cyclase enzyme in cells of the intestinal mucosa leading to increased levels of intracellular cAMP, and the secretion of H20, Na+, K+, Cl-, and HCO3- into the lumen of the small intestine.
  • 107. Antigenic Determinants of Vibrio cholerae
  • 108. Cholera is undoubtedly the most dramatic of the water-borne diseases. The cholera vibrios are transmitted from sick persons and carriers by food, water, flies, and contaminated hands. Pathogenesis and diseases in man.
  • 109.
  • 110. Cholera is characterized by a short incubation period of several hours to up to 6 days (in a disease caused by the El Tor vibrio it lasts three to five days), and the disease symptoms include general weakness, vomiting, and a frequent loose stool. The stools resemble rice-water and contain enormous numbers of torn-off intestinal epithelial cells and cholera vibrios. The major symptom of cholera is a severe diarrhea in which a patient may lose as much as 10 to 20 L or more of liquid per day. Death, which may occur in as many as 60% of untreated patients, results from severe dehydration and loss of electrolytes.
  • 111. Phases in the development of the disease: 1. Cholera enteritis (choleric diarrhoea) which lasts 1 or 2 days. In some cases the infectious process terminates in this period and the patient recovers. 2. Cholera gastroenteritis is the second phase of the disease. Profuse diarrhoea and continuous vomiting lead to dehydration of the patient's body and this results in lowering of body temperature, decrease in the amount of urine excreted, drastic decrease in the number of mineral and protein substance, and the appearance of convulsions. The presence of cholera vibrios is revealed guite frequently in the vomit and particularly in the stools which have the appearance of rice water.
  • 112. 3. Cholera algid which is characterized by severe symptoms. The skin becomes wrinkled due to the loss of water, cyanosis appears, and the voice becomes husky and is sometimes lost completely. The body temperature falls to 35.5-34° C. As a result of blood concentration cardiac activity is drastically weakened and urination is suppressed.
  • 113.
  • 114. Immunity acquired after cholera is high-grade but of short duration and is of an anti-infectious (antibacterial and antitoxic) character. It is associated mainly with the presence of antibodies (lysins, agglutinins, and opsonins). The cholera vibrios rapidly undergo lysis under the influence of immune sera which contain bacteriolysins.
  • 115. Laboratory diagnosis. A strict regimen is established in the laboratory. Examinations are carried out in accordance with the general rules observed for particularly hazardous diseases. Test specimens are collected from stools, vomit, organs obtained at autopsy, water, objects contaminated by patient's stools, and, in some cases, from foodstuffs. Certain rules are observed when the material is collected and transported to the laboratory, and examination is made in the following stages.
  • 116. 1. Stool smears stained by a water solution of fuchsin are examined microscopically. In the smears, the cholera vibrios occur in groups similar to shoals of fish. 2. A stool sample is inoculated into 1 per cent peptone water and alkaline agar. After 6 hours incubation at 37°C the cholera vibrios form a thin pellicle in the peptone water, which adheres to the glass. The pellicle smears are Gram stained, and the culture is examined for motility. A slide agglutination reaction is performed with specific agglutinating O-serum diluted in a ratio of 1 in 100.
  • 118. The organisms are then transferred from the peptone water onto alkaline agar for isolation of the pure culture. If the first generation of the vibrios in peptone water is not visible, a drop taken from the surface layer is re-inoculated into another tube of peptone water. In some cases with such re-inoculations, an increase in the number of vibrios is achieved. The vibrio culture grown on solid media is examined for motility and agglutinable properties. Then it is subcultured on an agar slant to obtain the pure culture.
  • 119. 3. The organism is identified finally by its agglutination reaction with specific O-serum, determination of its fermentative properties (fermentation of mannose, saccharose, and arabinose), and its susceptibility to phagolysis.
  • 120. Colonies of Vibrio cholerae of font varying opacity (increasing from top right, left bottom right) pseudocoloured to accentuate differences in gray-scale intensity. Of varying opacity (increasing from top left to top right, to bottom left to bottom right) pseudocoloured to accentuate differences in grey-scale intensity.
  • 121. The following procedures are undertaken for rapid diagnosis: (1) dark field microscopy of the stool; (2) stool culture by the method of tampons incubated for 16-18 hours in an enrichment medium with repeated dark field microscopy; (3) agglutination reaction by the method of fluorescent antibodies; (4) bacterial diagnosis by isolation of cholera vibrios (the faecal mass is seeded as a thin layer into a dish containing non-inhibiting nutrient agar and grown for 4-5 hours, the vibrio colonies are detected with a stereoscopic microscope, and the culture is tested by the agglutination reaction with O-serum on glass; (5) since neuraminidase is discharged by the cholera vibrios and enters the intestine, a test for this enzyme is considered expedient as a means of early diagnosis (it is demonstrated in 66-76 per cent of patients, in 50-68 per cent of vibrio carriers, and occasionally in healthy individuals).
  • 122.
  • 123. Treatment.  antibiotics of the tetracycline group (tetracycline, sigmamycin), amphenicol, and streptomycin are prescribed at first intravenously and then by mouth.  pathogenetic therapy is very important: control of dehydration, hypoproteinaemia, metabolic disorders, and the consequences of toxicosis, acidosis in particular, by infusion of saline (sodium and potassium) solutions, infusion of plasma or dry serum, glucose, the use of warm bath, administration of drugs which improve the tone of the heart and vessels.
  • 124. Prophylaxis. Cholera patients and vibrio carriers are the source of the disease. Individuals remain carriers of the El Tor vibrio for a lengthy period of time, for several years. Vibrios of this biotype are widely distributed in countries with a low sanitary level. They survive in water reservoirs for a long time and have been found in the bodies of frogs and oysters. Infection may occur from bathing in contaminated water and fishing for and eating shrimps, oysters, and fish infected with El Tor vibrio.The following measures are applied in a cholera focus:
  • 125. 1. detection of the first cases with cholera, careful registration of all sick individuals, immediate information of health protection organs; 2. isolation and hospitalization, according to special rules, of all sick individuals and carriers, observation and laboratory testing of all contacts; 3. concurrent and final disinfection in departments for cholera patients and in the focus;
  • 126. 4. protection of sources of water supply, stricter sanitary control over catering establishments, control of flies; in view of the possibility of El Tor vibrio reproducing in water reservoirs under favourable conditions (temperature, the presence of nutrient substrates) systematic bacteriological control over water reservoirs has become necessary, especially in places of mass rest and recreation of the population in the summer;
  • 127. 5. strict observance of individual hygiene; boiling or proper chlorination of water, decontamination of dishes, hand washing; 6. specific prophylaxis: immunization with the cholera monovaccine containing 8 thousand million microbial bodies per 1 ml or with the cholera anatoxin. Chemoprophylaxis with oral tetracycline is conducted for persons who were in contact with the sick individual or for patients with suspected cholera.