SlideShare a Scribd company logo
1 of 21
Download to read offline
The	
  Role	
  of	
  Exchange	
  Bias	
  in	
  
	
  Domain	
  Dynamics	
  Control	
  
A.	
  Benassi1,	
  M.A.	
  Marioni1,	
  D.	
  Passerone1	
  and	
  H.J.	
  Hug1,2	
  
	
  	
  	
  
	
  
	
  
	
  
1-­‐	
  EMPA	
  Swiss	
  Federal	
  InsHtute	
  for	
  Materials	
  Science	
  and	
  Technology,	
  Dübendorf	
  (Switzerland)	
  
2-­‐	
  	
  Department	
  of	
  Physics,	
  Universität	
  Basel,	
  Basel	
  (Switzerland)	
  
Sample	
  and	
  measurements	
  
A	
  perpendicular	
  anisotropy	
  ferromagneHc	
  film	
  (FF)	
  is	
  anH-­‐coupled	
  with	
  a	
  thinner	
  
anHferromagneHc	
  film	
  (AF)	
  grown	
  on	
  top	
  
	
  
Upon	
  cooling	
  below	
  the	
  Neel	
  temperature,	
  the	
  AF	
  becomes	
  ordered	
  except	
  for	
  few	
  
atomic	
   layer	
   at	
   the	
   interface,	
   here	
   the	
   defects	
   at	
   the	
   interface	
   give	
   rise	
   to	
   a	
  
distribuHon	
  of	
  uncompensated	
  spins	
  (UCS)	
  
Being	
  the	
  Neel	
  temperature	
  of	
  the	
  AF	
  smaller	
  than	
  the	
  Curie	
  temperature	
  of	
  the	
  FF,	
  the	
  presence	
  of	
  the	
  ferromagneHc	
  
domains	
   can	
   orient	
   the	
   uncompensated	
   spin	
   at	
   the	
   interface	
   during	
   the	
   cooling.	
   This	
   allow	
   us	
   to	
   fix	
   stably	
   the	
   FF	
  
domain	
  structure	
  on	
  the	
  cooled	
  AF.	
  	
  	
  
the	
  domains	
  image	
  is	
  
taken	
  through	
  the	
  AF	
  
layer	
  because	
  the	
  FF	
  
field	
  is	
  orders	
  of	
  
magnitude	
  stronger	
  
the	
  UCS	
  image	
  is	
  taken	
  
saturaHng	
  the	
  FF	
  
domains	
  with	
  an	
  
external	
  field	
  
Schmid	
  e	
  al.	
  PRL	
  105	
  197201	
  (2010)	
  	
  	
  	
  	
  	
  Joshi	
  et	
  al.	
  Appl.Phys.LeY.	
  98	
  082502	
  (2011)	
  
Hext
uncompensated	
  
frustrated	
  
AF	
  
FF	
  
The	
  model	
  system	
  
The	
  Landau-­‐Lifshitz-­‐Gilbert	
  (LLG)	
  equaHon	
  rules	
  the	
  precession	
  of	
  a	
  magneHc	
  dipole	
  in	
  an	
  external	
  field:	
  
∂m
∂t
= −
γ
1 + ξ2
m ×

B + ξ

m × B

B = −
1
Ms
δH[m]
δm
+ Q(R, t)
Q(R, t) = 0
Q(R, t)Q(R
, t
) = δ(t − t
)δ(R − R
)2KBTξ/Msγ
Bm
precession	
  term	
  
Bm
damping	
  term	
  
dissipaHon	
  by	
  
microscopic	
  degrees	
  
of	
  freedom	
  	
  
Bm
stochasHc	
  term	
  
thermal	
  fluctuaHons	
  
Under	
  the	
  following	
  approximaHons:	
  	
  
	
  
•  scalar	
  magneHzaHon	
  uniform	
  along	
  the	
  FF	
  thickness	
  d
•  domain	
  walls	
  smaller	
  than	
  the	
  domain	
  size	
  
•  small	
  FF	
  thickness	
  d
the	
  magneHzaHon	
  in	
  the	
  FF	
  can	
  be	
  described	
  by	
  the	
  
following	
  hamiltonian	
  power	
  expansion:	
  	
  
Gilbert	
  IEEE	
  Trans.	
  On	
  MagneHcs	
  40	
  3434	
  (2004)	
  	
  	
  	
  	
  	
  Brown	
  Phys.Rev.	
  130	
  1677	
  (1963)	
  	
  	
  	
  	
  	
  Usadel	
  PRB	
  73	
  212405	
  (2006)	
  
m(r, t) = m(x, y, t)ˆz
H =

d3
R

− Ku(R)
m2
2
+
A
2
(∇Rm)2
+
µ0M2
s d
8π

d2
R m(R
)m(R)
|R − R|3
− µ0Msm(Hext − HUCS(R))
The	
  model	
  system	
  
∂m
∂t
= −
γ
1 + ξ2
m ×

B + ξ

m × B

B = −
1
Ms
δH[m]
δm
+ Q(R, t)
Q(R, t) = 0
Q(R, t)Q(R
, t
) = δ(t − t
)δ(R − R
)2KBTξ/Msγ
Bm Bm
Under	
  the	
  following	
  approximaHons:	
  	
  
	
  
•  scalar	
  magneHzaHon	
  uniform	
  along	
  the	
  FF	
  thickness	
  d
•  domain	
  walls	
  smaller	
  than	
  the	
  domain	
  size	
  
•  small	
  FF	
  thickness	
  d
the	
  magneHzaHon	
  in	
  the	
  FF	
  can	
  be	
  described	
  by	
  the	
  
following	
  hamiltonian	
  power	
  expansion:	
  	
  
Jagla	
  PRB	
  72	
  094406	
  (2005)	
  	
  	
  	
  	
  	
  Jagla	
  PRB	
  70	
  046204	
  (2004)	
  	
  
m(r, t) = m(x, y, t)ˆz
The	
  Landau-­‐Lifshitz-­‐Gilbert	
  (LLG)	
  equaHon	
  rules	
  the	
  precession	
  of	
  a	
  magneHc	
  dipole	
  in	
  an	
  external	
  field:	
  
precession	
  term	
  
Bm
damping	
  term	
  
dissipaHon	
  by	
  
microscopic	
  degrees	
  
of	
  freedom	
  	
  
stochasHc	
  term	
  
thermal	
  fluctuaHons	
  
H =

d3
R

− Ku(R)
m2
2
+
A
2
(∇Rm)2
+
µ0M2
s d
8π

d2
R m(R
)m(R)
|R − R|3
− µ0Msm(Hext − HUCS(R))
The	
  model	
  system	
  
Under	
  the	
  following	
  approximaHons:	
  	
  
	
  
•  scalar	
  magneHzaHon	
  uniform	
  along	
  the	
  FF	
  thickness	
  d
•  domain	
  walls	
  smaller	
  than	
  the	
  domain	
  size	
  
•  small	
  FF	
  thickness	
  d
the	
  magneHzaHon	
  in	
  the	
  FF	
  can	
  be	
  described	
  by	
  the	
  
following	
  hamiltonian	
  power	
  expansion:	
  	
  
m(r, t) = m(x, y, t)ˆz
Jagla	
  PRB	
  72	
  094406	
  (2005)	
  	
  	
  	
  	
  	
  Jagla	
  PRB	
  70	
  046204	
  (2004)	
  	
  
anisotropy	
  term:	
  
its	
   fluctuaHons	
   around	
   an	
  
average	
   value	
   provides	
   strong	
  
pinning	
   points	
   for	
   the	
   domain	
  
walls	
  
Ku(R) = Ku(1 − P(x, y))
P(R) = 0
P(R)P(R
) = θδ(R − R
)
H =

d3
R

− Ku(R)
m2
2
+
A
2
(∇Rm)2
+
µ0M2
s d
8π

d2
R m(R
)m(R)
|R − R|3
− µ0Msm(Hext − HUCS(R))
H =

d3
R

− Ku(R)
m2
2
+
A
2
(∇Rm)2
+
µ0M2
s d
8π

d2
R m(R
)m(R)
|R − R|3
− µ0Msm(Hext − HUCS(R))

The	
  model	
  system	
  
anisotropy	
  term:	
  
its	
   fluctuaHons	
   around	
   an	
  
average	
   value	
   provides	
   strong	
  
pinning	
   points	
   for	
   the	
   domain	
  
walls	
  
Under	
  the	
  following	
  approximaHons:	
  	
  
	
  
•  scalar	
  magneHzaHon	
  uniform	
  along	
  the	
  FF	
  thickness	
  d
•  domain	
  walls	
  smaller	
  than	
  the	
  domain	
  size	
  
•  small	
  FF	
  thickness	
  d
the	
  magneHzaHon	
  in	
  the	
  FF	
  can	
  be	
  described	
  by	
  the	
  
following	
  hamiltonian	
  power	
  expansion:	
  	
  
m(r, t) = m(x, y, t)ˆz
Ku(R) = Ku(1 − P(x, y))
P(R) = 0
P(R)P(R
) = θδ(R − R
)
Jagla	
  PRB	
  72	
  094406	
  (2005)	
  	
  	
  	
  	
  	
  Jagla	
  PRB	
  70	
  046204	
  (2004)	
  	
  
anisotropy	
  term:	
  
it	
  represents	
  the	
  energy	
  cost	
  for	
  
the	
  domain	
  walls.	
  
	
  
	
  
	
  
	
  
we	
   do	
   not	
   have	
   real	
   Block	
   or	
  
Neel	
  walls,	
  just	
  their	
  projecHon	
  
along	
  z	
  	
  	
  
H =

d3
R

− Ku(R)
m2
2
+
A
2
(∇Rm)2
+
µ0M2
s d
8π

d2
R m(R
)m(R)
|R − R|3
− µ0Msm(Hext − HUCS(R))

The	
  model	
  system	
  
anisotropy	
  term:	
  
its	
   fluctuaHons	
   around	
   an	
  
average	
   value	
   provides	
   strong	
  
pinning	
   points	
   for	
   the	
   domain	
  
walls	
  
Under	
  the	
  following	
  approximaHons:	
  	
  
	
  
•  scalar	
  magneHzaHon	
  uniform	
  along	
  the	
  FF	
  thickness	
  d
•  domain	
  walls	
  smaller	
  than	
  the	
  domain	
  size	
  
•  small	
  FF	
  thickness	
  d
the	
  magneHzaHon	
  in	
  the	
  FF	
  can	
  be	
  described	
  by	
  the	
  
following	
  hamiltonian	
  power	
  expansion:	
  	
  
m(r, t) = m(x, y, t)ˆz
Ku(R) = Ku(1 − P(x, y))
P(R) = 0
P(R)P(R
) = θδ(R − R
)
Jagla	
  PRB	
  72	
  094406	
  (2005)	
  	
  	
  	
  	
  	
  Jagla	
  PRB	
  70	
  046204	
  (2004)	
  	
  
anisotropy	
  term:	
  
it	
  represents	
  the	
  energy	
  cost	
  for	
  
the	
  domain	
  walls.	
  
	
  
	
  
	
  
	
  
we	
   do	
   not	
   have	
   real	
   Block	
   or	
  
Neel	
  walls,	
  just	
  their	
  projecHon	
  
along	
  z	
  	
  	
  
stray	
  field	
  energy:	
  
responsible	
   for	
   the	
   domain	
  
formaHon	
  	
  
	
  
	
  
	
  
	
  
	
  
non	
  local	
  term	
  to	
  be	
  treated	
  in	
  
reciprocal	
  space	
  
H =

d3
R

− Ku(R)
m2
2
+
A
2
(∇Rm)2
+
µ0M2
s d
8π

d2
R m(R
)m(R)
|R − R|3
− µ0Msm(Hext − HUCS(R))

The	
  model	
  system	
  
anisotropy	
  term:	
  
its	
   fluctuaHons	
   around	
   an	
  
average	
   value	
   provides	
   strong	
  
pinning	
   points	
   for	
   the	
   domain	
  
walls	
  
Under	
  the	
  following	
  approximaHons:	
  	
  
	
  
•  scalar	
  magneHzaHon	
  uniform	
  along	
  the	
  FF	
  thickness	
  d
•  domain	
  walls	
  smaller	
  than	
  the	
  domain	
  size	
  
•  small	
  FF	
  thickness	
  d
the	
  magneHzaHon	
  in	
  the	
  FF	
  can	
  be	
  described	
  by	
  the	
  
following	
  hamiltonian	
  power	
  expansion:	
  	
  
m(r, t) = m(x, y, t)ˆz
Ku(R) = Ku(1 − P(x, y))
P(R) = 0
P(R)P(R
) = θδ(R − R
)
Jagla	
  PRB	
  72	
  094406	
  (2005)	
  	
  	
  	
  	
  	
  Jagla	
  PRB	
  70	
  046204	
  (2004)	
  	
  
anisotropy	
  term:	
  
it	
  represents	
  the	
  energy	
  cost	
  for	
  
the	
  domain	
  walls.	
  
	
  
	
  
	
  
	
  
we	
   do	
   not	
   have	
   real	
   Block	
   or	
  
Neel	
  walls,	
  just	
  their	
  projecHon	
  
along	
  z	
  	
  	
  
stray	
  field	
  energy:	
  
responsible	
   for	
   the	
   domain	
  
formaHon	
  	
  
	
  
	
  
	
  
	
  
	
  
non	
  local	
  term	
  to	
  be	
  treated	
  in	
  
reciprocal	
  space	
  
UCS	
   field:	
   as	
   measured	
  
in	
  the	
  experiment	
  
H =

d3
R

− Ku(R)
m2
2
+
A
2
(∇Rm)2
+
µ0M2
s d
8π

d2
R m(R
)m(R)
|R − R|3
− µ0Msm(Hext − HUCS(R))

The	
  model	
  system	
  
anisotropy	
  term:	
  
its	
   fluctuaHons	
   around	
   an	
  
average	
   value	
   provides	
   strong	
  
pinning	
   points	
   for	
   the	
   domain	
  
walls	
  
Under	
  the	
  following	
  approximaHons:	
  	
  
	
  
•  scalar	
  magneHzaHon	
  uniform	
  along	
  the	
  FF	
  thickness	
  d
•  domain	
  walls	
  smaller	
  than	
  the	
  domain	
  size	
  
•  small	
  FF	
  thickness	
  d
the	
  magneHzaHon	
  in	
  the	
  FF	
  can	
  be	
  described	
  by	
  the	
  
following	
  hamiltonian	
  power	
  expansion:	
  	
  
m(r, t) = m(x, y, t)ˆz
Ku(R) = Ku(1 − P(x, y))
P(R) = 0
P(R)P(R
) = θδ(R − R
)
Jagla	
  PRB	
  72	
  094406	
  (2005)	
  	
  	
  	
  	
  	
  Jagla	
  PRB	
  70	
  046204	
  (2004)	
  	
  
anisotropy	
  term:	
  
it	
  represents	
  the	
  energy	
  cost	
  for	
  
the	
  domain	
  walls.	
  
	
  
	
  
	
  
	
  
we	
   do	
   not	
   have	
   real	
   Block	
   or	
  
Neel	
  walls,	
  just	
  their	
  projecHon	
  
along	
  z	
  	
  	
  
stray	
  field	
  energy:	
  
responsible	
   for	
   the	
   domain	
  
formaHon	
  	
  
	
  
	
  
	
  
	
  
	
  
non	
  local	
  term	
  to	
  be	
  treated	
  in	
  
reciprocal	
  space	
  
UCS	
   field:	
   as	
   measured	
  
in	
  the	
  experiment	
  
External	
  field:	
  uniform	
  
but	
  Hme	
  dependent	
  	
  
Pueng	
  this	
  approximate	
  hamiltonian	
  inside	
  the	
  LLG	
  equaHon	
  we	
  obtain	
  the	
  following	
  equaHon	
  of	
  moHon:	
  
	
  
	
  
	
  
	
  
where	
  everything	
  is	
  now	
  in	
  dimensionless	
  units:	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
the	
  model	
  contains	
  only	
  three	
  non-­‐independent	
  dimensionless	
  parameters	
  related	
  to	
  the	
  material	
  proper.es:	
  	
  
∂m
∂τ
= (1 − m2
)

α(1 − p(r)) m −
1
4π

d2
r m(r
)
|r − r|3
+ hext(t) − hUCS(r) + q(r, τ)

+ β∇2
rm
The	
  model	
  system	
  
Jagla	
  PRB	
  72	
  094406	
  (2005)	
  	
  	
  	
  	
  	
  Jagla	
  PRB	
  70	
  046204	
  (2004)	
  	
  	
  	
  	
  	
  Zhirnov	
  Zh.Eksp.Teor.Fiz.	
  35	
  1175	
  (1958)	
  	
  
r = R/d
τ = tγµ0Ms/ξ
hext = Hext/Ms
hUCS = HUCS/Ms
q(r, τ) = Q(R, t)/µ0Ms
KBT = KBT/µ0M2
s d3
dimensionless	
  posiHon	
  	
  
dimensionless	
  Hme	
  
dimensionless	
  fields	
  
η = θ/d3
β = A/µ0M2
s d2
α = Ku/µ0M2
s
dimensionless	
  temperature	
  
dimensionless	
  thermal	
  noise	
  
p(r)p(r
) = ηδ(r − r
) dimensionless	
  anisotropy	
  noise	
  
uniaxial	
  anisotropy	
  	
   exchange	
  sHffness	
   anisotropy	
  fluctuaHons	
  
(strength	
  on	
  the	
  
pinning	
  disorder)	
  
Pueng	
  this	
  approximate	
  hamiltonian	
  inside	
  the	
  LLG	
  equaHon	
  we	
  obtain	
  the	
  following	
  equaHon	
  of	
  moHon:	
  
	
  
	
  
	
  
	
  
where	
  everything	
  is	
  now	
  in	
  dimensionless	
  units:	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
the	
  model	
  contains	
  only	
  three	
  non-­‐independent	
  dimensionless	
  parameters	
  related	
  to	
  the	
  material	
  proper.es:	
  	
  
The	
  model	
  system	
  
Jagla	
  PRB	
  72	
  094406	
  (2005)	
  	
  	
  	
  	
  	
  Jagla	
  PRB	
  70	
  046204	
  (2004)	
  	
  	
  	
  	
  	
  Zhirnov	
  Zh.Eksp.Teor.Fiz.	
  35	
  1175	
  (1958)	
  	
  
r = R/d
τ = tγµ0Ms/ξ
hext = Hext/Ms
hUCS = HUCS/Ms
q(r, τ) = Q(R, t)/µ0Ms
KBT = KBT/µ0M2
s d3
dimensionless	
  posiHon	
  	
  
dimensionless	
  Hme	
  
dimensionless	
  fields	
  
η = θ/d3
β = A/µ0M2
s d2
α = Ku/µ0M2
s
dimensionless	
  temperature	
  
dimensionless	
  thermal	
  noise	
  
p(r)p(r
) = ηδ(r − r
) dimensionless	
  anisotropy	
  noise	
  
uniaxial	
  anisotropy	
  	
   exchange	
  sHffness	
   anisotropy	
  fluctuaHons	
  
(strength	
  on	
  the	
  
pinning	
  disorder)	
  
∂m
∂τ
= (1 − m2
)

α(1 − p(r)) m −
1
4π

d2
r m(r
)
|r − r|3
+ hext(t) − hUCS(r) + q(r, τ)

+ β∇2
rm
Pueng	
  this	
  approximate	
  hamiltonian	
  inside	
  the	
  LLG	
  equaHon	
  we	
  obtain	
  the	
  following	
  equaHon	
  of	
  moHon:	
  
	
  
	
  
	
  
	
  
where	
  everything	
  is	
  now	
  in	
  dimensionless	
  units:	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
the	
  model	
  contains	
  only	
  three	
  non-­‐independent	
  dimensionless	
  parameters	
  related	
  to	
  the	
  material	
  proper.es:	
  	
  
The	
  model	
  system	
  
Jagla	
  PRB	
  72	
  094406	
  (2005)	
  	
  	
  	
  	
  	
  Jagla	
  PRB	
  70	
  046204	
  (2004)	
  	
  	
  	
  	
  	
  Zhirnov	
  Zh.Eksp.Teor.Fiz.	
  35	
  1175	
  (1958)	
  	
  
r = R/d
τ = tγµ0Ms/ξ
hext = Hext/Ms
hUCS = HUCS/Ms
q(r, τ) = Q(R, t)/µ0Ms
KBT = KBT/µ0M2
s d3
dimensionless	
  posiHon	
  	
  
dimensionless	
  Hme	
  
dimensionless	
  fields	
  
η = θ/d3
β = A/µ0M2
s d2
α = Ku/µ0M2
s
dimensionless	
  temperature	
  
dimensionless	
  thermal	
  noise	
  
p(r)p(r
) = ηδ(r − r
) dimensionless	
  anisotropy	
  noise	
  
uniaxial	
  anisotropy	
  	
   exchange	
  sHffness	
   anisotropy	
  fluctuaHons	
  
(strength	
  on	
  the	
  
pinning	
  disorder)	
  
domain	
  wall	
  energy	
   domain	
  wall	
  width	
  	
  
domain	
  size	
  
domain	
  morphology	
  ∝

β/α
∝

αβ
∂m
∂τ
= (1 − m2
)

α(1 − p(r)) m −
1
4π

d2
r m(r
)
|r − r|3
+ hext(t) − hUCS(r) + q(r, τ)

+ β∇2
rm
Model	
  validaHon:	
  from	
  micro	
  to	
  macro	
  
The	
  procedure	
  for	
  the	
  determinaHon	
  of	
  the	
  three	
  material	
  parameters	
  is	
  made	
  in	
  such	
  a	
  way	
  to	
  fit	
  both	
  macroscopic	
  and	
  
microscopic	
  properHes	
  of	
  the	
  sample:	
  
A	
   good	
   iniHal	
   guess	
   for	
   α,β	
   and	
   η	
   makes	
   the	
  
measured	
  domain	
  image	
  at	
  0	
  mT	
  a	
  steady	
  state	
  
of	
  our	
  equaHon	
  of	
  moHon.	
  A	
  good	
  choice	
  of	
  α,β	
  
and	
   η	
   is	
   such	
   that,	
   if	
   we	
   use	
   the	
   measured	
  
image	
  as	
  the	
  iniHal	
  condiHon	
  of	
  our	
  equaHon	
  of	
  
moHon	
  and	
  we	
  let	
  it	
  evolve	
  in	
  Hme,	
  it	
  will	
  not	
  
change.	
  	
  
Benassi	
  et	
  al.	
  (waiHng	
  for	
  PRL	
  rejecHon)	
  
Model	
  validaHon:	
  from	
  micro	
  to	
  macro	
  
The	
  procedure	
  for	
  the	
  determinaHon	
  of	
  the	
  three	
  material	
  parameters	
  is	
  made	
  in	
  such	
  a	
  way	
  to	
  fit	
  both	
  macroscopic	
  and	
  
microscopic	
  properHes	
  of	
  the	
  sample:	
  
A	
   good	
   iniHal	
   guess	
   for	
   α,β	
   and	
   η	
   makes	
   the	
  
measured	
  domain	
  image	
  at	
  0	
  mT	
  a	
  steady	
  state	
  
of	
  our	
  equaHon	
  of	
  moHon.	
  A	
  good	
  choice	
  of	
  α,β	
  
and	
   η	
   is	
   such	
   that,	
   if	
   we	
   use	
   the	
   measured	
  
image	
  as	
  the	
  iniHal	
  condiHon	
  of	
  our	
  equaHon	
  of	
  
moHon	
  and	
  we	
  let	
  it	
  evolve	
  in	
  Hme,	
  it	
  will	
  not	
  
change.	
  	
  
The	
  measured	
  field	
  from	
  the	
  UCS	
  distribuHon	
  is	
  	
  
also	
  included	
  in	
  the	
  equaHon	
  of	
  moHon	
  and	
  it	
  
helps	
  in	
  stabilizing	
  the	
  domain	
  configuraHon.	
  	
  	
  
Benassi	
  et	
  al.	
  (waiHng	
  for	
  PRL	
  rejecHon)	
  
Model	
  validaHon:	
  from	
  micro	
  to	
  macro	
  
The	
  procedure	
  for	
  the	
  determinaHon	
  of	
  the	
  three	
  material	
  parameters	
  is	
  made	
  in	
  such	
  a	
  way	
  to	
  fit	
  both	
  macroscopic	
  and	
  
microscopic	
  properHes	
  of	
  the	
  sample:	
  
Than	
  we	
  ramp	
  up	
  the	
  external	
  uniform	
  field	
  and	
  
we	
   trim	
   the	
   parameters	
   in	
   such	
   a	
   way	
   to	
  
reproduce	
   the	
   correct	
   path	
   to	
   saturaHon	
  
looking	
  also	
  at	
  the	
  MFM	
  taken	
  at	
  100	
  mT,	
  200	
  
mT	
  and	
  300	
  mT.	
  
Benassi	
  et	
  al.	
  (waiHng	
  for	
  PRL	
  rejecHon)	
  
Model	
  validaHon:	
  from	
  micro	
  to	
  macro	
  
The	
  procedure	
  for	
  the	
  determinaHon	
  of	
  the	
  three	
  material	
  parameters	
  is	
  made	
  in	
  such	
  a	
  way	
  to	
  fit	
  both	
  macroscopic	
  and	
  
microscopic	
  properHes	
  of	
  the	
  sample:	
  
Once	
   that	
   the	
   microscopic	
   properHes	
   are	
   well	
  
reproduced	
  we	
  can	
  check	
  the	
  macroscopic	
  ones	
  
(hysteresis	
  loops).	
  
We	
  can	
  sHll	
  trim	
  a	
  bit	
  the	
  model	
  parameters	
  to	
  
adjust	
  the	
  fine	
  detail.	
  
Eventually	
   we	
   have	
   to	
   go	
   back	
   and	
   control	
  
again	
  the	
  microscopic	
  behavior.	
  	
  	
  	
  
The	
  loops	
  were	
  measured	
  with	
  a	
  sample	
  cooled	
  
in	
   a	
   saturaHng	
   field	
   so	
   the	
   printed	
   UCS	
  
distribuHon	
  is	
  different	
  from	
  the	
  previous	
  one.	
  
Benassi	
  et	
  al.	
  (waiHng	
  for	
  PRL	
  rejecHon)	
  
Model	
  validaHon:	
  from	
  micro	
  to	
  macro	
  
The	
  procedure	
  for	
  the	
  determinaHon	
  of	
  the	
  three	
  material	
  parameters	
  is	
  made	
  in	
  such	
  a	
  way	
  to	
  fit	
  both	
  macroscopic	
  and	
  
microscopic	
  properHes	
  of	
  the	
  sample:	
  
Benassi	
  et	
  al.	
  (waiHng	
  for	
  PRL	
  rejecHon)	
  
αinit = 6.25
βinit = 0.85
ηinit = 1.5 × 10−4
α = Ku/µ0M2
s = 6.6 → Ku = 3.1 × 106
J/m3
β = A/µ0M2
s d2
= 0.88 → A = 2.2 × 10−10
J/m
η = 1.88 × 10−4
perfectly	
  in	
  	
  the	
  
expected	
  range	
  
too	
  big	
  but	
  our	
  1D	
  walls	
  are	
  less	
  expensive	
  than	
  a	
  
real	
  block	
  wall	
  and	
  A	
  must	
  compensate!	
  
Path	
  to	
  saturaHon:	
  the	
  full	
  dynamics	
  	
  
Now	
  that	
  the	
  parameters	
  are	
  fixed,	
  the	
  theoreHcal	
  model	
  allows	
  us	
  to	
  access	
  the	
  full	
  dynamics	
  in	
  Hme,	
  we	
  can	
  thus	
  
invesHgate	
  the	
  domain	
  behavior	
  with	
  more	
  than	
  few	
  MFM	
  images	
  	
  	
  
Benassi	
  et	
  al.	
  (waiHng	
  for	
  PRL	
  rejecHon)	
  
As	
   demonstrated	
   by	
   the	
   experiments	
   the	
   domains,	
  
retracHng	
  with	
  increasing	
  external	
  field,	
  will	
  try	
  to	
  avoid	
  the	
  
frustrated	
  F/AF	
  coupling	
  regions.	
  	
  	
  
UnmounHng	
  the	
  machinery	
  
Benassi	
  et	
  al.	
  (waiHng	
  for	
  PRL	
  rejecHon)	
  
Now	
  we	
  can	
  switch	
  off	
  separately	
  the	
  different	
  hamiltonian	
  terms	
  and	
  try	
  to	
  understand	
  and	
  quanHfy	
  their	
  contribuHon:	
  	
  
The	
  UCS	
  distribuHon	
  alone	
  has	
  not	
  enough	
  strength	
  to	
  pin	
  
the	
   domains	
   and	
   even	
   at	
   0	
   mT	
   the	
   shape	
   of	
   the	
   steady	
  
configuraHon	
  is	
  quite	
  different	
  from	
  the	
  original	
  one.	
  	
  
The	
  saturaHon	
  occurs	
  too	
  early!	
  	
  
	
  
The	
  anisotropy	
  fluctuaHons	
  have	
  enough	
  strength	
  to	
  keep	
  
the	
  iniHal	
  configuraHon	
  pinned,	
  however,	
  without	
  the	
  help	
  
of	
  the	
  UCS	
  local	
  field,	
  the	
  pinning	
  sHll	
  occurs	
  	
  too	
  early.	
  
Now	
  we	
  can	
  also	
  try	
  to	
  predict	
  which	
  is	
  the	
  effect	
  of	
  a	
  different	
  UCS	
  distribuHon	
  on	
  the	
  exchange-­‐bias	
  (EB)	
  effect	
  and	
  on	
  the	
  
coercivity	
  of	
  the	
  FF.	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
•  As	
  expected,	
  switching	
  off	
  the	
  UCS	
  field	
  the	
  EB	
  effect	
  goes	
  to	
  zero	
  	
  
•  Doubling	
  the	
  average	
  value	
  of	
  the	
  UCS	
  field,	
  without	
  changing	
  the	
  fluctuaHons	
  strength,	
  increases	
  the	
  EB	
  effect	
  without	
  
affecHng	
  the	
  coercivity	
  
•  Doubling	
  the	
  fluctuaHons	
  of	
  the	
  UCS	
  field,	
  without	
  shiking	
  its	
  average,	
  increase	
  strongly	
  the	
  coercivity	
  with	
  minor	
  
changings	
  in	
  the	
  EB	
  loop	
  shik.	
  
Some	
  predicHons	
  on	
  the	
  macroscopic	
  properHes	
  
calc. 10 K
-0.5
0.0
0.5
1.0
-1.0
-0.4 -0.2 -0.1 0.0 0.1 0.2 0.4-0.3 0.3
no UCS
double UCS
average
double UCS
fluctuations
Benassi	
  et	
  al.	
  (waiHng	
  for	
  PRL	
  rejecHon)	
  
Up	
  to	
  now	
  the	
  fluctuaHons	
  of	
  the	
  uniaxial	
  anisotropy	
  have	
  been	
  considered	
  to	
  be	
  uncorrelated	
  (white	
  noise),	
  however	
  they	
  
have	
  something	
  to	
  do	
  with	
  the	
  granularity	
  of	
  the	
  sample.	
  Something	
  more	
  about	
  the	
  strength	
  and	
  the	
  correlaHon	
  of	
  these	
  
fluctuaHon	
  can	
  be	
  inferred	
  from	
  Barkhausen	
  noise	
  measurements.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  presence	
  of	
  Chromium	
  atoms	
  in	
  the	
  AF	
  decouples	
  the	
  magneHc	
  moment	
  of	
  neighboring	
  grains,	
  increasing	
  the	
  UCS	
  field	
  
by	
  the	
  40%.	
  The	
  model	
  will	
  be	
  used	
  to	
  study	
  this	
  new	
  sample	
  in	
  which	
  the	
  role	
  of	
  the	
  UCS	
  map	
  as	
  been	
  enhanced.	
  ParHcular	
  
aYenHon	
  will	
  be	
  given	
  to	
  the	
  return	
  point	
  memory	
  effects.	
  
	
  
The	
  code	
  is	
  easily	
  parallelizable	
  allowing	
  for	
  the	
  descripHon	
  of	
  lager	
  system	
  or	
  for	
  the	
  coupling	
  of	
  two	
  interacHng	
  
magneHzed	
  films	
  
	
  
	
  	
  
Further	
  developments	
  
Benassi	
  et	
  al.	
  PRB	
  84	
  214441	
  (2011)	
  

More Related Content

What's hot

Phd thesis- Quantum Computation
Phd thesis- Quantum ComputationPhd thesis- Quantum Computation
Phd thesis- Quantum Computationsilviagarelli
 
Two efficient algorithms for drawing accurate and beautiful phonon dispersion
Two efficient algorithms for drawing accurate and beautiful phonon dispersionTwo efficient algorithms for drawing accurate and beautiful phonon dispersion
Two efficient algorithms for drawing accurate and beautiful phonon dispersionTakeshi Nishimatsu
 
Damped system under Harmonic motion
Damped system under Harmonic motionDamped system under Harmonic motion
Damped system under Harmonic motionDhaval Chauhan
 
Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...
Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...
Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...Rene Kotze
 
RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and designKingsley Aboagye
 
A Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet EvolutionA Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet EvolutionCheng-Hsien Li
 
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...Follow me on Twitter @Stockshaman
 
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...Follow me on Twitter @Stockshaman
 
3D quantification of trans- and inter-lamellar fatigue crack in Ti alloy
3D quantification of trans- and inter-lamellar fatigue crack in Ti alloy3D quantification of trans- and inter-lamellar fatigue crack in Ti alloy
3D quantification of trans- and inter-lamellar fatigue crack in Ti alloyLodz University of Technology
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
Solved problems in waveguides
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguidessubhashinivec
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)Make Mannan
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...Lake Como School of Advanced Studies
 

What's hot (20)

Phd thesis- Quantum Computation
Phd thesis- Quantum ComputationPhd thesis- Quantum Computation
Phd thesis- Quantum Computation
 
Two efficient algorithms for drawing accurate and beautiful phonon dispersion
Two efficient algorithms for drawing accurate and beautiful phonon dispersionTwo efficient algorithms for drawing accurate and beautiful phonon dispersion
Two efficient algorithms for drawing accurate and beautiful phonon dispersion
 
Damped system under Harmonic motion
Damped system under Harmonic motionDamped system under Harmonic motion
Damped system under Harmonic motion
 
Anschp22
Anschp22Anschp22
Anschp22
 
Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...
Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...
Dr. Mukesh Kumar (NITheP/Wits) TITLE: "Top quark physics in the Vector Color-...
 
RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and design
 
A Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet EvolutionA Pedagogical Discussion on Neutrino Wave Packet Evolution
A Pedagogical Discussion on Neutrino Wave Packet Evolution
 
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...
ZTEM 2D Synthetic Modelling - Pecors Magmatic Massive Sulphide Target - Power...
 
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...
International Montoro Resources (IMT-TSXV) ZTEM modelling of Pecors buried ma...
 
3D quantification of trans- and inter-lamellar fatigue crack in Ti alloy
3D quantification of trans- and inter-lamellar fatigue crack in Ti alloy3D quantification of trans- and inter-lamellar fatigue crack in Ti alloy
3D quantification of trans- and inter-lamellar fatigue crack in Ti alloy
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
APS_presentation_Mayur
APS_presentation_MayurAPS_presentation_Mayur
APS_presentation_Mayur
 
Solved problems in waveguides
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguides
 
Max gravity asteroid
Max gravity asteroidMax gravity asteroid
Max gravity asteroid
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
Gravitational Waves and Binary Systems (1) - Thibault Damour
Gravitational Waves and Binary Systems (1) - Thibault DamourGravitational Waves and Binary Systems (1) - Thibault Damour
Gravitational Waves and Binary Systems (1) - Thibault Damour
 
P13 037
P13 037P13 037
P13 037
 
Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
 

Viewers also liked

Nucleation and avalanches in film with labyrintine magnetic domains
Nucleation and avalanches in film with labyrintine magnetic domainsNucleation and avalanches in film with labyrintine magnetic domains
Nucleation and avalanches in film with labyrintine magnetic domainsAndrea Benassi
 
Role of the vacuum fluctuation forces in microscopic systems
Role of the vacuum fluctuation forces in microscopic systemsRole of the vacuum fluctuation forces in microscopic systems
Role of the vacuum fluctuation forces in microscopic systemsAndrea Benassi
 
Non-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPSNon-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPSAndrea Benassi
 
How long can the superlubricity go?
How long can the superlubricity go?How long can the superlubricity go?
How long can the superlubricity go?Andrea Benassi
 
Sliding over a phase transition
Sliding over a phase transitionSliding over a phase transition
Sliding over a phase transitionAndrea Benassi
 

Viewers also liked (6)

Nucleation and avalanches in film with labyrintine magnetic domains
Nucleation and avalanches in film with labyrintine magnetic domainsNucleation and avalanches in film with labyrintine magnetic domains
Nucleation and avalanches in film with labyrintine magnetic domains
 
Role of the vacuum fluctuation forces in microscopic systems
Role of the vacuum fluctuation forces in microscopic systemsRole of the vacuum fluctuation forces in microscopic systems
Role of the vacuum fluctuation forces in microscopic systems
 
Non-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPSNon-equilibrium molecular dynamics with LAMMPS
Non-equilibrium molecular dynamics with LAMMPS
 
How long can the superlubricity go?
How long can the superlubricity go?How long can the superlubricity go?
How long can the superlubricity go?
 
Sliding over a phase transition
Sliding over a phase transitionSliding over a phase transition
Sliding over a phase transition
 
Cisco - See Everything, Secure Everything
Cisco - See Everything, Secure EverythingCisco - See Everything, Secure Everything
Cisco - See Everything, Secure Everything
 

Similar to the role of exchange bias in domain dynamics control

Similar to the role of exchange bias in domain dynamics control (20)

Kanal wireless dan propagasi
Kanal wireless dan propagasiKanal wireless dan propagasi
Kanal wireless dan propagasi
 
A circular cylindrical dipole antenna
A circular cylindrical dipole antennaA circular cylindrical dipole antenna
A circular cylindrical dipole antenna
 
Ece5318 ch2
Ece5318 ch2Ece5318 ch2
Ece5318 ch2
 
Chapter2rev011611 student
Chapter2rev011611 studentChapter2rev011611 student
Chapter2rev011611 student
 
Antenna Paper Solution
Antenna Paper SolutionAntenna Paper Solution
Antenna Paper Solution
 
Antenna basic
Antenna basicAntenna basic
Antenna basic
 
Large scale path loss 1
Large scale path loss 1Large scale path loss 1
Large scale path loss 1
 
Materi kul6 fesnel
Materi kul6 fesnelMateri kul6 fesnel
Materi kul6 fesnel
 
Chapt 2
Chapt 2Chapt 2
Chapt 2
 
Lect1
Lect1Lect1
Lect1
 
posterTh20203
posterTh20203posterTh20203
posterTh20203
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
 
Monopole antenna radiation into a parallel plate waveguide
Monopole antenna radiation into a parallel plate waveguideMonopole antenna radiation into a parallel plate waveguide
Monopole antenna radiation into a parallel plate waveguide
 
PhD work on Graphene Transistor
PhD work on Graphene TransistorPhD work on Graphene Transistor
PhD work on Graphene Transistor
 
Eng ref
Eng refEng ref
Eng ref
 
Eng ref
Eng refEng ref
Eng ref
 
OE Instrumentation_03_Interferometry_2.pdf
OE Instrumentation_03_Interferometry_2.pdfOE Instrumentation_03_Interferometry_2.pdf
OE Instrumentation_03_Interferometry_2.pdf
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
wirelessSlidesCh04 (2).ppt
wirelessSlidesCh04 (2).pptwirelessSlidesCh04 (2).ppt
wirelessSlidesCh04 (2).ppt
 
Dispersion of multiple V-groove guide
Dispersion of multiple V-groove guideDispersion of multiple V-groove guide
Dispersion of multiple V-groove guide
 

Recently uploaded

Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 

Recently uploaded (20)

Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 

the role of exchange bias in domain dynamics control

  • 1. The  Role  of  Exchange  Bias  in    Domain  Dynamics  Control   A.  Benassi1,  M.A.  Marioni1,  D.  Passerone1  and  H.J.  Hug1,2               1-­‐  EMPA  Swiss  Federal  InsHtute  for  Materials  Science  and  Technology,  Dübendorf  (Switzerland)   2-­‐    Department  of  Physics,  Universität  Basel,  Basel  (Switzerland)  
  • 2. Sample  and  measurements   A  perpendicular  anisotropy  ferromagneHc  film  (FF)  is  anH-­‐coupled  with  a  thinner   anHferromagneHc  film  (AF)  grown  on  top     Upon  cooling  below  the  Neel  temperature,  the  AF  becomes  ordered  except  for  few   atomic   layer   at   the   interface,   here   the   defects   at   the   interface   give   rise   to   a   distribuHon  of  uncompensated  spins  (UCS)   Being  the  Neel  temperature  of  the  AF  smaller  than  the  Curie  temperature  of  the  FF,  the  presence  of  the  ferromagneHc   domains   can   orient   the   uncompensated   spin   at   the   interface   during   the   cooling.   This   allow   us   to   fix   stably   the   FF   domain  structure  on  the  cooled  AF.       the  domains  image  is   taken  through  the  AF   layer  because  the  FF   field  is  orders  of   magnitude  stronger   the  UCS  image  is  taken   saturaHng  the  FF   domains  with  an   external  field   Schmid  e  al.  PRL  105  197201  (2010)            Joshi  et  al.  Appl.Phys.LeY.  98  082502  (2011)   Hext uncompensated   frustrated   AF   FF  
  • 3. The  model  system   The  Landau-­‐Lifshitz-­‐Gilbert  (LLG)  equaHon  rules  the  precession  of  a  magneHc  dipole  in  an  external  field:   ∂m ∂t = − γ 1 + ξ2 m × B + ξ m × B B = − 1 Ms δH[m] δm + Q(R, t) Q(R, t) = 0 Q(R, t)Q(R , t ) = δ(t − t )δ(R − R )2KBTξ/Msγ Bm precession  term   Bm damping  term   dissipaHon  by   microscopic  degrees   of  freedom     Bm stochasHc  term   thermal  fluctuaHons   Under  the  following  approximaHons:       •  scalar  magneHzaHon  uniform  along  the  FF  thickness  d •  domain  walls  smaller  than  the  domain  size   •  small  FF  thickness  d the  magneHzaHon  in  the  FF  can  be  described  by  the   following  hamiltonian  power  expansion:     Gilbert  IEEE  Trans.  On  MagneHcs  40  3434  (2004)            Brown  Phys.Rev.  130  1677  (1963)            Usadel  PRB  73  212405  (2006)   m(r, t) = m(x, y, t)ˆz H = d3 R − Ku(R) m2 2 + A 2 (∇Rm)2 + µ0M2 s d 8π d2 R m(R )m(R) |R − R|3 − µ0Msm(Hext − HUCS(R))
  • 4. The  model  system   ∂m ∂t = − γ 1 + ξ2 m × B + ξ m × B B = − 1 Ms δH[m] δm + Q(R, t) Q(R, t) = 0 Q(R, t)Q(R , t ) = δ(t − t )δ(R − R )2KBTξ/Msγ Bm Bm Under  the  following  approximaHons:       •  scalar  magneHzaHon  uniform  along  the  FF  thickness  d •  domain  walls  smaller  than  the  domain  size   •  small  FF  thickness  d the  magneHzaHon  in  the  FF  can  be  described  by  the   following  hamiltonian  power  expansion:     Jagla  PRB  72  094406  (2005)            Jagla  PRB  70  046204  (2004)     m(r, t) = m(x, y, t)ˆz The  Landau-­‐Lifshitz-­‐Gilbert  (LLG)  equaHon  rules  the  precession  of  a  magneHc  dipole  in  an  external  field:   precession  term   Bm damping  term   dissipaHon  by   microscopic  degrees   of  freedom     stochasHc  term   thermal  fluctuaHons   H = d3 R − Ku(R) m2 2 + A 2 (∇Rm)2 + µ0M2 s d 8π d2 R m(R )m(R) |R − R|3 − µ0Msm(Hext − HUCS(R))
  • 5. The  model  system   Under  the  following  approximaHons:       •  scalar  magneHzaHon  uniform  along  the  FF  thickness  d •  domain  walls  smaller  than  the  domain  size   •  small  FF  thickness  d the  magneHzaHon  in  the  FF  can  be  described  by  the   following  hamiltonian  power  expansion:     m(r, t) = m(x, y, t)ˆz Jagla  PRB  72  094406  (2005)            Jagla  PRB  70  046204  (2004)     anisotropy  term:   its   fluctuaHons   around   an   average   value   provides   strong   pinning   points   for   the   domain   walls   Ku(R) = Ku(1 − P(x, y)) P(R) = 0 P(R)P(R ) = θδ(R − R ) H = d3 R − Ku(R) m2 2 + A 2 (∇Rm)2 + µ0M2 s d 8π d2 R m(R )m(R) |R − R|3 − µ0Msm(Hext − HUCS(R))
  • 6. H = d3 R − Ku(R) m2 2 + A 2 (∇Rm)2 + µ0M2 s d 8π d2 R m(R )m(R) |R − R|3 − µ0Msm(Hext − HUCS(R)) The  model  system   anisotropy  term:   its   fluctuaHons   around   an   average   value   provides   strong   pinning   points   for   the   domain   walls   Under  the  following  approximaHons:       •  scalar  magneHzaHon  uniform  along  the  FF  thickness  d •  domain  walls  smaller  than  the  domain  size   •  small  FF  thickness  d the  magneHzaHon  in  the  FF  can  be  described  by  the   following  hamiltonian  power  expansion:     m(r, t) = m(x, y, t)ˆz Ku(R) = Ku(1 − P(x, y)) P(R) = 0 P(R)P(R ) = θδ(R − R ) Jagla  PRB  72  094406  (2005)            Jagla  PRB  70  046204  (2004)     anisotropy  term:   it  represents  the  energy  cost  for   the  domain  walls.           we   do   not   have   real   Block   or   Neel  walls,  just  their  projecHon   along  z      
  • 7. H = d3 R − Ku(R) m2 2 + A 2 (∇Rm)2 + µ0M2 s d 8π d2 R m(R )m(R) |R − R|3 − µ0Msm(Hext − HUCS(R)) The  model  system   anisotropy  term:   its   fluctuaHons   around   an   average   value   provides   strong   pinning   points   for   the   domain   walls   Under  the  following  approximaHons:       •  scalar  magneHzaHon  uniform  along  the  FF  thickness  d •  domain  walls  smaller  than  the  domain  size   •  small  FF  thickness  d the  magneHzaHon  in  the  FF  can  be  described  by  the   following  hamiltonian  power  expansion:     m(r, t) = m(x, y, t)ˆz Ku(R) = Ku(1 − P(x, y)) P(R) = 0 P(R)P(R ) = θδ(R − R ) Jagla  PRB  72  094406  (2005)            Jagla  PRB  70  046204  (2004)     anisotropy  term:   it  represents  the  energy  cost  for   the  domain  walls.           we   do   not   have   real   Block   or   Neel  walls,  just  their  projecHon   along  z       stray  field  energy:   responsible   for   the   domain   formaHon               non  local  term  to  be  treated  in   reciprocal  space  
  • 8. H = d3 R − Ku(R) m2 2 + A 2 (∇Rm)2 + µ0M2 s d 8π d2 R m(R )m(R) |R − R|3 − µ0Msm(Hext − HUCS(R)) The  model  system   anisotropy  term:   its   fluctuaHons   around   an   average   value   provides   strong   pinning   points   for   the   domain   walls   Under  the  following  approximaHons:       •  scalar  magneHzaHon  uniform  along  the  FF  thickness  d •  domain  walls  smaller  than  the  domain  size   •  small  FF  thickness  d the  magneHzaHon  in  the  FF  can  be  described  by  the   following  hamiltonian  power  expansion:     m(r, t) = m(x, y, t)ˆz Ku(R) = Ku(1 − P(x, y)) P(R) = 0 P(R)P(R ) = θδ(R − R ) Jagla  PRB  72  094406  (2005)            Jagla  PRB  70  046204  (2004)     anisotropy  term:   it  represents  the  energy  cost  for   the  domain  walls.           we   do   not   have   real   Block   or   Neel  walls,  just  their  projecHon   along  z       stray  field  energy:   responsible   for   the   domain   formaHon               non  local  term  to  be  treated  in   reciprocal  space   UCS   field:   as   measured   in  the  experiment  
  • 9. H = d3 R − Ku(R) m2 2 + A 2 (∇Rm)2 + µ0M2 s d 8π d2 R m(R )m(R) |R − R|3 − µ0Msm(Hext − HUCS(R)) The  model  system   anisotropy  term:   its   fluctuaHons   around   an   average   value   provides   strong   pinning   points   for   the   domain   walls   Under  the  following  approximaHons:       •  scalar  magneHzaHon  uniform  along  the  FF  thickness  d •  domain  walls  smaller  than  the  domain  size   •  small  FF  thickness  d the  magneHzaHon  in  the  FF  can  be  described  by  the   following  hamiltonian  power  expansion:     m(r, t) = m(x, y, t)ˆz Ku(R) = Ku(1 − P(x, y)) P(R) = 0 P(R)P(R ) = θδ(R − R ) Jagla  PRB  72  094406  (2005)            Jagla  PRB  70  046204  (2004)     anisotropy  term:   it  represents  the  energy  cost  for   the  domain  walls.           we   do   not   have   real   Block   or   Neel  walls,  just  their  projecHon   along  z       stray  field  energy:   responsible   for   the   domain   formaHon               non  local  term  to  be  treated  in   reciprocal  space   UCS   field:   as   measured   in  the  experiment   External  field:  uniform   but  Hme  dependent    
  • 10. Pueng  this  approximate  hamiltonian  inside  the  LLG  equaHon  we  obtain  the  following  equaHon  of  moHon:           where  everything  is  now  in  dimensionless  units:                 the  model  contains  only  three  non-­‐independent  dimensionless  parameters  related  to  the  material  proper.es:     ∂m ∂τ = (1 − m2 ) α(1 − p(r)) m − 1 4π d2 r m(r ) |r − r|3 + hext(t) − hUCS(r) + q(r, τ) + β∇2 rm The  model  system   Jagla  PRB  72  094406  (2005)            Jagla  PRB  70  046204  (2004)            Zhirnov  Zh.Eksp.Teor.Fiz.  35  1175  (1958)     r = R/d τ = tγµ0Ms/ξ hext = Hext/Ms hUCS = HUCS/Ms q(r, τ) = Q(R, t)/µ0Ms KBT = KBT/µ0M2 s d3 dimensionless  posiHon     dimensionless  Hme   dimensionless  fields   η = θ/d3 β = A/µ0M2 s d2 α = Ku/µ0M2 s dimensionless  temperature   dimensionless  thermal  noise   p(r)p(r ) = ηδ(r − r ) dimensionless  anisotropy  noise   uniaxial  anisotropy     exchange  sHffness   anisotropy  fluctuaHons   (strength  on  the   pinning  disorder)  
  • 11. Pueng  this  approximate  hamiltonian  inside  the  LLG  equaHon  we  obtain  the  following  equaHon  of  moHon:           where  everything  is  now  in  dimensionless  units:                 the  model  contains  only  three  non-­‐independent  dimensionless  parameters  related  to  the  material  proper.es:     The  model  system   Jagla  PRB  72  094406  (2005)            Jagla  PRB  70  046204  (2004)            Zhirnov  Zh.Eksp.Teor.Fiz.  35  1175  (1958)     r = R/d τ = tγµ0Ms/ξ hext = Hext/Ms hUCS = HUCS/Ms q(r, τ) = Q(R, t)/µ0Ms KBT = KBT/µ0M2 s d3 dimensionless  posiHon     dimensionless  Hme   dimensionless  fields   η = θ/d3 β = A/µ0M2 s d2 α = Ku/µ0M2 s dimensionless  temperature   dimensionless  thermal  noise   p(r)p(r ) = ηδ(r − r ) dimensionless  anisotropy  noise   uniaxial  anisotropy     exchange  sHffness   anisotropy  fluctuaHons   (strength  on  the   pinning  disorder)   ∂m ∂τ = (1 − m2 ) α(1 − p(r)) m − 1 4π d2 r m(r ) |r − r|3 + hext(t) − hUCS(r) + q(r, τ) + β∇2 rm
  • 12. Pueng  this  approximate  hamiltonian  inside  the  LLG  equaHon  we  obtain  the  following  equaHon  of  moHon:           where  everything  is  now  in  dimensionless  units:                 the  model  contains  only  three  non-­‐independent  dimensionless  parameters  related  to  the  material  proper.es:     The  model  system   Jagla  PRB  72  094406  (2005)            Jagla  PRB  70  046204  (2004)            Zhirnov  Zh.Eksp.Teor.Fiz.  35  1175  (1958)     r = R/d τ = tγµ0Ms/ξ hext = Hext/Ms hUCS = HUCS/Ms q(r, τ) = Q(R, t)/µ0Ms KBT = KBT/µ0M2 s d3 dimensionless  posiHon     dimensionless  Hme   dimensionless  fields   η = θ/d3 β = A/µ0M2 s d2 α = Ku/µ0M2 s dimensionless  temperature   dimensionless  thermal  noise   p(r)p(r ) = ηδ(r − r ) dimensionless  anisotropy  noise   uniaxial  anisotropy     exchange  sHffness   anisotropy  fluctuaHons   (strength  on  the   pinning  disorder)   domain  wall  energy   domain  wall  width     domain  size   domain  morphology  ∝ β/α ∝ αβ ∂m ∂τ = (1 − m2 ) α(1 − p(r)) m − 1 4π d2 r m(r ) |r − r|3 + hext(t) − hUCS(r) + q(r, τ) + β∇2 rm
  • 13. Model  validaHon:  from  micro  to  macro   The  procedure  for  the  determinaHon  of  the  three  material  parameters  is  made  in  such  a  way  to  fit  both  macroscopic  and   microscopic  properHes  of  the  sample:   A   good   iniHal   guess   for   α,β   and   η   makes   the   measured  domain  image  at  0  mT  a  steady  state   of  our  equaHon  of  moHon.  A  good  choice  of  α,β   and   η   is   such   that,   if   we   use   the   measured   image  as  the  iniHal  condiHon  of  our  equaHon  of   moHon  and  we  let  it  evolve  in  Hme,  it  will  not   change.     Benassi  et  al.  (waiHng  for  PRL  rejecHon)  
  • 14. Model  validaHon:  from  micro  to  macro   The  procedure  for  the  determinaHon  of  the  three  material  parameters  is  made  in  such  a  way  to  fit  both  macroscopic  and   microscopic  properHes  of  the  sample:   A   good   iniHal   guess   for   α,β   and   η   makes   the   measured  domain  image  at  0  mT  a  steady  state   of  our  equaHon  of  moHon.  A  good  choice  of  α,β   and   η   is   such   that,   if   we   use   the   measured   image  as  the  iniHal  condiHon  of  our  equaHon  of   moHon  and  we  let  it  evolve  in  Hme,  it  will  not   change.     The  measured  field  from  the  UCS  distribuHon  is     also  included  in  the  equaHon  of  moHon  and  it   helps  in  stabilizing  the  domain  configuraHon.       Benassi  et  al.  (waiHng  for  PRL  rejecHon)  
  • 15. Model  validaHon:  from  micro  to  macro   The  procedure  for  the  determinaHon  of  the  three  material  parameters  is  made  in  such  a  way  to  fit  both  macroscopic  and   microscopic  properHes  of  the  sample:   Than  we  ramp  up  the  external  uniform  field  and   we   trim   the   parameters   in   such   a   way   to   reproduce   the   correct   path   to   saturaHon   looking  also  at  the  MFM  taken  at  100  mT,  200   mT  and  300  mT.   Benassi  et  al.  (waiHng  for  PRL  rejecHon)  
  • 16. Model  validaHon:  from  micro  to  macro   The  procedure  for  the  determinaHon  of  the  three  material  parameters  is  made  in  such  a  way  to  fit  both  macroscopic  and   microscopic  properHes  of  the  sample:   Once   that   the   microscopic   properHes   are   well   reproduced  we  can  check  the  macroscopic  ones   (hysteresis  loops).   We  can  sHll  trim  a  bit  the  model  parameters  to   adjust  the  fine  detail.   Eventually   we   have   to   go   back   and   control   again  the  microscopic  behavior.         The  loops  were  measured  with  a  sample  cooled   in   a   saturaHng   field   so   the   printed   UCS   distribuHon  is  different  from  the  previous  one.   Benassi  et  al.  (waiHng  for  PRL  rejecHon)  
  • 17. Model  validaHon:  from  micro  to  macro   The  procedure  for  the  determinaHon  of  the  three  material  parameters  is  made  in  such  a  way  to  fit  both  macroscopic  and   microscopic  properHes  of  the  sample:   Benassi  et  al.  (waiHng  for  PRL  rejecHon)   αinit = 6.25 βinit = 0.85 ηinit = 1.5 × 10−4 α = Ku/µ0M2 s = 6.6 → Ku = 3.1 × 106 J/m3 β = A/µ0M2 s d2 = 0.88 → A = 2.2 × 10−10 J/m η = 1.88 × 10−4 perfectly  in    the   expected  range   too  big  but  our  1D  walls  are  less  expensive  than  a   real  block  wall  and  A  must  compensate!  
  • 18. Path  to  saturaHon:  the  full  dynamics     Now  that  the  parameters  are  fixed,  the  theoreHcal  model  allows  us  to  access  the  full  dynamics  in  Hme,  we  can  thus   invesHgate  the  domain  behavior  with  more  than  few  MFM  images       Benassi  et  al.  (waiHng  for  PRL  rejecHon)   As   demonstrated   by   the   experiments   the   domains,   retracHng  with  increasing  external  field,  will  try  to  avoid  the   frustrated  F/AF  coupling  regions.      
  • 19. UnmounHng  the  machinery   Benassi  et  al.  (waiHng  for  PRL  rejecHon)   Now  we  can  switch  off  separately  the  different  hamiltonian  terms  and  try  to  understand  and  quanHfy  their  contribuHon:     The  UCS  distribuHon  alone  has  not  enough  strength  to  pin   the   domains   and   even   at   0   mT   the   shape   of   the   steady   configuraHon  is  quite  different  from  the  original  one.     The  saturaHon  occurs  too  early!       The  anisotropy  fluctuaHons  have  enough  strength  to  keep   the  iniHal  configuraHon  pinned,  however,  without  the  help   of  the  UCS  local  field,  the  pinning  sHll  occurs    too  early.  
  • 20. Now  we  can  also  try  to  predict  which  is  the  effect  of  a  different  UCS  distribuHon  on  the  exchange-­‐bias  (EB)  effect  and  on  the   coercivity  of  the  FF.                                     •  As  expected,  switching  off  the  UCS  field  the  EB  effect  goes  to  zero     •  Doubling  the  average  value  of  the  UCS  field,  without  changing  the  fluctuaHons  strength,  increases  the  EB  effect  without   affecHng  the  coercivity   •  Doubling  the  fluctuaHons  of  the  UCS  field,  without  shiking  its  average,  increase  strongly  the  coercivity  with  minor   changings  in  the  EB  loop  shik.   Some  predicHons  on  the  macroscopic  properHes   calc. 10 K -0.5 0.0 0.5 1.0 -1.0 -0.4 -0.2 -0.1 0.0 0.1 0.2 0.4-0.3 0.3 no UCS double UCS average double UCS fluctuations Benassi  et  al.  (waiHng  for  PRL  rejecHon)  
  • 21. Up  to  now  the  fluctuaHons  of  the  uniaxial  anisotropy  have  been  considered  to  be  uncorrelated  (white  noise),  however  they   have  something  to  do  with  the  granularity  of  the  sample.  Something  more  about  the  strength  and  the  correlaHon  of  these   fluctuaHon  can  be  inferred  from  Barkhausen  noise  measurements.                                   The  presence  of  Chromium  atoms  in  the  AF  decouples  the  magneHc  moment  of  neighboring  grains,  increasing  the  UCS  field   by  the  40%.  The  model  will  be  used  to  study  this  new  sample  in  which  the  role  of  the  UCS  map  as  been  enhanced.  ParHcular   aYenHon  will  be  given  to  the  return  point  memory  effects.     The  code  is  easily  parallelizable  allowing  for  the  descripHon  of  lager  system  or  for  the  coupling  of  two  interacHng   magneHzed  films         Further  developments   Benassi  et  al.  PRB  84  214441  (2011)