SlideShare a Scribd company logo
1 of 114
Genetic mapping of QTL controlling salt
tolerance and glucosinolates in Brassica
napus and Brassica oleracea
Botany department, Faculty of Science, Fayoum University
Date 11.12.2017
PhD project in University of Goettingen, Germany
Dr. Yasser Moursi
2017/2018
Genetic mapping of QTL controlling salt
tolerance and glucosinolates in Brassica
napus and Brassica oleracea
2
Presented by
Dr. Yasser Moursi
Botany department, Faculty of Science, Fayoum University
Assiut University, 11.12.2017
3
Brassica napus & Brassica oleracea
Salinity
Glucosinolates
Introduction
Brassica napus Brassica oleracea
4
5
U’s Triangle shows the relationships between
different Brassica species
Salinity
Types of salinity
6
 Natural or primary salinity
 Secondary or human-induced
Effect of salinity on plant
 Physiological drought
 Ion toxicity
 Nutrient imbalance
 Oxidative stress
Plant-Salinity interaction
Escaping
Avoidance
Tolerance
7
Solutions
Technical solution
 Land reclamation
 New irrigation system
 Biological solution
 Selection of salt-tolerant varieties
 Domestication of halophytes
 Genetic modified
8
Indolic
Aromatic
Methionine
Precursors of glucosinolates (GSL)
9
Aliphatic
Tryptophan
Tyrosine
Glucosinolates biosynthesis main steps
1
Chain
elongation
Core
structure
Side chain
modification
Glucosinolates
11Halkier and Gershenzon (2008) Annu.Rev.Plant Biol.
Glucosinolates degradation
Objectives:
Mapping QTL for salt tolerance at seed
germination
Mapping QTL for salt tolerance at the
young plant stage
Mapping QTL for glucosinolates under
salt stress
12
Mapping QTL for salt tolerance at
seed germination
Part I
13
Three DH
populations
B. napus
Alesi x H30
Mansholts x
Samourai
B. oleracea
TO1000DH3
x Early Big
Population Source Map
Alesi x H30 KWS Sebastian Miersch
Mansholts x Samourai Plant breeding
division(our institute)
Dr. Ecke
TO1000 DH3 x Early
Big (Bo1TBDH) Warwick University, UK
Iniguez-Luy et al.
(2009)
Plant materials
14
Methods
5 ml tap water
Germination conditions: 20°C /darkness for 8 days
Germination percentage (G%) = 𝐆% =
𝐧
𝐍
𝐱 𝟏𝟎𝟎
Germination pace (GP) = GP
𝐍
𝚺 (𝐧 𝐱 𝐠)
Salt tolerance index (STI) =
𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐮𝐧𝐝𝐞𝐫 𝐬𝐚𝐥𝐭
𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐮𝐧𝐝𝐞𝐫 𝐜𝐨𝐧𝐭𝐫𝐨𝐥
x 𝟏𝟎𝟎
Estimated traits:
15
DH Line A: GP =
𝟏𝟎
𝟒 𝐱 𝟏 + 𝟑 𝐱 𝟐 +(𝟑 𝐱 𝟑)
= 0.52
DH Line 𝐁: GP =
𝟏𝟎
𝟐 𝐱 𝟏 + 𝟑 𝐱 𝟐 + 𝟑 𝐱 𝟑 + 𝟐 𝐱 𝟒
= 0.37
Results of part I
16
Control
Salt
17
18
G%GP
0
20
40
60
80
100
0 0.15 0.3 0.45 0.6
NumberofDHlines
c) Control M
S
0
20
40
60
80
100
120
140
0 20 40 60 80 100
NumberofDHlines
a) Control
0
20
40
60
80
100
120
140
0 20 40 60 80 100
NumberofDHlines
b) Salt
S
M
0
20
40
60
80
100
0 0.1 0.2 0.3 0.4 0.5 0.6
NumberofDHlines
SM
d) Salt
M
S
Frequency distribution of germination parameters under
control under salt stress in B. napus mapping population
Mansholts × Samourai
19
Control
Salt
STI
RP1227.E10.0
OPAI2.1196.4
RP1457.H220.2
OPA15.89636.4
RP841.H147.1
GATA.H363.6
RP299.E168.8
OPQ9.159078.7
GP-1S
GP-STI-1
A8
[-] [-]
BRAS043a0.0
BRAS06723.9
WG1D7.H128.7
RP981.H337.7
RP1118.E143.3
RP1119.E152.1
E4060.159.6
E3362.1088.9
E3861.194.4
E3361.5127.9
G%-1C
G%-2C
C1
[-]
[+]
Localization of QTL for germination parameters in B.
napus DH population Mansholts x Samourai.
20
FLC3aH0.0
pX141bH6.2
pW212bE10.2
fit27214.9
fit06628.1
fit26230.7
fit156c43.1
pW125dE50.8
pX111aD54.8
fit39464.8
fit47670.2
BRMS02574.9
fit22780.3
pW196aH84.3
BRMS01791.2
FC96.9
pW145cX108.2
pX146dH115.9
G%-STI
C3
[-]
pX103dD0.0
pW149cD15.5
pW205aH21.7
pX105cE25.3
pW120cX42.4
pW193bE47.3
fit139b54.2
fit100c58.2
pX130aD63.6
pW178bH72.0
pW137bX77.4
pX105dE82.8
PMR18190.5
fit10298.2
BRMS034101.5
pW177bH109.2
pW148bE116.9
G%-2CG%-3C
GP-1CGP-2C
GP-1S
C4
[+]
[+]
[+]
[+] [+]
Control
Salt
STI
Localization of QTL for germination parameters in B.
oleracea DH population Bo1TBDH
Conclusion I
 Salinity stress reduced the seed germination
parameters significantly.
 The effect of salinity on GP was higher than
the effect on G%.
 Adaptive (stress specific) QTL and constitutive
(stress nonspecific) QTL were mapped in all
populations.
21
Mapping QTL for salt tolerance at
the young plant growth stage
Part II
22
Two DH
populations
B. napus
Mansholts x
Samourai
B. oleracea Bo1TBDH
Plant materials
23
Methods
Brassica napus
Mansholts x Samourai
Brassica oleracea
Bo1TBDH
 140 DH lines (2 parental lines + 138 DH lines)
 10 greenhouse tables (5 for control and 5 for salt)
 5 pots per DH line; 2 plants per pot
 Salt treatment was 200 mM NaCl 100 mM NaCl
 The experiment has been terminated 35 das
 The salt stress began 21 days after sowing (das)
24
Control Salt
25
Replicate 1
ControlSalt
26
Replicate 2
The estimated traits:
 Fresh weight (FW)
 Dry weight (DW)
 Relative water content (RWC) =
 Chlorophyll content (SPAD)
 Sodium content (Na+ mg /g DM)
 Potassium content (K+ mg /g DM)
 Sodium/Potassium ratio (Na+/K+)
𝐅𝐖 − 𝐃𝐖
𝐅𝐖
𝐱 𝟏𝟎𝟎
27
Results of part II
28
SAM
SaltControl
1593
1656
SAM
1593
1656
29
Traits variation under control and salt stress in B. napus
Traits Control Salt
FW(g) 4.6 2.7
DW(g) 0.6 0.4
RWC 87.2 84.6
SPAD1 38.1 42.3
SPAD2 38.9 44.9
Na+ mg/g DM 1.1 24.2
K+ mg/g DM 47.9 50.3
Na+/K+ 0.03 0.5
30
31
E3247.140.0
OPAH9.15028.7
RP1100.E137.1
E3347.645.0
MR13A50.8
CB1007558.0
RP825.H165.9
RP1359.H169.7
MR11679.0
RP668.E284.4
WG1G2.H197.0
WG3F7.H2138.1
Na-2S
Na/K-3S
C9 [+] [-]
TG2F12.E10.0
RP1240.H143.5
RP1565.E150.4
OPA18.82064.7
RP1365.H173.8
CB1002678.3
OPD20.84091.4
WG2D11.E197.6
RP1249.H1110.3
WG7A8.H1122.2
WG4E12.H1132.8
DW-2CRWC-1C
SPAD2-2C
K-1CSPAD1-3S
SPAD2-5S
C2
SPAD1-2C
[+]
[-]
[+]
[+]
[-]
[+]
[+]
Control
Salt
Localization of QTL for growth traits in B. napus
32
Traits variation under control and salt stress in
B. oleracea
Traits Control Salt
FW(g) 4.1 2.8
DW(g) 0.4 0.3
RWC 89.7 87.2
SPAD 52.2 55.1
Na+ mg/g DM 2.7 28.2
K+ mg/g DM 67.9 44.6
Na+/K+ 0.04 0.6
33
FLC3aH0.0
pX141bH6.2
pW212bE10.2
fito27214.9
fito06628.1
fito26230.7
fito156c43.1
pW125dE50.8
pX111aD54.8
fito39464.8
fito47670.2
BRMS02574.9
fito22780.3
pW196aH84.3
BRMS01791.2
FC96.9
pW145cX108.2
pX146dH115.9
FW-2C
FW-3C
DW-1C
RWC-1C
K-2C
FW-2S
DW-1SSPAD-1S
RWC-1S
K-1S
C3
[-]
[-] [-]
[-]
[-] [-]
[-] [-]
[-]
[-]
FLC1aH0.0
fit204b10.0
pW256bH14.7
fit16320.1
pX146cH24.8
fit28930.6
pW108gH36.5
fit01666.3
pW187bH88.1
Na-1C
Na-4S
Na/K-3S
C9
[+] [+]
[+]Control
Salt
Localization of QTL for growth traits in B. oleracea
34
E3247.140.0
OPAH9.15028.7
RP1100.E137.1
E3347.645.0
MR13A50.8
CB1007558.0
RP825.H165.9
RP1359.H169.7
MR11679.0
RP668.E284.4
WG1G2.H197.0
WG3F7.H2138.1
Na-2S
Na/K-3S
C9 [+] [-]
FLC1aH0.0
fit204b10.0
pW256bH14.7
fit16320.1
pX146cH24.8
fit28930.6
pW108gH36.5
fit01666.3
pW187bH88.1
Na-1C
Na-4S
Na/K-3S
C9
[+] [+]
[+]
B. napus B. oleracea
Comparison between B. napus (C9) and B. oleracea (C9)
35
E3261.100.0
MD4113.6
WG3F7.H118.1
RP1175.H128.1
TG1H12.E140.0
RP1516.E148.7
RP1360.E164.8
RP1253.E184.3
TG2F9.H196.2
E3362.7119.5
SPAD2-1C
SPAD2-4S
K-2S
A9
SPAD1-1C
SPAD1-2S
GP-1C
Germination
Growth traits
pX103dD0.0
pW149cD15.5
pW205aH21.7
pX105cE25.3
pW120cX42.4
pW193bE47.3
fit139b54.2
fit100c58.2
pX130aD63.6
pW178bH72.0
pW137bX77.4
pX105dE82.8
PMR18190.5
fit10298.2
BRMS034101.5
pW177bH109.2
pW148bE116.9
GP-1S
C4
SPAD-2C
SPAD-2S
G%-2C
G%-3C
GP-1C
GP-2C
B. napus B. oleracea
The relation between QTL for germination and QTL for
growth traits in B. napus and B. oleracea
Conclusion II
 The effect of salinity on the traits in both populations
was similar except the K+ content that increased in B.
napus and decreased in B. oleracea.
 Hotspot QTL regions were identified in both
populations.
 Adaptive QTL and Constitutive QTL were mapped in
both populations.
 NO common QTL were mapped for both germination
and vegetative growth traits.
36
Part III
Mapping QTL for glucosinolates
under salt stress
Materials and methods
38
 One pot was harvested 34 das.
 Freezing in liquid N2
 Lyophilization (96 h)
 Grinding in a shaker with 3.4 mm metal balls
 Extraction by Methanol and measurement by
high pressure liquid chromatography (HPLC)
Materials and methods
Names and classes of glucosinolates components that were
identified in both populations
Common name Abbreviation Source Group
Glucoiberin IBE Methionine Aliphatic
Progoitrin PRO Methionine Aliphatic
Sinigrin SIN Methionine Aliphatic
Gluconapin GNA Methionine Aliphatic
Glucoraphanin RAA Methionine Aliphatic
Glucoraphenin RAE Methionine Aliphatic
Glucobrassicanapin GBN Methionine Aliphatic
Napoleiferin GNL Methionine Aliphatic
Glucoalyssin ALY Methionine Aliphatic
Glucobrassicin GBC Tryptophan Indolic
4-Hydroxyglucobrassicin 4OH Tryptophan Indolic
Gluconasturtiin NAS Tryptophan Indolic
4-Methoxyglucobrassicin 4ME Tryptophan Indolic
Neoglucobrassicin NEO
Tyrosine,
Phenylalanine
Aromatic
39
7.6 8.2
6.7
4.2 4.2
2.7
1.8
1.6
2.6
2.7 2.0
1.0
0.2 0.1 0.2
0.7
0.2
0.4
0
5
10
Control Salt Control Salt Control Salt
Mansholts DH population Samourai
µMol/gDM Aliphatic Indolic Aromatic
Glucosinolates variations in the parents and the B. napus DH
population ''Mansholts × Samourai'' 40
3.28
1.12
0.21
1.73
0.37
0.05
0
0.5
1
1.5
2
2.5
3
3.5
PRO
GNL
RAA
RAE
GNA
4OH
GBN
GBC
NAS
4ME
NEO
µMol/gDM Control Salt
0.43
0.15
2.36
1.67
0.72
0.18
Glucosinolates variations under control and salt stress in the B.
napus DH population ''Mansholts × Samourai''
41
42
Control
Salt
Seed
Aliphatic-1S
E3261.100.0
MD4113.6
WG3F7.H118.1
RP1175.H128.1
TG1H12.E140.0
RP1516.E148.7
RP1360.E164.8
RP1253.E184.3
TG2F9.H196.2
E3362.7119.5
PRO-1S
SEED-1
RAA-1S
GNA-1S
SUM-2S
SUM-1C
A9
[+]
[+][+] [+] [+]
[+]
Aliphatic-2S
[+]
[+]
Aliphatic-3S
Indolic-3S
TG2F12.E10.0
RP1240.H143.5
RP1565.E150.4
OPA18.82064.7
RP1365.H173.8
CB1002678.3
OPD20.84091.4
WG2D11.E197.6
RP1249.H1110.3
WG7A8.H1122.2
WG4E12.H1132.8
SEED-2
PRO-2S
GBN-2S
GBC-2S
NEO-1S
C2
[+]
[+] [-][-]
[+]
[-]
[+]
Localization of QTL for GSL µMol/g DM in B.napus
8.9
4.0
2.6 1.8 1
0
1.2
1.5
2.8
1.4 3.1
0
1.3
1.3 1.6
0.9
0.5
00
2
4
6
8
10
12
Control Salt Control Salt Control Salt
TO1000DH3 DH population Early Big
µMOL/gDM Aliphatic Indolic Aromatic
Glucosinolates variations in the parents and the B.
oleracea DH population Bo1TBDH 43
0.58
0.2
1.18
0
2.53
0.33
0.2
0.93
0.01
1.24
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
IBE
PRO
GNL
RAA
GNA
4OH
GBN
GBC
NAS
4ME
NEO
µMol/gDM
control salt
44
Glucosinolates variations in the B. oleracea under control
and salt stress (100 mM NaCl)
45
fito4720.0
pW225aD13.2
pW104aE49.8
BRMS04251.8
pW108aH65.0
fito088b71.2
pX110aE77.4
pW192cE83.9
pW128aH91.2
CHS28aX95.2
fito098a116.6
GNA-2C
GNA-1S
Aliphatic-1C
Aliphatic-1S
SUM-1C
SUM-1S
C7
[-]
[-]
[-]
[-]
[+]
[-]
FLC1aH0.0
fito204b10.0
pW256bH14.7
fito16320.1
pX146cH24.8
fito28930.6
pW108gH36.5
fito01666.3
pW187bH88.1
RAA-1S
GNA-3C
GBC-3C
GBC-1S
Indolic-3C
Indolic-1S
Aliphatic-2C
SUM-3C
C9
[-]
[+]
[-]
[+]
[-][+]
[+] [+]
Control
Salt
Localization of QTL for GSL µMol/g DM in B. oleracea
General conclusion:
 The effect of salinity on G% was lower than the
effect on GP.
 Adaptive QTL and constitutive QTL were
mapped in the three tested populations.
 In B. napus population there was an increase in
the K+ content but not in B. oleracea
population.
 Both adaptive QTL and constitutive QTL were
found in both populations.
46
 NO consistency was found between QTL for
SEED GERMINATION and QTL for
GROWTH TRAITS
 The salt stress reduced the GSL content in both
populations.
 An increases in glucobrassicin (GBC) and
glucoraphanin (RAA) has been observed in B.
napus but not in B. oleracea.
 In B. napus The QTL for LEAF GSL co-localize
with QTL for SEED GSL that were mapped
previously
47
Thank you for kind attention
49
Discussion
50
Brassica napus diseases
 Blackleg (Leptosphaeria maculans)
 Stem rot (Sclerotinia spp.)
 Root rot (Phytophtohora megasperma var.
megasperma)
 Downey mildew (Peronospora parasitica)
 leaf spot (Alternaria brassicae)
51
Germination
52
53
Dormancy
ABI3, FUS3 and LEC2 induce specific seed
maturation genes.
Primary dormancy is established during seed
development, specifically at a later stage of seed
development to suppress vivipary on the mother plant
54
Types of dormancy:
Physiological dormancy (PD), morphological
dormancy (MD), morphophysiological dormancy
(MPD), physical dormancy (PY) and
combinational dormancy (PY + PD).
Dormancy release:
GAs
Dark, low temperature, smoking
55
Correlation between G% and GP in Brassica napus (Alesi x H30)
under salt stress
95
100100
0
20
40
60
80
100
0 0.1 0.2 0.3 0.4
Germinationprecentage(G%)
Germination pace
57
Treat
ment
Trait Name of QTL LG LOD
Position
(cM)
interval Flanking Markers
Additiv
e Effect
Phenotypic
Variation
explained
(%)
C
GP GP-1C A9 3.0 81 80-89 ra08600 -ra07944 -0.03 10.45
GP GP-2C C1
5.3 44 32-54 ra08390 -sN00983 -0.04 17.5
GP GP-3C C4b
2.6 11 0-22 MR155 -CB10335 0.03 8.79
S G% G%-1S C1 1.8 54 43-79 sN00983-ra03282 -10.70 6.41
G%-STI G%-STI-1 A3
1.8 51 50-54 ra00527-sN08841 -10.56 6.31
GP-STI
GP-STI-1
A9
2.0 81 80-89
ra08600-ra07944
4.54 7.27
GP-STI
GP-STI-2
A10
2.2 56 35-57
CB10021-ra12416
-4.66 7.59
Table III-10: QTL detected at under control treatment (C) and Salt treatment
(S) for germination traits in B. napus mapping population Alesi × H30. (QTL
significant with P = 0.05 are marked red)
58
Table III-11: QTL detected under control treatment (C) and Salt treatment (S) for
germination traits in B. napus mapping population Mansholts × Samourai. (QTL
significant with P = 0.05 are marked bold)
Treat
ment
Trait
Name
of
QTL
LG LOD
Positi
on
(cM)
interval Flanking Markers
Additive
Effect
Phenotypi
c Variation
explained
C
G%
G%-
1C
C1 1.8 24 8-27 BRAS067 - W1D7.H1 1.88 6.12
G%
G%-
2C
C1 3.4 53 52-58 RP1119.E1 -F4E4060.1 -2.48 11.28
GP
GP-1C A9 1.8 14 13-16 MD41 - WG3F7.H1 0.02 6.06
S
G%
G%-
1S
C5 1.2 107 90-110 MR97B -MR97A -5.99 4.31
GP
GP-1S A8 1.8 77 68-78 RP299.E1 -OPQ9.1590 -0.02 6.27
GP-
STI
GP-
STI
A8 1.5 77 68-78 RP299.E1 -OPQ9.1590 -3.80 5.15
59
Treatm
ent
Trait
Name
of QTL
LG LOD
Positio
n (cM)
Interval Flanking markers Additive Effect
Phenotypic
variation
explained (%)
C
G% G%-1C C2 2.6 63 53-72 pW189bX -fit081a -4.50 8.65
G% G%-2C C4 1.6 44 32-48 pW120cX -pW193bE 3.70 5.34
G% G%-3C C4 4.1 99 92-102 fit102 -BRMS034 6.93 15.66
GP GP-1C C4 2.7 40 32-47 pX105cE -pW120cX 0.02 9.08
GP GP-2C C4 3.3 102 98-108 BRMS034 -pW177bH 0.02 10.91
GP GP-3C C5 3.1 114 109-114 fit353 -pX119dH -0.02 10.45
S
G% G%-1S C1 2 90 84-95 pW225a -pW239bX 7.12 6.93
GP GP-1S C4 1.8 91 83-99 PMR181 -fit102 0.01 6.07
G%-
STI
G%-STI C3 2.0 28 21-31 Fit272- fit066 -13.02 8.44
Table III-12: QTL detected under control treatment (C) and salt treatment (S) for
germination traits in B. oleracea mapping population Bo1TBDH. (QTL significant
with P = 0.05 are marked red)
60
AB/ab → cis or coupling phase
Ab/aB → trans or repulsion phase
Cell division
61
62
Murata et al. (2005)ITCs induced
stomatal closure by ROS, NO and Ca2+
signalling
glutathione monoethyl ester (GSHmee)
inhibits the stomatal closure induced by ITCs
63
Moreno et al. (2008) Salinity stress of 40mM NaCl or foliar
spraying of (Meth. Try) increased the RAA and GBC
Robbins et al. (2005) selenium increased GSL especially
sulphoraphane
Santiago Pe´ rez-Balibrea et al. (2008)
Broccoli sprouts grown in the light were found to
have much higher concentrations of vitamin C by
(83%), glucosinolates (by 33%) and phenolic
compounds (by 61%) than those grown in the dark
Growth traits
64
65
Munns (2005) Genes and salt tolerance bringing them together
66Shabala and Cuin (2007) Potassium transport and plant salt tolerance
50 Na+ :1 K+
100 mM K+
0.1 mM K+
Munns and Tester 2008
67
• Shabala and Cuin 2008
68
The young plant stage
(Greenhouse Experiment)
69
70
Control Salt
Sources of
Variance
Genoty
pes (G)
Replicates
(R)
G ×R h2
Genoty
pes (G)
Replicates
(R)
G ×R h2
DF 137 1 137 137 1 137
FW(g) 0.56 44.58** 0.45 1.41 0.16 39.62 0.14 11.10
DW(g) 0.02** 5.81** 0.01 39.06 0.01* 1.67** 0.03 32.67
RWC 3.05** 1118.33** 1.11 63.39 1.55** 160.29 0.39 74.67
SPAD1 13.04** 1091.62** 4.90 62.23 12.67** 2224.87** 6.56 48.17
SPAD2 10.98** 156.62** 4.67 58.02 18.48** 10.87 6.07 67.11
Na+ mg/ g DM 0.44 - - - 20.34 - - -
K+ mg/ g DM 56.65 - - - 22.89 - - -
Na+/ K+ 0.001 - - - 0.001 - - -
Table IV-1: Mean squares and F test of significance from the ANOVA and
heritabilities of growth traits B. napus DH population Mansholts x Samourai)
71
FW(g) Dw (g) SPAD1 SPAD2 RWC
Na+
mg/ g
DM
K+ mg/ g
DM
Dw (g) 0.75**
SPAD1 0.03 0.20*
SPAD2 0.10 0.2* 0.69**
RWC -0.10 -0.61** -0.30** -0.29**
Na+ mg/ g DM -0.10 0.30 -0.29** -0.18* 0.43**
K+ mg/ g DM 0.13 0.58** -0.26** -0.20* 0.68** 0.67**
Na+ /K+ 0.001 0.06 -0.20* -0.10 -0.03 0.60** -0.10
Table IV-2: Spearman’s rank correlations of the estimated traits in B.
napus mapping population Mansholts × Samourai under control
Table IV-3: Spearman’s rank correlations of the estimated traits in B. napus mapping
population Mansholts × Samourai under salt stress (200 mM NaCl)
72
FW(g) Dw (g) SPAD1 SPAD2 RWC
Na+ mg/ g
DM
K+ mg/ g
DM
Dw 0.86**
SPAD1 0.14 0.32**
SPAD2 0.08 0.23** 0.72**
RWC -0.05 -0.47** -0.38** -0.30**
Na+ mg / g
DM
-0.20* -0.34** -0.04 -0.12 0.33**
K+ mg / g
DM
0.06 0.17* -0.08 0.03 0.28** -0.11
Na+ /K+ -0.20* -0.03 -0.01 -0.11 0.18* 0.90** -0.50**
73
Table IV-4: QTL detected with under control treatment (C) for growth traits in B. napus
mapping population Mansholts × Samourai. (QTL significant with P = 0.05 are marked
red)
Trait Name of QTL LG LOD
Position
(cM)
Interval Flanking Markers
Additive
Effect
Phenotypic variation
explained (%)
FW FW-1C 6 1.59 10 8-18 RP1104.H1 -RP428.E1 -0.14 5.49
DW DW-1C 5 2.01 43 42-46 RP1266.E1 -E3261.2 -0.02 6.86
DW DW-2C 12 5.36 74 69-77 RP1365.H1- CB10026 0.40 17.3
DW DW-3C 13 2.12 173 171-173 RP1365.H3- R1458.H2 0.02 7.25
RWC RWC-1C 12 5.14 98 91-109 WG2D11.E1 -RP1249.H1 -0.54 16.64
RWC RWC-2C 13 2.91 91 80-97 WG5B1.H1 - WG6D6.E1 -0.40 9.8
SPAD1 SPAD1-1C 9 4.92 72 59-81 RP1360.E1- RP1253.E1 1.2 15.99
SPAD1 SPAD1-2C 12 5.6 66 60-73 OPA18.820- RP1365.H1 1.19 18.01
SPAD1 SPAD1-3C 16 2.78 57 54-68 CB10278- WG7E10.H2 0.83 9.37
SPAD2 SPAD2-1C 9 2.28 69 58-82 RP1360.E1- RP1253.E1 0.82 7.77
SPAD2 SPAD2-2C 12 4.14 98 93-105 WG2D11.E1- RP1249.H1 1.10 13.65
K+ mg / g
DM
K-1C 12 5.35 94 85-98 OPD20.840- WG2D11.E1 -3.18 17.53
K+ mg/ g DM K-2C 13 2.16 129 125-130 RP1477.E1 -RP459.H1 -1.87 7.49
74
Table IV-5: QTL detected with under salt treatment (C) for growth traits in B. napus
mapping population Mansholts × Samourai. (QTL significant with P = 0.05 are marked
red)
Trait
Name of
QTL
LG LOD
Position
(cM)
interval Flanking Markers
Additive
Effect
Phenotypic
variation explained
(%)
FW FW-1S 13 2.13 152 144-158 OPQ20.780 -OPAG10.63 0.10 7.28
DW DW-1S 13 2.55 128 113-130 RP1477.E1 -RP459.H1 0.20 8.65
DW DW-2S 16 2.81 44 40-51 CB10010 -CB10278 0.20 9.48
RWC RWC-1S 13 2.5 128 124-130 RP1477.E1 -RP459.H1 -0.26 8.47
SPAD1 SPAD1-1S 1 3.55 12 10-15 RP1275.H2 -RP981.H2 -0.77 11.82
SPAD1 SPAD1-2S 9 2.84 29 19-37 RP1175.H1 -TG1H12.E1 0.69 9.58
SPAD1 SPAD1-3S 12 4.69 68 58-74 OPA18.820 -RP1365.H1 0.92 15.32
SPAD2 SPAD2-1S 1 2.34 15 10-20 RP981.H2 -RP984.H1 -0.66 7.95
SPAD2 SPAD2-2S 3 2.17 101 97-102 CB10271b -W2D5.H1 -0.65 7.41
SPAD2 SPAD2-3S 7 2.49 0 0-8 RP1146.H3 -RP1122.H1 -0.68 8.46
SPAD2 SPAD2-4S 9 5.67 42 30-49 TG1H12.E1 -RP1516.E1 1.12 18.22
SPAD2 SPAD2-5S 12 9.55 74 71-75 RP1365.H1 -CB10026 1.48 28.71
SPAD2 SPAD2-6S 13 3.29 0 0-2 E3247.2 -E3348.5 -0.98 10.99
SPAD2 SPAD2-7S 13 3.27 167 160-171 RP1020.H1 -RP1365.H3 -0.82 10.94
Na+ mg/ g DM Na-1S 3 4.05 2 0-7 E3347.8 -BRAS002 -2.17 13.37
Na+ mg/ g DM Na-2S 19 2.29 2 0-12 E3247.14 -OPAH9.150 -1.77 7.79
K+ mg/ g DM K-1S 5 1.88 96 94-114 RP1362.E1 -WG4C5.H1 -1.21 6.45
K+ mg/ g DM K-2S 9 3.23 57 42-65 RP1516.E1 -RP1360.E1 1.69 10.82
K+ mg/ g DM K-3S 13 2.02 94 88-98 WG6D6.E1 -MR163.2A -1.25 6.91
Na+/K+ Na/K-1S 3 4.63 7 1-9 BRAS002 -WG4D10.E1 -0.04 15.14
Na+/K+ Na/K-2S
18
a
1.81 70 64-72 WG2A11.H1 -RP1144.H1 0.02 6.2
Na+/K+ Na/K-3S 19 2.16 0 0-8 E3247.14 -OPAH9.150 -0.03 7.36
75
Table IV-11: QTl detected under control treatment (C) for glucosinolates µmol/ g DM in B.
napus mapping population Mansholts x Samourai. (QTL significant with P = 0.05 are
marked red)
Trait
Name of
QTL Chro
m
LOD
Position
(cM)
Intervals Flanking markers
Additive
Effect
Phenotypic variation
explained (%)
PRO PRO-1C C3 1.3 93 81 -99 WG5B1.H1 -WG6D6.E1 0.24 4.6
GNL GNL-1C A3 1.5 9 6 -19 WG4D10.E1 -RP1422.E1 0.01 5.6
RAA RAA-1C C6 1.2 55 47 -60 CB10278 -WG7E10.H2 0.03 3.8
RAE RAE-1C C8a 2.2 72 71 -75 RP1144.H1 -CB10454 -0.06 7.9
4OH 4OH-1C C3 1.9 0 0 -5 E3247.2 -E3348.5 0.10 7.0
GBN GBN-1C A4 1.2 55 53 -61 WG4A4.H1 -RP1235.H2 -0.15 4.5
NEO NEO-1C A3 1.3 100 81 -102 CB10271b -WG2D5.H1 -0.02 4.9
Aliphatic Aliphatic-1C A4 1.7 54 50-60 WG4A4.H1- RG1235.H2 -0.55 6.3
Aliphatic Aliphatic-2C A5 1.7 134 130-146 E3347.3 -BRAS063b 0.58 6.1
SUM SUM-1C A9 1.1 115 96 -119 TG2F9.H1 -E3362.7 0.65 4.0
SEED SEED-1 A9 13.9 24 19-29 WG3F7.H1 -RP1175.H1 7.96 43.5
SEED SEED-2 C2 2.3 111 101-121 RP1249.H1 -WG7A8.H1 2.89 9.1
SEED SEED-3 C6 3.4 55 54-60 CB10278 -WG7E10.H2 3.49 13.0
SEED SEED-4 C9 3.9 47 37-51 E3347.6 -MR13A 3.79 14.8
Table IV-11: QTl detected under salt treatment (C) for glucosinolates µmol/ g DM in B.
napus mapping population Mansholts x Samourai. (QTL significant with P = 0.05 are
marked red)
Trait Name of QTL LG LOD
Position
(cM)
Intervals Flanking markers
Additive
Effect
Phenotypic
variation explained
(%)
PRO PRO-1S A9 9.7 19 16 -22 WG3F7.H1 - RP1175.H1 0.60 29.1
PRO PRO-2S C2 1.7 122 115- 127 RP1249.H1 - WG7A8.H1 0.21 6.2
RAA RAA-1S A9 2.3 19 14 -27 W3F7.H1 -RP1175.H1 0.07 8.1
GNA GNA-1S A9 2.6 16 13 -19 MD41 -W3F7.H1 0.08 9.1
4OH 4OH-1S C3 2.3 125 113 -130 RP1477.E1 -RP459.H1 0.20 8.3
4OH 4OH-2S C7 2.6 91 81 -105 WG6C1.E1 -TG5B2.H1 0.01 9.1
GBN GBN-1S A8 2.7 5 1 -7 RP1227.E1 -OPAI2.119 0.22 9.5
GBN GBN-2S C2 4.0 107 100 -115 WG2D11.E1 RP1249.H1 0.28 14.0
GBN GBN-3S C5 1.8 47 41 -51 OPT9.862 -RP981.H1 0.17 6.7
GBN GBN-4S C9 3.4 97 91 -98 RP668.E2 -WG1G2.H1 -0.24 12.1
GBC GBC-1S A3 1.9 109 106 -116 WG2D5.H1 -RP1013.E1 0.24 7.1
GBC GBC-2S C2 3.4 113 110 -119 RP1249.H1 -WG7A8.H1 -0.34 12.1
GBC GBC-3S C7 2.1 67 62 -77 RP318b.E1 -CB10546 0.28 7.7
NAS NAS-1S C9 4.9 41 37 -44 RP1100.E1 -E3347.6 0.12 16.4
NAS NAS-2S C9 2.6 52 50 -58 MR13A -CB10075 -0.10 9.1
4ME 4ME-1S C4 1.2 145 130 -147 RP1235.H1 -RP1198.H1 -0.20 4.3
NEO NEO-1S C2 1.9 110 101 -117 WG2D11.E1 RP1249.H1 -0.14 6.8
NEO NEO-2S C4 4.6 119 116 -123 WG4A4.H2 -TG3D1.H1 -0.23 15.7
Aliphatic Aliphatic-1S A9 8.4 17 13-19 MD41 - WG3F7.H1 1.30 26.8
Aliphatic Aliphatic-2 S A9 1.9 96 91-97 RP1253.E1- TG2F9.H1 0.54 9.1
Aliphatic Aliphatic-3S C2 2.6 106 100-111 WG2D11.E1- RP1249.H1 0.48 7.8
Indolic Indolic-1 S A3 1.9 110 105-118 RP1013.E1- RP1605.H1 0.249 7.0
Indolic Indolic-2 S C2 3.5 111 110-117 RP1249.H1- WG7A8.H1 -0.34 12.0
Indolic Indolic-3 S C7 1.7 66 62-74 RP318b.E1- CB10546 0.31 7.4
SUM SUM-1S A3 2.0 120 109 -131 RP1013.E1 -RP1605.H1 0.57 7.3
SUM SUM-2S A9 8.4 21 18 -26 WG3F7.H1 -RP1175.H1 1.19 26.7
Table V-1: Mean squares, respective F tests, and heritabilities estimated from the ANOVA
of B. oleracea mapping population Bo1TBDH
Control Salt
Sources of
Variance
Genotyp
es (G)
Replicat
es (R)
G ×R h2
Genotyp
es (G)
Replicat
es (R)
G ×R h2
DF 137 1 137 137 1 137
FW(g) 1.32** 5.31** 0.28 78.52 0.59** 11.45** 0.17** 70.90
DW(g) 0.01** 0.021* 0.004 70.6 0.010** 0.003** 0.003 71.37
RWC 36.56** 388.33** 9.126 75.04 36.25** 372.17** 6.90 80.95
SPAD1 2.47** 54.90** 1.1632 52.96 6.48** 185.34** 3.97 38.75
Na+ mg/ g
DM
0.26 - - - 35.5 - - -
K+ mg/ g
DM
60.90 - - - 43.6 - - -
Na+/ K+ 0.001 - - - 0.03 - - -
Table V-2: Spearman’s rank correlation of growth traits for B. oleracea Bo1TDH
under control
FW (g) DW (g) RWC SPAD
Na+ mg/
g DM
K+ mg/ g
DM
Dw (g) 0.85**
RWC 0.33** -0.13
SPAD 0.12 0.20* -0.11
Na+ mg/ g
DM
-0.14 -0.30 0.17* -0.23**
K+ mg/ g
DM
0.20* 0.01 0.32** -0.27** 0.23**
Na+ /K+ -0.21* -0.30** 0.02 -0.11 0.88** -0.20*
Table V-2: Spearman’s rank correlation of growth traits for B. oleracea Bo1TDH
under salt
FW (g) DW (g) RWC SPAD
Na+ mg/ g
DM
K+ mg/ g
DM
Dw (g) 0.83**
RWC
0.226*
*
-0.21*
SPAD 0.041 0.17* -0.12
Na+ mg/ g DM -0.161 -0.04** 0.20* -0.30**
K+ mg/ g DM
0.332*
*
0.20* 0.27** -0.08 -0.25**
Na+ /K+ -0.053 -0.06 0.03 -0.20 0.87** -0.63**
Table IV-4: QTL detected with under control treatment (C) for growth traits in B.
oleracea mapping population Bo1TBDH. (QTL significant with P = 0.05 are marked red)
Trait
Name of
QTL
LG LOD
Position
(cM)
Interval Flanking markers
Additive
Effect
Phenotypic
variation
explained (%)
FW FW-1C 1 3.9 64 60-70 pX101cX -pX122aH 0.24 12.5
FW FW-2C 3 2.8 31 28-39 fito262 -fito156c -0.27 9.0
FW FW-3C 3 6.0 57 51-63 pX111aD -fito394 -0.39 18.5
FW FW-4C 7 3.1 96 91-109 CHS28aX -fito098a -0.21 10.0
DW DW-1C 3 2.9 59 52-64 pX111aD -fit394 -0.03 9.3
RWC RWC-1C 3 2.5 39 32-48 fito262 -fito156c -0.44 8.1
SPAD SPAD-1C 2 2.4 67 64-80 fito081a -pW161aX -1.07 7.8
SPAD SPAD-2C 4 3.7 52 47-59 pW193bE -fito139b -1.67 13.4
SPAD SPAD-3C 4 2.5 108 101-116
BRMS034 -
pW177bH
-1.14 8.0
SPAD SPAD-4C 8 3.6 31 25-36 fito482 -pW231aX 1.41 11.4
Na mg/ g DM Na-1C 9 5.1 15 12-21 pW256bH -fito163 0.20 16.3
K mg/ g DM K-1C 1 2.2 40 37-47 pW249dE -fito094 1.33 7.4
K mg/ g DM K-2C 3 3.4 65 58-70 fito394 -fito476 -1.92 11.0
K mg/ g DM K-3C 8 2.3 69 60-77 pX130cD -fito373c 1.42 7.8
Table IV-4: QTL detected with under salt treatment (C) for growth traits in B. oleracea
mapping population Bo1TBDH. (QTL significant with P = 0.05 are marked red)
Trait
Name of
QTL
LG LOD
Position
(cM)
Intervals Flanking Markers Effect
Phenotypic
variation explained
(%)
FW FW-1S 1 2.0 87 80-91 pW225a -pW239bX 0.13 6.6
FW FW-2S 3 5.3 52 43-55 pW125dE -pX111aD -0.25 16.4
DW Dw-1S 3 5.2 37 31-43 fito262 -fito156c -0.04 16.0
SPAD SPAD-1S 3 3.0 95 91-104 BRMS017 -FC -1.30 9.8
SPAD SPAD-2S 4 9.3 72 66-76 pX130aD -pW178bH -1.93 26.9
SPAD SPAD-3S 5 3.4 74 71-85 fito156a -pW164aE 1.16 10.7
SPAD SPAD-4S 6 4.0 11 4-20 isgpa -fito067 -1.21 12.6
SPAD SPAD-5S 8 6.6 51 48-56 fito204a -pX130cD 1.60 19.8
Na mg/ g DM Na-1S 1 3.5 32 25-36 fito355 -pX149fE -1.68 11.3
Na mg/ g DM Na-2S 5 2.9 84 79-90 pW164aE -pW198bH -1.62 9.4
Na mg/ g DM Na-3S 8 1.8 82 72-84 fito204e -fito486 -1.19 6.0
Na mg/ g DM Na-4S 9 3.7 15 14-18 pW256bH -fito163 1.71 11.9
K mg/ g DM K-1S 3 3.6 64 57-69 pX111aD -fito394 -2.10 11.6
K mg/ g DM K-2S 8 4.5 72 60-80 fito373c -fito204e 2.15 14.3
Na+/K+ Na/K-1S 1 2.3 31 25-36 fito355 -pX149fE -0.04 7.6
Na+/K+ Na/K-2S 8 2.7 78 70-84 fito373c -fito204e -0.04 8.8
Na+/K+ Na/K-3S 9 3.7 1 0-10 FLC1aH -fito204b 0.05 11.9
Table V-10: QTL detected under control treatment (C) for glucosinolate content µMol/gDM
in B. oleracea mapping population Bo1TBDH. (QTL significant with P = 0.05 are marked
red).
Trait
Name of
QTL LG
Position
(cM)
LOD Interval Flanking markers
Additive
effect
Phenotypic
variation
explained (%)
IBE IBE-1C C1 80 3.7 77 - 84 fito131 - pW220aH -0.13 4.7
IBE IBE-2C C5 79 5.2 72 -85 fito156a -pW164aE -0.25 18.6
PRO PRO-1C C3 11 4.3 10 - 13 pW212bE -fito272 0.44 15.6
GNL GNL-1C C5 76 1.5 57 - 80 fito156a -pW164aE -0.12 5.6
GNA GNA-1C C 3 7 1.8 6 - 15 pX141bH -pW212bE -0.42 6.9
GNA GNA-2C C 7 67 3.8 56 - 72 pW108aH -fito088b -0.61 13.9
GNA GNA-3C C 9 68 10 58 - 78 fito016 -pW187bH -0.95 32.9
GBC GBC-1C C 2 76 3.0 66 - 85 pW161aX -pW176aH 0.52 11.2
GBC GBC-2C C 3 44 1.9 43 - 47 fito156c -pW125dE 0.48 7.4
GBC GBC-3C C 9 21 2.4 14 - 25 fito163 -pX146cH 0.43 8.9
NAS NAS-1C C 4 24 2.0 21 - 37 pW205aH -pX105cE -0.06 7.6
NEO NEO-1C C 3 96 4.0 91 - 101 BRMS017 -FC -0.55 14.9
NEO NEO-2C C 4 60 2.9 58 - 69 fito100c -pX130aD -0.35 10.9
Aliphatic Aliphatic1C C 7 56 4.9 50-65 BRMS042-pW108aH -0.90 17.8
Aliphatic Aliphatic2C C 9 70 9.9 58-80 fito016 -pW187bH -1.23 32.5
Indolic Indolic-1C C 2 77 2.6 65-85 pW161aX - pW176aH 0.52 9.4
Indolic Indolic-2C C 3 44 2.4 41 - 47 fito156c-pW125dE 0.59 8.8
Indolic Indolic-3C C 9 20 2.1 14-25 pW256bH-fito163 0.43 7.7
SUM SUM-1C C 7 66 1.95 53 - 72 pW108aH -fito088b -0.79 7.4
SUM SUM-2C C 8 51 2.3 45 - 55 fito204a -pX130cD 0.81 8.6
SUM SUM-3C C 9 66 3.69 54 - 79 pW108gH - fito016 -1.0 13.5
Table V-10: QTL detected under salt treatment (C) for glucosinolate content µMol/gDM in
B. oleracea mapping population Bo1TBDH. (QTL significant with P = 0.05 are marked
red).
Trait
Name of
QTL
LG LOD
Positio
n (cM)
Interva
l
Flanking markers
Additive
effect
Phenotypic
Variation
explained (%)
IBE IBE-1S C2 1.2 90 85 -97 fito019 -fito375 0.06 4.9
PRO PRO-1S C3 4.6 23 15 -31 fito272 -fito066 -0.26 15.8
PRO PRO-2S C8 2.5 9 0 -18 pX103cD - fit040d -0.17 9.8
RAA RAA-1S C9 1.7 67 53 -84 fito016 - pW187bH 0.01 6.8
GNA GNA-1S C7 4.0 72 65 -78 fito088b - pX110aE -0.52 15.3
GBC GBC-1S C9 4.6 21 15 -25 fito163 -pX146cH 0.31 17.4
NAS NAS-1S C4 1.5 68 63 -77 pX130aD - pW178bH 0.03 6.0
4ME 4ME-1S C5 1.3 0 0 -10 fito389 - pW125aE 0.01 5.2
Aliphati
c
Aliphatic-
1C
C7 3.9 77 74-78 fito088b - pX110aE 0.60 14.5
Indolic Indolic-1S C9 4.6 20 15-25 pW256bH -fito163 0.32 16.8
SUM SUM-1S C7 2.7 58 51 -72 BRMS042 - pW108aH -0.61 10.4
Periodic Table with Electronegativities
84
85Electrons distribution in the atoms in Sodium and Potassium
Sodium Na+
Potassium K+
FOOD QUALITY
86
87
Species Stress Metabolic changes References
Brassica
rapa
jasmonate
(MeJA)
elicitation
glucose, sucrose and amino acids decreased (Liang et
al., 2006a),
or
Brassica
napus
Drought Amino acids increased under until cell
dehydration
(Good and
Zaplachinski
, 1994).
Brassica
oleracea
Salinity /
drought
sugar contents increased (Sasaki et
al., 1998).
Brassica Heavy metals Temporal increase of photosynthetic pigments,
amino acids, sugars
(Singh
and Sinha,
2005)
Arabidopsis Cadmium stress Toxic levels of ROS and severe chlorophyll loss (Zawoznik et
al., 2007).
Brassica
pekinensis
Cupper stress High levels of free amino acids (Xiong et al.,
2006)
Brassica Metal stress Increase of the low molecular weight organic
acids
(Seth et al.,
2008)
88
Species Stress Metabolic changes References
Brassica napus Stress Reduction of ß-
carotene
(Gebczynski and
Lisiewska, 2006).
Brassica oleracea
(Broccoli)
Boiling and cooking Considerable
reduction of Ascorbic
acid
(Gebczynski and
Lisiewska, 2006;
Sikora et al., 2008),
Brassica oleracea
(Broccoli)
UV
7–13 ◦C
Increase of Ascorbic
acid
(Schonhof et al.,
2007).
Brassica oleracea
(Broccoli)
(6 h after)
Harvest
Reduction in protein,
organic acids- after
that increase in free
amino acids (GLU-
ASP)
(King and Morris,
1994;
Eason et al., 2007)
Brassica oleracea
(Broccoli)
7 d in high CO2 levels High levels of non-
protein amino acids
89
90
Summary of the biosynthetic pathway and stress-induced metabolite production.
(+) Increased (−) Decreased
Menard et al .
(1999). B. oleracea
Downy mildew
Bodnaryk 1994.
B. napus/rapa/
Juncea
20-fold MeJA/JA
Aksouh (2001) /B.n /40 C/15
d
Shonhof (2007). B.o_ (RAA)
7-13 C ;7-13 mol.
(Song and Thornalley 2007) 4-
8 C/7d (SIN,PRO,GNA- IBE,
RAA,ALY).
Martinez-Sanchez et al.
(2006) Er.Sa. 4-33% loss open
air
60%-100% low O2 and High
CO2
** Shonhof 2007 Aliphatic
GSL increased storage/ 7_13
C
Low N and High S
Robbins et al. (2005)
Selenium/ Sulforaphane
91
Salt-tolerant varieties Ren et al. 2005
Drought-tolerant
varieties
Araus et al. 2008
Ozone-tolerant
varieties
Frei et al. 2008
Heat-tolerant
varieties
Pinto et al. 2010
Defence and Growth
92
Erucic Acid Structure
93
CH3(CH2)7CH=CH(CH2)11COOH (C22H42OH)
94
Compound % of total
Oleic acid 61%
Linoleic acid 21%
Alpha-linolenic acid 11% _ 9%
Saturated fatty acids 7%
Palmitic acid 4%
Stearic acid 2%
Trans fat 0.4%
Sodium/Potassium
95
96
Shabala and Cuin (2007) Potassium transport and plant salt tolerance
Glucosinolates
97
Aliphatic GSL biosynthesis in B. oleracea
98
Li and Quiros (2003)
99
Zhixin Zhao et al. (2008)
Isothiocyanate lead to the inhibition of inward K+
channels in the guard cells to avoid water loss by
stomatal closure.
100
101
Gigolashvili et al. (2007)
Levy et al. 2005 102
(AOP2) ALKENYL HYDROXALKYL
PRODUCING 2
ATR1 (ARABIDOPSIS CYTOCHROME
REDUCTASE)
(SLIM) ARABIDOPSIS THALIANA SULFUR
LIMITATION 1_ hyperosmotic salinity response
Indolic GSL Aliphatic GSL
103
SLIM1
Side Chain elongation
104
Glucone formation
105
106
Side chain modification
107
Grubb and Abel (2006) Trend in plant science
Glucosinolates degradation
108
Glucosinolates transport
109
Traits variation under control and salt stress in B. napus
Traits Control Salt
FW(g) 4.6 2.7
DW(g) 0.6 0.4
RWC 87.2 84.6
SPAD1 38.1 42.3
SPAD2 38.9 44.9
Na+ mg/g DM 1.1 24.2
K+ mg/g DM 47.9 50.3
Na+/K+ 0.03 0.5
11
11
Traits variation under control and salt stress in
B. oleracea
Traits Control Salt
FW(g) 4.1 2.8
DW(g) 0.4 0.3
RWC 89.7 87.2
SPAD 52.2 55.1
Na+ mg/g DM 2.7 28.2
K+ mg/g DM 67.9 44.6
Na+/K+ 0.04 0.6
María del Carmen Martínez-Ballesta et al. (2013) 112
Becker et al. 1999 113(After Thies 1994)
Modified from Becker et al. 1999
114
Palmitic acid 16:0
Stearic acid 18:0
Linoleic acid 18:2
Gamma-linolenic acid 18:3
Oleic acid 18:1
Eicosenoic acid 20:1
Erucic acid 22:1

More Related Content

What's hot

Scaldaferri F. Breath Test cosa c'è di nuovo. ASMaD 2016
Scaldaferri F. Breath Test cosa c'è di nuovo. ASMaD 2016Scaldaferri F. Breath Test cosa c'è di nuovo. ASMaD 2016
Scaldaferri F. Breath Test cosa c'è di nuovo. ASMaD 2016Gianfranco Tammaro
 
Advances in biopurification system for pesticide degradation – chile – maria ...
Advances in biopurification system for pesticide degradation – chile – maria ...Advances in biopurification system for pesticide degradation – chile – maria ...
Advances in biopurification system for pesticide degradation – chile – maria ...ECOHUERTA
 
Research Presentation for Moratuwa Engineering Research Conference, 2019
Research Presentation for Moratuwa Engineering Research Conference, 2019Research Presentation for Moratuwa Engineering Research Conference, 2019
Research Presentation for Moratuwa Engineering Research Conference, 2019B.K.T. Samarasiri
 
Adsorption Characteristics and Behaviors of Natural Red Clay for Removal of B...
Adsorption Characteristics and Behaviors of Natural Red Clay for Removal of B...Adsorption Characteristics and Behaviors of Natural Red Clay for Removal of B...
Adsorption Characteristics and Behaviors of Natural Red Clay for Removal of B...ijtsrd
 
Water Quality Implications of Unique Transformation Processes of Synthetic St...
Water Quality Implications of Unique Transformation Processes of Synthetic St...Water Quality Implications of Unique Transformation Processes of Synthetic St...
Water Quality Implications of Unique Transformation Processes of Synthetic St...National Institute of Food and Agriculture
 
MacPherson 1998 EST
MacPherson 1998 ESTMacPherson 1998 EST
MacPherson 1998 ESTJalal Hawari
 
Characterization of mining tailings containing sulfides and carbonates applyi...
Characterization of mining tailings containing sulfides and carbonates applyi...Characterization of mining tailings containing sulfides and carbonates applyi...
Characterization of mining tailings containing sulfides and carbonates applyi...Judson Arantes
 
Biosolids Minimization Using Alkaline Sludge Hydrolysis and BNR Process
Biosolids Minimization Using Alkaline Sludge Hydrolysis and BNR ProcessBiosolids Minimization Using Alkaline Sludge Hydrolysis and BNR Process
Biosolids Minimization Using Alkaline Sludge Hydrolysis and BNR ProcessLystek
 
Intermediate Organic Special Project Poster
Intermediate Organic Special Project PosterIntermediate Organic Special Project Poster
Intermediate Organic Special Project PosterViren Lad
 
Dehydration catalyst
Dehydration catalystDehydration catalyst
Dehydration catalystHiep Le
 
GC-PID method for the measurement of arsenic in food and juice
GC-PID method for the measurement of arsenic in food and juiceGC-PID method for the measurement of arsenic in food and juice
GC-PID method for the measurement of arsenic in food and juiceJennifer Maclachlan
 

What's hot (13)

Scaldaferri F. Breath Test cosa c'è di nuovo. ASMaD 2016
Scaldaferri F. Breath Test cosa c'è di nuovo. ASMaD 2016Scaldaferri F. Breath Test cosa c'è di nuovo. ASMaD 2016
Scaldaferri F. Breath Test cosa c'è di nuovo. ASMaD 2016
 
Advances in biopurification system for pesticide degradation – chile – maria ...
Advances in biopurification system for pesticide degradation – chile – maria ...Advances in biopurification system for pesticide degradation – chile – maria ...
Advances in biopurification system for pesticide degradation – chile – maria ...
 
Research Presentation for Moratuwa Engineering Research Conference, 2019
Research Presentation for Moratuwa Engineering Research Conference, 2019Research Presentation for Moratuwa Engineering Research Conference, 2019
Research Presentation for Moratuwa Engineering Research Conference, 2019
 
Adsorption Characteristics and Behaviors of Natural Red Clay for Removal of B...
Adsorption Characteristics and Behaviors of Natural Red Clay for Removal of B...Adsorption Characteristics and Behaviors of Natural Red Clay for Removal of B...
Adsorption Characteristics and Behaviors of Natural Red Clay for Removal of B...
 
Water Quality Implications of Unique Transformation Processes of Synthetic St...
Water Quality Implications of Unique Transformation Processes of Synthetic St...Water Quality Implications of Unique Transformation Processes of Synthetic St...
Water Quality Implications of Unique Transformation Processes of Synthetic St...
 
MacPherson 1998 EST
MacPherson 1998 ESTMacPherson 1998 EST
MacPherson 1998 EST
 
Characterization of mining tailings containing sulfides and carbonates applyi...
Characterization of mining tailings containing sulfides and carbonates applyi...Characterization of mining tailings containing sulfides and carbonates applyi...
Characterization of mining tailings containing sulfides and carbonates applyi...
 
Biosolids Minimization Using Alkaline Sludge Hydrolysis and BNR Process
Biosolids Minimization Using Alkaline Sludge Hydrolysis and BNR ProcessBiosolids Minimization Using Alkaline Sludge Hydrolysis and BNR Process
Biosolids Minimization Using Alkaline Sludge Hydrolysis and BNR Process
 
Intermediate Organic Special Project Poster
Intermediate Organic Special Project PosterIntermediate Organic Special Project Poster
Intermediate Organic Special Project Poster
 
Dehydration catalyst
Dehydration catalystDehydration catalyst
Dehydration catalyst
 
ETHEROWS.DOC
ETHEROWS.DOCETHEROWS.DOC
ETHEROWS.DOC
 
GC-PID method for the measurement of arsenic in food and juice
GC-PID method for the measurement of arsenic in food and juiceGC-PID method for the measurement of arsenic in food and juice
GC-PID method for the measurement of arsenic in food and juice
 
ABS16Frigon-CAP
ABS16Frigon-CAPABS16Frigon-CAP
ABS16Frigon-CAP
 

Similar to Genetic Mapping of QTL controlling salt tolerance and glucosinolates in Brassica napus and Brassica oleracea

The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Poster for ASPB conference
Poster for ASPB conferencePoster for ASPB conference
Poster for ASPB conferenceAnju Biswas
 
Biochemical basis for malate over production in Actinomycete spp.
Biochemical basis for malate over production in Actinomycete spp.Biochemical basis for malate over production in Actinomycete spp.
Biochemical basis for malate over production in Actinomycete spp.Sakhmeet Patel
 
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...Scientific Review SR
 
Physiological mechanisms of salt tolerance in Tomato
Physiological mechanisms of salt tolerance in TomatoPhysiological mechanisms of salt tolerance in Tomato
Physiological mechanisms of salt tolerance in TomatoShanwaz Ahmad
 
Effect of bioaugmentation with anaerobic fungi isolated from ruminants on the...
Effect of bioaugmentation with anaerobic fungi isolated from ruminants on the...Effect of bioaugmentation with anaerobic fungi isolated from ruminants on the...
Effect of bioaugmentation with anaerobic fungi isolated from ruminants on the...Bhargavi Ravi
 
Polysaccharide based nanoparticles for encapsualtion and release of antineopl...
Polysaccharide based nanoparticles for encapsualtion and release of antineopl...Polysaccharide based nanoparticles for encapsualtion and release of antineopl...
Polysaccharide based nanoparticles for encapsualtion and release of antineopl...Tomsk Polytechnic University
 
321 samocha 9 00- final_go 100 m3
321 samocha 9 00- final_go 100 m3321 samocha 9 00- final_go 100 m3
321 samocha 9 00- final_go 100 m3Pedro Henrique
 
Improved Analytical Methods for Carbohydrate R&D
Improved Analytical Methods for Carbohydrate R&DImproved Analytical Methods for Carbohydrate R&D
Improved Analytical Methods for Carbohydrate R&DRichard Sevcik
 
Q3D - Elemental Impurities: What implications for APIs & excipients suppliers?
Q3D - Elemental Impurities: What implications for APIs & excipients suppliers?Q3D - Elemental Impurities: What implications for APIs & excipients suppliers?
Q3D - Elemental Impurities: What implications for APIs & excipients suppliers?Quality Assistance s.a.
 
Application of Validated High-performance Liquid Chromatography Method for De...
Application of Validated High-performance Liquid Chromatography Method for De...Application of Validated High-performance Liquid Chromatography Method for De...
Application of Validated High-performance Liquid Chromatography Method for De...BRNSS Publication Hub
 
Plants fungus cell biology microbes bacteria
Plants fungus cell biology microbes bacteriaPlants fungus cell biology microbes bacteria
Plants fungus cell biology microbes bacteriassuser0db82d1
 
1-s2.0-S0011916415003719-SJ
1-s2.0-S0011916415003719-SJ1-s2.0-S0011916415003719-SJ
1-s2.0-S0011916415003719-SJShahzad Jamil
 
Wastewater.pptx
Wastewater.pptxWastewater.pptx
Wastewater.pptxJay Parmar
 

Similar to Genetic Mapping of QTL controlling salt tolerance and glucosinolates in Brassica napus and Brassica oleracea (20)

The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Poster for ASPB conference
Poster for ASPB conferencePoster for ASPB conference
Poster for ASPB conference
 
Biochemical basis for malate over production in Actinomycete spp.
Biochemical basis for malate over production in Actinomycete spp.Biochemical basis for malate over production in Actinomycete spp.
Biochemical basis for malate over production in Actinomycete spp.
 
Campanella2017
Campanella2017Campanella2017
Campanella2017
 
Campanella2017
Campanella2017Campanella2017
Campanella2017
 
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
 
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
 
Physiological mechanisms of salt tolerance in Tomato
Physiological mechanisms of salt tolerance in TomatoPhysiological mechanisms of salt tolerance in Tomato
Physiological mechanisms of salt tolerance in Tomato
 
Nitrogen Transformations in Aquaponic Systems
Nitrogen Transformations in Aquaponic SystemsNitrogen Transformations in Aquaponic Systems
Nitrogen Transformations in Aquaponic Systems
 
Effect of bioaugmentation with anaerobic fungi isolated from ruminants on the...
Effect of bioaugmentation with anaerobic fungi isolated from ruminants on the...Effect of bioaugmentation with anaerobic fungi isolated from ruminants on the...
Effect of bioaugmentation with anaerobic fungi isolated from ruminants on the...
 
Polysaccharide based nanoparticles for encapsualtion and release of antineopl...
Polysaccharide based nanoparticles for encapsualtion and release of antineopl...Polysaccharide based nanoparticles for encapsualtion and release of antineopl...
Polysaccharide based nanoparticles for encapsualtion and release of antineopl...
 
Chromatography: Trends and Developments in MAb Screening and Characterization
Chromatography: Trends and Developments in MAb Screening and CharacterizationChromatography: Trends and Developments in MAb Screening and Characterization
Chromatography: Trends and Developments in MAb Screening and Characterization
 
321 samocha 9 00- final_go 100 m3
321 samocha 9 00- final_go 100 m3321 samocha 9 00- final_go 100 m3
321 samocha 9 00- final_go 100 m3
 
Improved Analytical Methods for Carbohydrate R&D
Improved Analytical Methods for Carbohydrate R&DImproved Analytical Methods for Carbohydrate R&D
Improved Analytical Methods for Carbohydrate R&D
 
Q3D - Elemental Impurities: What implications for APIs & excipients suppliers?
Q3D - Elemental Impurities: What implications for APIs & excipients suppliers?Q3D - Elemental Impurities: What implications for APIs & excipients suppliers?
Q3D - Elemental Impurities: What implications for APIs & excipients suppliers?
 
Application of Validated High-performance Liquid Chromatography Method for De...
Application of Validated High-performance Liquid Chromatography Method for De...Application of Validated High-performance Liquid Chromatography Method for De...
Application of Validated High-performance Liquid Chromatography Method for De...
 
Plants fungus cell biology microbes bacteria
Plants fungus cell biology microbes bacteriaPlants fungus cell biology microbes bacteria
Plants fungus cell biology microbes bacteria
 
1-s2.0-S0011916415003719-SJ
1-s2.0-S0011916415003719-SJ1-s2.0-S0011916415003719-SJ
1-s2.0-S0011916415003719-SJ
 
Wastewater.pptx
Wastewater.pptxWastewater.pptx
Wastewater.pptx
 
thesis presentation
thesis presentationthesis presentation
thesis presentation
 

More from PGS

Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).
   Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).   Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).
Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).PGS
 
Quantitative trait loci (QTL) analysis and its applications in plant breeding
Quantitative trait loci (QTL) analysis and its applications in plant breedingQuantitative trait loci (QTL) analysis and its applications in plant breeding
Quantitative trait loci (QTL) analysis and its applications in plant breedingPGS
 
Genetic diversity of Potyviruses infecting cucurbit crops
Genetic diversity of Potyviruses infecting cucurbit cropsGenetic diversity of Potyviruses infecting cucurbit crops
Genetic diversity of Potyviruses infecting cucurbit cropsPGS
 
Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize
Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maizeLoss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize
Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maizePGS
 
Establishment of an in vitro propagation and transformation system of Balani...
Establishment of an in vitro propagation  and transformation system of Balani...Establishment of an in vitro propagation  and transformation system of Balani...
Establishment of an in vitro propagation and transformation system of Balani...PGS
 
AB-QTL analysis reveals new alleles associated to proline accumulation and le...
AB-QTL analysis reveals new alleles associated to proline accumulation and le...AB-QTL analysis reveals new alleles associated to proline accumulation and le...
AB-QTL analysis reveals new alleles associated to proline accumulation and le...PGS
 
Identification and verification of QTL associated with frost tolerance using ...
Identification and verification of QTL associated with frost tolerance using ...Identification and verification of QTL associated with frost tolerance using ...
Identification and verification of QTL associated with frost tolerance using ...PGS
 
Remarks on genetic diversity and relationship of Punica protopunica and P. gr...
Remarks on genetic diversity and relationship of Punica protopunica and P. gr...Remarks on genetic diversity and relationship of Punica protopunica and P. gr...
Remarks on genetic diversity and relationship of Punica protopunica and P. gr...PGS
 
Polymerase Chain Reaction (PCR) and Molecular Markers
Polymerase Chain Reaction (PCR) and Molecular MarkersPolymerase Chain Reaction (PCR) and Molecular Markers
Polymerase Chain Reaction (PCR) and Molecular MarkersPGS
 
Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).
Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).
Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). PGS
 

More from PGS (10)

Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).
   Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).   Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).
Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).
 
Quantitative trait loci (QTL) analysis and its applications in plant breeding
Quantitative trait loci (QTL) analysis and its applications in plant breedingQuantitative trait loci (QTL) analysis and its applications in plant breeding
Quantitative trait loci (QTL) analysis and its applications in plant breeding
 
Genetic diversity of Potyviruses infecting cucurbit crops
Genetic diversity of Potyviruses infecting cucurbit cropsGenetic diversity of Potyviruses infecting cucurbit crops
Genetic diversity of Potyviruses infecting cucurbit crops
 
Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize
Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maizeLoss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize
Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize
 
Establishment of an in vitro propagation and transformation system of Balani...
Establishment of an in vitro propagation  and transformation system of Balani...Establishment of an in vitro propagation  and transformation system of Balani...
Establishment of an in vitro propagation and transformation system of Balani...
 
AB-QTL analysis reveals new alleles associated to proline accumulation and le...
AB-QTL analysis reveals new alleles associated to proline accumulation and le...AB-QTL analysis reveals new alleles associated to proline accumulation and le...
AB-QTL analysis reveals new alleles associated to proline accumulation and le...
 
Identification and verification of QTL associated with frost tolerance using ...
Identification and verification of QTL associated with frost tolerance using ...Identification and verification of QTL associated with frost tolerance using ...
Identification and verification of QTL associated with frost tolerance using ...
 
Remarks on genetic diversity and relationship of Punica protopunica and P. gr...
Remarks on genetic diversity and relationship of Punica protopunica and P. gr...Remarks on genetic diversity and relationship of Punica protopunica and P. gr...
Remarks on genetic diversity and relationship of Punica protopunica and P. gr...
 
Polymerase Chain Reaction (PCR) and Molecular Markers
Polymerase Chain Reaction (PCR) and Molecular MarkersPolymerase Chain Reaction (PCR) and Molecular Markers
Polymerase Chain Reaction (PCR) and Molecular Markers
 
Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).
Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).
Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.).
 

Recently uploaded

TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 

Recently uploaded (20)

TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 

Genetic Mapping of QTL controlling salt tolerance and glucosinolates in Brassica napus and Brassica oleracea

  • 1. Genetic mapping of QTL controlling salt tolerance and glucosinolates in Brassica napus and Brassica oleracea Botany department, Faculty of Science, Fayoum University Date 11.12.2017 PhD project in University of Goettingen, Germany Dr. Yasser Moursi 2017/2018
  • 2. Genetic mapping of QTL controlling salt tolerance and glucosinolates in Brassica napus and Brassica oleracea 2 Presented by Dr. Yasser Moursi Botany department, Faculty of Science, Fayoum University Assiut University, 11.12.2017
  • 3. 3 Brassica napus & Brassica oleracea Salinity Glucosinolates Introduction
  • 5. 5 U’s Triangle shows the relationships between different Brassica species
  • 6. Salinity Types of salinity 6  Natural or primary salinity  Secondary or human-induced Effect of salinity on plant  Physiological drought  Ion toxicity  Nutrient imbalance  Oxidative stress
  • 8. Solutions Technical solution  Land reclamation  New irrigation system  Biological solution  Selection of salt-tolerant varieties  Domestication of halophytes  Genetic modified 8
  • 9. Indolic Aromatic Methionine Precursors of glucosinolates (GSL) 9 Aliphatic Tryptophan Tyrosine
  • 10. Glucosinolates biosynthesis main steps 1 Chain elongation Core structure Side chain modification Glucosinolates
  • 11. 11Halkier and Gershenzon (2008) Annu.Rev.Plant Biol. Glucosinolates degradation
  • 12. Objectives: Mapping QTL for salt tolerance at seed germination Mapping QTL for salt tolerance at the young plant stage Mapping QTL for glucosinolates under salt stress 12
  • 13. Mapping QTL for salt tolerance at seed germination Part I 13
  • 14. Three DH populations B. napus Alesi x H30 Mansholts x Samourai B. oleracea TO1000DH3 x Early Big Population Source Map Alesi x H30 KWS Sebastian Miersch Mansholts x Samourai Plant breeding division(our institute) Dr. Ecke TO1000 DH3 x Early Big (Bo1TBDH) Warwick University, UK Iniguez-Luy et al. (2009) Plant materials 14
  • 15. Methods 5 ml tap water Germination conditions: 20°C /darkness for 8 days Germination percentage (G%) = 𝐆% = 𝐧 𝐍 𝐱 𝟏𝟎𝟎 Germination pace (GP) = GP 𝐍 𝚺 (𝐧 𝐱 𝐠) Salt tolerance index (STI) = 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐮𝐧𝐝𝐞𝐫 𝐬𝐚𝐥𝐭 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐮𝐧𝐝𝐞𝐫 𝐜𝐨𝐧𝐭𝐫𝐨𝐥 x 𝟏𝟎𝟎 Estimated traits: 15 DH Line A: GP = 𝟏𝟎 𝟒 𝐱 𝟏 + 𝟑 𝐱 𝟐 +(𝟑 𝐱 𝟑) = 0.52 DH Line 𝐁: GP = 𝟏𝟎 𝟐 𝐱 𝟏 + 𝟑 𝐱 𝟐 + 𝟑 𝐱 𝟑 + 𝟐 𝐱 𝟒 = 0.37
  • 18. 18 G%GP 0 20 40 60 80 100 0 0.15 0.3 0.45 0.6 NumberofDHlines c) Control M S 0 20 40 60 80 100 120 140 0 20 40 60 80 100 NumberofDHlines a) Control 0 20 40 60 80 100 120 140 0 20 40 60 80 100 NumberofDHlines b) Salt S M 0 20 40 60 80 100 0 0.1 0.2 0.3 0.4 0.5 0.6 NumberofDHlines SM d) Salt M S Frequency distribution of germination parameters under control under salt stress in B. napus mapping population Mansholts × Samourai
  • 21. Conclusion I  Salinity stress reduced the seed germination parameters significantly.  The effect of salinity on GP was higher than the effect on G%.  Adaptive (stress specific) QTL and constitutive (stress nonspecific) QTL were mapped in all populations. 21
  • 22. Mapping QTL for salt tolerance at the young plant growth stage Part II 22
  • 23. Two DH populations B. napus Mansholts x Samourai B. oleracea Bo1TBDH Plant materials 23
  • 24. Methods Brassica napus Mansholts x Samourai Brassica oleracea Bo1TBDH  140 DH lines (2 parental lines + 138 DH lines)  10 greenhouse tables (5 for control and 5 for salt)  5 pots per DH line; 2 plants per pot  Salt treatment was 200 mM NaCl 100 mM NaCl  The experiment has been terminated 35 das  The salt stress began 21 days after sowing (das) 24
  • 27. The estimated traits:  Fresh weight (FW)  Dry weight (DW)  Relative water content (RWC) =  Chlorophyll content (SPAD)  Sodium content (Na+ mg /g DM)  Potassium content (K+ mg /g DM)  Sodium/Potassium ratio (Na+/K+) 𝐅𝐖 − 𝐃𝐖 𝐅𝐖 𝐱 𝟏𝟎𝟎 27
  • 30. Traits variation under control and salt stress in B. napus Traits Control Salt FW(g) 4.6 2.7 DW(g) 0.6 0.4 RWC 87.2 84.6 SPAD1 38.1 42.3 SPAD2 38.9 44.9 Na+ mg/g DM 1.1 24.2 K+ mg/g DM 47.9 50.3 Na+/K+ 0.03 0.5 30
  • 32. 32 Traits variation under control and salt stress in B. oleracea Traits Control Salt FW(g) 4.1 2.8 DW(g) 0.4 0.3 RWC 89.7 87.2 SPAD 52.2 55.1 Na+ mg/g DM 2.7 28.2 K+ mg/g DM 67.9 44.6 Na+/K+ 0.04 0.6
  • 33. 33 FLC3aH0.0 pX141bH6.2 pW212bE10.2 fito27214.9 fito06628.1 fito26230.7 fito156c43.1 pW125dE50.8 pX111aD54.8 fito39464.8 fito47670.2 BRMS02574.9 fito22780.3 pW196aH84.3 BRMS01791.2 FC96.9 pW145cX108.2 pX146dH115.9 FW-2C FW-3C DW-1C RWC-1C K-2C FW-2S DW-1SSPAD-1S RWC-1S K-1S C3 [-] [-] [-] [-] [-] [-] [-] [-] [-] [-] FLC1aH0.0 fit204b10.0 pW256bH14.7 fit16320.1 pX146cH24.8 fit28930.6 pW108gH36.5 fit01666.3 pW187bH88.1 Na-1C Na-4S Na/K-3S C9 [+] [+] [+]Control Salt Localization of QTL for growth traits in B. oleracea
  • 36. Conclusion II  The effect of salinity on the traits in both populations was similar except the K+ content that increased in B. napus and decreased in B. oleracea.  Hotspot QTL regions were identified in both populations.  Adaptive QTL and Constitutive QTL were mapped in both populations.  NO common QTL were mapped for both germination and vegetative growth traits. 36
  • 37. Part III Mapping QTL for glucosinolates under salt stress
  • 38. Materials and methods 38  One pot was harvested 34 das.  Freezing in liquid N2  Lyophilization (96 h)  Grinding in a shaker with 3.4 mm metal balls  Extraction by Methanol and measurement by high pressure liquid chromatography (HPLC) Materials and methods
  • 39. Names and classes of glucosinolates components that were identified in both populations Common name Abbreviation Source Group Glucoiberin IBE Methionine Aliphatic Progoitrin PRO Methionine Aliphatic Sinigrin SIN Methionine Aliphatic Gluconapin GNA Methionine Aliphatic Glucoraphanin RAA Methionine Aliphatic Glucoraphenin RAE Methionine Aliphatic Glucobrassicanapin GBN Methionine Aliphatic Napoleiferin GNL Methionine Aliphatic Glucoalyssin ALY Methionine Aliphatic Glucobrassicin GBC Tryptophan Indolic 4-Hydroxyglucobrassicin 4OH Tryptophan Indolic Gluconasturtiin NAS Tryptophan Indolic 4-Methoxyglucobrassicin 4ME Tryptophan Indolic Neoglucobrassicin NEO Tyrosine, Phenylalanine Aromatic 39
  • 40. 7.6 8.2 6.7 4.2 4.2 2.7 1.8 1.6 2.6 2.7 2.0 1.0 0.2 0.1 0.2 0.7 0.2 0.4 0 5 10 Control Salt Control Salt Control Salt Mansholts DH population Samourai µMol/gDM Aliphatic Indolic Aromatic Glucosinolates variations in the parents and the B. napus DH population ''Mansholts × Samourai'' 40
  • 43. 8.9 4.0 2.6 1.8 1 0 1.2 1.5 2.8 1.4 3.1 0 1.3 1.3 1.6 0.9 0.5 00 2 4 6 8 10 12 Control Salt Control Salt Control Salt TO1000DH3 DH population Early Big µMOL/gDM Aliphatic Indolic Aromatic Glucosinolates variations in the parents and the B. oleracea DH population Bo1TBDH 43
  • 46. General conclusion:  The effect of salinity on G% was lower than the effect on GP.  Adaptive QTL and constitutive QTL were mapped in the three tested populations.  In B. napus population there was an increase in the K+ content but not in B. oleracea population.  Both adaptive QTL and constitutive QTL were found in both populations. 46
  • 47.  NO consistency was found between QTL for SEED GERMINATION and QTL for GROWTH TRAITS  The salt stress reduced the GSL content in both populations.  An increases in glucobrassicin (GBC) and glucoraphanin (RAA) has been observed in B. napus but not in B. oleracea.  In B. napus The QTL for LEAF GSL co-localize with QTL for SEED GSL that were mapped previously 47
  • 48. Thank you for kind attention
  • 49. 49
  • 51. Brassica napus diseases  Blackleg (Leptosphaeria maculans)  Stem rot (Sclerotinia spp.)  Root rot (Phytophtohora megasperma var. megasperma)  Downey mildew (Peronospora parasitica)  leaf spot (Alternaria brassicae) 51
  • 53. 53
  • 54. Dormancy ABI3, FUS3 and LEC2 induce specific seed maturation genes. Primary dormancy is established during seed development, specifically at a later stage of seed development to suppress vivipary on the mother plant 54
  • 55. Types of dormancy: Physiological dormancy (PD), morphological dormancy (MD), morphophysiological dormancy (MPD), physical dormancy (PY) and combinational dormancy (PY + PD). Dormancy release: GAs Dark, low temperature, smoking 55
  • 56. Correlation between G% and GP in Brassica napus (Alesi x H30) under salt stress 95 100100 0 20 40 60 80 100 0 0.1 0.2 0.3 0.4 Germinationprecentage(G%) Germination pace
  • 57. 57 Treat ment Trait Name of QTL LG LOD Position (cM) interval Flanking Markers Additiv e Effect Phenotypic Variation explained (%) C GP GP-1C A9 3.0 81 80-89 ra08600 -ra07944 -0.03 10.45 GP GP-2C C1 5.3 44 32-54 ra08390 -sN00983 -0.04 17.5 GP GP-3C C4b 2.6 11 0-22 MR155 -CB10335 0.03 8.79 S G% G%-1S C1 1.8 54 43-79 sN00983-ra03282 -10.70 6.41 G%-STI G%-STI-1 A3 1.8 51 50-54 ra00527-sN08841 -10.56 6.31 GP-STI GP-STI-1 A9 2.0 81 80-89 ra08600-ra07944 4.54 7.27 GP-STI GP-STI-2 A10 2.2 56 35-57 CB10021-ra12416 -4.66 7.59 Table III-10: QTL detected at under control treatment (C) and Salt treatment (S) for germination traits in B. napus mapping population Alesi × H30. (QTL significant with P = 0.05 are marked red)
  • 58. 58 Table III-11: QTL detected under control treatment (C) and Salt treatment (S) for germination traits in B. napus mapping population Mansholts × Samourai. (QTL significant with P = 0.05 are marked bold) Treat ment Trait Name of QTL LG LOD Positi on (cM) interval Flanking Markers Additive Effect Phenotypi c Variation explained C G% G%- 1C C1 1.8 24 8-27 BRAS067 - W1D7.H1 1.88 6.12 G% G%- 2C C1 3.4 53 52-58 RP1119.E1 -F4E4060.1 -2.48 11.28 GP GP-1C A9 1.8 14 13-16 MD41 - WG3F7.H1 0.02 6.06 S G% G%- 1S C5 1.2 107 90-110 MR97B -MR97A -5.99 4.31 GP GP-1S A8 1.8 77 68-78 RP299.E1 -OPQ9.1590 -0.02 6.27 GP- STI GP- STI A8 1.5 77 68-78 RP299.E1 -OPQ9.1590 -3.80 5.15
  • 59. 59 Treatm ent Trait Name of QTL LG LOD Positio n (cM) Interval Flanking markers Additive Effect Phenotypic variation explained (%) C G% G%-1C C2 2.6 63 53-72 pW189bX -fit081a -4.50 8.65 G% G%-2C C4 1.6 44 32-48 pW120cX -pW193bE 3.70 5.34 G% G%-3C C4 4.1 99 92-102 fit102 -BRMS034 6.93 15.66 GP GP-1C C4 2.7 40 32-47 pX105cE -pW120cX 0.02 9.08 GP GP-2C C4 3.3 102 98-108 BRMS034 -pW177bH 0.02 10.91 GP GP-3C C5 3.1 114 109-114 fit353 -pX119dH -0.02 10.45 S G% G%-1S C1 2 90 84-95 pW225a -pW239bX 7.12 6.93 GP GP-1S C4 1.8 91 83-99 PMR181 -fit102 0.01 6.07 G%- STI G%-STI C3 2.0 28 21-31 Fit272- fit066 -13.02 8.44 Table III-12: QTL detected under control treatment (C) and salt treatment (S) for germination traits in B. oleracea mapping population Bo1TBDH. (QTL significant with P = 0.05 are marked red)
  • 60. 60 AB/ab → cis or coupling phase Ab/aB → trans or repulsion phase
  • 62. 62 Murata et al. (2005)ITCs induced stomatal closure by ROS, NO and Ca2+ signalling glutathione monoethyl ester (GSHmee) inhibits the stomatal closure induced by ITCs
  • 63. 63 Moreno et al. (2008) Salinity stress of 40mM NaCl or foliar spraying of (Meth. Try) increased the RAA and GBC Robbins et al. (2005) selenium increased GSL especially sulphoraphane Santiago Pe´ rez-Balibrea et al. (2008) Broccoli sprouts grown in the light were found to have much higher concentrations of vitamin C by (83%), glucosinolates (by 33%) and phenolic compounds (by 61%) than those grown in the dark
  • 65. 65 Munns (2005) Genes and salt tolerance bringing them together
  • 66. 66Shabala and Cuin (2007) Potassium transport and plant salt tolerance 50 Na+ :1 K+ 100 mM K+ 0.1 mM K+
  • 67. Munns and Tester 2008 67
  • 68. • Shabala and Cuin 2008 68
  • 69. The young plant stage (Greenhouse Experiment) 69
  • 70. 70 Control Salt Sources of Variance Genoty pes (G) Replicates (R) G ×R h2 Genoty pes (G) Replicates (R) G ×R h2 DF 137 1 137 137 1 137 FW(g) 0.56 44.58** 0.45 1.41 0.16 39.62 0.14 11.10 DW(g) 0.02** 5.81** 0.01 39.06 0.01* 1.67** 0.03 32.67 RWC 3.05** 1118.33** 1.11 63.39 1.55** 160.29 0.39 74.67 SPAD1 13.04** 1091.62** 4.90 62.23 12.67** 2224.87** 6.56 48.17 SPAD2 10.98** 156.62** 4.67 58.02 18.48** 10.87 6.07 67.11 Na+ mg/ g DM 0.44 - - - 20.34 - - - K+ mg/ g DM 56.65 - - - 22.89 - - - Na+/ K+ 0.001 - - - 0.001 - - - Table IV-1: Mean squares and F test of significance from the ANOVA and heritabilities of growth traits B. napus DH population Mansholts x Samourai)
  • 71. 71 FW(g) Dw (g) SPAD1 SPAD2 RWC Na+ mg/ g DM K+ mg/ g DM Dw (g) 0.75** SPAD1 0.03 0.20* SPAD2 0.10 0.2* 0.69** RWC -0.10 -0.61** -0.30** -0.29** Na+ mg/ g DM -0.10 0.30 -0.29** -0.18* 0.43** K+ mg/ g DM 0.13 0.58** -0.26** -0.20* 0.68** 0.67** Na+ /K+ 0.001 0.06 -0.20* -0.10 -0.03 0.60** -0.10 Table IV-2: Spearman’s rank correlations of the estimated traits in B. napus mapping population Mansholts × Samourai under control
  • 72. Table IV-3: Spearman’s rank correlations of the estimated traits in B. napus mapping population Mansholts × Samourai under salt stress (200 mM NaCl) 72 FW(g) Dw (g) SPAD1 SPAD2 RWC Na+ mg/ g DM K+ mg/ g DM Dw 0.86** SPAD1 0.14 0.32** SPAD2 0.08 0.23** 0.72** RWC -0.05 -0.47** -0.38** -0.30** Na+ mg / g DM -0.20* -0.34** -0.04 -0.12 0.33** K+ mg / g DM 0.06 0.17* -0.08 0.03 0.28** -0.11 Na+ /K+ -0.20* -0.03 -0.01 -0.11 0.18* 0.90** -0.50**
  • 73. 73 Table IV-4: QTL detected with under control treatment (C) for growth traits in B. napus mapping population Mansholts × Samourai. (QTL significant with P = 0.05 are marked red) Trait Name of QTL LG LOD Position (cM) Interval Flanking Markers Additive Effect Phenotypic variation explained (%) FW FW-1C 6 1.59 10 8-18 RP1104.H1 -RP428.E1 -0.14 5.49 DW DW-1C 5 2.01 43 42-46 RP1266.E1 -E3261.2 -0.02 6.86 DW DW-2C 12 5.36 74 69-77 RP1365.H1- CB10026 0.40 17.3 DW DW-3C 13 2.12 173 171-173 RP1365.H3- R1458.H2 0.02 7.25 RWC RWC-1C 12 5.14 98 91-109 WG2D11.E1 -RP1249.H1 -0.54 16.64 RWC RWC-2C 13 2.91 91 80-97 WG5B1.H1 - WG6D6.E1 -0.40 9.8 SPAD1 SPAD1-1C 9 4.92 72 59-81 RP1360.E1- RP1253.E1 1.2 15.99 SPAD1 SPAD1-2C 12 5.6 66 60-73 OPA18.820- RP1365.H1 1.19 18.01 SPAD1 SPAD1-3C 16 2.78 57 54-68 CB10278- WG7E10.H2 0.83 9.37 SPAD2 SPAD2-1C 9 2.28 69 58-82 RP1360.E1- RP1253.E1 0.82 7.77 SPAD2 SPAD2-2C 12 4.14 98 93-105 WG2D11.E1- RP1249.H1 1.10 13.65 K+ mg / g DM K-1C 12 5.35 94 85-98 OPD20.840- WG2D11.E1 -3.18 17.53 K+ mg/ g DM K-2C 13 2.16 129 125-130 RP1477.E1 -RP459.H1 -1.87 7.49
  • 74. 74 Table IV-5: QTL detected with under salt treatment (C) for growth traits in B. napus mapping population Mansholts × Samourai. (QTL significant with P = 0.05 are marked red) Trait Name of QTL LG LOD Position (cM) interval Flanking Markers Additive Effect Phenotypic variation explained (%) FW FW-1S 13 2.13 152 144-158 OPQ20.780 -OPAG10.63 0.10 7.28 DW DW-1S 13 2.55 128 113-130 RP1477.E1 -RP459.H1 0.20 8.65 DW DW-2S 16 2.81 44 40-51 CB10010 -CB10278 0.20 9.48 RWC RWC-1S 13 2.5 128 124-130 RP1477.E1 -RP459.H1 -0.26 8.47 SPAD1 SPAD1-1S 1 3.55 12 10-15 RP1275.H2 -RP981.H2 -0.77 11.82 SPAD1 SPAD1-2S 9 2.84 29 19-37 RP1175.H1 -TG1H12.E1 0.69 9.58 SPAD1 SPAD1-3S 12 4.69 68 58-74 OPA18.820 -RP1365.H1 0.92 15.32 SPAD2 SPAD2-1S 1 2.34 15 10-20 RP981.H2 -RP984.H1 -0.66 7.95 SPAD2 SPAD2-2S 3 2.17 101 97-102 CB10271b -W2D5.H1 -0.65 7.41 SPAD2 SPAD2-3S 7 2.49 0 0-8 RP1146.H3 -RP1122.H1 -0.68 8.46 SPAD2 SPAD2-4S 9 5.67 42 30-49 TG1H12.E1 -RP1516.E1 1.12 18.22 SPAD2 SPAD2-5S 12 9.55 74 71-75 RP1365.H1 -CB10026 1.48 28.71 SPAD2 SPAD2-6S 13 3.29 0 0-2 E3247.2 -E3348.5 -0.98 10.99 SPAD2 SPAD2-7S 13 3.27 167 160-171 RP1020.H1 -RP1365.H3 -0.82 10.94 Na+ mg/ g DM Na-1S 3 4.05 2 0-7 E3347.8 -BRAS002 -2.17 13.37 Na+ mg/ g DM Na-2S 19 2.29 2 0-12 E3247.14 -OPAH9.150 -1.77 7.79 K+ mg/ g DM K-1S 5 1.88 96 94-114 RP1362.E1 -WG4C5.H1 -1.21 6.45 K+ mg/ g DM K-2S 9 3.23 57 42-65 RP1516.E1 -RP1360.E1 1.69 10.82 K+ mg/ g DM K-3S 13 2.02 94 88-98 WG6D6.E1 -MR163.2A -1.25 6.91 Na+/K+ Na/K-1S 3 4.63 7 1-9 BRAS002 -WG4D10.E1 -0.04 15.14 Na+/K+ Na/K-2S 18 a 1.81 70 64-72 WG2A11.H1 -RP1144.H1 0.02 6.2 Na+/K+ Na/K-3S 19 2.16 0 0-8 E3247.14 -OPAH9.150 -0.03 7.36
  • 75. 75 Table IV-11: QTl detected under control treatment (C) for glucosinolates µmol/ g DM in B. napus mapping population Mansholts x Samourai. (QTL significant with P = 0.05 are marked red) Trait Name of QTL Chro m LOD Position (cM) Intervals Flanking markers Additive Effect Phenotypic variation explained (%) PRO PRO-1C C3 1.3 93 81 -99 WG5B1.H1 -WG6D6.E1 0.24 4.6 GNL GNL-1C A3 1.5 9 6 -19 WG4D10.E1 -RP1422.E1 0.01 5.6 RAA RAA-1C C6 1.2 55 47 -60 CB10278 -WG7E10.H2 0.03 3.8 RAE RAE-1C C8a 2.2 72 71 -75 RP1144.H1 -CB10454 -0.06 7.9 4OH 4OH-1C C3 1.9 0 0 -5 E3247.2 -E3348.5 0.10 7.0 GBN GBN-1C A4 1.2 55 53 -61 WG4A4.H1 -RP1235.H2 -0.15 4.5 NEO NEO-1C A3 1.3 100 81 -102 CB10271b -WG2D5.H1 -0.02 4.9 Aliphatic Aliphatic-1C A4 1.7 54 50-60 WG4A4.H1- RG1235.H2 -0.55 6.3 Aliphatic Aliphatic-2C A5 1.7 134 130-146 E3347.3 -BRAS063b 0.58 6.1 SUM SUM-1C A9 1.1 115 96 -119 TG2F9.H1 -E3362.7 0.65 4.0 SEED SEED-1 A9 13.9 24 19-29 WG3F7.H1 -RP1175.H1 7.96 43.5 SEED SEED-2 C2 2.3 111 101-121 RP1249.H1 -WG7A8.H1 2.89 9.1 SEED SEED-3 C6 3.4 55 54-60 CB10278 -WG7E10.H2 3.49 13.0 SEED SEED-4 C9 3.9 47 37-51 E3347.6 -MR13A 3.79 14.8
  • 76. Table IV-11: QTl detected under salt treatment (C) for glucosinolates µmol/ g DM in B. napus mapping population Mansholts x Samourai. (QTL significant with P = 0.05 are marked red) Trait Name of QTL LG LOD Position (cM) Intervals Flanking markers Additive Effect Phenotypic variation explained (%) PRO PRO-1S A9 9.7 19 16 -22 WG3F7.H1 - RP1175.H1 0.60 29.1 PRO PRO-2S C2 1.7 122 115- 127 RP1249.H1 - WG7A8.H1 0.21 6.2 RAA RAA-1S A9 2.3 19 14 -27 W3F7.H1 -RP1175.H1 0.07 8.1 GNA GNA-1S A9 2.6 16 13 -19 MD41 -W3F7.H1 0.08 9.1 4OH 4OH-1S C3 2.3 125 113 -130 RP1477.E1 -RP459.H1 0.20 8.3 4OH 4OH-2S C7 2.6 91 81 -105 WG6C1.E1 -TG5B2.H1 0.01 9.1 GBN GBN-1S A8 2.7 5 1 -7 RP1227.E1 -OPAI2.119 0.22 9.5 GBN GBN-2S C2 4.0 107 100 -115 WG2D11.E1 RP1249.H1 0.28 14.0 GBN GBN-3S C5 1.8 47 41 -51 OPT9.862 -RP981.H1 0.17 6.7 GBN GBN-4S C9 3.4 97 91 -98 RP668.E2 -WG1G2.H1 -0.24 12.1 GBC GBC-1S A3 1.9 109 106 -116 WG2D5.H1 -RP1013.E1 0.24 7.1 GBC GBC-2S C2 3.4 113 110 -119 RP1249.H1 -WG7A8.H1 -0.34 12.1 GBC GBC-3S C7 2.1 67 62 -77 RP318b.E1 -CB10546 0.28 7.7 NAS NAS-1S C9 4.9 41 37 -44 RP1100.E1 -E3347.6 0.12 16.4 NAS NAS-2S C9 2.6 52 50 -58 MR13A -CB10075 -0.10 9.1 4ME 4ME-1S C4 1.2 145 130 -147 RP1235.H1 -RP1198.H1 -0.20 4.3 NEO NEO-1S C2 1.9 110 101 -117 WG2D11.E1 RP1249.H1 -0.14 6.8 NEO NEO-2S C4 4.6 119 116 -123 WG4A4.H2 -TG3D1.H1 -0.23 15.7 Aliphatic Aliphatic-1S A9 8.4 17 13-19 MD41 - WG3F7.H1 1.30 26.8 Aliphatic Aliphatic-2 S A9 1.9 96 91-97 RP1253.E1- TG2F9.H1 0.54 9.1 Aliphatic Aliphatic-3S C2 2.6 106 100-111 WG2D11.E1- RP1249.H1 0.48 7.8 Indolic Indolic-1 S A3 1.9 110 105-118 RP1013.E1- RP1605.H1 0.249 7.0 Indolic Indolic-2 S C2 3.5 111 110-117 RP1249.H1- WG7A8.H1 -0.34 12.0 Indolic Indolic-3 S C7 1.7 66 62-74 RP318b.E1- CB10546 0.31 7.4 SUM SUM-1S A3 2.0 120 109 -131 RP1013.E1 -RP1605.H1 0.57 7.3 SUM SUM-2S A9 8.4 21 18 -26 WG3F7.H1 -RP1175.H1 1.19 26.7
  • 77. Table V-1: Mean squares, respective F tests, and heritabilities estimated from the ANOVA of B. oleracea mapping population Bo1TBDH Control Salt Sources of Variance Genotyp es (G) Replicat es (R) G ×R h2 Genotyp es (G) Replicat es (R) G ×R h2 DF 137 1 137 137 1 137 FW(g) 1.32** 5.31** 0.28 78.52 0.59** 11.45** 0.17** 70.90 DW(g) 0.01** 0.021* 0.004 70.6 0.010** 0.003** 0.003 71.37 RWC 36.56** 388.33** 9.126 75.04 36.25** 372.17** 6.90 80.95 SPAD1 2.47** 54.90** 1.1632 52.96 6.48** 185.34** 3.97 38.75 Na+ mg/ g DM 0.26 - - - 35.5 - - - K+ mg/ g DM 60.90 - - - 43.6 - - - Na+/ K+ 0.001 - - - 0.03 - - -
  • 78. Table V-2: Spearman’s rank correlation of growth traits for B. oleracea Bo1TDH under control FW (g) DW (g) RWC SPAD Na+ mg/ g DM K+ mg/ g DM Dw (g) 0.85** RWC 0.33** -0.13 SPAD 0.12 0.20* -0.11 Na+ mg/ g DM -0.14 -0.30 0.17* -0.23** K+ mg/ g DM 0.20* 0.01 0.32** -0.27** 0.23** Na+ /K+ -0.21* -0.30** 0.02 -0.11 0.88** -0.20*
  • 79. Table V-2: Spearman’s rank correlation of growth traits for B. oleracea Bo1TDH under salt FW (g) DW (g) RWC SPAD Na+ mg/ g DM K+ mg/ g DM Dw (g) 0.83** RWC 0.226* * -0.21* SPAD 0.041 0.17* -0.12 Na+ mg/ g DM -0.161 -0.04** 0.20* -0.30** K+ mg/ g DM 0.332* * 0.20* 0.27** -0.08 -0.25** Na+ /K+ -0.053 -0.06 0.03 -0.20 0.87** -0.63**
  • 80. Table IV-4: QTL detected with under control treatment (C) for growth traits in B. oleracea mapping population Bo1TBDH. (QTL significant with P = 0.05 are marked red) Trait Name of QTL LG LOD Position (cM) Interval Flanking markers Additive Effect Phenotypic variation explained (%) FW FW-1C 1 3.9 64 60-70 pX101cX -pX122aH 0.24 12.5 FW FW-2C 3 2.8 31 28-39 fito262 -fito156c -0.27 9.0 FW FW-3C 3 6.0 57 51-63 pX111aD -fito394 -0.39 18.5 FW FW-4C 7 3.1 96 91-109 CHS28aX -fito098a -0.21 10.0 DW DW-1C 3 2.9 59 52-64 pX111aD -fit394 -0.03 9.3 RWC RWC-1C 3 2.5 39 32-48 fito262 -fito156c -0.44 8.1 SPAD SPAD-1C 2 2.4 67 64-80 fito081a -pW161aX -1.07 7.8 SPAD SPAD-2C 4 3.7 52 47-59 pW193bE -fito139b -1.67 13.4 SPAD SPAD-3C 4 2.5 108 101-116 BRMS034 - pW177bH -1.14 8.0 SPAD SPAD-4C 8 3.6 31 25-36 fito482 -pW231aX 1.41 11.4 Na mg/ g DM Na-1C 9 5.1 15 12-21 pW256bH -fito163 0.20 16.3 K mg/ g DM K-1C 1 2.2 40 37-47 pW249dE -fito094 1.33 7.4 K mg/ g DM K-2C 3 3.4 65 58-70 fito394 -fito476 -1.92 11.0 K mg/ g DM K-3C 8 2.3 69 60-77 pX130cD -fito373c 1.42 7.8
  • 81. Table IV-4: QTL detected with under salt treatment (C) for growth traits in B. oleracea mapping population Bo1TBDH. (QTL significant with P = 0.05 are marked red) Trait Name of QTL LG LOD Position (cM) Intervals Flanking Markers Effect Phenotypic variation explained (%) FW FW-1S 1 2.0 87 80-91 pW225a -pW239bX 0.13 6.6 FW FW-2S 3 5.3 52 43-55 pW125dE -pX111aD -0.25 16.4 DW Dw-1S 3 5.2 37 31-43 fito262 -fito156c -0.04 16.0 SPAD SPAD-1S 3 3.0 95 91-104 BRMS017 -FC -1.30 9.8 SPAD SPAD-2S 4 9.3 72 66-76 pX130aD -pW178bH -1.93 26.9 SPAD SPAD-3S 5 3.4 74 71-85 fito156a -pW164aE 1.16 10.7 SPAD SPAD-4S 6 4.0 11 4-20 isgpa -fito067 -1.21 12.6 SPAD SPAD-5S 8 6.6 51 48-56 fito204a -pX130cD 1.60 19.8 Na mg/ g DM Na-1S 1 3.5 32 25-36 fito355 -pX149fE -1.68 11.3 Na mg/ g DM Na-2S 5 2.9 84 79-90 pW164aE -pW198bH -1.62 9.4 Na mg/ g DM Na-3S 8 1.8 82 72-84 fito204e -fito486 -1.19 6.0 Na mg/ g DM Na-4S 9 3.7 15 14-18 pW256bH -fito163 1.71 11.9 K mg/ g DM K-1S 3 3.6 64 57-69 pX111aD -fito394 -2.10 11.6 K mg/ g DM K-2S 8 4.5 72 60-80 fito373c -fito204e 2.15 14.3 Na+/K+ Na/K-1S 1 2.3 31 25-36 fito355 -pX149fE -0.04 7.6 Na+/K+ Na/K-2S 8 2.7 78 70-84 fito373c -fito204e -0.04 8.8 Na+/K+ Na/K-3S 9 3.7 1 0-10 FLC1aH -fito204b 0.05 11.9
  • 82. Table V-10: QTL detected under control treatment (C) for glucosinolate content µMol/gDM in B. oleracea mapping population Bo1TBDH. (QTL significant with P = 0.05 are marked red). Trait Name of QTL LG Position (cM) LOD Interval Flanking markers Additive effect Phenotypic variation explained (%) IBE IBE-1C C1 80 3.7 77 - 84 fito131 - pW220aH -0.13 4.7 IBE IBE-2C C5 79 5.2 72 -85 fito156a -pW164aE -0.25 18.6 PRO PRO-1C C3 11 4.3 10 - 13 pW212bE -fito272 0.44 15.6 GNL GNL-1C C5 76 1.5 57 - 80 fito156a -pW164aE -0.12 5.6 GNA GNA-1C C 3 7 1.8 6 - 15 pX141bH -pW212bE -0.42 6.9 GNA GNA-2C C 7 67 3.8 56 - 72 pW108aH -fito088b -0.61 13.9 GNA GNA-3C C 9 68 10 58 - 78 fito016 -pW187bH -0.95 32.9 GBC GBC-1C C 2 76 3.0 66 - 85 pW161aX -pW176aH 0.52 11.2 GBC GBC-2C C 3 44 1.9 43 - 47 fito156c -pW125dE 0.48 7.4 GBC GBC-3C C 9 21 2.4 14 - 25 fito163 -pX146cH 0.43 8.9 NAS NAS-1C C 4 24 2.0 21 - 37 pW205aH -pX105cE -0.06 7.6 NEO NEO-1C C 3 96 4.0 91 - 101 BRMS017 -FC -0.55 14.9 NEO NEO-2C C 4 60 2.9 58 - 69 fito100c -pX130aD -0.35 10.9 Aliphatic Aliphatic1C C 7 56 4.9 50-65 BRMS042-pW108aH -0.90 17.8 Aliphatic Aliphatic2C C 9 70 9.9 58-80 fito016 -pW187bH -1.23 32.5 Indolic Indolic-1C C 2 77 2.6 65-85 pW161aX - pW176aH 0.52 9.4 Indolic Indolic-2C C 3 44 2.4 41 - 47 fito156c-pW125dE 0.59 8.8 Indolic Indolic-3C C 9 20 2.1 14-25 pW256bH-fito163 0.43 7.7 SUM SUM-1C C 7 66 1.95 53 - 72 pW108aH -fito088b -0.79 7.4 SUM SUM-2C C 8 51 2.3 45 - 55 fito204a -pX130cD 0.81 8.6 SUM SUM-3C C 9 66 3.69 54 - 79 pW108gH - fito016 -1.0 13.5
  • 83. Table V-10: QTL detected under salt treatment (C) for glucosinolate content µMol/gDM in B. oleracea mapping population Bo1TBDH. (QTL significant with P = 0.05 are marked red). Trait Name of QTL LG LOD Positio n (cM) Interva l Flanking markers Additive effect Phenotypic Variation explained (%) IBE IBE-1S C2 1.2 90 85 -97 fito019 -fito375 0.06 4.9 PRO PRO-1S C3 4.6 23 15 -31 fito272 -fito066 -0.26 15.8 PRO PRO-2S C8 2.5 9 0 -18 pX103cD - fit040d -0.17 9.8 RAA RAA-1S C9 1.7 67 53 -84 fito016 - pW187bH 0.01 6.8 GNA GNA-1S C7 4.0 72 65 -78 fito088b - pX110aE -0.52 15.3 GBC GBC-1S C9 4.6 21 15 -25 fito163 -pX146cH 0.31 17.4 NAS NAS-1S C4 1.5 68 63 -77 pX130aD - pW178bH 0.03 6.0 4ME 4ME-1S C5 1.3 0 0 -10 fito389 - pW125aE 0.01 5.2 Aliphati c Aliphatic- 1C C7 3.9 77 74-78 fito088b - pX110aE 0.60 14.5 Indolic Indolic-1S C9 4.6 20 15-25 pW256bH -fito163 0.32 16.8 SUM SUM-1S C7 2.7 58 51 -72 BRMS042 - pW108aH -0.61 10.4
  • 84. Periodic Table with Electronegativities 84
  • 85. 85Electrons distribution in the atoms in Sodium and Potassium Sodium Na+ Potassium K+
  • 87. 87 Species Stress Metabolic changes References Brassica rapa jasmonate (MeJA) elicitation glucose, sucrose and amino acids decreased (Liang et al., 2006a), or Brassica napus Drought Amino acids increased under until cell dehydration (Good and Zaplachinski , 1994). Brassica oleracea Salinity / drought sugar contents increased (Sasaki et al., 1998). Brassica Heavy metals Temporal increase of photosynthetic pigments, amino acids, sugars (Singh and Sinha, 2005) Arabidopsis Cadmium stress Toxic levels of ROS and severe chlorophyll loss (Zawoznik et al., 2007). Brassica pekinensis Cupper stress High levels of free amino acids (Xiong et al., 2006) Brassica Metal stress Increase of the low molecular weight organic acids (Seth et al., 2008)
  • 88. 88 Species Stress Metabolic changes References Brassica napus Stress Reduction of ß- carotene (Gebczynski and Lisiewska, 2006). Brassica oleracea (Broccoli) Boiling and cooking Considerable reduction of Ascorbic acid (Gebczynski and Lisiewska, 2006; Sikora et al., 2008), Brassica oleracea (Broccoli) UV 7–13 ◦C Increase of Ascorbic acid (Schonhof et al., 2007). Brassica oleracea (Broccoli) (6 h after) Harvest Reduction in protein, organic acids- after that increase in free amino acids (GLU- ASP) (King and Morris, 1994; Eason et al., 2007) Brassica oleracea (Broccoli) 7 d in high CO2 levels High levels of non- protein amino acids
  • 89. 89
  • 90. 90 Summary of the biosynthetic pathway and stress-induced metabolite production. (+) Increased (−) Decreased Menard et al . (1999). B. oleracea Downy mildew Bodnaryk 1994. B. napus/rapa/ Juncea 20-fold MeJA/JA Aksouh (2001) /B.n /40 C/15 d Shonhof (2007). B.o_ (RAA) 7-13 C ;7-13 mol. (Song and Thornalley 2007) 4- 8 C/7d (SIN,PRO,GNA- IBE, RAA,ALY). Martinez-Sanchez et al. (2006) Er.Sa. 4-33% loss open air 60%-100% low O2 and High CO2 ** Shonhof 2007 Aliphatic GSL increased storage/ 7_13 C Low N and High S Robbins et al. (2005) Selenium/ Sulforaphane
  • 91. 91 Salt-tolerant varieties Ren et al. 2005 Drought-tolerant varieties Araus et al. 2008 Ozone-tolerant varieties Frei et al. 2008 Heat-tolerant varieties Pinto et al. 2010
  • 94. 94 Compound % of total Oleic acid 61% Linoleic acid 21% Alpha-linolenic acid 11% _ 9% Saturated fatty acids 7% Palmitic acid 4% Stearic acid 2% Trans fat 0.4%
  • 96. 96 Shabala and Cuin (2007) Potassium transport and plant salt tolerance
  • 98. Aliphatic GSL biosynthesis in B. oleracea 98 Li and Quiros (2003)
  • 99. 99
  • 100. Zhixin Zhao et al. (2008) Isothiocyanate lead to the inhibition of inward K+ channels in the guard cells to avoid water loss by stomatal closure. 100
  • 102. Levy et al. 2005 102 (AOP2) ALKENYL HYDROXALKYL PRODUCING 2 ATR1 (ARABIDOPSIS CYTOCHROME REDUCTASE) (SLIM) ARABIDOPSIS THALIANA SULFUR LIMITATION 1_ hyperosmotic salinity response Indolic GSL Aliphatic GSL
  • 106. 106
  • 107. Side chain modification 107 Grubb and Abel (2006) Trend in plant science
  • 110. Traits variation under control and salt stress in B. napus Traits Control Salt FW(g) 4.6 2.7 DW(g) 0.6 0.4 RWC 87.2 84.6 SPAD1 38.1 42.3 SPAD2 38.9 44.9 Na+ mg/g DM 1.1 24.2 K+ mg/g DM 47.9 50.3 Na+/K+ 0.03 0.5 11
  • 111. 11 Traits variation under control and salt stress in B. oleracea Traits Control Salt FW(g) 4.1 2.8 DW(g) 0.4 0.3 RWC 89.7 87.2 SPAD 52.2 55.1 Na+ mg/g DM 2.7 28.2 K+ mg/g DM 67.9 44.6 Na+/K+ 0.04 0.6
  • 112. María del Carmen Martínez-Ballesta et al. (2013) 112
  • 113. Becker et al. 1999 113(After Thies 1994)
  • 114. Modified from Becker et al. 1999 114 Palmitic acid 16:0 Stearic acid 18:0 Linoleic acid 18:2 Gamma-linolenic acid 18:3 Oleic acid 18:1 Eicosenoic acid 20:1 Erucic acid 22:1