SlideShare a Scribd company logo
1 of 40
1
SOLO HERMELIN
EQUATIONS OF MOTION OF A
VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE
APPROACH
http://www.solohermelin.com
2
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
• Simplified Particle Approach (this Power Point Presentation)
The equations of motion can be developed using
At a given time t the system has
v (t) – system volume.
m (t) – system mass.
S (t) – system boundary surface.
• Reynolds’ Transport Theorem Approach (see Power Point Presentation)
• Lagrangian Approach (see Power Point Presentation)
3
SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
TABLE OF CONTENT
Sir Isaac Newton
1643-1727
• Assumptions
• Inertial Velocity and Acceleration
• Instantaneous Mass Center or Centroid C of the System
• Linear Momentum of the System
• Force Equation
• Moment Relative to a Reference Point O
• Absolute Angular Momentum Relative to a Reference Point O
• External Forces and Moments Applied on the System
• Summary of the Equations of Motion of a Variable Mass System
• References
4
SOLO
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
Assumptions
1. The system at time t contains
N particles.
2. The particle i, of mass dmi, is
located at a point (relative
to an inertial system – I ).
iR

3. We define a reference point O
by the vector (relative to I).OR

4. We obtain the equation of
motion for the continuous by
taking a very large number N
of particles. ∫⇒∑
∞→
=
NN
i 1
We have a system of particles enclosed at the time t by a surface S(t) that bounds
the volume v(t). There are no sources or sinks in the volume v(t). The change in the
mass of the system is due only to the flow through the surface openings Sopen i (i=1,2,
…). In addition the particles are free to move relative to each other.
OiOi
RRr

−=:,
The particle relative position to
O is given by:
5
SOLO
Assumptions (Continue - 1)
We have
5. The position of the opening ,relative to I, is given by .iopenR

iopenS
( ) ( )
( ) ( )ttRttR
tRtR
iflowiopen
iflowiopen
∆+≠∆+
=


&
The position of the mass particle flowing through the opening , relative to I,
is given by .
iopenS
iflowR

Therefore
( ) ( )
I
iflow
I
iopen
td
tRd
td
tRd

≠
and
( ) ( )
iopeniflow
I
iopen
I
iflow
Si VV
td
tRd
td
tRd
V



−=−=:,
is the velocity of flow relative to the opening iopenS
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
Table of Content
6
SOLO
The Inertial Velocity and Acceleration of the mass dmi are given by
I
i
i
td
Rd
V


=
I
i
I
i
i
td
Rd
td
Vd
a 2
2


==
Total Mass of the System
( )
( )
∫∫∑ ==→=
→
∞→
= tvm
dmdm
NN
i
i dvdmmmdtm
i
ρ
1
At a given time t
At the time t + Δ t the mass change is due to the flow through the openings ( ),2,1=iS iopen
( ) ∑∑ ∆+=∆+
= openings
iflow
N
i
i mmdttm
1
( ) ( ) ( ) ( )∑∑ =
∆
∆
=
∆
−∆+
=
→∆→∆
openings
iflow
openings
iflow
tt
tm
t
m
t
tmttm
tm 
00
limlim
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
Table of Content
The mass rate (flow) , entering / leaving the system, is given by
7
SOLO
Instantaneous Mass Center or Centroid (C) of the System
At the time t + Δ t
By subtracting those two equations, dividing by Δt, and taking the limit, we get
The mass center (Centroid) , of the system,
relative to I, at time t, is defined as
( )tRC

( ) ( )
( )
∫∫∑ ==→=
→
∞→
= tvm
C
dmmd
NN
i
iiC dvRdmRtRmmdRtRm
i
ρ

::
1
( ) ( )[ ] ( ) ( )∑∑ ∆+∆+∆+=∆+
= openings
iflowiflowiflow
N
i
iiiCC RRmmdRRtRmtRm

1
( ) ( )[ ] ( )
∑+∑=
∆
∑ ∆+∆+∑∆
=
∆
∆
=
=
=
→∆→∆ openings
iflowiflow
N
i
i
I
iopenings
iflowiflowiflow
N
i
ii
t
C
t
C Rmmd
td
Rd
t
RRmmdR
t
tRm
Rm
td
d 





1
1
00
limlim
Now let add the constraint that at time t the flow at the opening is such
that
iopenS
( ) ( )tRtR iflowiopen

=
to obtain
( ) ∑∑ −=
= openings
iopeniflow
I
C
N
i
i
I
i
RmRm
td
d
md
td
Rd 



1
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
Table of Content
8
SOLO
Instantaneous Mass Center or Centroid (C) of the System (continue - 1)
Let develop the right side of this equation
( ) ∑∑ −=
= openings
iopeniflow
I
C
N
i
i
I
i
RmRm
td
d
md
td
Rd 



1
( )
( )
∑
∑∑∑
∑∑
−=
−−=−+=
=−+=−
openings
Ciopeniflow
I
C
openings
Ciopenflowi
I
C
openings
iopeniflow
I
C
openings
Ciflow
openings
iopeniflow
I
C
C
openings
iopeniflow
I
C
rm
td
Rd
m
RRm
td
Rd
mRm
td
Rd
mRm
Rm
td
Rd
mRmRmRm
td
d
,



















Therefore
( ) ∑∑∑ −=−−=
= openings
Ciopeniflow
I
C
openings
Ciopeniflow
I
C
N
i
i
I
i
rm
td
Rd
mRRm
td
Rd
mmd
td
Rd
,
1






The First Moment of Inertia of the System, relative to the point O, is defined as:Oc,

( ) ( ) OCOC
N
i
iO
N
i
ii
N
i
iOi
N
i
iOiO rmRRmmdRmdRmdRRmdrc ,
1111
,, :

=−=∑−∑=∑ −=∑=
====
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
Table of Content
9
SOLO
( ) ∑∑∑ −=−−=
= openings
Ciopeniflow
I
C
openings
Ciopeniflow
I
C
N
i
i
I
i
rm
td
Rd
mRRm
td
Rd
mmd
td
Rd
,
1






Linear Momentum of the System
Substitute
At a given time t the Linear Momentum of the
system is defined as
( ) ( )
( ) ( )
∫∫∑∑ ==→==
∞→
→
== tmtm I
N
mdmd
N
i
ii
N
i
i
I
i
mdVdm
td
Rd
tPmdVmd
td
Rd
tP
i





::
11
( ) ( )
( ) ( ) ∑∑
∑∑∑
−=−−=
→−=−−==
∞→
→
=
openings
CiopeniflowC
openings
CiopeniflowC
N
mdmd
openings
Ciopeniflow
I
C
openings
Ciopeniflow
I
C
N
i
i
I
i
rmVmRRmVmtP
rm
td
Rd
mRRm
td
Rd
mmd
td
Rd
tP
i
,
,
1












Differentiate ( )
( ) OCOC
N
i
iO
N
i
ii
N
i
iOi
N
i
iOiO
rmRRm
mdRmdRmdRRmdrc
,
1111
,, :


=−=
−=−== ∑∑∑∑ ====
to obtain
( )
( ) ( )








+−







+=
−+








−=−+








−=
∑∑
∑
openings
OiflowO
openings
CiflowC
OC
openings
iflow
I
O
I
C
OC
I
O
I
C
I
O
RmVmRmVm
RRm
td
Rd
td
Rd
mRRm
td
Rd
td
Rd
m
td
tcd











,
to obtain
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
10
SOLO
Linear Momentum of the System (continue-1)
Substitute
( ) ( ) ∑−=∑ −−=
openings
CiopeniflowC
openings
CiopeniflowC rmVmRRmVmtP ,





to obtain
( )






∑+−





∑+=
openings
OiflowO
openings
CiflowC
I
O
RmVmRmVm
td
tcd 





,
into
( ) ( ) ∑∑ −+=−−+=
openings
OiopeniflowO
I
O
openings
OiopeniflowO
I
O
rmVm
td
cd
RRmVm
td
cd
tP ,
,, 








At the time t + Δ t the Linear Momentum of the System (including the mass
entering/leaving through S) is:
( ) ( ) ( ) ( )∑∑ ∆+∆+∆+=∆+
= openings
iflowiflowiflow
N
i
i RRmmRRtPtP

1
:
By subtracting those two equations, dividing by Δt, and taking the limit, we get
( )
∑ ∑∑∑
∑∑∑
−−+=+=
∆
−








∆+∆+








∆+
=
∆
∆
=
=
==
→∆→∆
openings
I
openings
I
Ciopen
iflow
openings
Ciopeniflow
I
C
I
Ciflow
iflow
N
i
i
I
i
N
i
i
I
i
openings
I
iflow
I
iflow
iflow
N
i
i
I
i
I
i
tt
td
rd
mrm
td
Rd
m
td
Rd
m
td
Rd
mdm
td
Rd
t
md
td
Rd
td
Rd
td
Rd
mmd
td
Rd
td
Rd
t
tP
td
Pd
,
,2
2
1
2
2
11
00
limlim











EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
11
SOLO
Linear Momentum of the System (continue-2)
We obtain
( )
∑∑ −−+=
i I
Ciflow
iflow
openings
Ciopeniflow
I
C
I
C
I
td
rd
mrm
td
Rd
m
td
Rd
m
td
tPd ,
,2
2







( )
( ) ( ) ( )∑∑
∑∑
∑∑
−−−−+=
→−−+=
++=
→∞
→
=
openings
Ciopeniflow
openings
CiopeniflowC
I
C
I
N
mdmdopenings
I
Ciopen
iflow
openings
Ciopeniflow
I
C
I
C
openings
I
Ciflow
iflow
I
C
N
i
i
I
i
I
VVmRRmVm
td
Vd
m
td
tPd
td
rd
mrm
td
Rd
m
td
Rd
m
td
rd
m
td
Rd
mmd
td
Rd
td
tPd
i



















,
,2
2
,
1
2
2
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
An equivalent result could be obtained by differentiating
( ) ∑−=
openings
Ciopeniflow
I
C
rm
td
Rd
mtP ,




We obtained
Table of Content
12
SOLO
Force Equation
Applying the 2nd
Newton’s Law to the particle of mass
mi, we obtain:
∑=
+==
N
j
ijiexti
I
i
i
I
i
fdfdmd
td
Rd
md
td
Vd
1
int2
2 

where
iextfd

- External forces acting on the mass mi
ij
fd int

- Internal forces that particle j exercise on the mass mi
From the 3rd
Newton’s Law the internal force that particle j applies on particle i is of
equal magnitude but of opposite direction to the force that particle i applies on
particle j :
jiij
fdfd intint

−=
Therefore
0
1 1
int

=∑∑=
≠
=
N
i
N
ij
j
ij
fd
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
13
SOLO
( ) ∞→
→
→∑−∑−+=
N
mdmdopenings
I
Ciopen
iflow
openings
Ciopeniflow
I
C
I
C
I
itd
rd
mrm
td
Rd
m
td
Rd
m
td
tPd ,
,2
2







Force Equation (continue – 1)
We have ∑∑∑∑∑ =+=
=
≠
===
ext
N
i
N
ij
j
ij
N
i
iext
N
i
i
I
i
Ffdfdmd
td
Vd 




0
1 1
int
11
∑∑ =
=
N
i
i
I
i
ext md
td
Rd
F
1
2
2

Substitute this equation into
to obtain
∑∑∑∑ −−+=++=
openings I
Ciopen
iflow
openings
Ciopeniflow
I
C
I
C
openings I
Ciflow
iflow
I
C
ext
I
td
rd
mrm
td
Rd
m
td
Rd
m
td
rd
m
td
Rd
mF
td
Pd ,
,2
2
,












Rearranging we obtain
∑∑∑∑ ++








−+=
openings I
Ciopen
iflow
openings
Ciopeniflow
openings I
Ciopen
I
Ciflow
iflowext
I
C
td
rd
mrm
td
rd
td
rd
mF
td
Rd
m
,
,
,,
2
2
2








( ) ∑∑∑∑ 







−+−+








−+=
openings I
C
I
iopen
iflow
openings
Ciopeniflow
openings
I
iopen
I
iflow
iflowext
td
Rd
td
Rd
mRRm
td
Rd
td
Rd
mF







2
or
( ) ( ) ( )∑∑∑∑ −+−+−+=
openings
Ciopeniflow
openings
Ciopeniflow
openings
iopeniflowiflowext
I
C
RRmVVmVVmF
td
Vd
m








2
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
Table of Content
14
SOLO
Absolute Angular Momentum Relative to a
Reference Point O
The Absolute Momentum Relative to a Reference
Point O, of the particle of mass dmi at time t is
defined as:
( ) ( ) iiOiiiOiiOiO dmVrdmVRRPdRRHd

×=×−=×−= ,, :
The Absolute Momentum Relative to a Reference Point O, of the mass m (t) is defined
as:
( ) ( ) ∑∑∑ ===
×=×−=×−=
N
i
i
I
i
Oi
N
i
iiOi
N
i
iOiO dm
td
Rd
rdmVRRPdRRH
1
,
11
, :


By taking a very large number N of particles, we go from discrete to continuous ∫⇒∑
∞→
=
NN
i 1
( )( )
( )( ) ( )
∫ ×=∫ ×−=∫ ×−=
tm
O
tm
O
tv
OO dmVrdmVRRdvVRRH

,, ρ
The Absolute Momentum Relative to a Reference Point O, of the system (including the
mass entering (+)/leaving (-) through surface S), at time t + Δt is given by:
( ) ( )∑∑ ∆








∆+×∆++








∆+×∆+=∆+
= openings
iflow
I
iflow
I
iflow
OiflowOiflow
N
i
i
I
i
I
i
OiOiOO m
td
Rd
td
Rd
rrdm
td
Rd
td
Rd
rrHH




,,
1
,,,,
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
15
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 1)
By subtracting
I
O
t
I
O
t
H
td
Hd
∆
∆
=
→∆
,
0
,
lim

( ) ( )
t
dm
td
Rd
rm
td
Rd
td
Rd
rrdm
td
Rd
td
Rd
rr
openings
N
i
i
I
i
iOiflow
I
iflow
I
iflow
OiflowOiflow
N
i
i
I
i
I
i
OiOi
t ∆
×−∆










∆+×∆++








∆+×∆+
=
∑ ∑∑ ==
→∆
1
,,
1
,,
0
lim






∑∑∑ ×+×+×=
== openings
iflow
I
iflow
Oiflow
N
i
i
I
iOi
N
i
i
I
i
Oi m
td
Rd
rdm
td
Rd
td
rd
dm
td
Rd
r 




,
1
,
1
2
2
,
Now let add the constraint that at time t the flow at the opening is such
that
iopenS
( ) ( ) ( ) ( )trtrtRtR OiflowOiopeniflowiopen ,,

=→=
to obtain (next page)
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
( )( )
( )( ) ( )
∫ ×=∫ ×−=∫ ×−=
tm
O
tm
O
tv
OO dmVrdmVRRdvVRRH

,, ρ
dividing by Δt, and taking the limit, we get
from ( ) ( )∑∑ ∆








∆+×∆++








∆+×∆+=∆+
= openings
iflow
I
iflow
I
iflow
OiflowOiflow
N
i
i
I
i
I
i
OiOiOO m
td
Rd
td
Rd
rrdm
td
Rd
td
Rd
rrHH




,,
1
,,,,
16
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 2)
∑∑∑ ×+×+×=
== openings
iflow
I
iflow
Oiopen
N
i
i
I
i
I
Oi
N
i
i
I
i
Oi
I
O
m
td
Rd
rdm
td
Rd
td
rd
dm
td
Rd
r
td
Hd






,
1
,
1
2
2
,
,
( )∑ ×−+∑ ×








−+∑ ×=
== openings
iflow
I
iflow
Oiopen
N
i
i
I
i
I
O
I
i
N
i
i
I
i
Oi m
td
Rd
RRdm
td
Rd
td
Rd
td
Rd
dm
td
Rd
r 




11
2
2
,
( )∑ ×−+∑×−∑ ×=
== openings
iflow
I
iflow
Oiopen
N
i
i
I
i
I
O
N
i
i
I
i
Oi m
td
Rd
RRdm
td
Rd
td
Rd
dm
td
Rd
r 




11
2
2
,
By taking a very large number N of particles, we go from discrete to continuous ∫⇒∑
∞→
=
NN
i 1
( )
( )∑ ×−+×−∫ ×=
openings
iflowiflowOiopenO
tm
I
O
I
O
mVRRPVdm
td
Rd
r
td
Hd





2
2
,
,
( ) ( ) ∑∑ −+=−−+=
openings
OiopeniflowO
I
O
openings
OiopeniflowO
I
O
rmVm
td
cd
RRmVm
td
cd
tP ,
,, 








Substitute to obtain
( )
( ) ( )∑ ×−+×








∑ −−++∫ ×=
openings
iflowiflowOiopenO
openings
iflowOiopenO
I
O
tm
I
O
I
O
mVRRVmRRVm
td
cd
dm
td
Rd
r
td
Hd





 ,
2
2
,
,
or
( )
( )∑ −×+×+∫ ×=
openings
iflowOiflowOiopenO
I
O
tm
I
O
I
O
mVVrV
td
cd
dm
td
Rd
r
td
Hd





,
,
2
2
,
,
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
17
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 3)
We obtained
( )( )
( )( ) ( )
∫ ×=∫ ×−=∫ ×−=
tm
O
tm
O
tv
OO dmVrdmVRRdvVRRH

,, ρ
Substitute in the previous equation
OIO
O
O
O
I
O
I
O
I
OO r
td
rd
V
td
rd
td
Rd
td
Rd
VrRR ,
,,
, :&





×++=+==+= ←ω
( )( ) ( )
∫ 







×++×=∫ ×−= ←
tm
OIO
O
O
OO
tm
OO dmr
td
rd
VrdmVRRH ,
,
,,



ω
( )
( )
( ) ( )
∫ 







×+∫ ××+×





∫= ←
tm
O
O
O
tm
OIOOO
tm
O dm
td
rd
rdmrrVdmr ,
,,,,


ω
We obtain
(a) (b) (c)
Let develop those three expressions (a), (b) and (c).
where is the angular velocity vector from I to O.IO←ω

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
18
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 4)
(a)
( ) ( ) ( ) ( ) ( )
( ) OOC
tm
OC
tm
OC
tm
OC
tm
C
tm
O cmRRdmrdmrdmrdmrdmr ,,,,,,

=−===+= ∫∫∫∫∫
Where we used because C is the Center of Mass (Centroid) of the system.
( )
0, =∫tm
C dmr

( )
OOOOCO
tm
O VcVrmVdmr

×=×=×








∫ ,,,
( )
( )
( )[ ]( )
IOOIO
tm
OOOO
tm
OIBO Idmrrrrdmrr ←←← ⋅=⋅∫ −⋅=∫ ×× ωωω

,,,,,,, 1(b)
where
( )[ ]
( )
∫ −⋅=
tm
OOOOO dmrrrrI ,,,,, 1:

2nd
Moment of Inertia Dyadic of all the
mass m(t) relative to O
We obtain (a) + (b) + (c)
( )( ) ( )
( )
( ) ( )
∫ 







×+∫ ××+×





∫=∫ ×−= ←
tm
O
O
O
tm
OIOOO
tm
O
tv
OO dm
td
rd
rdmrrVdmrvdVRRH ,
,,,,, :


ωρ
( )
∫ 







×+⋅+×= ←
tm
O
O
OIOOOO dm
td
rd
rIVc ,
,,,


ω
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
19
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 5)
(c)
( )
( ) ( )
( )
=∫ 






 +
×+=∫ 







×
tm
O
OCC
OCC
tm
O
O
O dm
td
rrd
rrdm
td
rd
r ,,
,,
,
,




( ) ( ) ( ) O
OC
tm
C
tm
O
C
C
tm
O
C
OC
O
OC
OC
td
rd
dmrdm
td
rd
rdm
td
rd
rm
td
rd
r ,
0
,
,
,
,
,
,
,









×





∫+∫ 







×+∫ 







×+×=
(c1) (c2) (c3)
m
td
rd
r
O
OC
OC
,
,


×(c1) - Change in the relative position of C (varies with time) and O.
(c2)
( )
∑×−=∫ 







×
openings
iflowCiopenOC
tm
O
C
OC mrrdm
td
rd
r 



,,
,
,
(c3)
( )
∫ 







×
tm
O
C
C dm
td
rd
r ,
,


- Change due to Elasticity, Sloshing, Moving Parts
(Rotors, Pistons,..)
If we choose O=C the first two terms (c1), (c2) will be zero, and the third (c3) describes
the non-rigidity of the system.
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
20
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 6)
(c3)
( ) ( )
∑+∫








×=∫ 







× ←
j
OjrotorCjrotor
tm
FrozenRotors
O
C
C
tm
O
C
C Rj
Idm
td
rd
rdm
td
rd
r ω





,
,
,
,
,
where
Consider a system with a number of rigid rotors
I
R

CR

C
( )tS
OR

OOCr

Bxˆ
Bzˆ
shaftr

rotorr

Byˆ
Ixˆ
Iyˆ
Izˆ
Cshaftr

Crotorr

OyˆOxˆ
Ozˆ
System with Rotors
RjCjrotorI ,

Ojrotor ←ω

- Second Moment of Inertia Dyadic of the Rotor j, relative to it’s Centroid
- Angular Velocity Vector of the Rotor j, relative to O
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
21
SOLO
Absolute Angular Momentum Relative to a
Reference Point O (continue – 7)
We obtained
Let differentiate this equation, relative to the inertial system
I
R

CR

C
( )tS
OR

OOCr

Bxˆ
Bzˆ
shaftr

rotorr

Byˆ
Ixˆ
Iyˆ
Izˆ
Cshaftr

Crotorr

OyˆOxˆ
Ozˆ
∫








×+∑ ⋅+⋅+×= ←←
m
FrozemRotor
O
O
O
j
ORjCjrotorIOOOOO md
td
rd
rIIVcH Rj
,
,,,,


ωω
OIO
O
O
I
O
H
td
Hd
td
Hd
,
,,


×+= ←ω
( )
O
m
FrozemRotor
O
O
O
j
ORjCjrotor
j
ORjCjrotorIOOIOO
I
OO
md
td
rd
r
td
d
IIIIVc
td
d
RjRj








∫








×+
∑ ⋅+∑ ⋅+⋅+⋅+×= ←←←←
,
,
0
,,,,,







ωωωω








∫








××+



∑ ⋅×+⋅×+ ←←←←←
m
FrozemRotor
O
O
OIO
j
ORjCjrotorIOIOOIO md
td
rd
rII Rj
,
,,,


ωωωωω
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
Table of Content
22
SOLO
Moment Relative to a Reference Point O
Multiplying (vector product) the 2nd
Newton’s Law on
the particle of mass dmi, by we obtain:OiOi RRr

−=:,
( ) ( ) i
I
i
Oi
N
j
ijiextOi dm
td
Vd
RRfdfdRR


×−=





∑+×−
=1
int
from which
( ) ( ) ( )∑ ×−=∑ ∑ ×−+∑ ×−
==
≠
==
N
i
i
I
i
Oi
N
i
N
ij
j
ijtOi
N
i
iextOi dm
td
Vd
RRfdRRfdRR
11 1
int
1


We define the moment of external forces, relative to O, on the system, as:
( )∑∑ =
×−=
N
i
iextOiOext fdRRM
1
,
:

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
23
SOLO
Moment Relative to a Reference Point O
(continue – 1)
Since for any particles i and j the internal forces are of
equal magnitude but of opposite directions
we have
jiij
fdfd intint

−=
( ) ( )
( ) ( )
( ) collinearfandrfdrfdRR
fdRRfdRR
fdRRfdRR
jitijjitijjitij
jitOjjitOi
jitOjijtOi
intintint
intint
intint
0



←=×=×−=
=×−+×−−=
=×−+×−
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
We assumed that the equal but opposite forces between i and j act along the line joining
them; i.e.
Note
collineararefandr jitij int

This is not always true (see H. Goldstein “Classical Mechanics”, 2nd
Edition, pg.8,
R. Aris “Vectors, Tensors and the Basic Equations of Fluid Mechanics”, pp.102-104,
Michalas & Michalas “Radiation Hydrodynamics”, pg.72,
Jaunzemis “Continuous Mechanics” Sec. 11, pg.223)
End Note
24
SOLO
( )( )
( ) ( )∑ −×−+×+∫ ×−=
openings
iflowOiflowOiopenO
I
O
tm
I
O
I
O
mVVRRV
td
cd
dm
td
Rd
RR
td
Hd





,
2
2
Moment Relative to a Reference Point O
(continue – 2)
We have:
( ) ( )∑ ×−=∑ ×−=∑
==
N
i
i
I
i
Oi
N
i
i
I
i
OiOext dm
td
Rd
RRdm
td
Vd
RRM
1
2
2
1
,




∞→↓ N
( )( )
( )( )
∫ ×−=∫ ×−=∑
tv
I
O
tm
I
OOext dv
td
Vd
RRdm
td
Vd
RRM ρ




,
to obtain
( ) ( )∑ −×−+×+∑=
openings
iflowOiflowOiopenO
I
O
Oext
I
O
mVVRRV
td
cd
M
td
Hd



,
,
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
Substitute the previous equation with in
II
td
Rd
td
Vd
2
2

=
25
SOLO
( ) ( ) ∑∑ −+=−−+=
openings
OiopeniflowO
I
O
openings
OiopeniflowO
I
O
rmVm
td
cd
RRmVm
td
cd
tP ,
,, 








Moment Relative to a Reference Point O
(continue – 3)
Let substitute in this equation the following
to obtain
( ) ( )∑ −×−+×+∑=
openings
iflowOiflowOiopenO
I
O
Oext
I
O
mVVRRV
td
cd
M
td
Hd



,
,
( ) ( ) O
I
O
openings
iflowOiflowOiopenOext
I
O V
td
cd
mVVRRMH
td
d 



×+∑ −×−+∑= ,
,,
( ) ( ) ( ) O
openings
iflowOiopenO
openings
iflowOiflowOiopenOext VmRRmVPmVVRRM





×





∑ −+−+∑ −×−+∑= ,
( )∑ ×−+∑ ×+=
openings
iflowiflowOiopenOOext mVRRVPM 

,
or
∑ ×+∑ ×+=
openings
iflowiflowOiopenOOext
I
O mVrVPMH
td
d


,,,
( )OCOCO RRmrmc

−== ,,
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
Table of Content
26
SOLO
External Forces and Moments Applied on the System
We have a system of particles enclosed at the time t by a surface S(t) that bounds
the volume v(t). There are no sources or sinks in the volume v(t). The change in the
mass of the system is due only to the flow through the surface openings Sopen i (i=1,2,
…). The surface S(t) can be divided in:
• Sw(t) the impermeable wall through which the flow can not escape .( )0,

=sV
• Sopen i(t) the openings (i=1,2,…) through which the flow enters or exits .( )0>m ( )0<m
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
27
SOLO
External Forces and Moments on the System (continue -1 )
The external forces acting on the system are:
v(t)
I
ds
R

CR

dm
C
( )tS
2openS
1openS
g

σ

n

1
t

1
OR

O
Or,

OCr ,

jR

jF

kM

• Gravitation acceleration (E center of Earth).E
E
R
R
M
Gg

3
=
• Force per unit surface applied by the surroundings on the surface of the system.( )2
/mNσ

( )dstfnpsdTsdnsd

111 +−==⋅=⋅ σσ
where:
( ) ndsnnsdsd

111 =⋅= - vector of surface differential
( )2
/mNp - pressure on (normal to) the surface .
( ) ( )
∑∫∫∑∑∑ +⋅+=→=
j
j
tStv
ext
i
iextext FsddvgFfdF

σρ
( )
( )( )
( )( )
( ) ∑+∑ ×−+∫ ⋅×−+∫ ×−=∑→
∑ ×−=∑
k
k
j
jOj
tS
O
tv
OOext
i
iextOiOext
MFRRsdRRdvgRRM
fdRRM


σρ,
,
The moment of the external forces, relative to a point O, is:
f - friction force per (parallel to) unit surface .( )2
/ mN
• Discrete force exerting by the surrounding on the point , and discrete moments .∑j
jF

jR

∑
k
kM

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
28
SOLO
( ) ( ) ( )∑∑∑∑ −+−+−+=
openings
Ciopeniflow
openings
Ciopeniflow
openings
iopeniflowiflowext
I
C
RRmVVmVVmF
td
Vd
m








2
External Forces Equations (continue -2)
( ) ( ) ( )
( )
( )
∑∫∫∑∫∫∑ ++−+=+⋅+=
j
j
tStvj
j
tStv
ext FdstfnpdvgFsddvgF

11ρσρ
( ) ( ) ( )
0111
0
=⋅∇== ∫∫∫ ∞∞∞
tv
Gauss
tStS
dvnpdsnpdsnp 

Since the pressure far away from the body is constant∞p
Let add this equation to the previous one
( ) ( )
( ) ( )[ ]
( )
∑∫∑∫∫∑ ++−+=+⋅+= ∞
j
j
tSj
j
tStv
ext FdstfnpptmgFsddvgF

11σρ
( ) ( )[ ] ( )[ ] ∑∫∫ ∑ ∫∫ ++−++−+= ∞∞
j
j
S openings S
Fdstfnppdstfnpptmg
W iopen

1111
Finally since on Sopen i (t) the openings (i=1,2,…) the friction force f = 0
( ) ( )[ ] ( ) ∑∫∫ ∑ ∫∫∑ +−++−+= ∞∞
j
j
S openings S
ext FdsnppdstfnpptmgF
W iopen

111
Substitute this equation in
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
29
SOLO
External Forces Equations (continue – 3)
or
( ) ( )[ ] ( ) ( )
( ) ( )∑ −+∑ −+
∑+∑ 





∫∫ −+−+∫∫ +−+= ∞∞
openings
iflowCiopen
openings
iflowCiopen
j
j
openings S
iflowopeniflow
SI
C
mRRmVV
FdsnppmVVdstfnpptmgmV
dt
d
iopenW







2
111 1
( ) ( ) ( )∑∑∑∑∑ −+−++++=
openings
iflowCiopen
openings
iflowCiopen
j
j
i
TiA
I
C mRRmVVFFFtmgmV
dt
d




2
where
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
v(t)
I
ds
R

CR

dm
C
( )tS
2openS
1openS
g

σ

n

1
t

1
OR

O
Or,

OCr ,

jR

jF

kM

( ) ( )∫∫ −+−= ∞
iopenS
iflowiopeniflowTi dsnppmVVF



1:
Thrust Forces
( )[ ]∫∫∑ +−= ∞
WS
A dstfnppF

11: Aerodynamic Forces
30
SOLO
External Forces Equations (continue – 4)
Let substitute
( ) ( ) ( )∑ −+∑ −+∑+∑+∑+=
openings
iflowCiopen
openings
iflowCiopen
j
j
i
TiA
I
C mRRmVVFFFtmgmV
dt
d




2
in
CIO
O
C
I
C
V
td
Vd
td
Vd
a



×+== ←ω
to obtain
RIGID-BODY TERMSmV
td
Vd
CIO
O
C








×+ ←


ω
∑−∑ 







×+− ←
openings
iflowCiopen
openings
iflowCiopenIO
O
Ciopen
mrmr
td
rd





,,
,
2 ω FLUID-FLOW TERMS
AERODYNAMIC &
PROPULSIVE∑+∑=
i
TiA FF

v(t)
I
ds
R

CR

dm
C
( )tS
2openS
1openS
g

σ

n

1
t

1
OR

O
Or,

OCr ,

jR

jF

kM

∑++
j
jFmg

GRAVITATIONAL &
DISCRETE TERMS
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
31
SOLO
External Moments Equations (continue – 5)
The moments of the external forces relative to the point O are
given by
( )( )
( )( )
( ) ∑+∑ ×−+∫ ⋅×−+∫ ×−=∑
k
k
j
jOj
tS
OS
tv
OOext MFRRsdRRdvgRRM

σρ ~
,
( )( )
( ) ( )
( )
( ) ∑+∑ ×−+∫ +−×−+×





∫ −=
k
k
j
jOj
tS
OS
tv
O MFRRdstfnpRRgdvRR

11ρ
Let add to this equation the following
( )
( )
( )
( ) 01
0
5
=−×∇=×− ∫∫∫∫ ∞∞
V
OS
GGauss
tS
OS dvRRpdsnpRR
  

to obtain
( )( )
( ) ( )[ ]
( )
( ) ∑+∑ ×−+∫ +−×−+×





∫ −=∑ ∞
k
k
j
jOj
tS
OS
tv
OOext MFRRdstfnppRRgdvRRM

11,
ρ
( ) ( ) ( )[ ] ( ) ( ) 
( ) ∑+∑ ×−+
∫∫ ∑ ∫∫








+−×−++−×−+×−= ∞∞
k
k
j
jOj
S openings S
Son
OOOC
MFRR
dstfnppRRdstfnppRRgmRR
W iopen
W


1111
0
v(t)
I
ds
R

CR

dm
C
( )tS
2openS
1openS
g

σ

n

1
t

1
OR

O
Or,

OCr ,

jR

jF

kM

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
32
SOLO
( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ∑+∑ ×−+
∫∫ ∑ ∫∫ −×−++−×−+×−=∑ ∞∞
k
k
j
jOj
S openings S
OOOCOext
MFRR
dsnppRRdstfnppRRgmRRM
W iopen


111,
( ) ( )∑ −×−+×+∑=
openings
iflowOiflowOiopenO
I
O
Oext
I
O
mVVRRV
td
cd
M
td
Hd



,
,
External Moments Equations (continue -6)
Using
together with
we obtain
( ) ( ) ( ) ∑+∑ ×−+∑ −×−+
×+∑+∑+×=
k
k
j
jCj
openings
iflowOiopenOiopen
O
I
O
openings
OTiOAO
I
O
MFRRmVVRR
V
td
cd
MMgc
td
Hd







,
,,,
,
( ) ( ) ( ) ( )∑ −×−+∑ −×−+
×+∑=
openings
iflowOiopenOiopen
openings
iflowiopeniflowOiopen
O
I
O
Oext
mVVRRmVVRR
V
td
cd
M





,
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
33
SOLO
External Moments Equations (continue -7)
where
( ) ( )[ ]∫∫∑ +−×−= ∞
WS
OOAero dstfnppRRM

11:, Aerodynamic Moments
( ) ( ) ( ) ( )∫∫ −×−+−×−= ∞
iopenS
OiflowiopeniflowOiopenOTi dsnppRRmVVRRM



1:, Thrust Moments on the
opening i
discrete forces exerting by the surrounding at point∑
j
jF

∑
k
kM

jR

discrete moments exerting by the surrounding on the system
v(t)
I
ds
R

CR

dm
C
( )tS
2openS
1openS
g

σ

n

1
t

1
OR

O
Or,

OCr ,

jR

jF

kM

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
34
SOLO
( ) ( )
I
tm
O
O
O
I
j
ORjCjrotor
I
IO
OIO
I
O
I
O
OO
I
O
I
O
dm
td
rd
r
td
d
I
td
d
td
d
I
td
Id
td
Vd
cV
td
cd
td
Hd
Rj
∫ 







×+∑+⋅+⋅+×+×= ←
←
←
,
,,,
,
,
,,





ω
ω
ω
External Moments Equations (continue -8)
Using
together with
we obtain
( )
( )∑+∫








×+⋅×+⋅+⋅ ←←←←
←
j
I
ORjCjrotor
I
tm
FrozenRotors
O
O
OIOOIOIO
O
O
O
IO
O Rj
I
td
d
dm
td
rd
r
td
d
I
td
Id
td
d
I ωωωω
ω 



,
,
,,
,
,
( )
( ) ( ) ( ) ∑+∑ ×−+∑ −×−+
×+∑+∑+×−=
k
k
j
jCj
openings
iflowOiopenOiopen
O
I
O
openings
OTiOAOC
I
O
MFRRmVVRR
V
td
cd
MMgmRR
td
Hd





,,
,
( ) ( ) ( ) ∑+∑ ×−+∑ −×−+
∑+∑+








−×=
k
k
j
jCj
openings
iflowOiopenOiopen
openings
OTiOA
I
O
O
MFRRmVVRR
MM
td
Vd
gc






,,,
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
Table of Content
35
SOLO
SUMMARY OF THE EQUATIONS OF MOTION OF
A VARIABLE MASS SYSTEM
FIRST MOMENT OF INERTIA
SECOND MOMENT OF INERTIA DYADIC
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
( )[ ]
( )
∫ −⋅=
tm
OOOOO dmrrrrI ,,,,, 1:

2nd
Moment of Inertia Dyadic of all the
mass m(t) relative to O
The First Moment of Inertia of the System, relative to the point O, is defined as:Oc,

( )
( ) ( )
( ) OCOC
tm
O
tm
OO rmRRmmdrmdRRc ,,, :

=−==−= ∫∫
36
SOLO
( )
( )
∑∑ ∫∫∫ 





===
openings iopenopenings S
i
tm
td
md
mdmd
td
d
tm
iopen

MASS EQUATION
FORCE EQUATION
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
RIGID-BODY TERMSmV
td
Vd
CIO
O
C








×+ ←


ω
∑−∑ 







×+− ←
openings
i
iflowiopen
openings
i
iflowiopenIO
B
iopen
mrmr
td
rd





ˆˆ
ˆ
2 ω
FLUID-FLOW TERMS
GRAVITATIONAL,
AERODYNAMIC,
PROPULSIVE &
∑+∑+=
i
TiA FFmg

∑+
j
jF

DISCRETE TERMS
SUMMARY OF THE EQUATIONS OF MOTION OF
A VARIABLE MASS SYSTEM (CONTINUE – 1)
37
SOLO
SUMMARY OF THE EQUATIONS OF MOTION OF
A VARIABLE MASS SYSTEM (CONTINUE – 1)
MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O
RIGID-BODY TERMSIOOIOOIOIOO III ←←←← ⋅+⋅×+⋅ ωωωω

,,,




∑ ⋅×+∑ ⋅+ ←←←
j
OjrotorCrotorjIO
j
OjrotorCrotorj RjRj
II ωωω

,, ROTORS TERMS
( )
( ) 







∫








××+








∫








×+
←
tm
FrozenRotor
O
O
OIO
O
tm
FrozenRotor
O
O
O
dm
td
rd
r
dm
td
rd
r
td
d
,
,
,
,




ω
BODY FLUIDS,
MOVING PARTS,
ELASTICITY,…
TERMS
FLUID CROSSING
OPENINGS TERMS
∑ 







×+×− ←
openings
iflowOiopenIO
O
Oiopen
Oiopen mr
td
rd
r 



,
,
, ω
AERODYNAMIC &
PROPULSIVE
∑+∑=
i
OTiOA MM ,,

EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
( ) ∑+∑ ×−+
k
k
j
jOj MFRR
 DISCRETE FORCES
& MOMENTS TERMS








−×+
I
O
O
td
Vd
gc


, NON-CENTROIDAL
MOMENTS TERMS
38
SOLO
SUMMARY OF THE EQUATIONS OF MOTION OF
A VARIABLE MASS SYSTEM (CONTINUE – 2)
( )[ ]∫∫∑ +−= ∞
WS
A dstfnppF

11: AERODYNAMIC FORCES
( ) ( )∫∫ −+−= ∞
iopenS
iflowiopeniflowTi dsnppmVVF



1: THRUST FORCES
( ) ( )[ ]∫∫ +−×−=∑ ∞
WS
OOA dstfnppRRM

11:,
AERODYNAMIC MOMENTS
RELATIVE TO O
( ) ( ) ( ) ( )[ ]∫∫ −×−+−×−= ∞
iopenS
OiflowiopeniflowOiopenOTi dsnppRRmVVRRM



1:,
THRUST MOMENTS
RELATIVE TO O
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
Table of Content
39
SOLO
References
1. Meriam, J.L., “Dynamics”, John Wiley & Sons, 1966
EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM
SIMPLIFIED PARTICLE APPROACH
2. Greensite, A.L., “Elements of Modern Control Theory”,Vol. 2,
Spartan Books, 1970
3. Greenwood, D.T., “Principles of Dynamics”, Prentice-Hall Inc., 1965
Table of Content
January 5, 2015 40
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA

More Related Content

What's hot

Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsSolo Hermelin
 
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...ijistjournal
 
Feedback linearisation
Feedback linearisationFeedback linearisation
Feedback linearisationRamaiahsubasri
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final PresentationAmritesh Maitra
 
Transfer fn mech. systm 1
Transfer fn mech. systm 1Transfer fn mech. systm 1
Transfer fn mech. systm 1Syed Saeed
 
Foundation of geometrical optics
Foundation of geometrical opticsFoundation of geometrical optics
Foundation of geometrical opticsSolo Hermelin
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qmAnda Tywabi
 
Sliding Mode Controller
Sliding Mode Controller Sliding Mode Controller
Sliding Mode Controller Ramaiahsubasri
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...Belinda Marchand
 
Second Order Active RC Blocks
Second Order Active RC BlocksSecond Order Active RC Blocks
Second Order Active RC BlocksHoopeer Hoopeer
 
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...toukaigi
 

What's hot (20)

Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
 
Proje kt
Proje ktProje kt
Proje kt
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 
Projekt
ProjektProjekt
Projekt
 
Ips csmc 14.06.2016
Ips csmc 14.06.2016Ips csmc 14.06.2016
Ips csmc 14.06.2016
 
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
 
SDEE: Lecture 6
SDEE: Lecture 6SDEE: Lecture 6
SDEE: Lecture 6
 
Feedback linearisation
Feedback linearisationFeedback linearisation
Feedback linearisation
 
1 tracking systems1
1 tracking systems11 tracking systems1
1 tracking systems1
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
 
Transfer fn mech. systm 1
Transfer fn mech. systm 1Transfer fn mech. systm 1
Transfer fn mech. systm 1
 
Foundation of geometrical optics
Foundation of geometrical opticsFoundation of geometrical optics
Foundation of geometrical optics
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
 
Sliding Mode Controller
Sliding Mode Controller Sliding Mode Controller
Sliding Mode Controller
 
Laplace
LaplaceLaplace
Laplace
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
 
Second Order Active RC Blocks
Second Order Active RC BlocksSecond Order Active RC Blocks
Second Order Active RC Blocks
 
Discrete control
Discrete controlDiscrete control
Discrete control
 
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
 
Optimal c ontrol
Optimal c ontrolOptimal c ontrol
Optimal c ontrol
 

Similar to Equation of motion of a variable mass system1

Time response analysis
Time response analysisTime response analysis
Time response analysisKaushal Patel
 
TIME RESPONSE ANALYSIS
TIME RESPONSE ANALYSISTIME RESPONSE ANALYSIS
TIME RESPONSE ANALYSISDeep Chaudhari
 
14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptxbuttshaheemsoci77
 
The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...IJITCA Journal
 
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control IJITCA Journal
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systemsAmr E. Mohamed
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsAmr E. Mohamed
 
Kita, e. 2010: investigation of self-organising map for genetic algorithm
Kita, e. 2010: investigation of self-organising map for genetic algorithmKita, e. 2010: investigation of self-organising map for genetic algorithm
Kita, e. 2010: investigation of self-organising map for genetic algorithmArchiLab 7
 
Sistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden SuperiorSistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden SuperiorWinnerPineda1
 
Signals and systems-3
Signals and systems-3Signals and systems-3
Signals and systems-3sarun soman
 
AOA Handwritten Notes'.pdf
AOA Handwritten Notes'.pdfAOA Handwritten Notes'.pdf
AOA Handwritten Notes'.pdfdhzhnz
 
lec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxlec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxdatamboli
 
signal and system chapter2-part1+2new.pdf
signal and system chapter2-part1+2new.pdfsignal and system chapter2-part1+2new.pdf
signal and system chapter2-part1+2new.pdfislamsharawneh
 
lecture 10 formal methods in software enginnering.pptx
lecture 10 formal methods in software enginnering.pptxlecture 10 formal methods in software enginnering.pptx
lecture 10 formal methods in software enginnering.pptxSohaibAlviWebster
 
Time response analysis of system
Time response analysis of systemTime response analysis of system
Time response analysis of systemvishalgohel12195
 
ELEG 421 Control Systems Transient and Steady State .docx
ELEG 421 Control Systems  Transient and Steady State .docxELEG 421 Control Systems  Transient and Steady State .docx
ELEG 421 Control Systems Transient and Steady State .docxtoltonkendal
 
lecture1 (5).ppt
lecture1 (5).pptlecture1 (5).ppt
lecture1 (5).pptHebaEng
 

Similar to Equation of motion of a variable mass system1 (20)

Time response analysis
Time response analysisTime response analysis
Time response analysis
 
TIME RESPONSE ANALYSIS
TIME RESPONSE ANALYSISTIME RESPONSE ANALYSIS
TIME RESPONSE ANALYSIS
 
14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx
 
The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...
 
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of Systems
 
Kita, e. 2010: investigation of self-organising map for genetic algorithm
Kita, e. 2010: investigation of self-organising map for genetic algorithmKita, e. 2010: investigation of self-organising map for genetic algorithm
Kita, e. 2010: investigation of self-organising map for genetic algorithm
 
Lec7
Lec7Lec7
Lec7
 
Sistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden SuperiorSistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden Superior
 
Signals and systems-3
Signals and systems-3Signals and systems-3
Signals and systems-3
 
AOA Handwritten Notes'.pdf
AOA Handwritten Notes'.pdfAOA Handwritten Notes'.pdf
AOA Handwritten Notes'.pdf
 
lec02.pdf
lec02.pdflec02.pdf
lec02.pdf
 
lec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptxlec-7_phase_plane_analysis.pptx
lec-7_phase_plane_analysis.pptx
 
signal and system chapter2-part1+2new.pdf
signal and system chapter2-part1+2new.pdfsignal and system chapter2-part1+2new.pdf
signal and system chapter2-part1+2new.pdf
 
lecture 10 formal methods in software enginnering.pptx
lecture 10 formal methods in software enginnering.pptxlecture 10 formal methods in software enginnering.pptx
lecture 10 formal methods in software enginnering.pptx
 
Time response analysis of system
Time response analysis of systemTime response analysis of system
Time response analysis of system
 
ANGULAR MOMENTUM Kopal yadav
ANGULAR MOMENTUM Kopal yadavANGULAR MOMENTUM Kopal yadav
ANGULAR MOMENTUM Kopal yadav
 
ELEG 421 Control Systems Transient and Steady State .docx
ELEG 421 Control Systems  Transient and Steady State .docxELEG 421 Control Systems  Transient and Steady State .docx
ELEG 421 Control Systems Transient and Steady State .docx
 
lecture1 (5).ppt
lecture1 (5).pptlecture1 (5).ppt
lecture1 (5).ppt
 

More from Solo Hermelin

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizationsSolo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectoriesSolo Hermelin
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles iiSolo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles iSolo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polarSolo Hermelin
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part ivSolo Hermelin
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iiiSolo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part iiSolo Hermelin
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part iSolo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hmsSolo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systemsSolo Hermelin
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instrumentsSolo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutawaySolo Hermelin
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft WarheadSolo Hermelin
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerabilitySolo Hermelin
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - iiSolo Hermelin
 

More from Solo Hermelin (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 

Recently uploaded

GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLkantirani197
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...ssuser79fe74
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 

Recently uploaded (20)

GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 

Equation of motion of a variable mass system1

  • 1. 1 SOLO HERMELIN EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH http://www.solohermelin.com
  • 2. 2 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM • Simplified Particle Approach (this Power Point Presentation) The equations of motion can be developed using At a given time t the system has v (t) – system volume. m (t) – system mass. S (t) – system boundary surface. • Reynolds’ Transport Theorem Approach (see Power Point Presentation) • Lagrangian Approach (see Power Point Presentation)
  • 3. 3 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH TABLE OF CONTENT Sir Isaac Newton 1643-1727 • Assumptions • Inertial Velocity and Acceleration • Instantaneous Mass Center or Centroid C of the System • Linear Momentum of the System • Force Equation • Moment Relative to a Reference Point O • Absolute Angular Momentum Relative to a Reference Point O • External Forces and Moments Applied on the System • Summary of the Equations of Motion of a Variable Mass System • References
  • 4. 4 SOLO EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH Assumptions 1. The system at time t contains N particles. 2. The particle i, of mass dmi, is located at a point (relative to an inertial system – I ). iR  3. We define a reference point O by the vector (relative to I).OR  4. We obtain the equation of motion for the continuous by taking a very large number N of particles. ∫⇒∑ ∞→ = NN i 1 We have a system of particles enclosed at the time t by a surface S(t) that bounds the volume v(t). There are no sources or sinks in the volume v(t). The change in the mass of the system is due only to the flow through the surface openings Sopen i (i=1,2, …). In addition the particles are free to move relative to each other. OiOi RRr  −=:, The particle relative position to O is given by:
  • 5. 5 SOLO Assumptions (Continue - 1) We have 5. The position of the opening ,relative to I, is given by .iopenR  iopenS ( ) ( ) ( ) ( )ttRttR tRtR iflowiopen iflowiopen ∆+≠∆+ =   & The position of the mass particle flowing through the opening , relative to I, is given by . iopenS iflowR  Therefore ( ) ( ) I iflow I iopen td tRd td tRd  ≠ and ( ) ( ) iopeniflow I iopen I iflow Si VV td tRd td tRd V    −=−=:, is the velocity of flow relative to the opening iopenS EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH Table of Content
  • 6. 6 SOLO The Inertial Velocity and Acceleration of the mass dmi are given by I i i td Rd V   = I i I i i td Rd td Vd a 2 2   == Total Mass of the System ( ) ( ) ∫∫∑ ==→= → ∞→ = tvm dmdm NN i i dvdmmmdtm i ρ 1 At a given time t At the time t + Δ t the mass change is due to the flow through the openings ( ),2,1=iS iopen ( ) ∑∑ ∆+=∆+ = openings iflow N i i mmdttm 1 ( ) ( ) ( ) ( )∑∑ = ∆ ∆ = ∆ −∆+ = →∆→∆ openings iflow openings iflow tt tm t m t tmttm tm  00 limlim EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH Table of Content The mass rate (flow) , entering / leaving the system, is given by
  • 7. 7 SOLO Instantaneous Mass Center or Centroid (C) of the System At the time t + Δ t By subtracting those two equations, dividing by Δt, and taking the limit, we get The mass center (Centroid) , of the system, relative to I, at time t, is defined as ( )tRC  ( ) ( ) ( ) ∫∫∑ ==→= → ∞→ = tvm C dmmd NN i iiC dvRdmRtRmmdRtRm i ρ  :: 1 ( ) ( )[ ] ( ) ( )∑∑ ∆+∆+∆+=∆+ = openings iflowiflowiflow N i iiiCC RRmmdRRtRmtRm  1 ( ) ( )[ ] ( ) ∑+∑= ∆ ∑ ∆+∆+∑∆ = ∆ ∆ = = = →∆→∆ openings iflowiflow N i i I iopenings iflowiflowiflow N i ii t C t C Rmmd td Rd t RRmmdR t tRm Rm td d       1 1 00 limlim Now let add the constraint that at time t the flow at the opening is such that iopenS ( ) ( )tRtR iflowiopen  = to obtain ( ) ∑∑ −= = openings iopeniflow I C N i i I i RmRm td d md td Rd     1 EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH Table of Content
  • 8. 8 SOLO Instantaneous Mass Center or Centroid (C) of the System (continue - 1) Let develop the right side of this equation ( ) ∑∑ −= = openings iopeniflow I C N i i I i RmRm td d md td Rd     1 ( ) ( ) ∑ ∑∑∑ ∑∑ −= −−=−+= =−+=− openings Ciopeniflow I C openings Ciopenflowi I C openings iopeniflow I C openings Ciflow openings iopeniflow I C C openings iopeniflow I C rm td Rd m RRm td Rd mRm td Rd mRm Rm td Rd mRmRmRm td d ,                    Therefore ( ) ∑∑∑ −=−−= = openings Ciopeniflow I C openings Ciopeniflow I C N i i I i rm td Rd mRRm td Rd mmd td Rd , 1       The First Moment of Inertia of the System, relative to the point O, is defined as:Oc,  ( ) ( ) OCOC N i iO N i ii N i iOi N i iOiO rmRRmmdRmdRmdRRmdrc , 1111 ,, :  =−=∑−∑=∑ −=∑= ==== EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH Table of Content
  • 9. 9 SOLO ( ) ∑∑∑ −=−−= = openings Ciopeniflow I C openings Ciopeniflow I C N i i I i rm td Rd mRRm td Rd mmd td Rd , 1       Linear Momentum of the System Substitute At a given time t the Linear Momentum of the system is defined as ( ) ( ) ( ) ( ) ∫∫∑∑ ==→== ∞→ → == tmtm I N mdmd N i ii N i i I i mdVdm td Rd tPmdVmd td Rd tP i      :: 11 ( ) ( ) ( ) ( ) ∑∑ ∑∑∑ −=−−= →−=−−== ∞→ → = openings CiopeniflowC openings CiopeniflowC N mdmd openings Ciopeniflow I C openings Ciopeniflow I C N i i I i rmVmRRmVmtP rm td Rd mRRm td Rd mmd td Rd tP i , , 1             Differentiate ( ) ( ) OCOC N i iO N i ii N i iOi N i iOiO rmRRm mdRmdRmdRRmdrc , 1111 ,, :   =−= −=−== ∑∑∑∑ ==== to obtain ( ) ( ) ( )         +−        += −+         −=−+         −= ∑∑ ∑ openings OiflowO openings CiflowC OC openings iflow I O I C OC I O I C I O RmVmRmVm RRm td Rd td Rd mRRm td Rd td Rd m td tcd            , to obtain EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 10. 10 SOLO Linear Momentum of the System (continue-1) Substitute ( ) ( ) ∑−=∑ −−= openings CiopeniflowC openings CiopeniflowC rmVmRRmVmtP ,      to obtain ( )       ∑+−      ∑+= openings OiflowO openings CiflowC I O RmVmRmVm td tcd       , into ( ) ( ) ∑∑ −+=−−+= openings OiopeniflowO I O openings OiopeniflowO I O rmVm td cd RRmVm td cd tP , ,,          At the time t + Δ t the Linear Momentum of the System (including the mass entering/leaving through S) is: ( ) ( ) ( ) ( )∑∑ ∆+∆+∆+=∆+ = openings iflowiflowiflow N i i RRmmRRtPtP  1 : By subtracting those two equations, dividing by Δt, and taking the limit, we get ( ) ∑ ∑∑∑ ∑∑∑ −−+=+= ∆ −         ∆+∆+         ∆+ = ∆ ∆ = = == →∆→∆ openings I openings I Ciopen iflow openings Ciopeniflow I C I Ciflow iflow N i i I i N i i I i openings I iflow I iflow iflow N i i I i I i tt td rd mrm td Rd m td Rd m td Rd mdm td Rd t md td Rd td Rd td Rd mmd td Rd td Rd t tP td Pd , ,2 2 1 2 2 11 00 limlim            EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 11. 11 SOLO Linear Momentum of the System (continue-2) We obtain ( ) ∑∑ −−+= i I Ciflow iflow openings Ciopeniflow I C I C I td rd mrm td Rd m td Rd m td tPd , ,2 2        ( ) ( ) ( ) ( )∑∑ ∑∑ ∑∑ −−−−+= →−−+= ++= →∞ → = openings Ciopeniflow openings CiopeniflowC I C I N mdmdopenings I Ciopen iflow openings Ciopeniflow I C I C openings I Ciflow iflow I C N i i I i I VVmRRmVm td Vd m td tPd td rd mrm td Rd m td Rd m td rd m td Rd mmd td Rd td tPd i                    , ,2 2 , 1 2 2 EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH An equivalent result could be obtained by differentiating ( ) ∑−= openings Ciopeniflow I C rm td Rd mtP ,     We obtained Table of Content
  • 12. 12 SOLO Force Equation Applying the 2nd Newton’s Law to the particle of mass mi, we obtain: ∑= +== N j ijiexti I i i I i fdfdmd td Rd md td Vd 1 int2 2   where iextfd  - External forces acting on the mass mi ij fd int  - Internal forces that particle j exercise on the mass mi From the 3rd Newton’s Law the internal force that particle j applies on particle i is of equal magnitude but of opposite direction to the force that particle i applies on particle j : jiij fdfd intint  −= Therefore 0 1 1 int  =∑∑= ≠ = N i N ij j ij fd EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 13. 13 SOLO ( ) ∞→ → →∑−∑−+= N mdmdopenings I Ciopen iflow openings Ciopeniflow I C I C I itd rd mrm td Rd m td Rd m td tPd , ,2 2        Force Equation (continue – 1) We have ∑∑∑∑∑ =+= = ≠ === ext N i N ij j ij N i iext N i i I i Ffdfdmd td Vd      0 1 1 int 11 ∑∑ = = N i i I i ext md td Rd F 1 2 2  Substitute this equation into to obtain ∑∑∑∑ −−+=++= openings I Ciopen iflow openings Ciopeniflow I C I C openings I Ciflow iflow I C ext I td rd mrm td Rd m td Rd m td rd m td Rd mF td Pd , ,2 2 ,             Rearranging we obtain ∑∑∑∑ ++         −+= openings I Ciopen iflow openings Ciopeniflow openings I Ciopen I Ciflow iflowext I C td rd mrm td rd td rd mF td Rd m , , ,, 2 2 2         ( ) ∑∑∑∑         −+−+         −+= openings I C I iopen iflow openings Ciopeniflow openings I iopen I iflow iflowext td Rd td Rd mRRm td Rd td Rd mF        2 or ( ) ( ) ( )∑∑∑∑ −+−+−+= openings Ciopeniflow openings Ciopeniflow openings iopeniflowiflowext I C RRmVVmVVmF td Vd m         2 EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH Table of Content
  • 14. 14 SOLO Absolute Angular Momentum Relative to a Reference Point O The Absolute Momentum Relative to a Reference Point O, of the particle of mass dmi at time t is defined as: ( ) ( ) iiOiiiOiiOiO dmVrdmVRRPdRRHd  ×=×−=×−= ,, : The Absolute Momentum Relative to a Reference Point O, of the mass m (t) is defined as: ( ) ( ) ∑∑∑ === ×=×−=×−= N i i I i Oi N i iiOi N i iOiO dm td Rd rdmVRRPdRRH 1 , 11 , :   By taking a very large number N of particles, we go from discrete to continuous ∫⇒∑ ∞→ = NN i 1 ( )( ) ( )( ) ( ) ∫ ×=∫ ×−=∫ ×−= tm O tm O tv OO dmVrdmVRRdvVRRH  ,, ρ The Absolute Momentum Relative to a Reference Point O, of the system (including the mass entering (+)/leaving (-) through surface S), at time t + Δt is given by: ( ) ( )∑∑ ∆         ∆+×∆++         ∆+×∆+=∆+ = openings iflow I iflow I iflow OiflowOiflow N i i I i I i OiOiOO m td Rd td Rd rrdm td Rd td Rd rrHH     ,, 1 ,,,, EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 15. 15 SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 1) By subtracting I O t I O t H td Hd ∆ ∆ = →∆ , 0 , lim  ( ) ( ) t dm td Rd rm td Rd td Rd rrdm td Rd td Rd rr openings N i i I i iOiflow I iflow I iflow OiflowOiflow N i i I i I i OiOi t ∆ ×−∆           ∆+×∆++         ∆+×∆+ = ∑ ∑∑ == →∆ 1 ,, 1 ,, 0 lim       ∑∑∑ ×+×+×= == openings iflow I iflow Oiflow N i i I iOi N i i I i Oi m td Rd rdm td Rd td rd dm td Rd r      , 1 , 1 2 2 , Now let add the constraint that at time t the flow at the opening is such that iopenS ( ) ( ) ( ) ( )trtrtRtR OiflowOiopeniflowiopen ,,  =→= to obtain (next page) EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH ( )( ) ( )( ) ( ) ∫ ×=∫ ×−=∫ ×−= tm O tm O tv OO dmVrdmVRRdvVRRH  ,, ρ dividing by Δt, and taking the limit, we get from ( ) ( )∑∑ ∆         ∆+×∆++         ∆+×∆+=∆+ = openings iflow I iflow I iflow OiflowOiflow N i i I i I i OiOiOO m td Rd td Rd rrdm td Rd td Rd rrHH     ,, 1 ,,,,
  • 16. 16 SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 2) ∑∑∑ ×+×+×= == openings iflow I iflow Oiopen N i i I i I Oi N i i I i Oi I O m td Rd rdm td Rd td rd dm td Rd r td Hd       , 1 , 1 2 2 , , ( )∑ ×−+∑ ×         −+∑ ×= == openings iflow I iflow Oiopen N i i I i I O I i N i i I i Oi m td Rd RRdm td Rd td Rd td Rd dm td Rd r      11 2 2 , ( )∑ ×−+∑×−∑ ×= == openings iflow I iflow Oiopen N i i I i I O N i i I i Oi m td Rd RRdm td Rd td Rd dm td Rd r      11 2 2 , By taking a very large number N of particles, we go from discrete to continuous ∫⇒∑ ∞→ = NN i 1 ( ) ( )∑ ×−+×−∫ ×= openings iflowiflowOiopenO tm I O I O mVRRPVdm td Rd r td Hd      2 2 , , ( ) ( ) ∑∑ −+=−−+= openings OiopeniflowO I O openings OiopeniflowO I O rmVm td cd RRmVm td cd tP , ,,          Substitute to obtain ( ) ( ) ( )∑ ×−+×         ∑ −−++∫ ×= openings iflowiflowOiopenO openings iflowOiopenO I O tm I O I O mVRRVmRRVm td cd dm td Rd r td Hd       , 2 2 , , or ( ) ( )∑ −×+×+∫ ×= openings iflowOiflowOiopenO I O tm I O I O mVVrV td cd dm td Rd r td Hd      , , 2 2 , , EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 17. 17 SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 3) We obtained ( )( ) ( )( ) ( ) ∫ ×=∫ ×−=∫ ×−= tm O tm O tv OO dmVrdmVRRdvVRRH  ,, ρ Substitute in the previous equation OIO O O O I O I O I OO r td rd V td rd td Rd td Rd VrRR , ,, , :&      ×++=+==+= ←ω ( )( ) ( ) ∫         ×++×=∫ ×−= ← tm OIO O O OO tm OO dmr td rd VrdmVRRH , , ,,    ω ( ) ( ) ( ) ( ) ∫         ×+∫ ××+×      ∫= ← tm O O O tm OIOOO tm O dm td rd rdmrrVdmr , ,,,,   ω We obtain (a) (b) (c) Let develop those three expressions (a), (b) and (c). where is the angular velocity vector from I to O.IO←ω  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 18. 18 SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 4) (a) ( ) ( ) ( ) ( ) ( ) ( ) OOC tm OC tm OC tm OC tm C tm O cmRRdmrdmrdmrdmrdmr ,,,,,,  =−===+= ∫∫∫∫∫ Where we used because C is the Center of Mass (Centroid) of the system. ( ) 0, =∫tm C dmr  ( ) OOOOCO tm O VcVrmVdmr  ×=×=×         ∫ ,,, ( ) ( ) ( )[ ]( ) IOOIO tm OOOO tm OIBO Idmrrrrdmrr ←←← ⋅=⋅∫ −⋅=∫ ×× ωωω  ,,,,,,, 1(b) where ( )[ ] ( ) ∫ −⋅= tm OOOOO dmrrrrI ,,,,, 1:  2nd Moment of Inertia Dyadic of all the mass m(t) relative to O We obtain (a) + (b) + (c) ( )( ) ( ) ( ) ( ) ( ) ∫         ×+∫ ××+×      ∫=∫ ×−= ← tm O O O tm OIOOO tm O tv OO dm td rd rdmrrVdmrvdVRRH , ,,,,, :   ωρ ( ) ∫         ×+⋅+×= ← tm O O OIOOOO dm td rd rIVc , ,,,   ω EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 19. 19 SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 5) (c) ( ) ( ) ( ) ( ) =∫         + ×+=∫         × tm O OCC OCC tm O O O dm td rrd rrdm td rd r ,, ,, , ,     ( ) ( ) ( ) O OC tm C tm O C C tm O C OC O OC OC td rd dmrdm td rd rdm td rd rm td rd r , 0 , , , , , , ,          ×      ∫+∫         ×+∫         ×+×= (c1) (c2) (c3) m td rd r O OC OC , ,   ×(c1) - Change in the relative position of C (varies with time) and O. (c2) ( ) ∑×−=∫         × openings iflowCiopenOC tm O C OC mrrdm td rd r     ,, , , (c3) ( ) ∫         × tm O C C dm td rd r , ,   - Change due to Elasticity, Sloshing, Moving Parts (Rotors, Pistons,..) If we choose O=C the first two terms (c1), (c2) will be zero, and the third (c3) describes the non-rigidity of the system. EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 20. 20 SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 6) (c3) ( ) ( ) ∑+∫         ×=∫         × ← j OjrotorCjrotor tm FrozenRotors O C C tm O C C Rj Idm td rd rdm td rd r ω      , , , , , where Consider a system with a number of rigid rotors I R  CR  C ( )tS OR  OOCr  Bxˆ Bzˆ shaftr  rotorr  Byˆ Ixˆ Iyˆ Izˆ Cshaftr  Crotorr  OyˆOxˆ Ozˆ System with Rotors RjCjrotorI ,  Ojrotor ←ω  - Second Moment of Inertia Dyadic of the Rotor j, relative to it’s Centroid - Angular Velocity Vector of the Rotor j, relative to O EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 21. 21 SOLO Absolute Angular Momentum Relative to a Reference Point O (continue – 7) We obtained Let differentiate this equation, relative to the inertial system I R  CR  C ( )tS OR  OOCr  Bxˆ Bzˆ shaftr  rotorr  Byˆ Ixˆ Iyˆ Izˆ Cshaftr  Crotorr  OyˆOxˆ Ozˆ ∫         ×+∑ ⋅+⋅+×= ←← m FrozemRotor O O O j ORjCjrotorIOOOOO md td rd rIIVcH Rj , ,,,,   ωω OIO O O I O H td Hd td Hd , ,,   ×+= ←ω ( ) O m FrozemRotor O O O j ORjCjrotor j ORjCjrotorIOOIOO I OO md td rd r td d IIIIVc td d RjRj         ∫         ×+ ∑ ⋅+∑ ⋅+⋅+⋅+×= ←←←← , , 0 ,,,,,        ωωωω         ∫         ××+    ∑ ⋅×+⋅×+ ←←←←← m FrozemRotor O O OIO j ORjCjrotorIOIOOIO md td rd rII Rj , ,,,   ωωωωω EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH Table of Content
  • 22. 22 SOLO Moment Relative to a Reference Point O Multiplying (vector product) the 2nd Newton’s Law on the particle of mass dmi, by we obtain:OiOi RRr  −=:, ( ) ( ) i I i Oi N j ijiextOi dm td Vd RRfdfdRR   ×−=      ∑+×− =1 int from which ( ) ( ) ( )∑ ×−=∑ ∑ ×−+∑ ×− == ≠ == N i i I i Oi N i N ij j ijtOi N i iextOi dm td Vd RRfdRRfdRR 11 1 int 1   We define the moment of external forces, relative to O, on the system, as: ( )∑∑ = ×−= N i iextOiOext fdRRM 1 , :  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 23. 23 SOLO Moment Relative to a Reference Point O (continue – 1) Since for any particles i and j the internal forces are of equal magnitude but of opposite directions we have jiij fdfd intint  −= ( ) ( ) ( ) ( ) ( ) collinearfandrfdrfdRR fdRRfdRR fdRRfdRR jitijjitijjitij jitOjjitOi jitOjijtOi intintint intint intint 0    ←=×=×−= =×−+×−−= =×−+×− EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH We assumed that the equal but opposite forces between i and j act along the line joining them; i.e. Note collineararefandr jitij int  This is not always true (see H. Goldstein “Classical Mechanics”, 2nd Edition, pg.8, R. Aris “Vectors, Tensors and the Basic Equations of Fluid Mechanics”, pp.102-104, Michalas & Michalas “Radiation Hydrodynamics”, pg.72, Jaunzemis “Continuous Mechanics” Sec. 11, pg.223) End Note
  • 24. 24 SOLO ( )( ) ( ) ( )∑ −×−+×+∫ ×−= openings iflowOiflowOiopenO I O tm I O I O mVVRRV td cd dm td Rd RR td Hd      , 2 2 Moment Relative to a Reference Point O (continue – 2) We have: ( ) ( )∑ ×−=∑ ×−=∑ == N i i I i Oi N i i I i OiOext dm td Rd RRdm td Vd RRM 1 2 2 1 ,     ∞→↓ N ( )( ) ( )( ) ∫ ×−=∫ ×−=∑ tv I O tm I OOext dv td Vd RRdm td Vd RRM ρ     , to obtain ( ) ( )∑ −×−+×+∑= openings iflowOiflowOiopenO I O Oext I O mVVRRV td cd M td Hd    , , EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH Substitute the previous equation with in II td Rd td Vd 2 2  =
  • 25. 25 SOLO ( ) ( ) ∑∑ −+=−−+= openings OiopeniflowO I O openings OiopeniflowO I O rmVm td cd RRmVm td cd tP , ,,          Moment Relative to a Reference Point O (continue – 3) Let substitute in this equation the following to obtain ( ) ( )∑ −×−+×+∑= openings iflowOiflowOiopenO I O Oext I O mVVRRV td cd M td Hd    , , ( ) ( ) O I O openings iflowOiflowOiopenOext I O V td cd mVVRRMH td d     ×+∑ −×−+∑= , ,, ( ) ( ) ( ) O openings iflowOiopenO openings iflowOiflowOiopenOext VmRRmVPmVVRRM      ×      ∑ −+−+∑ −×−+∑= , ( )∑ ×−+∑ ×+= openings iflowiflowOiopenOOext mVRRVPM   , or ∑ ×+∑ ×+= openings iflowiflowOiopenOOext I O mVrVPMH td d   ,,, ( )OCOCO RRmrmc  −== ,, EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH Table of Content
  • 26. 26 SOLO External Forces and Moments Applied on the System We have a system of particles enclosed at the time t by a surface S(t) that bounds the volume v(t). There are no sources or sinks in the volume v(t). The change in the mass of the system is due only to the flow through the surface openings Sopen i (i=1,2, …). The surface S(t) can be divided in: • Sw(t) the impermeable wall through which the flow can not escape .( )0,  =sV • Sopen i(t) the openings (i=1,2,…) through which the flow enters or exits .( )0>m ( )0<m EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 27. 27 SOLO External Forces and Moments on the System (continue -1 ) The external forces acting on the system are: v(t) I ds R  CR  dm C ( )tS 2openS 1openS g  σ  n  1 t  1 OR  O Or,  OCr ,  jR  jF  kM  • Gravitation acceleration (E center of Earth).E E R R M Gg  3 = • Force per unit surface applied by the surroundings on the surface of the system.( )2 /mNσ  ( )dstfnpsdTsdnsd  111 +−==⋅=⋅ σσ where: ( ) ndsnnsdsd  111 =⋅= - vector of surface differential ( )2 /mNp - pressure on (normal to) the surface . ( ) ( ) ∑∫∫∑∑∑ +⋅+=→= j j tStv ext i iextext FsddvgFfdF  σρ ( ) ( )( ) ( )( ) ( ) ∑+∑ ×−+∫ ⋅×−+∫ ×−=∑→ ∑ ×−=∑ k k j jOj tS O tv OOext i iextOiOext MFRRsdRRdvgRRM fdRRM   σρ, , The moment of the external forces, relative to a point O, is: f - friction force per (parallel to) unit surface .( )2 / mN • Discrete force exerting by the surrounding on the point , and discrete moments .∑j jF  jR  ∑ k kM  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 28. 28 SOLO ( ) ( ) ( )∑∑∑∑ −+−+−+= openings Ciopeniflow openings Ciopeniflow openings iopeniflowiflowext I C RRmVVmVVmF td Vd m         2 External Forces Equations (continue -2) ( ) ( ) ( ) ( ) ( ) ∑∫∫∑∫∫∑ ++−+=+⋅+= j j tStvj j tStv ext FdstfnpdvgFsddvgF  11ρσρ ( ) ( ) ( ) 0111 0 =⋅∇== ∫∫∫ ∞∞∞ tv Gauss tStS dvnpdsnpdsnp   Since the pressure far away from the body is constant∞p Let add this equation to the previous one ( ) ( ) ( ) ( )[ ] ( ) ∑∫∑∫∫∑ ++−+=+⋅+= ∞ j j tSj j tStv ext FdstfnpptmgFsddvgF  11σρ ( ) ( )[ ] ( )[ ] ∑∫∫ ∑ ∫∫ ++−++−+= ∞∞ j j S openings S Fdstfnppdstfnpptmg W iopen  1111 Finally since on Sopen i (t) the openings (i=1,2,…) the friction force f = 0 ( ) ( )[ ] ( ) ∑∫∫ ∑ ∫∫∑ +−++−+= ∞∞ j j S openings S ext FdsnppdstfnpptmgF W iopen  111 Substitute this equation in EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 29. 29 SOLO External Forces Equations (continue – 3) or ( ) ( )[ ] ( ) ( ) ( ) ( )∑ −+∑ −+ ∑+∑       ∫∫ −+−+∫∫ +−+= ∞∞ openings iflowCiopen openings iflowCiopen j j openings S iflowopeniflow SI C mRRmVV FdsnppmVVdstfnpptmgmV dt d iopenW        2 111 1 ( ) ( ) ( )∑∑∑∑∑ −+−++++= openings iflowCiopen openings iflowCiopen j j i TiA I C mRRmVVFFFtmgmV dt d     2 where EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH v(t) I ds R  CR  dm C ( )tS 2openS 1openS g  σ  n  1 t  1 OR  O Or,  OCr ,  jR  jF  kM  ( ) ( )∫∫ −+−= ∞ iopenS iflowiopeniflowTi dsnppmVVF    1: Thrust Forces ( )[ ]∫∫∑ +−= ∞ WS A dstfnppF  11: Aerodynamic Forces
  • 30. 30 SOLO External Forces Equations (continue – 4) Let substitute ( ) ( ) ( )∑ −+∑ −+∑+∑+∑+= openings iflowCiopen openings iflowCiopen j j i TiA I C mRRmVVFFFtmgmV dt d     2 in CIO O C I C V td Vd td Vd a    ×+== ←ω to obtain RIGID-BODY TERMSmV td Vd CIO O C         ×+ ←   ω ∑−∑         ×+− ← openings iflowCiopen openings iflowCiopenIO O Ciopen mrmr td rd      ,, , 2 ω FLUID-FLOW TERMS AERODYNAMIC & PROPULSIVE∑+∑= i TiA FF  v(t) I ds R  CR  dm C ( )tS 2openS 1openS g  σ  n  1 t  1 OR  O Or,  OCr ,  jR  jF  kM  ∑++ j jFmg  GRAVITATIONAL & DISCRETE TERMS EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 31. 31 SOLO External Moments Equations (continue – 5) The moments of the external forces relative to the point O are given by ( )( ) ( )( ) ( ) ∑+∑ ×−+∫ ⋅×−+∫ ×−=∑ k k j jOj tS OS tv OOext MFRRsdRRdvgRRM  σρ ~ , ( )( ) ( ) ( ) ( ) ( ) ∑+∑ ×−+∫ +−×−+×      ∫ −= k k j jOj tS OS tv O MFRRdstfnpRRgdvRR  11ρ Let add to this equation the following ( ) ( ) ( ) ( ) 01 0 5 =−×∇=×− ∫∫∫∫ ∞∞ V OS GGauss tS OS dvRRpdsnpRR     to obtain ( )( ) ( ) ( )[ ] ( ) ( ) ∑+∑ ×−+∫ +−×−+×      ∫ −=∑ ∞ k k j jOj tS OS tv OOext MFRRdstfnppRRgdvRRM  11, ρ ( ) ( ) ( )[ ] ( ) ( )  ( ) ∑+∑ ×−+ ∫∫ ∑ ∫∫         +−×−++−×−+×−= ∞∞ k k j jOj S openings S Son OOOC MFRR dstfnppRRdstfnppRRgmRR W iopen W   1111 0 v(t) I ds R  CR  dm C ( )tS 2openS 1openS g  σ  n  1 t  1 OR  O Or,  OCr ,  jR  jF  kM  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 32. 32 SOLO ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ∑+∑ ×−+ ∫∫ ∑ ∫∫ −×−++−×−+×−=∑ ∞∞ k k j jOj S openings S OOOCOext MFRR dsnppRRdstfnppRRgmRRM W iopen   111, ( ) ( )∑ −×−+×+∑= openings iflowOiflowOiopenO I O Oext I O mVVRRV td cd M td Hd    , , External Moments Equations (continue -6) Using together with we obtain ( ) ( ) ( ) ∑+∑ ×−+∑ −×−+ ×+∑+∑+×= k k j jCj openings iflowOiopenOiopen O I O openings OTiOAO I O MFRRmVVRR V td cd MMgc td Hd        , ,,, , ( ) ( ) ( ) ( )∑ −×−+∑ −×−+ ×+∑= openings iflowOiopenOiopen openings iflowiopeniflowOiopen O I O Oext mVVRRmVVRR V td cd M      , EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 33. 33 SOLO External Moments Equations (continue -7) where ( ) ( )[ ]∫∫∑ +−×−= ∞ WS OOAero dstfnppRRM  11:, Aerodynamic Moments ( ) ( ) ( ) ( )∫∫ −×−+−×−= ∞ iopenS OiflowiopeniflowOiopenOTi dsnppRRmVVRRM    1:, Thrust Moments on the opening i discrete forces exerting by the surrounding at point∑ j jF  ∑ k kM  jR  discrete moments exerting by the surrounding on the system v(t) I ds R  CR  dm C ( )tS 2openS 1openS g  σ  n  1 t  1 OR  O Or,  OCr ,  jR  jF  kM  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH
  • 34. 34 SOLO ( ) ( ) I tm O O O I j ORjCjrotor I IO OIO I O I O OO I O I O dm td rd r td d I td d td d I td Id td Vd cV td cd td Hd Rj ∫         ×+∑+⋅+⋅+×+×= ← ← ← , ,,, , , ,,      ω ω ω External Moments Equations (continue -8) Using together with we obtain ( ) ( )∑+∫         ×+⋅×+⋅+⋅ ←←←← ← j I ORjCjrotor I tm FrozenRotors O O OIOOIOIO O O O IO O Rj I td d dm td rd r td d I td Id td d I ωωωω ω     , , ,, , , ( ) ( ) ( ) ( ) ∑+∑ ×−+∑ −×−+ ×+∑+∑+×−= k k j jCj openings iflowOiopenOiopen O I O openings OTiOAOC I O MFRRmVVRR V td cd MMgmRR td Hd      ,, , ( ) ( ) ( ) ∑+∑ ×−+∑ −×−+ ∑+∑+         −×= k k j jCj openings iflowOiopenOiopen openings OTiOA I O O MFRRmVVRR MM td Vd gc       ,,, EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH Table of Content
  • 35. 35 SOLO SUMMARY OF THE EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM FIRST MOMENT OF INERTIA SECOND MOMENT OF INERTIA DYADIC EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ( )[ ] ( ) ∫ −⋅= tm OOOOO dmrrrrI ,,,,, 1:  2nd Moment of Inertia Dyadic of all the mass m(t) relative to O The First Moment of Inertia of the System, relative to the point O, is defined as:Oc,  ( ) ( ) ( ) ( ) OCOC tm O tm OO rmRRmmdrmdRRc ,,, :  =−==−= ∫∫
  • 36. 36 SOLO ( ) ( ) ∑∑ ∫∫∫       === openings iopenopenings S i tm td md mdmd td d tm iopen  MASS EQUATION FORCE EQUATION EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM RIGID-BODY TERMSmV td Vd CIO O C         ×+ ←   ω ∑−∑         ×+− ← openings i iflowiopen openings i iflowiopenIO B iopen mrmr td rd      ˆˆ ˆ 2 ω FLUID-FLOW TERMS GRAVITATIONAL, AERODYNAMIC, PROPULSIVE & ∑+∑+= i TiA FFmg  ∑+ j jF  DISCRETE TERMS SUMMARY OF THE EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM (CONTINUE – 1)
  • 37. 37 SOLO SUMMARY OF THE EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM (CONTINUE – 1) MOMENT EQUATIONS RELATIVE TO A REFERENCE POINT O RIGID-BODY TERMSIOOIOOIOIOO III ←←←← ⋅+⋅×+⋅ ωωωω  ,,,     ∑ ⋅×+∑ ⋅+ ←←← j OjrotorCrotorjIO j OjrotorCrotorj RjRj II ωωω  ,, ROTORS TERMS ( ) ( )         ∫         ××+         ∫         ×+ ← tm FrozenRotor O O OIO O tm FrozenRotor O O O dm td rd r dm td rd r td d , , , ,     ω BODY FLUIDS, MOVING PARTS, ELASTICITY,… TERMS FLUID CROSSING OPENINGS TERMS ∑         ×+×− ← openings iflowOiopenIO O Oiopen Oiopen mr td rd r     , , , ω AERODYNAMIC & PROPULSIVE ∑+∑= i OTiOA MM ,,  EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM ( ) ∑+∑ ×−+ k k j jOj MFRR  DISCRETE FORCES & MOMENTS TERMS         −×+ I O O td Vd gc   , NON-CENTROIDAL MOMENTS TERMS
  • 38. 38 SOLO SUMMARY OF THE EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM (CONTINUE – 2) ( )[ ]∫∫∑ +−= ∞ WS A dstfnppF  11: AERODYNAMIC FORCES ( ) ( )∫∫ −+−= ∞ iopenS iflowiopeniflowTi dsnppmVVF    1: THRUST FORCES ( ) ( )[ ]∫∫ +−×−=∑ ∞ WS OOA dstfnppRRM  11:, AERODYNAMIC MOMENTS RELATIVE TO O ( ) ( ) ( ) ( )[ ]∫∫ −×−+−×−= ∞ iopenS OiflowiopeniflowOiopenOTi dsnppRRmVVRRM    1:, THRUST MOMENTS RELATIVE TO O EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM Table of Content
  • 39. 39 SOLO References 1. Meriam, J.L., “Dynamics”, John Wiley & Sons, 1966 EQUATIONS OF MOTION OF A VARIABLE MASS SYSTEM SIMPLIFIED PARTICLE APPROACH 2. Greensite, A.L., “Elements of Modern Control Theory”,Vol. 2, Spartan Books, 1970 3. Greenwood, D.T., “Principles of Dynamics”, Prentice-Hall Inc., 1965 Table of Content
  • 40. January 5, 2015 40 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA