SlideShare a Scribd company logo
1 of 39
Download to read offline
Geometrical Applications
       of Differentiation
The First Derivative
Geometrical Applications
        of Differentiation           d              dy
The First Derivative y, f  x ,       f  x ,
                                     dx             dx
Geometrical Applications
        of Differentiation       d              dy
The First Derivative y, f  x ,   f  x ,
                                 dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
Geometrical Applications
        of Differentiation           d             dy
The First Derivative y, f  x ,      f  x ,
                                    dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
               If f  x   0, the curve is increasing
Geometrical Applications
        of Differentiation           d             dy
The First Derivative y, f  x ,      f  x ,
                                    dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
               If f  x   0, the curve is increasing
                 If f  x   0, the curve is decreasing
Geometrical Applications
        of Differentiation           d             dy
The First Derivative y, f  x ,      f  x ,
                                    dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
               If f  x   0, the curve is increasing
                 If f  x   0, the curve is decreasing
                 If f  x   0, the curve is stationary
Geometrical Applications
        of Differentiation           d             dy
The First Derivative y, f  x ,      f  x ,
                                    dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
               If f  x   0, the curve is increasing
                 If f  x   0, the curve is decreasing
                 If f  x   0, the curve is stationary
 e.g. For the curve y  3x 2  x 3 , find all of the stationary points
      and determine their nature.
      Hence sketch the curve
Geometrical Applications
        of Differentiation           d             dy
The First Derivative y, f  x ,      f  x ,
                                    dx             dx
  dy
     measures the slope of the tangent to a curve
  dx
               If f  x   0, the curve is increasing
                 If f  x   0, the curve is decreasing
                 If f  x   0, the curve is stationary
 e.g. For the curve y  3x 2  x 3 , find all of the stationary points
      and determine their nature.
      Hence sketch the curve
                                dy
                                    6 x  3x 2
                                dx
dy
Stationary points occur when      0
                               dx
dy
 Stationary points occur when      0
                                dx
i.e. 6 x  3x 2  0
dy
 Stationary points occur when      0
                                dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
dy
 Stationary points occur when      0
                                dx
i.e. 6 x  3x 2  0
     3x2  x   0
 x  0 or x  2
 stationary points occur at 0,0 and 2,4
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
         x
        dy
        dx
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
         x            0
        dy
        dx
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
         x            0
        dy            0
        dx
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
         x       0   0
        dy            0
        dx
dy
  Stationary points occur when      0
                                 dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
         x       0   0     0
        dy            0
        dx
dy
  Stationary points occur when       0
                                  dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0
        dy               0
        dx
dy
  Stationary points occur when       0
                                  dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0
        dy      (-9)
                         0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
         x
        dy
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
         x               2
        dy
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
         x               2
        dy               0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
         x       2      2
        dy               0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
         x       2      2   2
        dy               0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
                  
         x       2(1)    2   2
        dy               0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
                  
         x       2(1)    2   2
        dy      (3)
                         0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
                  
         x       2(1)    2   2 (3)
        dy      (3)
                         0
        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
                  
         x       2(1)    2   2 (3)
        dy      (3)
                         0    (-9)


        dx
dy
  Stationary points occur when           0
                                      dx
i.e. 6 x  3x 2  0
     3x2  x   0
  x  0 or x  2
  stationary points occur at 0,0 and 2,4
0,0
                  
         x       0(-1)   0   0 (1)
        dy      (-9)
                         0    (3)


        dx                                 0,0 is a minimum turning point
2,4
                  
         x       2(1)    2   2 (3)
        dy      (3)
                         0    (-9)


        dx                                 2,4 is a maximum turning point
y




    x
y




    x
y

    2,4




            x
y

    2,4




                        x




            y  3x 2  x 3
Exercise 10A; 1, 2ace, 4, 5, 6ac, 7, 8, 9ace etc,
           11, 12, 13, 15ace, 16, 17

Exercise 10B; 1ad, 2ac, 3ac, 5, 6, 7ac, 8, 10, 12

More Related Content

What's hot (11)

11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
Ma 104 differential equations
Ma 104 differential equationsMa 104 differential equations
Ma 104 differential equations
 
4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers4th Semester Mechanincal Engineering (2012-December) Question Papers
4th Semester Mechanincal Engineering (2012-December) Question Papers
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]
 
Lei
LeiLei
Lei
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
0203 ch 2 day 3
0203 ch 2 day 30203 ch 2 day 3
0203 ch 2 day 3
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
 
Introduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential EquationsIntroduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential Equations
 
Chapter 4(differentiation)
Chapter 4(differentiation)Chapter 4(differentiation)
Chapter 4(differentiation)
 

Viewers also liked (8)

Maths (general advanced-extension)
Maths (general advanced-extension)Maths (general advanced-extension)
Maths (general advanced-extension)
 
Magazine Markets
Magazine MarketsMagazine Markets
Magazine Markets
 
Problem solving
Problem solvingProblem solving
Problem solving
 
To lec 04
To lec 04To lec 04
To lec 04
 
10 puzzle questions
10 puzzle questions10 puzzle questions
10 puzzle questions
 
Questions Of Reasoning And Puzzles For Competitive Examinations
Questions Of Reasoning And Puzzles For Competitive ExaminationsQuestions Of Reasoning And Puzzles For Competitive Examinations
Questions Of Reasoning And Puzzles For Competitive Examinations
 
Dot cards
Dot cardsDot cards
Dot cards
 
Force & Motion
Force & MotionForce & Motion
Force & Motion
 

Similar to 11X1 T12 01 first derivative (2010)

Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handout
coburgmaths
 
11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)
Nigel Simmons
 
11 x1 t10 04 concavity (2012)
11 x1 t10 04 concavity (2012)11 x1 t10 04 concavity (2012)
11 x1 t10 04 concavity (2012)
Nigel Simmons
 
C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handout
fatima d
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
Nigel Simmons
 
Applications of maxima and minima
Applications of maxima and minimaApplications of maxima and minima
Applications of maxima and minima
rouwejan
 
Point of inflection
Point of inflectionPoint of inflection
Point of inflection
Tarun Gehlot
 
11X1 T09 02 critical points
11X1 T09 02 critical points11X1 T09 02 critical points
11X1 T09 02 critical points
Nigel Simmons
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
Ahmed Haider
 
11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)
Nigel Simmons
 
11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)
Nigel Simmons
 
11 x1 t10 05 curve sketching (2012)
11 x1 t10 05 curve sketching (2012)11 x1 t10 05 curve sketching (2012)
11 x1 t10 05 curve sketching (2012)
Nigel Simmons
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
Nigel Simmons
 
Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09
ingroy
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)
Nigel Simmons
 

Similar to 11X1 T12 01 first derivative (2010) (20)

Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handout
 
Differentiation.pptx
Differentiation.pptxDifferentiation.pptx
Differentiation.pptx
 
11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)
 
11 x1 t10 04 concavity (2012)
11 x1 t10 04 concavity (2012)11 x1 t10 04 concavity (2012)
11 x1 t10 04 concavity (2012)
 
C2 st lecture 4 handout
C2 st lecture 4 handoutC2 st lecture 4 handout
C2 st lecture 4 handout
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
Applications of maxima and minima
Applications of maxima and minimaApplications of maxima and minima
Applications of maxima and minima
 
Point of inflection
Point of inflectionPoint of inflection
Point of inflection
 
Cross product
Cross productCross product
Cross product
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
11X1 T09 02 critical points
11X1 T09 02 critical points11X1 T09 02 critical points
11X1 T09 02 critical points
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)
 
11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)11X1 T12 05 curve sketching (2010)
11X1 T12 05 curve sketching (2010)
 
11 x1 t10 05 curve sketching (2012)
11 x1 t10 05 curve sketching (2012)11 x1 t10 05 curve sketching (2012)
11 x1 t10 05 curve sketching (2012)
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic Sampling
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 
Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 

Recently uploaded (20)

Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 

11X1 T12 01 first derivative (2010)

  • 1. Geometrical Applications of Differentiation The First Derivative
  • 2. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx
  • 3. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx
  • 4. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx If f  x   0, the curve is increasing
  • 5. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx If f  x   0, the curve is increasing If f  x   0, the curve is decreasing
  • 6. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx If f  x   0, the curve is increasing If f  x   0, the curve is decreasing If f  x   0, the curve is stationary
  • 7. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx If f  x   0, the curve is increasing If f  x   0, the curve is decreasing If f  x   0, the curve is stationary e.g. For the curve y  3x 2  x 3 , find all of the stationary points and determine their nature. Hence sketch the curve
  • 8. Geometrical Applications of Differentiation d dy The First Derivative y, f  x ,  f  x , dx dx dy measures the slope of the tangent to a curve dx If f  x   0, the curve is increasing If f  x   0, the curve is decreasing If f  x   0, the curve is stationary e.g. For the curve y  3x 2  x 3 , find all of the stationary points and determine their nature. Hence sketch the curve dy  6 x  3x 2 dx
  • 10. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0
  • 11. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2
  • 12. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4
  • 13. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0
  • 14. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0 x dy dx
  • 15. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0 x 0 dy dx
  • 16. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0 x 0 dy 0 dx
  • 17. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0 x 0 0 dy 0 dx
  • 18. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0 x 0 0 0 dy 0 dx
  • 19. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 dy 0 dx
  • 20. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 dy (-9) 0 dx
  • 21. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 dx
  • 22. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx
  • 23. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point
  • 24. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4
  • 25. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4 x dy dx
  • 26. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4 x 2 dy dx
  • 27. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4 x 2 dy 0 dx
  • 28. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4 x 2 2 dy 0 dx
  • 29. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4 x 2 2 2 dy 0 dx
  • 30. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4  x 2(1) 2 2 dy 0 dx
  • 31. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4  x 2(1) 2 2 dy (3) 0 dx
  • 32. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4  x 2(1) 2 2 (3) dy (3) 0 dx
  • 33. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4  x 2(1) 2 2 (3) dy (3) 0 (-9) dx
  • 34. dy Stationary points occur when 0 dx i.e. 6 x  3x 2  0 3x2  x   0 x  0 or x  2  stationary points occur at 0,0 and 2,4 0,0  x 0(-1) 0 0 (1) dy (-9) 0 (3) dx  0,0 is a minimum turning point 2,4  x 2(1) 2 2 (3) dy (3) 0 (-9) dx  2,4 is a maximum turning point
  • 35. y x
  • 36. y x
  • 37. y 2,4 x
  • 38. y 2,4 x y  3x 2  x 3
  • 39. Exercise 10A; 1, 2ace, 4, 5, 6ac, 7, 8, 9ace etc, 11, 12, 13, 15ace, 16, 17 Exercise 10B; 1ad, 2ac, 3ac, 5, 6, 7ac, 8, 10, 12