1




 Gaussian
Integration
        M. Reza Rahimi,
Sharif University of Technology,
         Tehran, Iran.
2




    Outline
•   Introduction
•   Gaussian Integration
•   Legendre Polynomials
•   N-Point Gaussian Formula
•   Error Analysis for Gaussian Integration
•   Gaussian Integration for Improper Integrals
•   Legendre-Gaussian Integration Algorithms
•   Chebyshev-Gaussian Integration Algorithms
•   Examples, MATLAB Implementation and Results
•   Conclusion
3




  Introduction
• Newton-Cotes and Romberg Integration usually use
  table of the values of function.
• These methods are exact for polynomials less than N
  degrees.
• General formula of these methods are as bellow:
                 b          n

                 ∫ f ( x)dx ≅ ∑w
                 a         i =1
                                  i   f ( xi )


• In Newton-Cotes method the subintervals has the
  same length.
4




• But in Gaussian Integration we have the exact
  formula of function.
• The points and weights are distinct for specific
  number N.
5




   Gaussian Integration
• For Newton-Cotes methods we have:
              b
                                   b −a
       1.     ∫   f ( x )dx ≅           [ f (a) + f (b)].
              a
                                     2
              b
                                   b −a                 a +b           
       2.     ∫
              b
                  f ( x )dx ≅
                                     6 
                                          f (a ) + 4 f (
                                                           2
                                                              ) + f (b) .
                                                                        

• And in general form:
        b                n

       ∫ f ( x)dx ≅ ∑ w f ( x )i    i      xi = a + (i − 1)h i ∈ {1,2,3,..., n}
        a               i =1
                    n
            b− a n t− j
       wi =           ∏ dt
            n − 1 ∫ j =1, j ≠ i i − j
                  0
6




• But suppose that the distance among points are not
  equal, and for every w and x we want the integration
  to be exact for polynomial of degree less than 2n-1.
                  n           1
              1.∑ wi = ∫ dx
                 i =1         −1
                  n                1
              2.∑ xi wi = ∫ xdx
                 i =1              −1

              .............
                        n               1
              2n.∑ x 2 n −1 wi = ∫ x 2 n −1 dx
                      i =1              −1
7




• Lets look at an example:
  n =2    w1 , w2 , x1 , x 2 .
   .w1 + w2 = 2
   1
  2.x w + x w = 0
   1 1
  
              2    2
                                                    1
                         2 ⇒2,4 ∴x 1 = x 2 ⇒3 ∴x 1 = .
                                   2    2       2
   2
   .x 1 w1 + x 2 w2 = 3
                2
   3                                                3
   3
  4.x 1 w1 + x 3 2 w2 = 0
  
                1
  x1 = −x 2 =        , w1 = w2 =1.
                 3


• So 2-point Gaussian formula is:
               1
                                      1           −1
              −
               ∫
               1
                   f ( x ) dx ≅ f (
                                      3
                                          )+ f(
                                                   3
                                                       ).
8




  Legendre Polynomials
• Fortunately each x is the roots of Legendre Polynomial.
                           1 d 2
             PN ( x) =             ( x − 1) n .     n = 0,1,2,.....
                         2 n n! dx

• We have the following properties for Legendre
  Polynomials.
            1.Pn ( x)    Has N Zeros in interval(-1,1).
             2.( n +1) Pn +1 ( x ) = ( 2n +1) xPn ( x ) − nPn −1 ( x).
               1
                                                2
             3. ∫ Pn ( x ) Pm ( x) dx = δmn
               −1
                                              2mn +1
               1
             4. ∫ x k Pn ( x) dx = 0    k = 0,1,2......, n - 1
               −1

                                 2 n +1 ( n!) 2
               1
             5.∫ x Pn ( x ) dx =
                    n

               -1
                                 (2n +1)!
9




• Legendre Polynomials make orthogonal bases in (-1,1)
  interval.
• So for finding Ws we must solve the following
  equations:
                n                1
            1.∑ wi = ∫ dx = 2
               i =1          −1
                n                      1
            2.∑ wi x     2
                             i       = ∫ xdx = 0
               i =1                    −1

            ....................
            ....................
                n                           1
                                                   1
            n.∑ wi x n −1i = ∫ x n −1 dx =           (1 − (−1) n )
               i =1                        −1
                                                   n
10




• We have the following equation which has unique
  answer:
                       ... x1   w1                   
                             n −1 T             2
         1      x1                                     
                                    
         1      x2    ... x 2   w2  
                              n −1              0        
                                    . =     .       
          ...   ...   ... ...    
                                             1           
         1            ... x n   wn   n (1 − (− 1) ) 
                              n −1                    n
                xn                                  



• Theorem: if Xs are the roots of legendre polynomials
                                                             1


  and we got W from above equation then ∫P ( x)dx is         −
                                                             1


  exact for P ∈Π2 n −1 .
11




• Proof:
 p ∈ Π 2 n −1 ⇒ p( x) = q ( x) Pn ( x) + r ( x).
                                          n −1                                            n −1
                 q( x) = ∑ q j Pj ( x) ; r ( x) = ∑ r j Pj ( x).
                                          j =0                                            j =0
                  1                                 1                                              1                n −1                 n −1

                 ∫ p( x)dx = ∫ (q( x) P ( x) + r ( x))dx = ∫ ( P ( x)∑ q P ( x) + ∑ r P ( x))dx =
                 -1                                 −1
                                                                    n
                                                                                                   −1
                                                                                                        n
                                                                                                                      j =0
                                                                                                                                 j   j
                                                                                                                                         j =0
                                                                                                                                                j   j


                  n −1               1                                    n −1       1

                 ∑ q ∫ P ( x) P ( x)dx + ∑ r ∫ P ( x) P (x)dx = 2r .
                  j =0
                                 j          j            n
                                                                          j =0
                                                                                 j          0      j                         0
                                     −1                                              −1

⇒
                      n                                   n                                                     n

                 ∑ w p( x ) = ∑ w (q( x ) P
                  i =1
                                 i              i
                                                         i =1
                                                                i          i     N       ( x) + r ( xi )) = ∑ wi r ( xi )
                                                                                                               i =1
                           n              n −1                          n −1         n                  n −1          1
                 = ∑ wi ∑ r j Pj ( xi ) = ∑ r j ∑ wi Pj ( x) = ∑ r j ∫ Pj ( x)dx = 2r0 .
                          i =1             j =0                         j =0     i =1                   j =0        −1
12




Theorem:
             1                                            n         (x − x j )
     wi = ∫ [ Li ( x )] dx                              ∏ (x
                          2
                                       Li ( x ) =
            −1                                         j = , j ≠i
                                                          1           i   −xj )


Proof:
                                1                                         2

     [ Li ( x)] 2 ∈ Π 2 n−2 ⇒ ∫ [ Li ( x)] 2 = ∑ w j [ Li ( x j )]
                                                 n
                                                                              = wi .
                               −1               j =1
13




                              Error Analysis for
                             Gaussian Integration
• Error analysis for Gaussian integrals can be derived
  according to Hermite Interpolation.

                                                                                    b
  Theorem : The error made by gaussian integration in approximation the integral ∫ f ( x )dx is ::
                                                                                    a

             (b − a ) 2 n +1 ( N !) 4
  EN ( f ) =                          f   (2n)
                                                 (ξ )   ξ ∈ [ a, b].
             (2n + 1)((2n)!) 3
14


      Gaussian Integration for Improper
                  Integrals
• Suppose we want to compute the following integral:
                      1
                                 f ( x)
                      ∫
                      −1         1−x2
                                              dx


• Using Newton-Cotes methods are not useful in here
  because they need the end points results.
• We must use the following:
               1                          1−ε
                    f ( x)                         f ( x)
               ∫
               −1   1− x     2
                                 dx ≅     ∫ε
                                        −1+     1− x        2
                                                                dx
15




• But we can use the Gaussian formula because it does
  not need the value at the endpoints.
• But according to the error of Gaussian integration,
  Gaussian integration is also not proper in this case.
• We need better approach.
   Definition : The Polynomial set { Pi } is orthogonal in (a, b) with respect to w(x) if :
                                 b

                                 ∫ w( x) P ( x)P
                                 a
                                           i       j   ( x) dx = 0 for i ≠ j

   then we have the following approximation :
                                 b                        n

                                 ∫ w( x) f ( x)dx ≅ ∑ wi f ( xi )
                                 a                       i =1

   where xi are the roots for Pn and
                                       b
                                 wi = ∫ w( x)[ Li ( x)] dx
                                                              2

                                       a

   will compute the integral exactly when f ∈ Π 2 n −1
16


           Definition : Chebyshev Polynomials Tn ( x ) is defined as :
                      n 
                      2 
                       
                           n 
           Tn ( x ) = ∑ x n −2 k ( x 2 −1) k
                            
                      k =0  2 k 

           Tn ( x ) = 2 xTn ( x) − Tn −1 ( x), n ≥ 1, T0 ( x) = 1, T1 ( x ) = x.
           If - 1 ≤ x ≤ 1 then :
                                                                   ( 2i −1)π 
           Tn ( x ) = cos( n arccos x).        roots      xi = cos           .
                                                                    2n       
           1
                 1
           ∫
           −1   1−x   2
                          Ti ( x )T j ( x ) dx = 0 if i ≠ j.



     • So we have following approximation:

1
       1                   π n                    (2i − 1)π 
∫                f ( x)dx ≅ ∑ f ( xi ), xi = cos 
                           n i =1                 2n        i ∈ {1,2,3,..., n}.
−1    1− x2
Legendre-Gaussian Integration
                                                    17


         Algorithms
                      a,b: Integration Interval,
                        N: Number of Points,
                       f(x):Function Formula.



                      Initialize W(n,i),X(n,i).
                               Ans=0;


                      b−a b−a    a+b
           A( x ) =      f(   x+     ).
                       2    2     2



                    For i=1 to N do:
               Ans=Ans+W(N,i)*A(X(N,i));



                           Return Ans;



                               End


Figure 1: Legendre-Gaussian Integration Algorithm
18

                      a,b: Integration Interval,
                        tol=Error Tolerance.
                       f(x):Function Formula.



                      Initialize W(n,i),X(n,i).
                               Ans=0;


                           b −a    b −a    a +b
                A( x ) =        f(      x+      ).
                             2       2       2



                         For i=1 to N do:
          If |Ans-Gaussian(a,b,i,A)|<tol then return Ans;
                               Else
                     Ans=Gaussian(a,b,i,A);




                             Return Ans;



                                End



Figure 2: Adaptive Legendre-Gaussian Integration Algorithm.
    (I didn’t use only even points as stated in the book.)
19

Chebychev-Gaussian Integration
         Algorithms
                      a,b: Integration Interval,
                        N: Number of Points,
                       f(x):Function Formula.



                              (b − a )    a +b a −b
            A( x) = 1 − x 2            f(     +     x)
                                 2          2    2


                     For i=1 to N do:
               Ans=Ans+ A(xi); //xi chebyshev
                          roots



                        Return Ans*pi/n;



                                 End




Figure 3: Chebyshev-Gaussian Integration Algorithm
20



                          a,b: Integration Interval,
                            tol=Error Tolerance.
                           f(x):Function Formula.


                                     (b − a ) a + b a − b
                  A( x ) = 1 − x 2           f(    +      x)
                                        2       2     2



                          For i=1 to N do:
           If |Ans-Chebyshev(a,b,I,A)|<tol then return Ans;
                                Else
                      Ans=Chebyshev(a,b,I,A);




                                 Return Ans;



                                        End




Figure 4: Adaptive Chebyshev-Gaussian Integration Algorithm
21
  Example and MATLAB
Implementation and Results




 Figure 5:Legendre-Gaussian Integration
22




Figure 6: Adaptive Legendre-Gaussian Integration
23




Figure 7:Chebyshev-Gaussian Integration
24




Figure 8:Adaptive Chebyshev-Gaussian Integration
25




 Testing Strategies:
• The software has been tested for
  polynomials less or equal than 2N-1
  degrees.
• It has been tested for some random inputs.
• Its Result has been compared with MATLAB
  Trapz function.
26




Examples:
Example 1:Gaussian-Legendre


 1
       1                                        π
 ∫ 2
 −1 1 + x
          dx exact → Arc tan(1) − Arc tan(−1) = ≅ 1.5707.
              
                                                2
                        1 − (−1)        1            1
           Trapezoid →(
                              )(             +           ) = 1.0000.
                            2      1 + (−1)  2
                                                  1 + (1) 2


                       1 − (−1)        1               1           1
           Simpson →(
                              )(             +4             +        ) ≅ 1.6667.
                           6      1 + (−1) 2      1 + (0) 2 1 + (1) 2
           2− Po int Gaussian → According To Software Resualt = 1.5000.
                      
           3−Po int Gaussian → According To Software Resualt = 1.5833.
                     
27

 Example 2:Gaussian-Legendre
                                               2
                                      − e−x 3      − e −9 1
          3

       ∫ xe
                        2
                   −x
                            dx  →(
                                 
                                exact
                                            )0 = (       + ) ≅ 0.4999.
          0
                                        2            2    2
                                               3− 0
                              Trapezoid →(
                                                  )(0 + 3e −9 ) ≅ 0.0005.
                                                 2
                                            3−0                   2
                             Simpson → (
                                                 )(0 + 1.5e −1.5 + 3e −9 ) ≅ 0.0792.
                                               6
                             2− Po int Gaussian → ≅ 0.6494.
                                        
                             3− Po int Gaussian → ≅ 0.4640.
                                        
Example 3:Gaussian-Legendre

                 (b − a ) 2 n +1 ( n!) 4
      En ( f ) =                         f         2n
                                                        (ξ )   ξ ∈[a, b].
                 ( 2n +1)((2n)!) 3
      π
                        (π − 0) 2 n +1 ( n!) 4
      ∫ sin( x)dx  → | (2n +1)((2n)!) 3 sin (ξ ) |≤ 5 ×10 ⇒ n ≥ 4.
                                                          −4
                                              2n

      0

                  ( 2 − 0) 2 n +1 (n!) 4 −ξ
      2

      ∫ e dx  →| (2n +1)((2n)!) 3 e |≤ 5 ×10 ⇒ n ≥ 3.
              −x                             −4
             
      0
28
Example 4:Gaussian-Legendre

3
      x        1
∫0 1 + x 2 dx = ln(1 + x 2 ) ≅ 1.15129.
               2
2 ⇒ ≅ 1.21622 ⇒ errora ≅ 0.06493.
3 ⇒≅ 1.14258 ⇒ errora ≅ 0.00871.
4 ⇒≅ 1.14902 ⇒ errora ≅ 0.36227.
5 ⇒≅ 1.15156 ⇒ errora ≅ 0.00027.
6 ⇒≅ 1.15137 ⇒ errora ≅ 0.00008.



Example 5:Gaussian-Legendre
3                      2   3
                     e−x
∫ xe
            2
       −x
                dx =      ≅ 0.49994.
0
                     −2 0
2 ⇒≅ 0.64937 ⇒ errora ≅ 0.14943.
3 ⇒≅ 0.46397 ⇒ errora ≅ 0.03597.
4 ⇒≅ 0.50269 ⇒ errora ≅ 0.00275.
5 ⇒≅ 0.50007 ⇒ errora ≅ 0.00013.
6 ⇒≅ 0.49989 ⇒ errora ≅ 0.00005.
29

 Example 6:Gaussian-Legendre
π /2

 ∫ sin( x) dx :: Trapzoid :: 0.78460183690360
                                                     3.5
          2

    0                                                 3

2 - Point ≅ 0.78539816339745.
                                                     2.5
3 - Point ≅ 0.78539816339745.
                                                      2
π

∫ sin( x)
            2
                dx :: Trapzoid :: 1.57079632662673   1.5
0

2 − Point ≅ 1.19283364797927.                         1


3 - Point ≅ 1.60606730236915.                        0.5

3π
 2                                                    0        -0.77 -0.57                          0.57 0.77


∫ sin( x)
            2                                          -1   -0.8    -0.6 -0.4   -0.2   0   0.2   0.4    0.6   0.8   1
                dx ::Trapzoid :: 2.35580550989210
 0

2 − Point ≅ 2.35619449019234.                                4 - Point ≅ 3.53659228676239.
3 - Point ≅ 2.35619449019234.                                5 - Point ≅ 3.08922572211956.
2π                                                           6 - Point ≅ 3.14606122123817.
∫ sin( x)
            2
                dx ::Trapzoid :: 3.14159265355679
                                                            7 - Point ≅ 3.14132550162258.
0

2 − Point ≅ 5.91940603385020.                               8 - Point ≅ 3.14131064749986.
3 - Point ≅ 1.47666903877755.
30




Example 7:Adaptive Gaussian-Legendre


3
     x
∫ 1 + x 2 dx ::
0

1)Adaptive Gaussian Integration :: error ≈ 5 ×10 -5 ⇒ 1.15114335351486.
2)Adaptive Gaussian Integration :: error ≈ 5 ×10 -4 ⇒ 1.15137188448013.


3

∫
     2
  xe x dx ::
0

1)Adaptive Gaussian Integration :: error ≈ 5 × 10 -5 ⇒ 0.49980229291620.
2)Adaptive Gaussian Integration :: error ≈ 5 × 10 -4 ⇒ 0.49988858784837.
31




Example 8:Gaussian-Chebyshev




2 - Point Chebyshev Integration ≈ 0.48538619428604.
3 - Point Chebyshev Integration ≈ 1.39530571408271




2 - Point Chebyshev :: 0
3 - Point Chebyshev :: 0.33089431565488.
32
Example 9:

 1) w1 + w2 + w3 = 2
 2) w1 x1 + w2 x 2 + w3 x3 = 0
        2             2           2    2
 3) w1 x1 + w2 x 2 + w3 x3 =
                                       3
        3             3           3
 4) w1 x1 + w2 x 2 + w3 x3            =0
        4             4           4    2
 5) w1 x1 + w2 x 2 + w3 x3 =
                                       5
        5             5           5
 6) w1 x1 + w2 x 2 + w3 x3            =0
             w1 x1 + w2 x 2         1 
 2,4 ⇒            3           3
                                  =   2 
            w1 x1 + w2 x 2         x3                2    2               2     2        3    2    2          3     2    2
                  3           3          ⇒ w1 x1 ( x1 − x3 ) = w2 x 2 ( x3 − x 2 ), w1 x1 ( x3 − x1 ) = w2 x 2 ( x 2 − x3 )
            w1 x1 + w2 x 2          1
 4,5 ⇒                            = 2
                                   x3 
                  5           5
            w1 x1 + w2 x 2              
 ⇒ x1 = − x 2

              2       2                    2   2
 ⇒ w1 x1 ( x1 − x3 ) = w2 (− x1 )( x3 − x1 ) ⇒ w1 = w2
 w1 = w2 , x1 = − x 2 ⇒ 2) ⇒ w3 x3 = 0.
                                              
             2  2       4 2
 3,5 ⇒ 2w1 x1 = ,2 w1 x1 = . ⇒  x1 =
                                      3
                                        = − x2                              ( w1 , w2 , w3 ) =  5 , 5 , 8 
                                                                                                           
                3         5          5                                                             9 9 9
              2            5            8                                                        3    3 
         2
 ⇒ 2w1 x1 = ⇒ w1 = w2 = ⇒ 1 ⇒ w3 = ⇒ x3 = 0                                  ( x1 , x 2 , x3 ) = 
                                                                                                   ,− , 0 
              3            9            9                                                        5    5  
33




 Conclusion
• In this talk I focused on Gaussian Integration.
• It is shown that this method has good error
  bound and very useful when we have exact
  formula.
• Using Adaptive methods is Recommended Highly.
• General technique for this kind of integration
  also presented.
• The MATLAB codes has been also explained.

Gaussian Integration

  • 1.
    1 Gaussian Integration M. Reza Rahimi, Sharif University of Technology, Tehran, Iran.
  • 2.
    2 Outline • Introduction • Gaussian Integration • Legendre Polynomials • N-Point Gaussian Formula • Error Analysis for Gaussian Integration • Gaussian Integration for Improper Integrals • Legendre-Gaussian Integration Algorithms • Chebyshev-Gaussian Integration Algorithms • Examples, MATLAB Implementation and Results • Conclusion
  • 3.
    3 Introduction •Newton-Cotes and Romberg Integration usually use table of the values of function. • These methods are exact for polynomials less than N degrees. • General formula of these methods are as bellow: b n ∫ f ( x)dx ≅ ∑w a i =1 i f ( xi ) • In Newton-Cotes method the subintervals has the same length.
  • 4.
    4 • But inGaussian Integration we have the exact formula of function. • The points and weights are distinct for specific number N.
  • 5.
    5 Gaussian Integration • For Newton-Cotes methods we have: b b −a 1. ∫ f ( x )dx ≅ [ f (a) + f (b)]. a 2 b b −a  a +b  2. ∫ b f ( x )dx ≅ 6  f (a ) + 4 f ( 2 ) + f (b) .  • And in general form: b n ∫ f ( x)dx ≅ ∑ w f ( x )i i xi = a + (i − 1)h i ∈ {1,2,3,..., n} a i =1 n b− a n t− j wi = ∏ dt n − 1 ∫ j =1, j ≠ i i − j 0
  • 6.
    6 • But supposethat the distance among points are not equal, and for every w and x we want the integration to be exact for polynomial of degree less than 2n-1. n 1 1.∑ wi = ∫ dx i =1 −1 n 1 2.∑ xi wi = ∫ xdx i =1 −1 ............. n 1 2n.∑ x 2 n −1 wi = ∫ x 2 n −1 dx i =1 −1
  • 7.
    7 • Lets lookat an example: n =2 w1 , w2 , x1 , x 2 .  .w1 + w2 = 2 1 2.x w + x w = 0  1 1  2 2 1 2 ⇒2,4 ∴x 1 = x 2 ⇒3 ∴x 1 = . 2 2 2  2  .x 1 w1 + x 2 w2 = 3 2 3 3  3 4.x 1 w1 + x 3 2 w2 = 0  1 x1 = −x 2 = , w1 = w2 =1. 3 • So 2-point Gaussian formula is: 1 1 −1 − ∫ 1 f ( x ) dx ≅ f ( 3 )+ f( 3 ).
  • 8.
    8 LegendrePolynomials • Fortunately each x is the roots of Legendre Polynomial. 1 d 2 PN ( x) = ( x − 1) n . n = 0,1,2,..... 2 n n! dx • We have the following properties for Legendre Polynomials. 1.Pn ( x) Has N Zeros in interval(-1,1). 2.( n +1) Pn +1 ( x ) = ( 2n +1) xPn ( x ) − nPn −1 ( x). 1 2 3. ∫ Pn ( x ) Pm ( x) dx = δmn −1 2mn +1 1 4. ∫ x k Pn ( x) dx = 0 k = 0,1,2......, n - 1 −1 2 n +1 ( n!) 2 1 5.∫ x Pn ( x ) dx = n -1 (2n +1)!
  • 9.
    9 • Legendre Polynomialsmake orthogonal bases in (-1,1) interval. • So for finding Ws we must solve the following equations: n 1 1.∑ wi = ∫ dx = 2 i =1 −1 n 1 2.∑ wi x 2 i = ∫ xdx = 0 i =1 −1 .................... .................... n 1 1 n.∑ wi x n −1i = ∫ x n −1 dx = (1 − (−1) n ) i =1 −1 n
  • 10.
    10 • We havethe following equation which has unique answer: ... x1   w1    n −1 T 2 1 x1       1 x2 ... x 2   w2   n −1 0     . = .   ... ... ... ...     1  1 ... x n   wn   n (1 − (− 1) )  n −1 n  xn      • Theorem: if Xs are the roots of legendre polynomials 1 and we got W from above equation then ∫P ( x)dx is − 1 exact for P ∈Π2 n −1 .
  • 11.
    11 • Proof: p∈ Π 2 n −1 ⇒ p( x) = q ( x) Pn ( x) + r ( x). n −1 n −1 q( x) = ∑ q j Pj ( x) ; r ( x) = ∑ r j Pj ( x). j =0 j =0 1 1 1 n −1 n −1 ∫ p( x)dx = ∫ (q( x) P ( x) + r ( x))dx = ∫ ( P ( x)∑ q P ( x) + ∑ r P ( x))dx = -1 −1 n −1 n j =0 j j j =0 j j n −1 1 n −1 1 ∑ q ∫ P ( x) P ( x)dx + ∑ r ∫ P ( x) P (x)dx = 2r . j =0 j j n j =0 j 0 j 0 −1 −1 ⇒ n n n ∑ w p( x ) = ∑ w (q( x ) P i =1 i i i =1 i i N ( x) + r ( xi )) = ∑ wi r ( xi ) i =1 n n −1 n −1 n n −1 1 = ∑ wi ∑ r j Pj ( xi ) = ∑ r j ∑ wi Pj ( x) = ∑ r j ∫ Pj ( x)dx = 2r0 . i =1 j =0 j =0 i =1 j =0 −1
  • 12.
    12 Theorem: 1 n (x − x j ) wi = ∫ [ Li ( x )] dx ∏ (x 2 Li ( x ) = −1 j = , j ≠i 1 i −xj ) Proof: 1 2 [ Li ( x)] 2 ∈ Π 2 n−2 ⇒ ∫ [ Li ( x)] 2 = ∑ w j [ Li ( x j )] n = wi . −1 j =1
  • 13.
    13 Error Analysis for Gaussian Integration • Error analysis for Gaussian integrals can be derived according to Hermite Interpolation. b Theorem : The error made by gaussian integration in approximation the integral ∫ f ( x )dx is :: a (b − a ) 2 n +1 ( N !) 4 EN ( f ) = f (2n) (ξ ) ξ ∈ [ a, b]. (2n + 1)((2n)!) 3
  • 14.
    14 Gaussian Integration for Improper Integrals • Suppose we want to compute the following integral: 1 f ( x) ∫ −1 1−x2 dx • Using Newton-Cotes methods are not useful in here because they need the end points results. • We must use the following: 1 1−ε f ( x) f ( x) ∫ −1 1− x 2 dx ≅ ∫ε −1+ 1− x 2 dx
  • 15.
    15 • But wecan use the Gaussian formula because it does not need the value at the endpoints. • But according to the error of Gaussian integration, Gaussian integration is also not proper in this case. • We need better approach. Definition : The Polynomial set { Pi } is orthogonal in (a, b) with respect to w(x) if : b ∫ w( x) P ( x)P a i j ( x) dx = 0 for i ≠ j then we have the following approximation : b n ∫ w( x) f ( x)dx ≅ ∑ wi f ( xi ) a i =1 where xi are the roots for Pn and b wi = ∫ w( x)[ Li ( x)] dx 2 a will compute the integral exactly when f ∈ Π 2 n −1
  • 16.
    16 Definition : Chebyshev Polynomials Tn ( x ) is defined as : n  2    n  Tn ( x ) = ∑ x n −2 k ( x 2 −1) k   k =0  2 k  Tn ( x ) = 2 xTn ( x) − Tn −1 ( x), n ≥ 1, T0 ( x) = 1, T1 ( x ) = x. If - 1 ≤ x ≤ 1 then : ( 2i −1)π  Tn ( x ) = cos( n arccos x). roots xi = cos  .  2n  1 1 ∫ −1 1−x 2 Ti ( x )T j ( x ) dx = 0 if i ≠ j. • So we have following approximation: 1 1 π n  (2i − 1)π  ∫ f ( x)dx ≅ ∑ f ( xi ), xi = cos  n i =1  2n   i ∈ {1,2,3,..., n}. −1 1− x2
  • 17.
    Legendre-Gaussian Integration 17 Algorithms a,b: Integration Interval, N: Number of Points, f(x):Function Formula. Initialize W(n,i),X(n,i). Ans=0; b−a b−a a+b A( x ) = f( x+ ). 2 2 2 For i=1 to N do: Ans=Ans+W(N,i)*A(X(N,i)); Return Ans; End Figure 1: Legendre-Gaussian Integration Algorithm
  • 18.
    18 a,b: Integration Interval, tol=Error Tolerance. f(x):Function Formula. Initialize W(n,i),X(n,i). Ans=0; b −a b −a a +b A( x ) = f( x+ ). 2 2 2 For i=1 to N do: If |Ans-Gaussian(a,b,i,A)|<tol then return Ans; Else Ans=Gaussian(a,b,i,A); Return Ans; End Figure 2: Adaptive Legendre-Gaussian Integration Algorithm. (I didn’t use only even points as stated in the book.)
  • 19.
    19 Chebychev-Gaussian Integration Algorithms a,b: Integration Interval, N: Number of Points, f(x):Function Formula. (b − a ) a +b a −b A( x) = 1 − x 2 f( + x) 2 2 2 For i=1 to N do: Ans=Ans+ A(xi); //xi chebyshev roots Return Ans*pi/n; End Figure 3: Chebyshev-Gaussian Integration Algorithm
  • 20.
    20 a,b: Integration Interval, tol=Error Tolerance. f(x):Function Formula. (b − a ) a + b a − b A( x ) = 1 − x 2 f( + x) 2 2 2 For i=1 to N do: If |Ans-Chebyshev(a,b,I,A)|<tol then return Ans; Else Ans=Chebyshev(a,b,I,A); Return Ans; End Figure 4: Adaptive Chebyshev-Gaussian Integration Algorithm
  • 21.
    21 Exampleand MATLAB Implementation and Results Figure 5:Legendre-Gaussian Integration
  • 22.
    22 Figure 6: AdaptiveLegendre-Gaussian Integration
  • 23.
  • 24.
  • 25.
    25 Testing Strategies: •The software has been tested for polynomials less or equal than 2N-1 degrees. • It has been tested for some random inputs. • Its Result has been compared with MATLAB Trapz function.
  • 26.
    26 Examples: Example 1:Gaussian-Legendre 1 1 π ∫ 2 −1 1 + x dx exact → Arc tan(1) − Arc tan(−1) = ≅ 1.5707.  2 1 − (−1) 1 1 Trapezoid →(   )( + ) = 1.0000. 2 1 + (−1) 2 1 + (1) 2 1 − (−1) 1 1 1 Simpson →(  )( +4 + ) ≅ 1.6667. 6 1 + (−1) 2 1 + (0) 2 1 + (1) 2 2− Po int Gaussian → According To Software Resualt = 1.5000.   3−Po int Gaussian → According To Software Resualt = 1.5833.  
  • 27.
    27 Example 2:Gaussian-Legendre 2 − e−x 3 − e −9 1 3 ∫ xe 2 −x dx  →(  exact )0 = ( + ) ≅ 0.4999. 0 2 2 2 3− 0 Trapezoid →(   )(0 + 3e −9 ) ≅ 0.0005. 2 3−0 2 Simpson → (  )(0 + 1.5e −1.5 + 3e −9 ) ≅ 0.0792. 6 2− Po int Gaussian → ≅ 0.6494.   3− Po int Gaussian → ≅ 0.4640.   Example 3:Gaussian-Legendre (b − a ) 2 n +1 ( n!) 4 En ( f ) = f 2n (ξ ) ξ ∈[a, b]. ( 2n +1)((2n)!) 3 π (π − 0) 2 n +1 ( n!) 4 ∫ sin( x)dx  → | (2n +1)((2n)!) 3 sin (ξ ) |≤ 5 ×10 ⇒ n ≥ 4. −4  2n 0 ( 2 − 0) 2 n +1 (n!) 4 −ξ 2 ∫ e dx  →| (2n +1)((2n)!) 3 e |≤ 5 ×10 ⇒ n ≥ 3. −x −4  0
  • 28.
    28 Example 4:Gaussian-Legendre 3 x 1 ∫0 1 + x 2 dx = ln(1 + x 2 ) ≅ 1.15129. 2 2 ⇒ ≅ 1.21622 ⇒ errora ≅ 0.06493. 3 ⇒≅ 1.14258 ⇒ errora ≅ 0.00871. 4 ⇒≅ 1.14902 ⇒ errora ≅ 0.36227. 5 ⇒≅ 1.15156 ⇒ errora ≅ 0.00027. 6 ⇒≅ 1.15137 ⇒ errora ≅ 0.00008. Example 5:Gaussian-Legendre 3 2 3 e−x ∫ xe 2 −x dx = ≅ 0.49994. 0 −2 0 2 ⇒≅ 0.64937 ⇒ errora ≅ 0.14943. 3 ⇒≅ 0.46397 ⇒ errora ≅ 0.03597. 4 ⇒≅ 0.50269 ⇒ errora ≅ 0.00275. 5 ⇒≅ 0.50007 ⇒ errora ≅ 0.00013. 6 ⇒≅ 0.49989 ⇒ errora ≅ 0.00005.
  • 29.
    29 Example 6:Gaussian-Legendre π/2 ∫ sin( x) dx :: Trapzoid :: 0.78460183690360 3.5 2 0 3 2 - Point ≅ 0.78539816339745. 2.5 3 - Point ≅ 0.78539816339745. 2 π ∫ sin( x) 2 dx :: Trapzoid :: 1.57079632662673 1.5 0 2 − Point ≅ 1.19283364797927. 1 3 - Point ≅ 1.60606730236915. 0.5 3π 2 0 -0.77 -0.57 0.57 0.77 ∫ sin( x) 2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 dx ::Trapzoid :: 2.35580550989210 0 2 − Point ≅ 2.35619449019234. 4 - Point ≅ 3.53659228676239. 3 - Point ≅ 2.35619449019234. 5 - Point ≅ 3.08922572211956. 2π 6 - Point ≅ 3.14606122123817. ∫ sin( x) 2 dx ::Trapzoid :: 3.14159265355679 7 - Point ≅ 3.14132550162258. 0 2 − Point ≅ 5.91940603385020. 8 - Point ≅ 3.14131064749986. 3 - Point ≅ 1.47666903877755.
  • 30.
    30 Example 7:Adaptive Gaussian-Legendre 3 x ∫ 1 + x 2 dx :: 0 1)Adaptive Gaussian Integration :: error ≈ 5 ×10 -5 ⇒ 1.15114335351486. 2)Adaptive Gaussian Integration :: error ≈ 5 ×10 -4 ⇒ 1.15137188448013. 3 ∫ 2 xe x dx :: 0 1)Adaptive Gaussian Integration :: error ≈ 5 × 10 -5 ⇒ 0.49980229291620. 2)Adaptive Gaussian Integration :: error ≈ 5 × 10 -4 ⇒ 0.49988858784837.
  • 31.
    31 Example 8:Gaussian-Chebyshev 2 -Point Chebyshev Integration ≈ 0.48538619428604. 3 - Point Chebyshev Integration ≈ 1.39530571408271 2 - Point Chebyshev :: 0 3 - Point Chebyshev :: 0.33089431565488.
  • 32.
    32 Example 9: 1)w1 + w2 + w3 = 2 2) w1 x1 + w2 x 2 + w3 x3 = 0 2 2 2 2 3) w1 x1 + w2 x 2 + w3 x3 = 3 3 3 3 4) w1 x1 + w2 x 2 + w3 x3 =0 4 4 4 2 5) w1 x1 + w2 x 2 + w3 x3 = 5 5 5 5 6) w1 x1 + w2 x 2 + w3 x3 =0 w1 x1 + w2 x 2 1  2,4 ⇒ 3 3 = 2  w1 x1 + w2 x 2 x3  2 2 2 2 3 2 2 3 2 2 3 3  ⇒ w1 x1 ( x1 − x3 ) = w2 x 2 ( x3 − x 2 ), w1 x1 ( x3 − x1 ) = w2 x 2 ( x 2 − x3 ) w1 x1 + w2 x 2 1 4,5 ⇒ = 2 x3  5 5 w1 x1 + w2 x 2  ⇒ x1 = − x 2 2 2 2 2 ⇒ w1 x1 ( x1 − x3 ) = w2 (− x1 )( x3 − x1 ) ⇒ w1 = w2 w1 = w2 , x1 = − x 2 ⇒ 2) ⇒ w3 x3 = 0.   2 2 4 2 3,5 ⇒ 2w1 x1 = ,2 w1 x1 = . ⇒  x1 = 3 = − x2  ( w1 , w2 , w3 ) =  5 , 5 , 8    3 5  5  9 9 9 2 5 8  3 3  2 ⇒ 2w1 x1 = ⇒ w1 = w2 = ⇒ 1 ⇒ w3 = ⇒ x3 = 0 ( x1 , x 2 , x3 ) =   ,− , 0  3 9 9  5 5  
  • 33.
    33 Conclusion • Inthis talk I focused on Gaussian Integration. • It is shown that this method has good error bound and very useful when we have exact formula. • Using Adaptive methods is Recommended Highly. • General technique for this kind of integration also presented. • The MATLAB codes has been also explained.