SlideShare a Scribd company logo
1 of 34
Block Modeling Overview Social life can be described (at least in part) through social roles. To the extent that roles can be characterized by regular interaction patterns, we can summarize roles through common relational patterns. Social life as interconnected system of roles Important feature: thinking of roles as connected in a role system = social structure
Elements of a Role ,[object Object],[object Object],[object Object],[object Object],[object Object]
Coherence of Role Systems Necessary : Some roles fit together necessarily.  For example, the expected interaction patterns of “son-in-law” are implied through the joint roles of “Husband” and “Spouse-Parent” Coincidental : Some roles tend to go together empirically, but they need not (businessman & club member, for example).  Distinguishing the two is a matter of usefulness and judgement, but relates to social substitutability.  The distinction reverts to how the system as a whole will be held together in the face of changes in  role occupants .
Empirical social structures ,[object Object],[object Object],[object Object],[object Object]
Family Structure Start with some basic ideas of what a  role  is:  An exchange of something (support, ideas, commands, etc) between actors.  Thus, we might represent a family as: H W C C C Provides food  for (and there are, of course, many other relations inside the family) Romantic Love Bickers with
Generalization White et al :  From logical role systems to empirical social structures ,[object Object],[object Object],[object Object],.
Structural Equivalence A single relation
Structural Equivalence Graph reduced to positions
Alternative notions of equivalence Instead of exact same ties to exact same alters, you look for nodes with similar ties to similar  types   of alters
Basic Steps: Blockmodeling In any positional analysis, there are 4 basic steps: 1) Identify a definition of equivalence 2) Measure the degree to which pairs of actors are equivalent 3) Develop a representation of the equivalencies 4) Assess the adequacy of the representation 5) Repeat and refine
1) Identify a definition of equivalence ,[object Object],[object Object]
AutoMorphic Equivalence ,[object Object],[object Object],[object Object]
Automorphic Equivalence:
[object Object],[object Object],[object Object],Regular Equivalence i j k l
Regular Equivalence: There may be multiple regular equivalence partitions in a network, and thus we tend to want to find the maximal regular equivalence position, the one with the fewest positions.
Practicality ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 Blockmodeling is the process of identifying these types of positions. A  block  is a section of the adjacency matrix - a “group” of people. Here I have blocked structurally equivalent actors
. 1 1 1 0 0 0 0 0 0 0 0 0 0 1 . 0 0 1 1 0 0 0 0 0 0 0 0 1 0 . 1 0 0 1 1 1 1 0 0 0 0 1 0 1 . 0 0 1 1 1 1 0 0 0 0 0 1 0 0 . 1 0 0 0 0 1 1 1 1 0 1 0 0 1 . 0 0 0 0 1 1 1 1 0 0 1 1 0 0 . 0 0 0 0 0 0 0 0 0 1 1 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 1 1 0 0 0 0 0 0 . 0 0 0 0 0 1 1 0 0 0 0 0 0 0 . 1 2 3 4 5 6 1 0 1 1 0 0 0 2 1 0 0 1 0 0 3 1 0 1 0 1 0 4 0 1 0 1 0 1  5 0 0 1 0 0 0 6 0 0 0 1 0 0 Once you block the matrix, reduce it, based on the number of ties in the cell of interest.  The key values are a zero block (no ties) and a one-block (all ties present): Structural equivalence thus generates 6 positions in the network 1 2 3 4 5 6 1 2 3 4 5 6
. 1 1 1 0 0 0 0 0 0 0 0 0 0 1 . 0 0 1 1 0 0 0 0 0 0 0 0 1 0 . 1 0 0 1 1 1 1 0 0 0 0 1 0 1 . 0 0 1 1 1 1 0 0 0 0 0 1 0 0 . 1 0 0 0 0 1 1 1 1 0 1 0 0 1 . 0 0 0 0 1 1 1 1 0 0 1 1 0 0 . 0 0 0 0 0 0 0 0 0 1 1 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 1 1 0 0 0 0 0 0 . 0 0 0 0 0 1 1 0 0 0 0 0 0 0 . 1 2 3 1 1 1 0 2 1 1 1  3 0 1 0 Once you partition the matrix, reduce it: Regular equivalence 1 2 3
To get a block model, you have to measure the similarity between each pair.  If two actors are structurally equivalent, then they will have exactly similar patterns of ties to other people.  Consider the example again: . 1 1 1 0 0 0 0 0 0 0 0 0 0 1 . 0 0 1 1 0 0 0 0 0 0 0 0 1 0 . 1 0 0 1 1 1 1 0 0 0 0 1 0 1 . 0 0 1 1 1 1 0 0 0 0 0 1 0 0 . 1 0 0 0 0 1 1 1 1 0 1 0 0 1 . 0 0 0 0 1 1 1 1 0 0 1 1 0 0 . 0 0 0 0 0 0 0 0 0 1 1 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 1 1 0 0 0 0 0 0 . 0 0 0 0 0 1 1 0 0 0 0 0 0 0 . 1 2 3 4 5 6 1 2 3 4 5 6 C D  Match 1   1  1 0   0  1 .  1  0 1  .  0 0   0  1 0   0  1 1   1  1  1   1  1  1   1  1 1   1  1 0   0  1 0   0  1 0   0  1 0   0  1 Sum:  12 C and D match on 12 other people
If the model is going to be based on asymmetric or multiple relations, you simply stack the various relations: H W C C C Provides food  for Romantic Love Bickers with Romance 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Feeds 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bicker 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 Stacked
0  8  7  7  5  5 11 11 11 11  7  7  7  7 8  0  5  5  7  7  7  7  7  7 11 11 11 11 7  5  0  12   0  0  8  8  8  8  4  4  4  4 7  5  12   0  0  0  8  8  8  8  4  4  4  4 5  7  0  0  0  12   4  4  4  4  8  8  8  8 5  7  0  0  12   0  4  4  4  4  8  8  8  8 11  7  8  8  4  4  0  12 12 12   8  8  8  8 11  7  8  8  4  4  12   0  12 12   8  8  8  8 11  7  8  8  4  4  12 12   0  12   8  8  8  8 11  7  8  8  4  4  12 12 12   0  8  8  8  8 7 11  4  4  8  8  8  8  8  8  0  12 12 12 7 11  4  4  8  8  8  8  8  8  12   0  12 12 7 11  4  4  8  8  8  8  8  8  12 12   0  12 7 11  4  4  8  8  8  8  8  8  12 12 12   0 For the entire matrix, we get: (number of agreements for each ij pair)
Measuring similarity 1.00  -0.20  0.08  0.08 -0.19 -0.19  0.77  0.77  0.77  0.77 -0.26 -0.26 -0.26 -0.26 -0.20  1.00  -0.19 -0.19  0.08  0.08 -0.26 -0.26 -0.26 -0.26  0.77  0.77  0.77  0.77 0.08 -0.19  1.00  1.00  -1.00 -1.00  0.36  0.36  0.36  0.36 -0.45 -0.45 -0.45 -0.45 0.08 -0.19  1.00  1.00  -1.00 -1.00  0.36  0.36  0.36  0.36 -0.45 -0.45 -0.45 -0.45 -0.19  0.08 -1.00 -1.00  1.00  1.00  -0.45 -0.45 -0.45 -0.45  0.36  0.36  0.36  0.36 -0.19  0.08 -1.00 -1.00  1.00  1.00  -0.45 -0.45 -0.45 -0.45  0.36  0.36  0.36  0.36 0.77 -0.26  0.36  0.36 -0.45 -0.45  1.00  1.00  1.00  1.00  -0.20 -0.20 -0.20 -0.20 0.77 -0.26  0.36  0.36 -0.45 -0.45  1.00  1.00  1.00  1.00  -0.20 -0.20 -0.20 -0.20 0.77 -0.26  0.36  0.36 -0.45 -0.45  1.00  1.00  1.00  1.00  -0.20 -0.20 -0.20 -0.20 0.77 -0.26  0.36  0.36 -0.45 -0.45  1.00  1.00  1.00  1.00  -0.20 -0.20 -0.20 -0.20 -0.26  0.77 -0.45 -0.45  0.36  0.36 -0.20 -0.20 -0.20 -0.20  1.00  1.00  1.00  1.00 -0.26  0.77 -0.45 -0.45  0.36  0.36 -0.20 -0.20 -0.20 -0.20  1.00  1.00  1.00  1.00 -0.26  0.77 -0.45 -0.45  0.36  0.36 -0.20 -0.20 -0.20 -0.20  1.00  1.00  1.00  1.00 -0.26  0.77 -0.45 -0.45  0.36  0.36 -0.20 -0.20 -0.20 -0.20  1.00  1.00  1.00  1.00 Correlation  between each node’s set of ties.  For the example, this would be:
The initial method for finding structurally equivalent positions was CONCOR, the CONvergence of iterated  COR relations.  1.00 -.77 0.55 0.55 -.57 -.57 0.95 0.95 0.95 0.95 -.75 -.75 -.75 -.75 -.77 1.00 -.57 -.57 0.55 0.55 -.75 -.75 -.75 -.75 0.95 0.95 0.95 0.95 0.55 -.57 1.00 1.00 -1.0 -1.0 0.73 0.73 0.73 0.73 -.75 -.75 -.75 -.75 0.55 -.57 1.00 1.00 -1.0 -1.0 0.73 0.73 0.73 0.73 -.75 -.75 -.75 -.75 -.57 0.55 -1.0 -1.0 1.00 1.00 -.75 -.75 -.75 -.75 0.73 0.73 0.73 0.73 -.57 0.55 -1.0 -1.0 1.00 1.00 -.75 -.75 -.75 -.75 0.73 0.73 0.73 0.73 0.95 -.75 0.73 0.73 -.75 -.75 1.00 1.00 1.00 1.00 -.77 -.77 -.77 -.77 0.95 -.75 0.73 0.73 -.75 -.75 1.00 1.00 1.00 1.00 -.77 -.77 -.77 -.77 0.95 -.75 0.73 0.73 -.75 -.75 1.00 1.00 1.00 1.00 -.77 -.77 -.77 -.77 0.95 -.75 0.73 0.73 -.75 -.75 1.00 1.00 1.00 1.00 -.77 -.77 -.77 -.77 -.75 0.95 -.75 -.75 0.73 0.73 -.77 -.77 -.77 -.77 1.00 1.00 1.00 1.00 -.75 0.95 -.75 -.75 0.73 0.73 -.77 -.77 -.77 -.77 1.00 1.00 1.00 1.00 -.75 0.95 -.75 -.75 0.73 0.73 -.77 -.77 -.77 -.77 1.00 1.00 1.00 1.00 -.75 0.95 -.75 -.75 0.73 0.73 -.77 -.77 -.77 -.77 1.00 1.00 1.00 1.00 Concor iteration 1:
Concor iteration 2: 1.00 -.99 0.94 0.94 -.94 -.94 0.99 0.99 0.99 0.99 -.99 -.99 -.99 -.99 -.99 1.00 -.94 -.94 0.94 0.94 -.99 -.99 -.99 -.99 0.99 0.99 0.99 0.99 0.94 -.94 1.00 1.00 -1.0 -1.0 0.97 0.97 0.97 0.97 -.97 -.97 -.97 -.97 0.94 -.94 1.00 1.00 -1.0 -1.0 0.97 0.97 0.97 0.97 -.97 -.97 -.97 -.97 -.94 0.94 -1.0 -1.0 1.00 1.00 -.97 -.97 -.97 -.97 0.97 0.97 0.97 0.97 -.94 0.94 -1.0 -1.0 1.00 1.00 -.97 -.97 -.97 -.97 0.97 0.97 0.97 0.97 0.99 -.99 0.97 0.97 -.97 -.97 1.00 1.00 1.00 1.00 -.99 -.99 -.99 -.99 0.99 -.99 0.97 0.97 -.97 -.97 1.00 1.00 1.00 1.00 -.99 -.99 -.99 -.99 0.99 -.99 0.97 0.97 -.97 -.97 1.00 1.00 1.00 1.00 -.99 -.99 -.99 -.99 0.99 -.99 0.97 0.97 -.97 -.97 1.00 1.00 1.00 1.00 -.99 -.99 -.99 -.99 -.99 0.99 -.97 -.97 0.97 0.97 -.99 -.99 -.99 -.99 1.00 1.00 1.00 1.00 -.99 0.99 -.97 -.97 0.97 0.97 -.99 -.99 -.99 -.99 1.00 1.00 1.00 1.00 -.99 0.99 -.97 -.97 0.97 0.97 -.99 -.99 -.99 -.99 1.00 1.00 1.00 1.00 -.99 0.99 -.97 -.97 0.97 0.97 -.99 -.99 -.99 -.99 1.00 1.00 1.00 1.00 The initial method for finding structurally equivalent positions was CONCOR, the CONvergence of iterated  COR relations.
Padget and Ansell: “ Robust Action and the Rise of the Medici” ,[object Object],[object Object],[object Object]
Padget and Ansell: “ Robust Action and the Rise of the Medici” Medici  Takeover
Padget and Ansell: “ Robust Action and the Rise of the Medici” The story they tell revolves around how Cosimo de’Medici was able to found a system that lasted nearly 300 years, uniting a fractured political structure. The paradox of Cosimo is that he didn’t  seem  to fit the role of a Machiavellian leader as decisive and goal oriented. The answer lies in the power resulting from ‘robust action’ embedded in a network of relations that gives rise to no  clear  meaning and obligation, but instead allows for  multiple  meanings and obligations.
A real example: Padget and Ansell: “ Robust Action and the Rise of the Medici” “ Political Groups” in the attribute sense do not seem to exist, so P&A turn to the pattern of network relations among families. This is the BLOCK reduction of the full 92 family network.
An example: Relations among Italian families. Political and friendship ties
Generalized Block Models The recent work on generalization focuses on the patterns that determine a block. Instead of focusing on just the  density  of a block, you can identify a block as any set that has a particular pattern of ties to any other set. Examples include:
Generalized Block Models
Compound Relations. One of the most powerful tools in role analysis involves looking at role systems through compound relations.  A compound relation is formed by combining relations in single dimensions.  The best example of compound relations come from kinship.  Sibling Child of Sibling 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 Child of 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x = Nephew/Niece 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S  C = SC
An example of compound relations can be found in W&F.  This role table catalogues the compounds for two relations “Is boss of” and “Is on the same level as”

More Related Content

What's hot

Item Based Collaborative Filtering Recommendation Algorithms
Item Based Collaborative Filtering Recommendation AlgorithmsItem Based Collaborative Filtering Recommendation Algorithms
Item Based Collaborative Filtering Recommendation Algorithms
nextlib
 

What's hot (19)

Data analytics with R
Data analytics with RData analytics with R
Data analytics with R
 
Taxonomy Quality Assessment
Taxonomy Quality AssessmentTaxonomy Quality Assessment
Taxonomy Quality Assessment
 
Association Rule.ppt
Association Rule.pptAssociation Rule.ppt
Association Rule.ppt
 
Item Based Collaborative Filtering Recommendation Algorithms
Item Based Collaborative Filtering Recommendation AlgorithmsItem Based Collaborative Filtering Recommendation Algorithms
Item Based Collaborative Filtering Recommendation Algorithms
 
Binary Search Tree and AVL
Binary Search Tree and AVLBinary Search Tree and AVL
Binary Search Tree and AVL
 
1.8 discretization
1.8 discretization1.8 discretization
1.8 discretization
 
Avl tree
Avl treeAvl tree
Avl tree
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithms
 
Card Sorting- Information Architecture Technique
Card Sorting- Information Architecture TechniqueCard Sorting- Information Architecture Technique
Card Sorting- Information Architecture Technique
 
Document 1320130813093429
Document 1320130813093429Document 1320130813093429
Document 1320130813093429
 
Binary search tree in data structures
Binary search tree in  data structuresBinary search tree in  data structures
Binary search tree in data structures
 
Data mining: Concepts and Techniques, Chapter12 outlier Analysis
Data mining: Concepts and Techniques, Chapter12 outlier Analysis Data mining: Concepts and Techniques, Chapter12 outlier Analysis
Data mining: Concepts and Techniques, Chapter12 outlier Analysis
 
30 ความสัมพันธ์และฟังก์ชัน ตอนที่1_ความสัมพันธ์
30 ความสัมพันธ์และฟังก์ชัน ตอนที่1_ความสัมพันธ์30 ความสัมพันธ์และฟังก์ชัน ตอนที่1_ความสัมพันธ์
30 ความสัมพันธ์และฟังก์ชัน ตอนที่1_ความสัมพันธ์
 
Complex and Social Network Analysis in Python
Complex and Social Network Analysis in PythonComplex and Social Network Analysis in Python
Complex and Social Network Analysis in Python
 
[2022] 미래 사법의 과제 - AI 임팩트
[2022] 미래 사법의 과제 - AI 임팩트[2022] 미래 사법의 과제 - AI 임팩트
[2022] 미래 사법의 과제 - AI 임팩트
 
Cascading behavior in the networks
Cascading behavior in the networksCascading behavior in the networks
Cascading behavior in the networks
 
Ontology for Knowledge and Data Strategies.pptx
Ontology for Knowledge and Data Strategies.pptxOntology for Knowledge and Data Strategies.pptx
Ontology for Knowledge and Data Strategies.pptx
 
O-NET ม.6-ตรีโกณมิติ
O-NET ม.6-ตรีโกณมิติO-NET ม.6-ตรีโกณมิติ
O-NET ม.6-ตรีโกณมิติ
 
Social Network Analysis Introduction including Data Structure Graph overview.
Social Network Analysis Introduction including Data Structure Graph overview. Social Network Analysis Introduction including Data Structure Graph overview.
Social Network Analysis Introduction including Data Structure Graph overview.
 

Similar to 6 Block Modeling

Statistics term project_written
Statistics term project_writtenStatistics term project_written
Statistics term project_written
jpratt23
 
Other classification methods in data mining
Other classification methods in data miningOther classification methods in data mining
Other classification methods in data mining
Kumar Deepak
 
Anti-MOOCs: The design of MACROSIMs
Anti-MOOCs: The design of MACROSIMsAnti-MOOCs: The design of MACROSIMs
Anti-MOOCs: The design of MACROSIMs
dws1d
 
topological_quantum_computing
topological_quantum_computingtopological_quantum_computing
topological_quantum_computing
Zachary Forster
 

Similar to 6 Block Modeling (20)

Basics Gephi Tutorial
Basics Gephi TutorialBasics Gephi Tutorial
Basics Gephi Tutorial
 
What is qca
What is qcaWhat is qca
What is qca
 
Estado del Arte de la IA
Estado del Arte de la IAEstado del Arte de la IA
Estado del Arte de la IA
 
Deep Learning con CNTK by Pablo Doval
Deep Learning con CNTK by Pablo DovalDeep Learning con CNTK by Pablo Doval
Deep Learning con CNTK by Pablo Doval
 
Blockmodels
BlockmodelsBlockmodels
Blockmodels
 
Logistic regression teaching
Logistic regression teachingLogistic regression teaching
Logistic regression teaching
 
RecSys2018論文読み会 資料
RecSys2018論文読み会 資料RecSys2018論文読み会 資料
RecSys2018論文読み会 資料
 
Statistical Physics of Ecological Networks: from patterns to principles
Statistical Physics of Ecological Networks: from patterns to principlesStatistical Physics of Ecological Networks: from patterns to principles
Statistical Physics of Ecological Networks: from patterns to principles
 
Statistics term project_written
Statistics term project_writtenStatistics term project_written
Statistics term project_written
 
Other classification methods in data mining
Other classification methods in data miningOther classification methods in data mining
Other classification methods in data mining
 
Why doesn't linux need defragmenting, Linux Defragmentation, Defragment, Linu...
Why doesn't linux need defragmenting, Linux Defragmentation, Defragment, Linu...Why doesn't linux need defragmenting, Linux Defragmentation, Defragment, Linu...
Why doesn't linux need defragmenting, Linux Defragmentation, Defragment, Linu...
 
SXSW
SXSWSXSW
SXSW
 
SXSW
SXSWSXSW
SXSW
 
Conducting and Understanding a Trend Analysis
Conducting and Understanding a Trend AnalysisConducting and Understanding a Trend Analysis
Conducting and Understanding a Trend Analysis
 
Lecture 4 Teaching Futures, Systems and Strategic Thinking 2016
Lecture 4 Teaching Futures, Systems and Strategic Thinking 2016Lecture 4 Teaching Futures, Systems and Strategic Thinking 2016
Lecture 4 Teaching Futures, Systems and Strategic Thinking 2016
 
Anti-MOOCs: The design of MACROSIMs
Anti-MOOCs: The design of MACROSIMsAnti-MOOCs: The design of MACROSIMs
Anti-MOOCs: The design of MACROSIMs
 
Diagnosa alergi
Diagnosa alergiDiagnosa alergi
Diagnosa alergi
 
Coordenadas normales y tangenciales power pint
Coordenadas normales y tangenciales power pintCoordenadas normales y tangenciales power pint
Coordenadas normales y tangenciales power pint
 
topological_quantum_computing
topological_quantum_computingtopological_quantum_computing
topological_quantum_computing
 
[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...
[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...
[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...
 

More from Maksim Tsvetovat (16)

6 Hiclus
6 Hiclus6 Hiclus
6 Hiclus
 
15 Orgahead
15 Orgahead15 Orgahead
15 Orgahead
 
14 Dynamic Networks
14 Dynamic Networks14 Dynamic Networks
14 Dynamic Networks
 
11 Strength Of Strong Ties
11 Strength Of Strong Ties11 Strength Of Strong Ties
11 Strength Of Strong Ties
 
12 Cognitive Social Structure
12 Cognitive Social Structure12 Cognitive Social Structure
12 Cognitive Social Structure
 
5 Structural Holes
5 Structural Holes5 Structural Holes
5 Structural Holes
 
11 Contagion
11 Contagion11 Contagion
11 Contagion
 
6 Block Modeling
6 Block Modeling6 Block Modeling
6 Block Modeling
 
6 Concor
6 Concor6 Concor
6 Concor
 
10 Strength Of Weak Ties
10 Strength Of Weak Ties10 Strength Of Weak Ties
10 Strength Of Weak Ties
 
3 Centrality
3 Centrality3 Centrality
3 Centrality
 
6 Concor
6 Concor6 Concor
6 Concor
 
5 Structural Holes
5 Structural Holes5 Structural Holes
5 Structural Holes
 
4 Cliques Clusters
4 Cliques Clusters4 Cliques Clusters
4 Cliques Clusters
 
1 Mechanics
1 Mechanics1 Mechanics
1 Mechanics
 
2 Graph Theory
2 Graph Theory2 Graph Theory
2 Graph Theory
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 

6 Block Modeling

  • 1. Block Modeling Overview Social life can be described (at least in part) through social roles. To the extent that roles can be characterized by regular interaction patterns, we can summarize roles through common relational patterns. Social life as interconnected system of roles Important feature: thinking of roles as connected in a role system = social structure
  • 2.
  • 3. Coherence of Role Systems Necessary : Some roles fit together necessarily. For example, the expected interaction patterns of “son-in-law” are implied through the joint roles of “Husband” and “Spouse-Parent” Coincidental : Some roles tend to go together empirically, but they need not (businessman & club member, for example). Distinguishing the two is a matter of usefulness and judgement, but relates to social substitutability. The distinction reverts to how the system as a whole will be held together in the face of changes in role occupants .
  • 4.
  • 5. Family Structure Start with some basic ideas of what a role is: An exchange of something (support, ideas, commands, etc) between actors. Thus, we might represent a family as: H W C C C Provides food for (and there are, of course, many other relations inside the family) Romantic Love Bickers with
  • 6.
  • 7. Structural Equivalence A single relation
  • 8. Structural Equivalence Graph reduced to positions
  • 9. Alternative notions of equivalence Instead of exact same ties to exact same alters, you look for nodes with similar ties to similar types of alters
  • 10. Basic Steps: Blockmodeling In any positional analysis, there are 4 basic steps: 1) Identify a definition of equivalence 2) Measure the degree to which pairs of actors are equivalent 3) Develop a representation of the equivalencies 4) Assess the adequacy of the representation 5) Repeat and refine
  • 11.
  • 12.
  • 14.
  • 15. Regular Equivalence: There may be multiple regular equivalence partitions in a network, and thus we tend to want to find the maximal regular equivalence position, the one with the fewest positions.
  • 16.
  • 17. 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 Blockmodeling is the process of identifying these types of positions. A block is a section of the adjacency matrix - a “group” of people. Here I have blocked structurally equivalent actors
  • 18. . 1 1 1 0 0 0 0 0 0 0 0 0 0 1 . 0 0 1 1 0 0 0 0 0 0 0 0 1 0 . 1 0 0 1 1 1 1 0 0 0 0 1 0 1 . 0 0 1 1 1 1 0 0 0 0 0 1 0 0 . 1 0 0 0 0 1 1 1 1 0 1 0 0 1 . 0 0 0 0 1 1 1 1 0 0 1 1 0 0 . 0 0 0 0 0 0 0 0 0 1 1 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 1 1 0 0 0 0 0 0 . 0 0 0 0 0 1 1 0 0 0 0 0 0 0 . 1 2 3 4 5 6 1 0 1 1 0 0 0 2 1 0 0 1 0 0 3 1 0 1 0 1 0 4 0 1 0 1 0 1 5 0 0 1 0 0 0 6 0 0 0 1 0 0 Once you block the matrix, reduce it, based on the number of ties in the cell of interest. The key values are a zero block (no ties) and a one-block (all ties present): Structural equivalence thus generates 6 positions in the network 1 2 3 4 5 6 1 2 3 4 5 6
  • 19. . 1 1 1 0 0 0 0 0 0 0 0 0 0 1 . 0 0 1 1 0 0 0 0 0 0 0 0 1 0 . 1 0 0 1 1 1 1 0 0 0 0 1 0 1 . 0 0 1 1 1 1 0 0 0 0 0 1 0 0 . 1 0 0 0 0 1 1 1 1 0 1 0 0 1 . 0 0 0 0 1 1 1 1 0 0 1 1 0 0 . 0 0 0 0 0 0 0 0 0 1 1 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 1 1 0 0 0 0 0 0 . 0 0 0 0 0 1 1 0 0 0 0 0 0 0 . 1 2 3 1 1 1 0 2 1 1 1 3 0 1 0 Once you partition the matrix, reduce it: Regular equivalence 1 2 3
  • 20. To get a block model, you have to measure the similarity between each pair. If two actors are structurally equivalent, then they will have exactly similar patterns of ties to other people. Consider the example again: . 1 1 1 0 0 0 0 0 0 0 0 0 0 1 . 0 0 1 1 0 0 0 0 0 0 0 0 1 0 . 1 0 0 1 1 1 1 0 0 0 0 1 0 1 . 0 0 1 1 1 1 0 0 0 0 0 1 0 0 . 1 0 0 0 0 1 1 1 1 0 1 0 0 1 . 0 0 0 0 1 1 1 1 0 0 1 1 0 0 . 0 0 0 0 0 0 0 0 0 1 1 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0 0 0 1 1 0 0 0 0 0 0 . 0 0 0 0 0 1 1 0 0 0 0 0 0 0 . 1 2 3 4 5 6 1 2 3 4 5 6 C D Match 1 1 1 0 0 1 . 1 0 1 . 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 Sum: 12 C and D match on 12 other people
  • 21. If the model is going to be based on asymmetric or multiple relations, you simply stack the various relations: H W C C C Provides food for Romantic Love Bickers with Romance 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Feeds 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bicker 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 Stacked
  • 22. 0 8 7 7 5 5 11 11 11 11 7 7 7 7 8 0 5 5 7 7 7 7 7 7 11 11 11 11 7 5 0 12 0 0 8 8 8 8 4 4 4 4 7 5 12 0 0 0 8 8 8 8 4 4 4 4 5 7 0 0 0 12 4 4 4 4 8 8 8 8 5 7 0 0 12 0 4 4 4 4 8 8 8 8 11 7 8 8 4 4 0 12 12 12 8 8 8 8 11 7 8 8 4 4 12 0 12 12 8 8 8 8 11 7 8 8 4 4 12 12 0 12 8 8 8 8 11 7 8 8 4 4 12 12 12 0 8 8 8 8 7 11 4 4 8 8 8 8 8 8 0 12 12 12 7 11 4 4 8 8 8 8 8 8 12 0 12 12 7 11 4 4 8 8 8 8 8 8 12 12 0 12 7 11 4 4 8 8 8 8 8 8 12 12 12 0 For the entire matrix, we get: (number of agreements for each ij pair)
  • 23. Measuring similarity 1.00 -0.20 0.08 0.08 -0.19 -0.19 0.77 0.77 0.77 0.77 -0.26 -0.26 -0.26 -0.26 -0.20 1.00 -0.19 -0.19 0.08 0.08 -0.26 -0.26 -0.26 -0.26 0.77 0.77 0.77 0.77 0.08 -0.19 1.00 1.00 -1.00 -1.00 0.36 0.36 0.36 0.36 -0.45 -0.45 -0.45 -0.45 0.08 -0.19 1.00 1.00 -1.00 -1.00 0.36 0.36 0.36 0.36 -0.45 -0.45 -0.45 -0.45 -0.19 0.08 -1.00 -1.00 1.00 1.00 -0.45 -0.45 -0.45 -0.45 0.36 0.36 0.36 0.36 -0.19 0.08 -1.00 -1.00 1.00 1.00 -0.45 -0.45 -0.45 -0.45 0.36 0.36 0.36 0.36 0.77 -0.26 0.36 0.36 -0.45 -0.45 1.00 1.00 1.00 1.00 -0.20 -0.20 -0.20 -0.20 0.77 -0.26 0.36 0.36 -0.45 -0.45 1.00 1.00 1.00 1.00 -0.20 -0.20 -0.20 -0.20 0.77 -0.26 0.36 0.36 -0.45 -0.45 1.00 1.00 1.00 1.00 -0.20 -0.20 -0.20 -0.20 0.77 -0.26 0.36 0.36 -0.45 -0.45 1.00 1.00 1.00 1.00 -0.20 -0.20 -0.20 -0.20 -0.26 0.77 -0.45 -0.45 0.36 0.36 -0.20 -0.20 -0.20 -0.20 1.00 1.00 1.00 1.00 -0.26 0.77 -0.45 -0.45 0.36 0.36 -0.20 -0.20 -0.20 -0.20 1.00 1.00 1.00 1.00 -0.26 0.77 -0.45 -0.45 0.36 0.36 -0.20 -0.20 -0.20 -0.20 1.00 1.00 1.00 1.00 -0.26 0.77 -0.45 -0.45 0.36 0.36 -0.20 -0.20 -0.20 -0.20 1.00 1.00 1.00 1.00 Correlation between each node’s set of ties. For the example, this would be:
  • 24. The initial method for finding structurally equivalent positions was CONCOR, the CONvergence of iterated COR relations. 1.00 -.77 0.55 0.55 -.57 -.57 0.95 0.95 0.95 0.95 -.75 -.75 -.75 -.75 -.77 1.00 -.57 -.57 0.55 0.55 -.75 -.75 -.75 -.75 0.95 0.95 0.95 0.95 0.55 -.57 1.00 1.00 -1.0 -1.0 0.73 0.73 0.73 0.73 -.75 -.75 -.75 -.75 0.55 -.57 1.00 1.00 -1.0 -1.0 0.73 0.73 0.73 0.73 -.75 -.75 -.75 -.75 -.57 0.55 -1.0 -1.0 1.00 1.00 -.75 -.75 -.75 -.75 0.73 0.73 0.73 0.73 -.57 0.55 -1.0 -1.0 1.00 1.00 -.75 -.75 -.75 -.75 0.73 0.73 0.73 0.73 0.95 -.75 0.73 0.73 -.75 -.75 1.00 1.00 1.00 1.00 -.77 -.77 -.77 -.77 0.95 -.75 0.73 0.73 -.75 -.75 1.00 1.00 1.00 1.00 -.77 -.77 -.77 -.77 0.95 -.75 0.73 0.73 -.75 -.75 1.00 1.00 1.00 1.00 -.77 -.77 -.77 -.77 0.95 -.75 0.73 0.73 -.75 -.75 1.00 1.00 1.00 1.00 -.77 -.77 -.77 -.77 -.75 0.95 -.75 -.75 0.73 0.73 -.77 -.77 -.77 -.77 1.00 1.00 1.00 1.00 -.75 0.95 -.75 -.75 0.73 0.73 -.77 -.77 -.77 -.77 1.00 1.00 1.00 1.00 -.75 0.95 -.75 -.75 0.73 0.73 -.77 -.77 -.77 -.77 1.00 1.00 1.00 1.00 -.75 0.95 -.75 -.75 0.73 0.73 -.77 -.77 -.77 -.77 1.00 1.00 1.00 1.00 Concor iteration 1:
  • 25. Concor iteration 2: 1.00 -.99 0.94 0.94 -.94 -.94 0.99 0.99 0.99 0.99 -.99 -.99 -.99 -.99 -.99 1.00 -.94 -.94 0.94 0.94 -.99 -.99 -.99 -.99 0.99 0.99 0.99 0.99 0.94 -.94 1.00 1.00 -1.0 -1.0 0.97 0.97 0.97 0.97 -.97 -.97 -.97 -.97 0.94 -.94 1.00 1.00 -1.0 -1.0 0.97 0.97 0.97 0.97 -.97 -.97 -.97 -.97 -.94 0.94 -1.0 -1.0 1.00 1.00 -.97 -.97 -.97 -.97 0.97 0.97 0.97 0.97 -.94 0.94 -1.0 -1.0 1.00 1.00 -.97 -.97 -.97 -.97 0.97 0.97 0.97 0.97 0.99 -.99 0.97 0.97 -.97 -.97 1.00 1.00 1.00 1.00 -.99 -.99 -.99 -.99 0.99 -.99 0.97 0.97 -.97 -.97 1.00 1.00 1.00 1.00 -.99 -.99 -.99 -.99 0.99 -.99 0.97 0.97 -.97 -.97 1.00 1.00 1.00 1.00 -.99 -.99 -.99 -.99 0.99 -.99 0.97 0.97 -.97 -.97 1.00 1.00 1.00 1.00 -.99 -.99 -.99 -.99 -.99 0.99 -.97 -.97 0.97 0.97 -.99 -.99 -.99 -.99 1.00 1.00 1.00 1.00 -.99 0.99 -.97 -.97 0.97 0.97 -.99 -.99 -.99 -.99 1.00 1.00 1.00 1.00 -.99 0.99 -.97 -.97 0.97 0.97 -.99 -.99 -.99 -.99 1.00 1.00 1.00 1.00 -.99 0.99 -.97 -.97 0.97 0.97 -.99 -.99 -.99 -.99 1.00 1.00 1.00 1.00 The initial method for finding structurally equivalent positions was CONCOR, the CONvergence of iterated COR relations.
  • 26.
  • 27. Padget and Ansell: “ Robust Action and the Rise of the Medici” Medici Takeover
  • 28. Padget and Ansell: “ Robust Action and the Rise of the Medici” The story they tell revolves around how Cosimo de’Medici was able to found a system that lasted nearly 300 years, uniting a fractured political structure. The paradox of Cosimo is that he didn’t seem to fit the role of a Machiavellian leader as decisive and goal oriented. The answer lies in the power resulting from ‘robust action’ embedded in a network of relations that gives rise to no clear meaning and obligation, but instead allows for multiple meanings and obligations.
  • 29. A real example: Padget and Ansell: “ Robust Action and the Rise of the Medici” “ Political Groups” in the attribute sense do not seem to exist, so P&A turn to the pattern of network relations among families. This is the BLOCK reduction of the full 92 family network.
  • 30. An example: Relations among Italian families. Political and friendship ties
  • 31. Generalized Block Models The recent work on generalization focuses on the patterns that determine a block. Instead of focusing on just the density of a block, you can identify a block as any set that has a particular pattern of ties to any other set. Examples include:
  • 33. Compound Relations. One of the most powerful tools in role analysis involves looking at role systems through compound relations. A compound relation is formed by combining relations in single dimensions. The best example of compound relations come from kinship. Sibling Child of Sibling 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 Child of 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x = Nephew/Niece 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S  C = SC
  • 34. An example of compound relations can be found in W&F. This role table catalogues the compounds for two relations “Is boss of” and “Is on the same level as”