SlideShare a Scribd company logo
1 of 48
Download to read offline
Many electron atoms
ρ( x )
x

3
dV = d x

x−r

r

Autumn 2012
Version: 04.12.2012
List of topics
(1)
Pauli-principle
Hund’s rule
Antisymmetric functions for n-particles - Slater Determinants
Filling Shells Figure
Ionization energies - Figure
Hartree - Selfconsistent field - Iterations
only Iterations part
Selfconsistent field Result - Figures
Configurations - Ionization potentials of atoms - Tables
Screened potential and Centrifugal barrier - Explains Tables
Energy for N-particles - Using Slater Determinants
Helium example
Lithium example
Counting nonzero terms
N particles - Energy Summary
Schr¨dinger equation from variational method
o
Variational method - deriving Hartree-Fock Equations
Hartree-Fock Equations
Total energy and the selfconsistent orbital energies
Evaluation of electron repulsion
Configuration mixing

2

1
3
2
2
8
4
3
3
2
5
1
2
1
1
2
1
3
2

slide + 3 slides
slides
slides
slides
slides
slides
slides
tables
slides
slides
slide
slides
slide
slide
slides
slide
slides
slides + 2slides
1

Filling up the shells with electrons

In order to know and to, more or less, understand in which state an electron
is bound we can use some basic rules. The generel idea is that the lowest
energy-state is the most stable one. The exited states can in most cases fall in
the lower state or ground state by emission of light.
The principles one need to know how to fill up the shells are the Pauli-principle
and the Hund’s rule.
List of topics

3
2

Pauli-principle

The filling of the shells observed was explained by Pauli by formulating the
Pauli exclusion principle:
Two electrons can not be in the same state - defined here by possible quantum
numbers n, l, m and ms
n, the principal quantum number of the shell,
l, the angular momentum quantum number of the subshell,
m, the magnetic quantum number
ms denotes spin ”up” and spin ”down”, ms = 1/2 or ms = −1/2
The Pauli principle mathematical: require the multiparticle wavefunction antisymmetric with respect to exchange of two particles.
If two particles coordinates are exchanged, the function must change sign.
If two particles are in the same state (function),
this requirement leads to zero wavefunction, thus impossible.
List of topics

4
Figure 1: Atomic levels (shells)List of topics

5
Figure 2: Atomic levels (shells) filled up to the element ....List of topics

6
3

Antisymmetric product function for n-particles
(−1)P (perm(α,β,...ν)) perm (φα φβ ....φν ) (x1 )(x2 )....(xn )

Ψ(x1 , x2 , ...xn ) =
perm(α,β,...ν)

where each term in the sum looks as φβ (x1 )...φν (x2 )...φα ..., summing over all
permutations, and P (perm(α, β, ...ν)) is the number of swaps of the given
permutation perm(α, β, ...ν)
This is very close to the definition of the determinant
n

det(A) =

sgn(σ)

Ai,σ(i)
i=1

σ∈Sn

The above in this notation
n

Ψ(x1 , x2 , ...xn ) =

sgn(σ)
σ∈Sn

List of topics

7

φασ(i) (xi )
i=1
Slater determinant
The antisymmetric combination for n-particles can be written as a determinant
in this way:
φα (x1 ) φα (x2 ) ... φα (xn )
φβ (x1 ) φβ (x2 ) ... φβ (xn )
...
...
...
...
φν (x1 ) φν (x2 ) ... φν (xn )
For 3 particles:
3 particle Slater determinant
φα (x1 ) φα (x2 ) φα (x3 )
φβ (x1 ) φβ (x2 ) φβ (x3 )
φγ (x1 ) φγ (x2 ) φγ (x3 )
List of topics

8
3 × 3 determinant
φα (1) φα (2) φα (3)
φβ (1) φβ (2) φβ (3)

φα (1) φα (2) φα (3)
φβ (1) φβ (2) φβ (3)
φγ (1) φγ (2) φγ (3)

φγ (1) φγ (2) φγ (3)
φα (1) φα (2) φα (3)
φβ (1) φβ (2) φβ (3)

φα (1) φβ (2) φγ (3) +
− φγ (1) φβ (2) φα (3)

φβ (1) φγ (2) φα (3) +
− φα (1) φγ (2) φβ (3)

List of topics

9

φγ (1) φα (2) φβ (3)
− φβ (1) φα (2) φγ (3)
4

Hund’s rule

Hund’s rule is the manifestation of the same effect as we have seen in the
parahelium - orthohelium effect ( the ”second” rule )
Hund’s first rule
Full shells and subshells do have a total circular momentum of zero.
This can be calculated and is allways valid.
Hund’s second rule
The total spin S should allways have the highest possible value. So as many
of the single electron spins as possible should be parallel.
The second rule appears more empirical and applies to a different magnetic
quantum number of the electrons with parallel spins. If is of course not allowed
to break the Pauli-principle.
List of topics

10
5

Example for the Hund’s rule

Figure 3: Electron spins of the first elements.
The elements carbon C, nitrogen N and oxygen O are those where the Hund’s
rule have the biggest influence. We see electrons with parallel spins in the
states m = −1, 0, +1, depending on the element. The magnetic quantum
number m gives more or less the “direction” of the circular moment l. The
s-states are the states where l = 0 and the p-states those where l = 1. The
names for l = (2, 3, 4, ...) are (d, e, f, ...).
The shell-name of the shell n = (1, 2, 3, 4, ...) is (K, L, M, N, ...).
List of topics

11
In cases with more electrons do we get some exceptions. For example is the
4s subshell earlier filled than the 3d. This is caused by the smaller distance
of the 4s to the core and thus by the lower energy, which is more stable. The
mentioned rules work well for general considerations and for atoms with not
to many electrons.

6

Number of states

Usefull to know is the largest possible number of states for a given n which
means until a special shell is filled.
n−1

(2l + 1) = 2n2 .

Nmax = 2 ·

(2)

l=0

We get this formula by adding all the possible quantum number configurations:
We get for each n every l in the range (0, 1, ..., n − 1),
for each l every m in the range (−l, ..., −1, 0, 1, ..., l)
and for each of these states 2 spin possibilities.
List of topics

12
7

Ionization energies

Figure 4: Ionization energies. The shell properties would explain the structure
in general - Periodic table and the Selfconsistent field
List of topics

13
Especially at the first elements, we see the minimums at the elements with
just one electron in the last shell and a maximum at the noble gas elements.
The weak maxima are caused by filled subshells or by the maximum of parallel
standing spins. After argon, it is more difficult to observe general tendences.
The shell properties would explain the structure in general
But there should be no closed shell at argon
Details - Periodic table and the Selfconsistent field

List of topics

14
8

Hartree - Selfconsistent field

Interaction energy of two charges depends on their distance|r − x|:
W (|r − x|) =

q1 q2
|r − x|

The two charges are an electron and a little volume dV at x containing charge cloud
of density ρ
q1 → (−e)
q2 → ρ(x)dV
→ ρ(x)d3 x
ρ( x )
x

The interaction energy of these two
charges is
dW (|r1 − r2 |) =

3
dV = d x

x−r

(−e)ρ(r2 ) 3
d r2
|r − x|
r

List of topics

15
Interaction with a cloud; summing over all the small volume elements - it means
integrating over the whole volume of the cloud gives the potential energy
W (r) =

(−e)ρ(x) 3
d x
|r − x|

ρ( x )
x

3
dV = d x

x−r

r
List of topics

16
If the charge cloud represents one electron in state ψi (x)

and again integrating gives the potential energy due to the interaction with
a (probability based density) cloud of
electrons

ρ(x) = (−e)|ψi (x)|2
If we have N electrons, each in its state,
the total density becomes

(−e)2

N

|ψi (x)|

ρ(x) = (−e)

W (r) =

2

i=1

ρ( x )
x

3
dV = d x

x−r

r

List of topics

17

N

|ψi (x)|2

i=1

|r − x|

d3 x
Now solving the Schr¨dinger equation with W (r),
o
(T + V + W ) ψi (x) = Ei ψi (x)
We first need to know the W (r), but that depends on all the other N solutions
N

(−e)2

|ψi (x)|2

i=1

W (r) =

|r − x|

d3 x

Approximation chain: First we choose some simple approximation, e.g. the hydrogenlike states, or we might know the states foranother atom. We call it
(0)

ψi (x)
(0)

From the set of all N ψi

we construct
e2

W (1) (r) =

N
i=1

(0)

|ψi (x)|2

|r − x|

d3 x

In atomic units the whole Schr¨dinger equation is
o
−

1
2

2

−

Z
(1)
(1) (1)
+ W (1) (r) ψi (x) = Ei ψi (x)
r

List of topics

18
(0)

1. step - choose arbitrary set of ψi

N
(0)

→

ψi (x)
−

1
2

2

−

(1)

2. step: take the set of ψi

W (1) (r) =

i=1

|r − x|

from the 1. step

(1)

→

ψi (x)
1
2

2

d3 x

Z
(1)
(1) (1)
+ W (1) (r) ψi (x) = Ei ψi (x)
r

N

−

(0)

|ψi (x)|2

−

W (2) (r) =

i=1

(1)

|ψi (x)|2
|r − x|

d3 x

Z
(2)
(2) (2)
+ W (2) (r) ψi (x) = Ei ψi (x)
r

List of topics

19

(3)
(2)

3. step: take the set of ψi

from the 2. step
N

(2)

→

ψi (x)
−

1
2

2

−

(3)

4. step: take the set of ψi

W (3) (r) =

i=1

|r − x|

from the 3. step

(3)

→

ψi (x)
1
2

2

d3 x

Z
(3)
(3) (3)
+ W (3) (r) ψi (x) = Ei ψi (x)
r

N

−

(2)

|ψi (x)|2

−

W (4) (r) =

i=1

(3)

|ψi (x)|2
|r − x|

d3 x

Z
(4)
(4) (4)
+ W (4) (r) ψi (x) = Ei ψi (x)
r

List of topics

20
(4)

5. step: take the set of ψi

from the 4. step
N

(4)

→

ψi (x)
−

1
2

2

−

(5)

6. step: take the set of ψi

W (5) (r) =

i=1

|r − x|

from the 5. step

(5)

→

ψi (x)
1
2

2

d3 x

Z
(5)
(5) (5)
+ W (5) (r) ψi (x) = Ei ψi (x)
r

N

−

(4)

|ψi (x)|2

−

W (6) (r) =

i=1

(5)

|ψi (x)|2
|r − x|

d3 x

Z
(6)
(6) (6)
+ W (6) (r) ψi (x) = Ei ψi (x)
r

List of topics

21
Iteration chain
N
(n)

ψi (x)

→

W (n+1) (r) =

i=1

(n)

|ψi (x)|2
|r − x|

d3 x

→

(n+1)

ψi

(x)

(n)

This chain can continue, until the set of ψi produces a potential W (n+1) which
(n)
is the same as W (n) , which was the one to determine ψi . The potentials and
functions become consistent, hence the name Selfconsistent field.
Criterium for self-consistency: the (n+1)-th solution does not differ from th n-th
solution
N

(n+1)

|ψi

(n)

(x)|2 − |ψi (x)|2 d3 x <

i=1

where

∝ 10−8 as a typical value.

List of topics

22

(4)
9

Ionization potentials of atoms
!"##$%

OOP

O !"# O $%#&
1O 2
O 2"3)(.&+

OOOQA&RB O
1456 O

'()&
)

*(+,-./)%0-(+
7189
O

O
)

)
)

:<5=> O
=54> O

)
A2&B

*%+,:
7:89

O
O

)
)

)
)

>54: O

A2&B

*-+,:

O

)

)

D54 O

A2&B

*-+,:

7:E9

O

)

: O 2&
4 O ?-

O 2&;-/#
O ?-0@-/#

< O C&

O C&)";;-/#

=O C

O C()(+

6O *

O *%)F(+

115:6 O

A2&B

*-+,:

*-.,:

O

)

GO $

O $-0)(.&+

1<5=4 O

A2&B

*-+,:

*-.,4

O

)

DO H

O HI".&+

1456: O

A2&B

*-+,:

*-.,<

O

)

>O J

O J;/()-+&

1G5<: O

A2&B

*-+,:

*-.,=

O

)

1K O $&
11 O $%

O $&(+
O !(3-/#

:15=6 O
=51< O

A2&B
A$&B

*-+,:
7489

*-.,6
O

O
)

)
)

1: O L.

O L%.+&8-/#

G56= O

A$&B

*/+,:

O

)

)

14 O M;

O M;/#-+/#

=5>> O

A$&B

*/+,:

74E9

O

)

1< O !-

O !-;-'(+

D51= O

A$&B

*/+,:

*/.,:

O

)

1= O N

O N@(8E@()/8

1K5<> O

A$&B

*/+,:

*/.,4

O

)

16 O !

O !/;,/)

1K546 O

A$&B

*/+,:

*/.,<

O

)

1G O *;

O *@;()-+&

1:5>G O

A$&B

*/+,:

*/.,=

O

)

1D O M)

O M).(+

1=5G6 O

A$&B

*/+,:

*/.,6

O

)

List of topics

23
!"##$%

!()*+ Q
9):9 Q

,-./
,#$/

*+,-=
;95<

*+.-+
Q

Q
)

)
)

Q ?4@A678

+)!! Q

,#$/

*/,-=

Q

)

)

Q BA4'C678

+)(9 Q

,#$/

;:C<

*/,-=

Q

)

*/,-=

!" Q #$
!0 Q 1

Q #$%&'
Q 2&3455678

=> Q ?4
=! Q BA
== Q D6

Q D634'678

+)"= Q

,#$/

*+0-=

Q

)

=: Q E

Q E4'4C678

+)*9 Q

,#$/

*+0-:

*/,-=

Q

)

=9 Q ?$

Q ?F$&8678

+)** Q

,#$/

*+0-(

;95<

Q

)

=( Q G'

Q G4'%4'.5.

*)99 Q

,#$/

*+0-(

*/,-=

Q

)

=+ Q H.

Q I$&'

*)"* Q

,#$/

*+0-+

*/,-=

Q

)

=* Q ?&

Q ?&J4@3

*)"+ Q

,#$/

*+0-*

*/,-=

Q

)

=" Q -6

Q -6AK.@

*)+9 Q

,#$/

*+0-"

*/,-=

Q

)

=0 Q ?7

Q ?&LL.$

*)*: Q

,#$/

*+0-!>

;95<

Q

)

:> Q M'

Q M6'A

0):0 Q

,#$/

*+0-!>

*/,-=

Q

)

:! Q N4

Q N4@@678

+Q

,#$/

*+0-!>

*/,-=

;9L<

Q

:= Q N.

Q N.$84'678

*)0 Q

,#$/

*+0-!>

*/,-=

*/.-=

Q

:: Q #5

Q #$5.'6A

0)"! Q

,#$/

*+0-!>

*/,-=

*/.-:

Q

:9 Q B.

Q B.@.'678

0)*( Q

,#$/

*+0-!>

*/,-=

*/.-9

Q

:( Q O$

Q O$&86'.

!!)"! Q

,#$/

*+0-!>

*/,-=

*/.-(

Q

:+ Q 1$

Q 1$PL3&'

!9 Q

,#$/

*+0-!>

*/,-=

*/.-+

Q

List of topics

24
!" W #$
!/ W 01

*+ W
+6*7 W

,-$.
,#$.

*+,-*?
89:;

*./-C
W

*.0-"
)

W
)

!7 W <$

W <'$()'325

96/ W

,#$.

*1/-C

W

)

)

!= W >

W >''$325

"6!7 W

,#$.

8+4;

*1/-C

W

)

+? W @$

W @3$A()325

"67+ W

,#$.

*.,-C

*1/-C

W

)

+* W B1

W B3(1325

"677 W

,#$.

*.,-+

89:;

W

)

+C W D(

W D(E%14F)25

/6* W

,#$.

*.,-9

89:;

W

)

+! W GA

W GFAH)F'325

/6C7 W

,#$.

*.,-9

*1/-C

W

)

++ W 02

W 02'HF)325

/6!/ W

,#$.

*.,-/

89:;

W

)

+9 W 0H

W 0H(4325

/6+" W

,#$.

*.,-7

89:;

W

)

+" W I4

W IJEEJ4325

76!+ W

,#$.

*.,-*?

W

)

)

+/ W -K

W <3ELF$

/697 W

,#$.

*.,-*?

89:;

W

)

+7 W M4

W MJ45325

76== W

,#$.

*.,-*?

*1/-C

W

)

+= W N)

W N)4325

96/= W

,#$.

*.,-*?

*1/-C

89&;

W

9? W <)

W G3)

/6!+ W

,#$.

*.,-*?

*1/-C

*10-C

W

9* W <1

W -)'35()%

76"+ W

,#$.

*.,-*?

*1/-C

*10-!

W

9C W GF

W GFEE2$325

=6?* W

,#$.

*.,-*?

*1/-C

*10-+

W

9! W N

W N(43)F

*?6+9 W

,#$.

*.,-*?

*1/-C

*10-9

W

9+ W OF
99 W M:

W OF)()
W MF:325

*C6*! W
!67= W

,#$.
,OF.

*.,-*?
8":;

*1/-C
W

*10-"
)

W
)

9" W PJ

W PJ$325

96C* W

,OF.

*2/-C

W

)

)

9/ W QJ

W QJ)'HJ)25

9697 W

,OF.

894;

*2/-C

W

)

97 W MF

W MF$325

969+ W

,OF.

8+R;

894;

*2/-C

W

9= W I$

List of topics

W #$%&'()
W 02134325

W I$J:F(4%5325

96+" W

,OF.

*.3-!

*2/-C

W

)

"? W B4

W BF(4%5325

969! W

,OF.

*.3-+

*2/-C

W

)

"* W I5

W I$(5F'H325

9699 W

,OF.

*.3-9

*2/-C

W

)

"C W <5

W <J5J$325

96"+ W

,OF.

*.3-"

*2/-C

W

)

"! W S2

W S2$(&325

96"/ W

,OF.
25

*.3-/

*2/-C

W

)
Screened potential and Centrifugal barrier
0.5
Coulomb potential
L=2
L=1
0

L=0
−0.5

0

1

2

3

4

5

6

7

8

6

7

8

0.5
Hartree potential
L=2
L=1
0

L=0
−0.5

0

−

1

Z
r

+

2

3

L(L + 1)
r2

4

5

vs.

−

26

Z − 1 −αr 1
e
−
r
r

List of topics

+

L(L + 1)
r2

(5)
0.5
Coulomb potential
L=2
L=1
0

L=0
−0.5

0

1

2

3

4

5

6

7

8

6

7

8

0.5
Hartree potential
L=2
L=1
0

L=0
−0.5

0

1

2

3

4

27

5
Figure 5: Selfconsistent field calculations compared to coulomb - real results
Here we note the position of the turning point - same for both Coulomb and
SCF case. This is true only for the 1s states. List of topics

28
Figure 6: Hartree Atomic potential
This figure shows results for oxygen with the potential and energies obtained
from a calculation with SCF program
List of topics

29
results for oxygen with the potential and energies obtained from a calculation
with SCF program compared with hydrogen-like levels List of topics
30
10

Expectation value of energy for N-particles

Hamiltonian for N-particles - the repulsion - we sum over pairs of coordinates


N
2
2
e
Ze
1 2

+
H (r1 , r2 , ...rN ) = 
−
ri −
2
ri
|ri − rj |
i=1
(i,j)pairs

Without antisymmetrization - independent particles - product function only 1 term -each particle has its orbital ψa ,ψb ,ψc .....ψn
Φ (r1 , r2 , ...rN ) → ψa (r1 )ψb (r2 )ψc (r3 )......ψn (rN )
With antisymmetrization - the Slater determinant
1
ΦHF (r1 , r2 , ...rN ) → √
a,b,...n
N!
List of topics

31

ψa (r1 )ψb (r1 )......ψn (r1 )
ψa (r2 )ψb (r2 )......ψn (r2 )
.......
ψa (rN )ψb (rN )......ψn (rN )
For N-particles - the repulsion - we sum over pairs of coordinates


N
2
2
1 2
Ze
e

 Φ (r1 , r2 , ...rN ) = EΦ (r1 , r2 , ...rN )
−
+
ri −
2
ri
|ri − rj |
i=1
(i,j)pairs

Expectation value with the independent particles - product function - only
1 term
Φ (r1 , r2 , ...rN ) → ψa (r1 )ψb (r2 )ψc (r3 )......ψn (rN )
becomes
n

E = Φ| H |Φ

→

ψα | T −
α=a

Ze2
|ψα +
r

ψβ ψα |
(α,β)pairs

e2
|ψβ ψα
|r − r |

The sum over coordinate pairs becomes sum over pairs of orbitals
This remains true for Slater determinants - but it must be shown.
There are N ! terms in the Slater determinant, the left and right give
(N !)2 terms, and there are N (N − 1)/2 coordinate pairs.
Thus (N !)2 N (N − 1)/2 terms.
Due to the normalization, this becomes only N (N − 1) terms,
N (N − 1)/2 direct terms and N (N − 1)/2 exchange terms
List of topics

32
It should be shown that when the Slater determinant is used
ψa (r1 )ψb (r1 )......ψn (r1 )
1
ψa (r2 )ψb (r2 )......ψn (r2 )
ΦHF (r1 , r2 , ...rN ) → √
a,b,...n
N ! .......
ψa (rN )ψb (rN )......ψn (rN )
the expectation value will give (final result shown here first)
n

ΦHF H ΦHF

=

ψα | T −
j=α

Ze2
|ψα
r

ψβ ψα |

e2
|ψβ ψα
|r − r |

ψβ ψα |

+

e2
|ψα ψβ
|r − r |

(α,β)pairs

−
(α,β)pairs

(6)

The last term - exchange energy. On the previous page product function (1
term) is shown - no exchange energy
Next 3 slides: 1. Helium, 2. Lithium examples, 3. Counting nonzero terms
List of topics

33
r 12

−e2

r1

r2

For Helium
−

h2
¯
2me

2
r1

−

−e1

+Ze

Z e2
h2
¯
−
r1
2me

1
ΦHF (r1 , r2 ) = √
a,b
2

2
r2

−

Z e2
e2
Ψ (r1 , r2 ) = E Ψ (r1 , r2 )
+
r2
|r1 − r2 |

1
= √ [ψa (r1 )ψb (r2 ) − ψb (r1 )ψa (r2 )]
2

ψa (r1 ) ψb (r1 )
ψa (r2 ) ψb (r2 )

and the energy becomes
ΦHF H ΦHF

=
+

Ze2
Ze2
|ψa + ψb | T −
|ψb
r
r
e2
e2
ψa ψb |
|ψa ψb − ψa ψb |
|ψb ψa
|r − r |
|r − r |
ψa | T −

The last term - exchange energy - and there is only one pair.
List of topics

Lithium example

34

(7)
−e3
r 13
r 23

r3

r 12

−e
2

−e1

r1

r2

Lithium

+Ze

−

h
¯2
2me
+

2
r1

−

Z e2
h
¯2
−
r1
2me

2
r2

−

6 × 6 × 3-pair terms

Z e2
h
¯2
−
r2
2me

2
r3

−

Z e2
r3

e2
e2
e2
+
+
Ψ (r1 , r2 , r3 ) = E Ψ (r1 , r2 , r3 )
|r1 − r2 |
|r1 − r3 |
|r2 − r3 |
(8)

1
√ { ψα (1) ψβ (2) ψγ (3) +
3!
− ψγ (1) ψβ (2) ψα (3)

List of topics

ψβ (1) ψγ (2) ψα (3) +
− ψα (1) ψγ (2) ψβ (3)

Helium example

ψγ (1) ψα (2) ψβ (3)

− ψβ (1) ψα (2) ψγ (3)}

Next slide: Counting nonzero terms

35
1

3!
a

b c
+

a

b c

+

a

b c

+

a

b c

−

a

b c

−

a

b c

−

a

+

+

+
+

+

b c

+

+ c

a

+

e2
r2 3
e2
r2 3
e2
r2 3
e2
r2 3
e2
r2 3
e2
r2 3

b

+ b

c

a

+

− b

a

−

c

−

c

b a
−

− a

c

−

b

a

b c

a

a

b c

c

a

b

a

c

b c

e2
r2 3
e2
r2 3

b

c

a

a

b

b c

e2
r2 3

c a

b

a

c

a

b

b c

e2
r2 3

a c

c

b a

a

c

b c

e2
r2 3

b a

a

c

a

a

b c

e2
r2 3

c b

+

+
+
−
−
−

−

b

b c
a b

Evaluation of the first six terms of the total 36 terms. For each further group
of 6 a very similar procedure would follow. From each six, two remain, totaling
12 nonzero terms
List of topics

36
11

N particles in Slater determinant - Total
Energy Summary
N

Φ| H |Φ

=
j=1

Ze2
|ψj +
ψj | T −
r

(i,j)pairs

e2
ψj ψi |
|ψj ψi
|r − r |

2

−

ψj ψi |
(i,j)pairs

e
|ψi ψj
|r − r |

(9)

We will use also a more compact notation, instead of orbitals ψi we use orbitals
|α , i.e. the index becomes the name of the function
Φ| H |Φ

=

α|(T + V )|α +
α

[ αβ|Vee |αβ − αβ|Vee |βα ] (10)
pairs αβ

List of topics

37
Schr¨dinger equation from variational principle: minimize
o
Φ| H |Φ
Φ|Φ

(≥ Eg.s. )

which can be written as minimalization with constraint Φ | Φ = 1 ; minimize
Φ| H |Φ − λ Φ | Φ

Φ |Φ −1=0

λ Lagrange multiplier

Derivative - differential
f (x) →

df (x)
dx

→

df =

df (x)
dx
dx

Functional derivative - functional F(f ); variation of the functions f (x), δf
F(f )

→

δF(f )
δf

→

δF =

δF(f )
δf
δf

(11)

Variation of Φ| H |Φ is taken (considering the complex nature of |Φ ) as
δ ( Φ| H |Φ ) = δΦ| H |Φ
With arbitrary variations |δΦ
δΦ| H |Φ − λ δΦ | Φ

−→

H |Φ − λ |Φ = 0 −→ H |Φ

Thus the Lagrange multiplier plays the role of energy eigenvalue

38

= λ |Φ

List of topics
Deriving Hartree-Fock: For N electrons this energy must be minimized
Φ| H |Φ

=

[ αβ|Vee |αβ − αβ|Vee |βα ]

α|(T + V )|α +
α

(12)

pairs αβ

with respect to the N orbitals |α , |β , etc. ,
with N conditions α|α = 1, β|β = 1, i.e.
with N Lagrange multipliers εα , εβ .......
δΦ(α → δα)| H |Φ − εα δα | α

= 0

Which results in N equations (one for each of the N orbitals)
[ (δα)β|Vee |αβ − (δα)β|Vee |βα ] − εα δα | α

δα|(T + V )|α +

= 0 (13)

β

Leaving for a while out the exchange-related term, we can as in prev. slide reduce
this by removing δα|
[ β|Vee |β ] |α − εα | α

(T + V )|α +

=0

β

which is exactly the Hartree method. The exchange term leads to complications →
List of topics

39
Reducing the full equation
[ (δα)β|Vee |αβ − (δα)β|Vee |βα ] − εα δα | α

δα|(T + V )|α +

= 0 (14)

β

we get the Hartree Fock Equations (N orbitals)
[ β|Vee |β ] |α −

(T + V )|α +
β

[ β|Vee |α ] |β − εα | α

=0

β

The complexity of the exchange term becomes clear when we write it explicitely
with coordinates and integrations.
Hartree Fock Equations: The direct term and the exchange term:
WHF = W d − W ex
occ
∗
ψb (x)

WHF ψa (r) =
b

e2
ψb (x)d3 x ψa (r)−
|r − x|

occ
∗
ψb (r)
b

ψb (x)

e2
ψa (x)d3 x
|r − x|

where the exchange potential is nonlocal
W d ψa → W d (r)ψa (r)

W ex ψa (r) →

List of topics

40

W ex (r, x)ψa (x)d3 x
Hartree-Fock total energy and sum of orbital energies
with a shorthand notation
ϕα (r) → |ϕα

→ |α

Slater determinant
Φα,β,....,ν

→ |α, β, ...., ν

We have started our work with the Hartree-Fock equations by evaluating
Φα,β,....,ν |

T +V +
pairs ij

e2
|ri − rj |

|Φα,β,....,ν

(15)

This we have evaluated as
Φ| H |Φ

=

α|(T + V )|α +
α

[ αβ|Vee |αβ − αβ|Vee |βα ] (16)
pairs αβ

From this expression we have obtained Hartree-Fock equations by the variational procedure.
List of topics

41
The Hartree-Fock equation can be then written as
β|

T +V +
β

e2
|β
|r − r |

|α −

β|
β

e2
|α
|r − r |

|β

= εα |α (17)

We form the matrix element with the given α|
α| T + V +

β|
β

e2
|β
|r − r |

|α − α|

β|
β

e2
|α
|r − r |

|β

= εα
(18)

since α|α = 1. This can be rewritten as
εα =

α|(T + V )|α +

[ βα|Vee |βα − βα|Vee |αβ ]

(19)

β=α

And now we can explore what is the sum of all εα
εα =

α|(T + V )|α +

α

α

[ βα|Vee |βα − βα|Vee |αβ ]

(20)

α β=α

which we can compare with the above Φ| H |Φ
Φ| H |Φ

=

α|(T + V )|α +
α

[ αβ|Vee |αβ − αβ|Vee |βα ] (21)
pairs αβ

42
The two expressions are very similar, but they differ in fact by all the interaction term, since it is counted twice in the sum:
Fαβ

= 2

α β=α

Fαβ
pairs αβ

for any set of objects that are symmetric Fαβ = Fβα
Our objects are symmetric, because they are in fact of the type Hαβ,αβ . The
wavefunctions are antisymmetric, |αβ = −|βα .
Thus, surprisingly perhaps
Φ| H |Φ

=

εα
α

but as we derived here
Φ| H |Φ

List of topics

=

εα −
α

[ αβ|Vee |αβ − αβ|Vee |βα ]
pairs αβ

43

(22)
Evaluation of the repulsion term using the multipole expansion
1
=
|r1 − r2 |

LM

L
r<
4π
YLM (ˆ1 ) YLM (ˆ2 )
r
r
L+1
2L + 1 r>

(23)

where
r< = r1 ,

r> = r2

for |r1 | < |r2 |

r< = r2 ,

r> = r1

for |r1 | > |r2 |

Evaluation of the matrix element in general case
d3 r1

d3 r2 ψn1 l1 m1 (r1 ) ψn2 l2 m2 (r2 )

1
ψn l m (r1 ) ψn2 l2 m2 (r2 ) (24)
|r1 − r2 | 1 1 1

is performed separately over the radial and angular parts
2
r1 dr1

dˆ1
r

2
r2 dr2

dˆ2
r

1
|r1 − r2 |

r
r
Rn1 l1 (r1 )Yl1 m1 (ˆ1 ) Rn2 l2 (r2 )Yl2 m2 (ˆ2 )
Rn1 l1 (r1 )Yl1 m1 (ˆ1 ) Rn2 l2 (r2 )Yl2 m2 (ˆ2 )(25)
r
r

where dˆi means the integration over dΩi = sin θi dθi dϕi . List of topics
r
44
The evaluation of general case - angular integrals of three Ylm ’s
CL =

Yli mi (θ, ϕ)YLM (θ, ϕ)Yli mi (θ, ϕ)dΩ

(26)

For the case of both s-states, li = 0 mi = 0 only L = 0 M = 0 are nonzero; The sum reduces to one term. The angular factors give value one, since
the (YL=0M =0 )2 = (4π)−1 cancels the corresponding factor in the multipole
expansion and due to the normalization.

List of topics

45
12

Configuration mixing

Consider the usual:
Hx (x)ϕα (x) = Eα ϕα (x)
Hy (y)χβ (y) = Eβ χβ (y)
For any Φ(x)
Φ(x) =

cα ϕα (x)

Ξ(y) =

dβ χβ (y)

For any Ξ(x)
Take now a general Ψ(x, y). First look at y as a parameter, Ψ(x, y0 )
Ψ(x, y0 ) → Φ(x) =

cα (y0 )ϕα (x)

for every y0 ; Thus we get a new function of y;
cα (y) =

dβ (α)χβ (y)

Inserting back:
Ψ(x, y) =

dβ (α)χβ (y)ϕα (x)
46
Or, with a simpler notation
Ψ(x, y) =

dβα χβ (y)ϕα (x)

In the case of Helium, for example, the H(x) and H(y) are identical
and so are the χβ (y) and ϕα (x). This becomes configuration mixing.
Ψ(x, y) =

dβα ϕβ (y)ϕα (x)

The coefficients are found by diagonalization.
For three coordinate sets - e.g. for Lithium :
Ψ(x, y, z) =

Dγβα ϕ(z)ϕβ (y)ϕα (x)

List of topics

47
END OF THE PRESENTATION

List of topics

48

More Related Content

What's hot

Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.Alexander Decker
 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesIOSR Journals
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Alexander Decker
 
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...A G
 
Physical Chemistry Assignment Help
Physical Chemistry Assignment HelpPhysical Chemistry Assignment Help
Physical Chemistry Assignment HelpEdu Assignment Help
 
Las funciones L en teoría de números
Las funciones L en teoría de númerosLas funciones L en teoría de números
Las funciones L en teoría de númerosmmasdeu
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...Rene Kotze
 
A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible an...
A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible an...A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible an...
A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible an...inventionjournals
 
Inner Product Space
Inner Product SpaceInner Product Space
Inner Product SpacePatel Raj
 
On the Zeros of Polar Derivatives
On the Zeros of Polar DerivativesOn the Zeros of Polar Derivatives
On the Zeros of Polar Derivativespaperpublications3
 
Coincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionCoincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionAlexander Decker
 
Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Alexander Decker
 
11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...Alexander Decker
 
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"Rene Kotze
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final reportJamesMa54
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化Akira Tanimoto
 

What's hot (20)

Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.
 
M1l3
M1l3M1l3
M1l3
 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spaces
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
 
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
 
Physical Chemistry Assignment Help
Physical Chemistry Assignment HelpPhysical Chemistry Assignment Help
Physical Chemistry Assignment Help
 
Las funciones L en teoría de números
Las funciones L en teoría de númerosLas funciones L en teoría de números
Las funciones L en teoría de números
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
 
A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible an...
A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible an...A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible an...
A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible an...
 
Inner Product Space
Inner Product SpaceInner Product Space
Inner Product Space
 
project final
project finalproject final
project final
 
5320
53205320
5320
 
On the Zeros of Polar Derivatives
On the Zeros of Polar DerivativesOn the Zeros of Polar Derivatives
On the Zeros of Polar Derivatives
 
Coincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionCoincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contraction
 
Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...
 
11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...
 
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
Prof. Vishnu Jejjala (Witwatersrand) TITLE: "The Geometry of Generations"
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 

Viewers also liked

Digestive system
Digestive systemDigestive system
Digestive systemmentoristix
 
ICA 2013 paper presentation: "Preaching to the Choir: Internet-Mediated Advoc...
ICA 2013 paper presentation: "Preaching to the Choir: Internet-Mediated Advoc...ICA 2013 paper presentation: "Preaching to the Choir: Internet-Mediated Advoc...
ICA 2013 paper presentation: "Preaching to the Choir: Internet-Mediated Advoc...Luis Hestres
 
ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012László Nádai
 
Resp 2590 ct scans (1)
Resp 2590 ct scans (1)Resp 2590 ct scans (1)
Resp 2590 ct scans (1)kjkuzmich
 
Farah diana bt zabidi 4e2 k1
Farah diana bt zabidi 4e2 k1Farah diana bt zabidi 4e2 k1
Farah diana bt zabidi 4e2 k1Sarah Cloud
 
SBIproducciones - SBI GROUP MEXICO
SBIproducciones - SBI GROUP MEXICOSBIproducciones - SBI GROUP MEXICO
SBIproducciones - SBI GROUP MEXICOSBIPRODUCCIONES
 
Корпус миру в Україні. Марат КЮРЧЕВСЬКИЙ
Корпус миру в Україні. Марат КЮРЧЕВСЬКИЙКорпус миру в Україні. Марат КЮРЧЕВСЬКИЙ
Корпус миру в Україні. Марат КЮРЧЕВСЬКИЙAnastasiia Popsuy
 
Ppp_vet_atyrau_rus_03.04.14
Ppp_vet_atyrau_rus_03.04.14Ppp_vet_atyrau_rus_03.04.14
Ppp_vet_atyrau_rus_03.04.14Asilbek Zhakiyev
 
Evaluation of educational television programs v4
Evaluation of educational television programs v4Evaluation of educational television programs v4
Evaluation of educational television programs v4wuu360327
 
Climate advocacy emails content analysis ICA 2015 San Juan PR
Climate advocacy emails content analysis ICA 2015 San Juan PRClimate advocacy emails content analysis ICA 2015 San Juan PR
Climate advocacy emails content analysis ICA 2015 San Juan PRLuis Hestres
 
Nicolas Morin -- Kanban - The (non)recipe for success -- Lean Kanban France 2...
Nicolas Morin -- Kanban - The (non)recipe for success -- Lean Kanban France 2...Nicolas Morin -- Kanban - The (non)recipe for success -- Lean Kanban France 2...
Nicolas Morin -- Kanban - The (non)recipe for success -- Lean Kanban France 2...Nicolas Morin
 
State of utah veterans benefits
State of utah veterans benefitsState of utah veterans benefits
State of utah veterans benefitsAl Yardley
 
Zulhafiz bin zolkepeli 4 m3k2
Zulhafiz bin zolkepeli 4 m3k2Zulhafiz bin zolkepeli 4 m3k2
Zulhafiz bin zolkepeli 4 m3k2Sarah Cloud
 
Demanda y comportamiento del consumidor
Demanda y comportamiento del consumidorDemanda y comportamiento del consumidor
Demanda y comportamiento del consumidorDalva Icaza
 
20131115_atyrau_6thwg_presentation_rus_RPPAtyrau
20131115_atyrau_6thwg_presentation_rus_RPPAtyrau20131115_atyrau_6thwg_presentation_rus_RPPAtyrau
20131115_atyrau_6thwg_presentation_rus_RPPAtyrauAsilbek Zhakiyev
 
Copy of vệ sinh tay thường quy
Copy of vệ sinh tay thường quyCopy of vệ sinh tay thường quy
Copy of vệ sinh tay thường quydrbuianh
 

Viewers also liked (20)

Digestive system
Digestive systemDigestive system
Digestive system
 
Skateboarding
SkateboardingSkateboarding
Skateboarding
 
digestive
digestivedigestive
digestive
 
ICA 2013 paper presentation: "Preaching to the Choir: Internet-Mediated Advoc...
ICA 2013 paper presentation: "Preaching to the Choir: Internet-Mediated Advoc...ICA 2013 paper presentation: "Preaching to the Choir: Internet-Mediated Advoc...
ICA 2013 paper presentation: "Preaching to the Choir: Internet-Mediated Advoc...
 
ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012
 
Resp 2590 ct scans (1)
Resp 2590 ct scans (1)Resp 2590 ct scans (1)
Resp 2590 ct scans (1)
 
Farah diana bt zabidi 4e2 k1
Farah diana bt zabidi 4e2 k1Farah diana bt zabidi 4e2 k1
Farah diana bt zabidi 4e2 k1
 
SBIproducciones - SBI GROUP MEXICO
SBIproducciones - SBI GROUP MEXICOSBIproducciones - SBI GROUP MEXICO
SBIproducciones - SBI GROUP MEXICO
 
Корпус миру в Україні. Марат КЮРЧЕВСЬКИЙ
Корпус миру в Україні. Марат КЮРЧЕВСЬКИЙКорпус миру в Україні. Марат КЮРЧЕВСЬКИЙ
Корпус миру в Україні. Марат КЮРЧЕВСЬКИЙ
 
Ppp_vet_atyrau_rus_03.04.14
Ppp_vet_atyrau_rus_03.04.14Ppp_vet_atyrau_rus_03.04.14
Ppp_vet_atyrau_rus_03.04.14
 
Evaluation of educational television programs v4
Evaluation of educational television programs v4Evaluation of educational television programs v4
Evaluation of educational television programs v4
 
Climate advocacy emails content analysis ICA 2015 San Juan PR
Climate advocacy emails content analysis ICA 2015 San Juan PRClimate advocacy emails content analysis ICA 2015 San Juan PR
Climate advocacy emails content analysis ICA 2015 San Juan PR
 
Class Show
Class ShowClass Show
Class Show
 
Nicolas Morin -- Kanban - The (non)recipe for success -- Lean Kanban France 2...
Nicolas Morin -- Kanban - The (non)recipe for success -- Lean Kanban France 2...Nicolas Morin -- Kanban - The (non)recipe for success -- Lean Kanban France 2...
Nicolas Morin -- Kanban - The (non)recipe for success -- Lean Kanban France 2...
 
Tema 2
Tema 2Tema 2
Tema 2
 
State of utah veterans benefits
State of utah veterans benefitsState of utah veterans benefits
State of utah veterans benefits
 
Zulhafiz bin zolkepeli 4 m3k2
Zulhafiz bin zolkepeli 4 m3k2Zulhafiz bin zolkepeli 4 m3k2
Zulhafiz bin zolkepeli 4 m3k2
 
Demanda y comportamiento del consumidor
Demanda y comportamiento del consumidorDemanda y comportamiento del consumidor
Demanda y comportamiento del consumidor
 
20131115_atyrau_6thwg_presentation_rus_RPPAtyrau
20131115_atyrau_6thwg_presentation_rus_RPPAtyrau20131115_atyrau_6thwg_presentation_rus_RPPAtyrau
20131115_atyrau_6thwg_presentation_rus_RPPAtyrau
 
Copy of vệ sinh tay thường quy
Copy of vệ sinh tay thường quyCopy of vệ sinh tay thường quy
Copy of vệ sinh tay thường quy
 

Similar to Many electrons atoms_2012.12.04 (PDF with links

Problems and solutions statistical physics 1
Problems and solutions   statistical physics 1Problems and solutions   statistical physics 1
Problems and solutions statistical physics 1Alberto de Mesquita
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...SEENET-MTP
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics conceptsMuhammad IrfaN
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusSEENET-MTP
 
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...Avichai Cohen
 
Ch7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atomsCh7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atomsSa'ib J. Khouri
 
What are free particles in quantum mechanics
What are free particles in quantum mechanicsWhat are free particles in quantum mechanics
What are free particles in quantum mechanicsbhaskar chatterjee
 
Stochastic Schrödinger equations
Stochastic Schrödinger equationsStochastic Schrödinger equations
Stochastic Schrödinger equationsIlya Gikhman
 
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02Luke Underwood
 
Chapter 7 notes
Chapter 7 notes Chapter 7 notes
Chapter 7 notes Wong Hsiung
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSChandan Singh
 
Week 8 [compatibility mode]
Week 8 [compatibility mode]Week 8 [compatibility mode]
Week 8 [compatibility mode]Hazrul156
 

Similar to Many electrons atoms_2012.12.04 (PDF with links (20)

Sventae
SventaeSventae
Sventae
 
dalrymple_slides.ppt
dalrymple_slides.pptdalrymple_slides.ppt
dalrymple_slides.ppt
 
Linear response theory
Linear response theoryLinear response theory
Linear response theory
 
Problems and solutions statistical physics 1
Problems and solutions   statistical physics 1Problems and solutions   statistical physics 1
Problems and solutions statistical physics 1
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
 
NANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - TemperatureNANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - Temperature
 
Berans qm overview
Berans qm overviewBerans qm overview
Berans qm overview
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...
Amirim Project - Threshold Functions in Random Simplicial Complexes - Avichai...
 
Pcv ch2
Pcv ch2Pcv ch2
Pcv ch2
 
Ch7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atomsCh7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atoms
 
Two
TwoTwo
Two
 
What are free particles in quantum mechanics
What are free particles in quantum mechanicsWhat are free particles in quantum mechanics
What are free particles in quantum mechanics
 
Stochastic Schrödinger equations
Stochastic Schrödinger equationsStochastic Schrödinger equations
Stochastic Schrödinger equations
 
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02
Electromagnetic Scattering from Objects with Thin Coatings.2016.05.04.02
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Chapter 7 notes
Chapter 7 notes Chapter 7 notes
Chapter 7 notes
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
Week 8 [compatibility mode]
Week 8 [compatibility mode]Week 8 [compatibility mode]
Week 8 [compatibility mode]
 

Recently uploaded

Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 

Recently uploaded (20)

Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 

Many electrons atoms_2012.12.04 (PDF with links

  • 1. Many electron atoms ρ( x ) x 3 dV = d x x−r r Autumn 2012 Version: 04.12.2012 List of topics
  • 2. (1) Pauli-principle Hund’s rule Antisymmetric functions for n-particles - Slater Determinants Filling Shells Figure Ionization energies - Figure Hartree - Selfconsistent field - Iterations only Iterations part Selfconsistent field Result - Figures Configurations - Ionization potentials of atoms - Tables Screened potential and Centrifugal barrier - Explains Tables Energy for N-particles - Using Slater Determinants Helium example Lithium example Counting nonzero terms N particles - Energy Summary Schr¨dinger equation from variational method o Variational method - deriving Hartree-Fock Equations Hartree-Fock Equations Total energy and the selfconsistent orbital energies Evaluation of electron repulsion Configuration mixing 2 1 3 2 2 8 4 3 3 2 5 1 2 1 1 2 1 3 2 slide + 3 slides slides slides slides slides slides slides tables slides slides slide slides slide slide slides slide slides slides + 2slides
  • 3. 1 Filling up the shells with electrons In order to know and to, more or less, understand in which state an electron is bound we can use some basic rules. The generel idea is that the lowest energy-state is the most stable one. The exited states can in most cases fall in the lower state or ground state by emission of light. The principles one need to know how to fill up the shells are the Pauli-principle and the Hund’s rule. List of topics 3
  • 4. 2 Pauli-principle The filling of the shells observed was explained by Pauli by formulating the Pauli exclusion principle: Two electrons can not be in the same state - defined here by possible quantum numbers n, l, m and ms n, the principal quantum number of the shell, l, the angular momentum quantum number of the subshell, m, the magnetic quantum number ms denotes spin ”up” and spin ”down”, ms = 1/2 or ms = −1/2 The Pauli principle mathematical: require the multiparticle wavefunction antisymmetric with respect to exchange of two particles. If two particles coordinates are exchanged, the function must change sign. If two particles are in the same state (function), this requirement leads to zero wavefunction, thus impossible. List of topics 4
  • 5. Figure 1: Atomic levels (shells)List of topics 5
  • 6. Figure 2: Atomic levels (shells) filled up to the element ....List of topics 6
  • 7. 3 Antisymmetric product function for n-particles (−1)P (perm(α,β,...ν)) perm (φα φβ ....φν ) (x1 )(x2 )....(xn ) Ψ(x1 , x2 , ...xn ) = perm(α,β,...ν) where each term in the sum looks as φβ (x1 )...φν (x2 )...φα ..., summing over all permutations, and P (perm(α, β, ...ν)) is the number of swaps of the given permutation perm(α, β, ...ν) This is very close to the definition of the determinant n det(A) = sgn(σ) Ai,σ(i) i=1 σ∈Sn The above in this notation n Ψ(x1 , x2 , ...xn ) = sgn(σ) σ∈Sn List of topics 7 φασ(i) (xi ) i=1
  • 8. Slater determinant The antisymmetric combination for n-particles can be written as a determinant in this way: φα (x1 ) φα (x2 ) ... φα (xn ) φβ (x1 ) φβ (x2 ) ... φβ (xn ) ... ... ... ... φν (x1 ) φν (x2 ) ... φν (xn ) For 3 particles: 3 particle Slater determinant φα (x1 ) φα (x2 ) φα (x3 ) φβ (x1 ) φβ (x2 ) φβ (x3 ) φγ (x1 ) φγ (x2 ) φγ (x3 ) List of topics 8
  • 9. 3 × 3 determinant φα (1) φα (2) φα (3) φβ (1) φβ (2) φβ (3) φα (1) φα (2) φα (3) φβ (1) φβ (2) φβ (3) φγ (1) φγ (2) φγ (3) φγ (1) φγ (2) φγ (3) φα (1) φα (2) φα (3) φβ (1) φβ (2) φβ (3) φα (1) φβ (2) φγ (3) + − φγ (1) φβ (2) φα (3) φβ (1) φγ (2) φα (3) + − φα (1) φγ (2) φβ (3) List of topics 9 φγ (1) φα (2) φβ (3) − φβ (1) φα (2) φγ (3)
  • 10. 4 Hund’s rule Hund’s rule is the manifestation of the same effect as we have seen in the parahelium - orthohelium effect ( the ”second” rule ) Hund’s first rule Full shells and subshells do have a total circular momentum of zero. This can be calculated and is allways valid. Hund’s second rule The total spin S should allways have the highest possible value. So as many of the single electron spins as possible should be parallel. The second rule appears more empirical and applies to a different magnetic quantum number of the electrons with parallel spins. If is of course not allowed to break the Pauli-principle. List of topics 10
  • 11. 5 Example for the Hund’s rule Figure 3: Electron spins of the first elements. The elements carbon C, nitrogen N and oxygen O are those where the Hund’s rule have the biggest influence. We see electrons with parallel spins in the states m = −1, 0, +1, depending on the element. The magnetic quantum number m gives more or less the “direction” of the circular moment l. The s-states are the states where l = 0 and the p-states those where l = 1. The names for l = (2, 3, 4, ...) are (d, e, f, ...). The shell-name of the shell n = (1, 2, 3, 4, ...) is (K, L, M, N, ...). List of topics 11
  • 12. In cases with more electrons do we get some exceptions. For example is the 4s subshell earlier filled than the 3d. This is caused by the smaller distance of the 4s to the core and thus by the lower energy, which is more stable. The mentioned rules work well for general considerations and for atoms with not to many electrons. 6 Number of states Usefull to know is the largest possible number of states for a given n which means until a special shell is filled. n−1 (2l + 1) = 2n2 . Nmax = 2 · (2) l=0 We get this formula by adding all the possible quantum number configurations: We get for each n every l in the range (0, 1, ..., n − 1), for each l every m in the range (−l, ..., −1, 0, 1, ..., l) and for each of these states 2 spin possibilities. List of topics 12
  • 13. 7 Ionization energies Figure 4: Ionization energies. The shell properties would explain the structure in general - Periodic table and the Selfconsistent field List of topics 13
  • 14. Especially at the first elements, we see the minimums at the elements with just one electron in the last shell and a maximum at the noble gas elements. The weak maxima are caused by filled subshells or by the maximum of parallel standing spins. After argon, it is more difficult to observe general tendences. The shell properties would explain the structure in general But there should be no closed shell at argon Details - Periodic table and the Selfconsistent field List of topics 14
  • 15. 8 Hartree - Selfconsistent field Interaction energy of two charges depends on their distance|r − x|: W (|r − x|) = q1 q2 |r − x| The two charges are an electron and a little volume dV at x containing charge cloud of density ρ q1 → (−e) q2 → ρ(x)dV → ρ(x)d3 x ρ( x ) x The interaction energy of these two charges is dW (|r1 − r2 |) = 3 dV = d x x−r (−e)ρ(r2 ) 3 d r2 |r − x| r List of topics 15
  • 16. Interaction with a cloud; summing over all the small volume elements - it means integrating over the whole volume of the cloud gives the potential energy W (r) = (−e)ρ(x) 3 d x |r − x| ρ( x ) x 3 dV = d x x−r r List of topics 16
  • 17. If the charge cloud represents one electron in state ψi (x) and again integrating gives the potential energy due to the interaction with a (probability based density) cloud of electrons ρ(x) = (−e)|ψi (x)|2 If we have N electrons, each in its state, the total density becomes (−e)2 N |ψi (x)| ρ(x) = (−e) W (r) = 2 i=1 ρ( x ) x 3 dV = d x x−r r List of topics 17 N |ψi (x)|2 i=1 |r − x| d3 x
  • 18. Now solving the Schr¨dinger equation with W (r), o (T + V + W ) ψi (x) = Ei ψi (x) We first need to know the W (r), but that depends on all the other N solutions N (−e)2 |ψi (x)|2 i=1 W (r) = |r − x| d3 x Approximation chain: First we choose some simple approximation, e.g. the hydrogenlike states, or we might know the states foranother atom. We call it (0) ψi (x) (0) From the set of all N ψi we construct e2 W (1) (r) = N i=1 (0) |ψi (x)|2 |r − x| d3 x In atomic units the whole Schr¨dinger equation is o − 1 2 2 − Z (1) (1) (1) + W (1) (r) ψi (x) = Ei ψi (x) r List of topics 18
  • 19. (0) 1. step - choose arbitrary set of ψi N (0) → ψi (x) − 1 2 2 − (1) 2. step: take the set of ψi W (1) (r) = i=1 |r − x| from the 1. step (1) → ψi (x) 1 2 2 d3 x Z (1) (1) (1) + W (1) (r) ψi (x) = Ei ψi (x) r N − (0) |ψi (x)|2 − W (2) (r) = i=1 (1) |ψi (x)|2 |r − x| d3 x Z (2) (2) (2) + W (2) (r) ψi (x) = Ei ψi (x) r List of topics 19 (3)
  • 20. (2) 3. step: take the set of ψi from the 2. step N (2) → ψi (x) − 1 2 2 − (3) 4. step: take the set of ψi W (3) (r) = i=1 |r − x| from the 3. step (3) → ψi (x) 1 2 2 d3 x Z (3) (3) (3) + W (3) (r) ψi (x) = Ei ψi (x) r N − (2) |ψi (x)|2 − W (4) (r) = i=1 (3) |ψi (x)|2 |r − x| d3 x Z (4) (4) (4) + W (4) (r) ψi (x) = Ei ψi (x) r List of topics 20
  • 21. (4) 5. step: take the set of ψi from the 4. step N (4) → ψi (x) − 1 2 2 − (5) 6. step: take the set of ψi W (5) (r) = i=1 |r − x| from the 5. step (5) → ψi (x) 1 2 2 d3 x Z (5) (5) (5) + W (5) (r) ψi (x) = Ei ψi (x) r N − (4) |ψi (x)|2 − W (6) (r) = i=1 (5) |ψi (x)|2 |r − x| d3 x Z (6) (6) (6) + W (6) (r) ψi (x) = Ei ψi (x) r List of topics 21
  • 22. Iteration chain N (n) ψi (x) → W (n+1) (r) = i=1 (n) |ψi (x)|2 |r − x| d3 x → (n+1) ψi (x) (n) This chain can continue, until the set of ψi produces a potential W (n+1) which (n) is the same as W (n) , which was the one to determine ψi . The potentials and functions become consistent, hence the name Selfconsistent field. Criterium for self-consistency: the (n+1)-th solution does not differ from th n-th solution N (n+1) |ψi (n) (x)|2 − |ψi (x)|2 d3 x < i=1 where ∝ 10−8 as a typical value. List of topics 22 (4)
  • 23. 9 Ionization potentials of atoms !"##$% OOP O !"# O $%#& 1O 2 O 2"3)(.&+ OOOQA&RB O 1456 O '()& ) *(+,-./)%0-(+ 7189 O O ) ) ) :<5=> O =54> O ) A2&B *%+,: 7:89 O O ) ) ) ) >54: O A2&B *-+,: O ) ) D54 O A2&B *-+,: 7:E9 O ) : O 2& 4 O ?- O 2&;-/# O ?-0@-/# < O C& O C&)";;-/# =O C O C()(+ 6O * O *%)F(+ 115:6 O A2&B *-+,: *-.,: O ) GO $ O $-0)(.&+ 1<5=4 O A2&B *-+,: *-.,4 O ) DO H O HI".&+ 1456: O A2&B *-+,: *-.,< O ) >O J O J;/()-+& 1G5<: O A2&B *-+,: *-.,= O ) 1K O $& 11 O $% O $&(+ O !(3-/# :15=6 O =51< O A2&B A$&B *-+,: 7489 *-.,6 O O ) ) ) 1: O L. O L%.+&8-/# G56= O A$&B */+,: O ) ) 14 O M; O M;/#-+/# =5>> O A$&B */+,: 74E9 O ) 1< O !- O !-;-'(+ D51= O A$&B */+,: */.,: O ) 1= O N O N@(8E@()/8 1K5<> O A$&B */+,: */.,4 O ) 16 O ! O !/;,/) 1K546 O A$&B */+,: */.,< O ) 1G O *; O *@;()-+& 1:5>G O A$&B */+,: */.,= O ) 1D O M) O M).(+ 1=5G6 O A$&B */+,: */.,6 O ) List of topics 23
  • 24. !"##$% !()*+ Q 9):9 Q ,-./ ,#$/ *+,-= ;95< *+.-+ Q Q ) ) ) Q ?4@A678 +)!! Q ,#$/ */,-= Q ) ) Q BA4'C678 +)(9 Q ,#$/ ;:C< */,-= Q ) */,-= !" Q #$ !0 Q 1 Q #$%&' Q 2&3455678 => Q ?4 =! Q BA == Q D6 Q D634'678 +)"= Q ,#$/ *+0-= Q ) =: Q E Q E4'4C678 +)*9 Q ,#$/ *+0-: */,-= Q ) =9 Q ?$ Q ?F$&8678 +)** Q ,#$/ *+0-( ;95< Q ) =( Q G' Q G4'%4'.5. *)99 Q ,#$/ *+0-( */,-= Q ) =+ Q H. Q I$&' *)"* Q ,#$/ *+0-+ */,-= Q ) =* Q ?& Q ?&J4@3 *)"+ Q ,#$/ *+0-* */,-= Q ) =" Q -6 Q -6AK.@ *)+9 Q ,#$/ *+0-" */,-= Q ) =0 Q ?7 Q ?&LL.$ *)*: Q ,#$/ *+0-!> ;95< Q ) :> Q M' Q M6'A 0):0 Q ,#$/ *+0-!> */,-= Q ) :! Q N4 Q N4@@678 +Q ,#$/ *+0-!> */,-= ;9L< Q := Q N. Q N.$84'678 *)0 Q ,#$/ *+0-!> */,-= */.-= Q :: Q #5 Q #$5.'6A 0)"! Q ,#$/ *+0-!> */,-= */.-: Q :9 Q B. Q B.@.'678 0)*( Q ,#$/ *+0-!> */,-= */.-9 Q :( Q O$ Q O$&86'. !!)"! Q ,#$/ *+0-!> */,-= */.-( Q :+ Q 1$ Q 1$PL3&' !9 Q ,#$/ *+0-!> */,-= */.-+ Q List of topics 24
  • 25. !" W #$ !/ W 01 *+ W +6*7 W ,-$. ,#$. *+,-*? 89:; *./-C W *.0-" ) W ) !7 W <$ W <'$()'325 96/ W ,#$. *1/-C W ) ) != W > W >''$325 "6!7 W ,#$. 8+4; *1/-C W ) +? W @$ W @3$A()325 "67+ W ,#$. *.,-C *1/-C W ) +* W B1 W B3(1325 "677 W ,#$. *.,-+ 89:; W ) +C W D( W D(E%14F)25 /6* W ,#$. *.,-9 89:; W ) +! W GA W GFAH)F'325 /6C7 W ,#$. *.,-9 *1/-C W ) ++ W 02 W 02'HF)325 /6!/ W ,#$. *.,-/ 89:; W ) +9 W 0H W 0H(4325 /6+" W ,#$. *.,-7 89:; W ) +" W I4 W IJEEJ4325 76!+ W ,#$. *.,-*? W ) ) +/ W -K W <3ELF$ /697 W ,#$. *.,-*? 89:; W ) +7 W M4 W MJ45325 76== W ,#$. *.,-*? *1/-C W ) += W N) W N)4325 96/= W ,#$. *.,-*? *1/-C 89&; W 9? W <) W G3) /6!+ W ,#$. *.,-*? *1/-C *10-C W 9* W <1 W -)'35()% 76"+ W ,#$. *.,-*? *1/-C *10-! W 9C W GF W GFEE2$325 =6?* W ,#$. *.,-*? *1/-C *10-+ W 9! W N W N(43)F *?6+9 W ,#$. *.,-*? *1/-C *10-9 W 9+ W OF 99 W M: W OF)() W MF:325 *C6*! W !67= W ,#$. ,OF. *.,-*? 8":; *1/-C W *10-" ) W ) 9" W PJ W PJ$325 96C* W ,OF. *2/-C W ) ) 9/ W QJ W QJ)'HJ)25 9697 W ,OF. 894; *2/-C W ) 97 W MF W MF$325 969+ W ,OF. 8+R; 894; *2/-C W 9= W I$ List of topics W #$%&'() W 02134325 W I$J:F(4%5325 96+" W ,OF. *.3-! *2/-C W ) "? W B4 W BF(4%5325 969! W ,OF. *.3-+ *2/-C W ) "* W I5 W I$(5F'H325 9699 W ,OF. *.3-9 *2/-C W ) "C W <5 W <J5J$325 96"+ W ,OF. *.3-" *2/-C W ) "! W S2 W S2$(&325 96"/ W ,OF. 25 *.3-/ *2/-C W )
  • 26. Screened potential and Centrifugal barrier 0.5 Coulomb potential L=2 L=1 0 L=0 −0.5 0 1 2 3 4 5 6 7 8 6 7 8 0.5 Hartree potential L=2 L=1 0 L=0 −0.5 0 − 1 Z r + 2 3 L(L + 1) r2 4 5 vs. − 26 Z − 1 −αr 1 e − r r List of topics + L(L + 1) r2 (5)
  • 28. Figure 5: Selfconsistent field calculations compared to coulomb - real results Here we note the position of the turning point - same for both Coulomb and SCF case. This is true only for the 1s states. List of topics 28
  • 29. Figure 6: Hartree Atomic potential This figure shows results for oxygen with the potential and energies obtained from a calculation with SCF program List of topics 29
  • 30. results for oxygen with the potential and energies obtained from a calculation with SCF program compared with hydrogen-like levels List of topics 30
  • 31. 10 Expectation value of energy for N-particles Hamiltonian for N-particles - the repulsion - we sum over pairs of coordinates   N 2 2 e Ze 1 2  + H (r1 , r2 , ...rN ) =  − ri − 2 ri |ri − rj | i=1 (i,j)pairs Without antisymmetrization - independent particles - product function only 1 term -each particle has its orbital ψa ,ψb ,ψc .....ψn Φ (r1 , r2 , ...rN ) → ψa (r1 )ψb (r2 )ψc (r3 )......ψn (rN ) With antisymmetrization - the Slater determinant 1 ΦHF (r1 , r2 , ...rN ) → √ a,b,...n N! List of topics 31 ψa (r1 )ψb (r1 )......ψn (r1 ) ψa (r2 )ψb (r2 )......ψn (r2 ) ....... ψa (rN )ψb (rN )......ψn (rN )
  • 32. For N-particles - the repulsion - we sum over pairs of coordinates   N 2 2 1 2 Ze e   Φ (r1 , r2 , ...rN ) = EΦ (r1 , r2 , ...rN ) − + ri − 2 ri |ri − rj | i=1 (i,j)pairs Expectation value with the independent particles - product function - only 1 term Φ (r1 , r2 , ...rN ) → ψa (r1 )ψb (r2 )ψc (r3 )......ψn (rN ) becomes n E = Φ| H |Φ → ψα | T − α=a Ze2 |ψα + r ψβ ψα | (α,β)pairs e2 |ψβ ψα |r − r | The sum over coordinate pairs becomes sum over pairs of orbitals This remains true for Slater determinants - but it must be shown. There are N ! terms in the Slater determinant, the left and right give (N !)2 terms, and there are N (N − 1)/2 coordinate pairs. Thus (N !)2 N (N − 1)/2 terms. Due to the normalization, this becomes only N (N − 1) terms, N (N − 1)/2 direct terms and N (N − 1)/2 exchange terms List of topics 32
  • 33. It should be shown that when the Slater determinant is used ψa (r1 )ψb (r1 )......ψn (r1 ) 1 ψa (r2 )ψb (r2 )......ψn (r2 ) ΦHF (r1 , r2 , ...rN ) → √ a,b,...n N ! ....... ψa (rN )ψb (rN )......ψn (rN ) the expectation value will give (final result shown here first) n ΦHF H ΦHF = ψα | T − j=α Ze2 |ψα r ψβ ψα | e2 |ψβ ψα |r − r | ψβ ψα | + e2 |ψα ψβ |r − r | (α,β)pairs − (α,β)pairs (6) The last term - exchange energy. On the previous page product function (1 term) is shown - no exchange energy Next 3 slides: 1. Helium, 2. Lithium examples, 3. Counting nonzero terms List of topics 33
  • 34. r 12 −e2 r1 r2 For Helium − h2 ¯ 2me 2 r1 − −e1 +Ze Z e2 h2 ¯ − r1 2me 1 ΦHF (r1 , r2 ) = √ a,b 2 2 r2 − Z e2 e2 Ψ (r1 , r2 ) = E Ψ (r1 , r2 ) + r2 |r1 − r2 | 1 = √ [ψa (r1 )ψb (r2 ) − ψb (r1 )ψa (r2 )] 2 ψa (r1 ) ψb (r1 ) ψa (r2 ) ψb (r2 ) and the energy becomes ΦHF H ΦHF = + Ze2 Ze2 |ψa + ψb | T − |ψb r r e2 e2 ψa ψb | |ψa ψb − ψa ψb | |ψb ψa |r − r | |r − r | ψa | T − The last term - exchange energy - and there is only one pair. List of topics Lithium example 34 (7)
  • 35. −e3 r 13 r 23 r3 r 12 −e 2 −e1 r1 r2 Lithium +Ze − h ¯2 2me + 2 r1 − Z e2 h ¯2 − r1 2me 2 r2 − 6 × 6 × 3-pair terms Z e2 h ¯2 − r2 2me 2 r3 − Z e2 r3 e2 e2 e2 + + Ψ (r1 , r2 , r3 ) = E Ψ (r1 , r2 , r3 ) |r1 − r2 | |r1 − r3 | |r2 − r3 | (8) 1 √ { ψα (1) ψβ (2) ψγ (3) + 3! − ψγ (1) ψβ (2) ψα (3) List of topics ψβ (1) ψγ (2) ψα (3) + − ψα (1) ψγ (2) ψβ (3) Helium example ψγ (1) ψα (2) ψβ (3) − ψβ (1) ψα (2) ψγ (3)} Next slide: Counting nonzero terms 35
  • 36. 1 3! a b c + a b c + a b c + a b c − a b c − a b c − a + + + + + b c + + c a + e2 r2 3 e2 r2 3 e2 r2 3 e2 r2 3 e2 r2 3 e2 r2 3 b + b c a + − b a − c − c b a − − a c − b a b c a a b c c a b a c b c e2 r2 3 e2 r2 3 b c a a b b c e2 r2 3 c a b a c a b b c e2 r2 3 a c c b a a c b c e2 r2 3 b a a c a a b c e2 r2 3 c b + + + − − − − b b c a b Evaluation of the first six terms of the total 36 terms. For each further group of 6 a very similar procedure would follow. From each six, two remain, totaling 12 nonzero terms List of topics 36
  • 37. 11 N particles in Slater determinant - Total Energy Summary N Φ| H |Φ = j=1 Ze2 |ψj + ψj | T − r (i,j)pairs e2 ψj ψi | |ψj ψi |r − r | 2 − ψj ψi | (i,j)pairs e |ψi ψj |r − r | (9) We will use also a more compact notation, instead of orbitals ψi we use orbitals |α , i.e. the index becomes the name of the function Φ| H |Φ = α|(T + V )|α + α [ αβ|Vee |αβ − αβ|Vee |βα ] (10) pairs αβ List of topics 37
  • 38. Schr¨dinger equation from variational principle: minimize o Φ| H |Φ Φ|Φ (≥ Eg.s. ) which can be written as minimalization with constraint Φ | Φ = 1 ; minimize Φ| H |Φ − λ Φ | Φ Φ |Φ −1=0 λ Lagrange multiplier Derivative - differential f (x) → df (x) dx → df = df (x) dx dx Functional derivative - functional F(f ); variation of the functions f (x), δf F(f ) → δF(f ) δf → δF = δF(f ) δf δf (11) Variation of Φ| H |Φ is taken (considering the complex nature of |Φ ) as δ ( Φ| H |Φ ) = δΦ| H |Φ With arbitrary variations |δΦ δΦ| H |Φ − λ δΦ | Φ −→ H |Φ − λ |Φ = 0 −→ H |Φ Thus the Lagrange multiplier plays the role of energy eigenvalue 38 = λ |Φ List of topics
  • 39. Deriving Hartree-Fock: For N electrons this energy must be minimized Φ| H |Φ = [ αβ|Vee |αβ − αβ|Vee |βα ] α|(T + V )|α + α (12) pairs αβ with respect to the N orbitals |α , |β , etc. , with N conditions α|α = 1, β|β = 1, i.e. with N Lagrange multipliers εα , εβ ....... δΦ(α → δα)| H |Φ − εα δα | α = 0 Which results in N equations (one for each of the N orbitals) [ (δα)β|Vee |αβ − (δα)β|Vee |βα ] − εα δα | α δα|(T + V )|α + = 0 (13) β Leaving for a while out the exchange-related term, we can as in prev. slide reduce this by removing δα| [ β|Vee |β ] |α − εα | α (T + V )|α + =0 β which is exactly the Hartree method. The exchange term leads to complications → List of topics 39
  • 40. Reducing the full equation [ (δα)β|Vee |αβ − (δα)β|Vee |βα ] − εα δα | α δα|(T + V )|α + = 0 (14) β we get the Hartree Fock Equations (N orbitals) [ β|Vee |β ] |α − (T + V )|α + β [ β|Vee |α ] |β − εα | α =0 β The complexity of the exchange term becomes clear when we write it explicitely with coordinates and integrations. Hartree Fock Equations: The direct term and the exchange term: WHF = W d − W ex occ ∗ ψb (x) WHF ψa (r) = b e2 ψb (x)d3 x ψa (r)− |r − x| occ ∗ ψb (r) b ψb (x) e2 ψa (x)d3 x |r − x| where the exchange potential is nonlocal W d ψa → W d (r)ψa (r) W ex ψa (r) → List of topics 40 W ex (r, x)ψa (x)d3 x
  • 41. Hartree-Fock total energy and sum of orbital energies with a shorthand notation ϕα (r) → |ϕα → |α Slater determinant Φα,β,....,ν → |α, β, ...., ν We have started our work with the Hartree-Fock equations by evaluating Φα,β,....,ν | T +V + pairs ij e2 |ri − rj | |Φα,β,....,ν (15) This we have evaluated as Φ| H |Φ = α|(T + V )|α + α [ αβ|Vee |αβ − αβ|Vee |βα ] (16) pairs αβ From this expression we have obtained Hartree-Fock equations by the variational procedure. List of topics 41
  • 42. The Hartree-Fock equation can be then written as β| T +V + β e2 |β |r − r | |α − β| β e2 |α |r − r | |β = εα |α (17) We form the matrix element with the given α| α| T + V + β| β e2 |β |r − r | |α − α| β| β e2 |α |r − r | |β = εα (18) since α|α = 1. This can be rewritten as εα = α|(T + V )|α + [ βα|Vee |βα − βα|Vee |αβ ] (19) β=α And now we can explore what is the sum of all εα εα = α|(T + V )|α + α α [ βα|Vee |βα − βα|Vee |αβ ] (20) α β=α which we can compare with the above Φ| H |Φ Φ| H |Φ = α|(T + V )|α + α [ αβ|Vee |αβ − αβ|Vee |βα ] (21) pairs αβ 42
  • 43. The two expressions are very similar, but they differ in fact by all the interaction term, since it is counted twice in the sum: Fαβ = 2 α β=α Fαβ pairs αβ for any set of objects that are symmetric Fαβ = Fβα Our objects are symmetric, because they are in fact of the type Hαβ,αβ . The wavefunctions are antisymmetric, |αβ = −|βα . Thus, surprisingly perhaps Φ| H |Φ = εα α but as we derived here Φ| H |Φ List of topics = εα − α [ αβ|Vee |αβ − αβ|Vee |βα ] pairs αβ 43 (22)
  • 44. Evaluation of the repulsion term using the multipole expansion 1 = |r1 − r2 | LM L r< 4π YLM (ˆ1 ) YLM (ˆ2 ) r r L+1 2L + 1 r> (23) where r< = r1 , r> = r2 for |r1 | < |r2 | r< = r2 , r> = r1 for |r1 | > |r2 | Evaluation of the matrix element in general case d3 r1 d3 r2 ψn1 l1 m1 (r1 ) ψn2 l2 m2 (r2 ) 1 ψn l m (r1 ) ψn2 l2 m2 (r2 ) (24) |r1 − r2 | 1 1 1 is performed separately over the radial and angular parts 2 r1 dr1 dˆ1 r 2 r2 dr2 dˆ2 r 1 |r1 − r2 | r r Rn1 l1 (r1 )Yl1 m1 (ˆ1 ) Rn2 l2 (r2 )Yl2 m2 (ˆ2 ) Rn1 l1 (r1 )Yl1 m1 (ˆ1 ) Rn2 l2 (r2 )Yl2 m2 (ˆ2 )(25) r r where dˆi means the integration over dΩi = sin θi dθi dϕi . List of topics r 44
  • 45. The evaluation of general case - angular integrals of three Ylm ’s CL = Yli mi (θ, ϕ)YLM (θ, ϕ)Yli mi (θ, ϕ)dΩ (26) For the case of both s-states, li = 0 mi = 0 only L = 0 M = 0 are nonzero; The sum reduces to one term. The angular factors give value one, since the (YL=0M =0 )2 = (4π)−1 cancels the corresponding factor in the multipole expansion and due to the normalization. List of topics 45
  • 46. 12 Configuration mixing Consider the usual: Hx (x)ϕα (x) = Eα ϕα (x) Hy (y)χβ (y) = Eβ χβ (y) For any Φ(x) Φ(x) = cα ϕα (x) Ξ(y) = dβ χβ (y) For any Ξ(x) Take now a general Ψ(x, y). First look at y as a parameter, Ψ(x, y0 ) Ψ(x, y0 ) → Φ(x) = cα (y0 )ϕα (x) for every y0 ; Thus we get a new function of y; cα (y) = dβ (α)χβ (y) Inserting back: Ψ(x, y) = dβ (α)χβ (y)ϕα (x) 46
  • 47. Or, with a simpler notation Ψ(x, y) = dβα χβ (y)ϕα (x) In the case of Helium, for example, the H(x) and H(y) are identical and so are the χβ (y) and ϕα (x). This becomes configuration mixing. Ψ(x, y) = dβα ϕβ (y)ϕα (x) The coefficients are found by diagonalization. For three coordinate sets - e.g. for Lithium : Ψ(x, y, z) = Dγβα ϕ(z)ϕβ (y)ϕα (x) List of topics 47
  • 48. END OF THE PRESENTATION List of topics 48