SlideShare a Scribd company logo
1 of 25
THE ROLE OF A CHOICE 
OF THE TARGET FORM 
FOR 99Tc TRANSMUTATION 
• А.А. Kozar’, 
• V.F. Peretrukhin, 
• K.E. German 
• Frumkin Institute of Physical 
Chemistry and Electrochemistry of 
RAS, 
• 31/4 Leninsky prosp., Moscow, 
119071, Russia, 
• kozar@ipc.rssi.ru 
• guerman_k@mail.ru
IT’S WELL KNOWN (SINCE 2000) - 99Tc 
transmutation can be the source of 
artificial stable ruthenium 100–102Ru, the 
second of the mjst interesting elements 
of the Periodic table. 
Such ruthenium has been synthesized 
as a result of a neutron irradiation of Tc 
targets up to 20 – 70 % burn-up 
(for 3 different groups of Tc targets) 
in experiments at SM high-flux reactor 
in 1999 – 2003 .
Russian Tc - Transmutation program (1992-2003) 
-------------------------------------------------------------------------------------------------------------------------------------------------------------- 
---------------- 
99Tc(n,g)100Tc(b)100Ru 
75,00% 
50,00% 
25,00% 
0,00% 
= Pessimistic 
0,67 % 
1 2 3 4 5 
Irradiation time, days 
Technetium-99 Burnup, % 
Hanford (USA) 
1989 
Wootan W 
Jordheim DP 
Matsumoto WY 
Petten (NL) 
1994-1998 
Konings RJM 
Franken WMP 
Conrad RP 
et al. 
Dimitrovgrad 
(Russia) 
IPC RAS - NIIAR 
1999 - 2000 
Kozar AA 
Peretroukhine VF 
Tarasov VA et al. 
6% 
18% 
34% 
65% 
10.5 days 
193 days 579 days 72 days 260 days 
2
Tc transmutation experiment (IPCE RAS – NIIAR, 1999-2008) 
In IPC RAS a set of metal disc targets (10x10x0.3 mm) prepared 
and assembled in two batches with total weight up to 5 g. 
Transmutation experiment was carried out at high flux 
SM-3 reactor ( NIIAR, Dimitrovgrad ) 
2nd batch: Ft > 2 1015 cm-2s-1 
1st batch: Ft=1.3 1015 cm-2s-1 
99Tc burnups have made: 
34  6 % and 65  11 % 
for the 1st and 2nd targets batches 
---- 
 The high 99Tc burn-ups were 
reached and about 2.5 g of new 
matter - transmutation ruthenium 
were accumulated as a result of 
experiments on SM-3 reactor 
 These values are significantly 
higher of burnups 6 and 16 % 
achieved on HFR in Petten earlier 
9 12 
96 86 76 66 56 46 
КО3 КО4 
95 85 75 65 55 45 
94 84 54 44 
93 83 53 43 
92 82 72 62 52 42 
81 71 61 51 41 
КО1 
91 
КО2 
3 
7 
АР 
2 
Д-9 
1  центральный блок трансурановых мишеней; 2  бериллиевые вкладыши; 
3  бериллиевые блоки отражателя; 4  центральный компенсирующий орган 
7 Д-2  канал и его номер 81 
 автоматический регулятор 
 ячейка активной зоны с Т ВС 
 стержень аварийной защиты 
 компенсирующий орган 
91 
КО- 
2 
АР 
1 
4 
3 
2 
1 
Д-3 Д-1 
Д-2 
2 
6 
15 14 
16 8 
Д-4 
Д-5 
17 
Д-6 
Д-10 
13 
Д-8 
АР1 
19 
4 
10 
Д-7 
5 
20 
18 11 21 
Рис.5. Картограмма реактора СМ 
2
IRRADIATION OF 99Tc METAL TARGETS 
IN NUCLEAR HIGH FLUX REACTORS 
Petten transmutation experiment 
99Tc targets: metal cylinders Ø 4.8 mm and with height 
of 25 mm 
99Tc burn-up in Petten reactor are 6 % (T1) and 16 – 
18 % (T2). 
Dimitrovgrad transmutation experiment on SM high-flux 
reactor 
99Tc targets: metal disks Ø 6.0  0.3 mm and with 
thickness of 0.3  0.02 mm 
Total targets mass is 10 g 
3
99Tc BURN-UP AND HALF-CONVERSION PERIOD 
Measured and calculated 99Tc burn-up and half-conversion periods in SM reactor. 
№ of 
group 
Burn-up, % Irradiation 
time, 
eff. days 
Half-conversion 
period , 
burn T 2 / 1 
measured calculated eff. days 
1 192 202 72.7 240 
2 453 505 262.7 305 
3 705 707 424.8 245 
99Tc burn-up in Petten reactor are 6 % (T1) 
and 16 – 18 % (T2). 
99Tc half-conversion period 
 2160 eff. days. burn T 1/ 2 
Fig. 2. Calculated dependence of 99Tc burn-up on 
irradiation time () and its experimental values 
() for 3 groups of targets. 
4
ARTIFICIAL Ru ACTIVITY DECAY 
Actinide content in Tc: 5•10–8 g An per g of Tc (better values are expensive!) 
Actinide fission product 106Ru (T1/2=371.6 days) can’t be separated from artificial 
Ru by chemical methods. 
Activity of 106Ru + 106Rh in artificial Ru 
b - , 371.6 days b - , 29.8 sec 
106Ru (pure b -radiator, γ is absent)  106Rh  106Pd (stable) 
106Rh has 2 main g -lines with energies 511.8 keV and 621.8 keV 
In 2006 106Rh activity in Ru from 20 % burn-up targets later  2100 days {5.7 T1/2 (106Ru)} 
after irradiation stop: 
106 A 
15  2 Bk/g of Ru  total activity of pair 106Ru + 106Rh  30 Bk/g of Ru 
1 
lim A 
106 A 
Later 10 years after irradiation stop: = 3.2  0.4 Bk/g of Ru < = 3.7 Bk/g  
 Since 2010 artificial Ru from 20% burn-up targets can 
be used without limitation 
Artificial Ru separated from 45 % and 70 % burn-up targets can be 
used in non-nuclear industry 9 and 8 years after synthesis 
correspondingly 
5
ARTIFICIAL STABLE RUTHENIUM PURIFICATION FROM 106Ru 
Relative yield Y of 106Ru nuclei recoiling from spherical 
grains of technetium powder, in dependence on their 
diameter D (average fission-fragment path length is about 
8 microns). 
6
Transformation of disks Ø 6 mm × 0.3 mm in 
cylindrical targets Ø 6 mm × 6 mm 
Fig. 4. Relative position of Tc (Tc-Ru) grains in heterogeneous target. 
7
Possible target chemical substances 
• Tc Metal - Tc 
• Tc Carbide - Tc6C 
• Tc Dioxide - TcO2 
• Tc Disulfide - TcS2 
• and its mixtures with inert matter 
8
Target substances 
1. Metal 
Instrumentation 
• Furnaces 
• 6% H2|Ar 
industurial 
balloon mixture 
• Ingots 
• Rolling-mill 
• et cetera… 
Sample type : 
• Ordinary 
Powder 
metal 
• Fused 
metal 
• Single 
crystal 
• Foil 
Starting 
material : 
• TcO2 
• NH4TcO4 
• R4NTcO4 
9
1. Bulk Tc metal 
11 
• Set-up used for fusion and casting of Tc metal 
• Single crystal Tc metal
1. Tc metal – foil, X-ray study 
• d: 20 micrometers 
• Systematic absence of X-ray reflex 
• = Preferential orientation of crystallites with C 
axe perpendicular to the foil surface 
12
1. Tc metal – foil, assembling 
13 
• Spacer grid-bush with 99Tc targets (1) and 
aluminium core (2) of capsule for loading 
in reactor.
1. Tc metal – foil 
chemical consequences 
• Dissolution in HNO3 dramatically slowed-down 
starting from 20% Tc to Ru conversion 
• Possible to increase the dissolution rate by 
aggressive agents addition (Ag2+, IO4 
-) but 
corrosion problems arises 
• Possibly the best reprocessing procedure – 
burning in O2 – not approved by industry to date 
12
Target substances 
2. Tc Carbide 
• Orthorhombic Tc metal is formed at low C content 
Grey bars : ref. hcp Tc metal 
Curves : exp. spectra 
30 40 50 60 70 80 90 
100 
75 
50 
25 
100 
75 
50 
25 
0 
30 40 50 60 70 80 90 
0 
B 
I, % 
2Theta, deg 
A 
I, %
Target substances 
2. Tc Carbide 
• Tc6C – non-stoechiometry 
• Tc6C + nC excess carbon for no slowing-down 
• Tc6C – formed by : 
• Tc + C reaction 
• Tc + C6H6 
• R4NTcO4 thermal 
decomposition in Ar
Target substances – Tc carbide 
2. Tc6C + nC excess carbon 
• EXAFS study of 
Tc6C + nC [1] – 
wavelet 
presentation 
[1] K.German, Ya.Zubavichus ISTR2011
1. Tc carbide 
chemical consequences 
• Dissolution of Tc is more active as no RuC is known 
and so it is’nt formed during transmutation of Tc 
carbide to Ru - Tc and Ru being stabilized in 
separate phases 
• Drawback: Possible mechanical inclusions of Tc in 
Ru residue at high burn-ups 
• Mixtures with C excess could be the best choice 
because resonance energy neutrons are 
participating in transmutation due to enhanced 
thermolisation inside the target 
12
1. Tc dioxide 
chemical consequences 
• Preparation by chemical reduction – high impurity 
content 
• Preparation from NH4TcO4 – similar to Tc metal 
• Target instability due to excess O released (Ru is 
stabilised as metal) 
• Some Tc2O7 formed at high burn-up 
• This target material is not recommended 
12
Preparation of artificial stable Ruthenium by 
transmutation of Technetium 
• New Ruthenium is almost 
monoisotopic Ru-100, it has 
different spectral properties 
• It is available only to several 
countries that develop nuclear 
industry 
 Tc target material: 
 Tc metal powder / Kozar 
(2008) 
 Tc – C composite Tc carbide 
/ German (2005) 
 Rotmanov K. et all. 
Radiochemistry, 50 (2008) 
408 :
Conclusions 
• 99Tc transmutation can be the source of artificial 
stable ruthenium 100–102Ru. 
• Metal homogeneous Tc targets are possible 
• Tc carbide targets are favorabale 
• Artificial ruthenium demanded exposure during 8 – 
10 years for application without restrictions 
• Application of heterogeneous targets with nuclear-inert 
stuff to reduce a 106Ru radioactivity in artificial 
Ru 
• The target form effect the artificial ruthenium purity 
at equal Tc nuclear density in irradiated volume.
• Transformation of disks in cylinders in the conditions of identical 
irradiated volume could allow to lower 106Ru concentration in artificial 
ruthenium. The minimum fission-fragment path length in Tc metal 
makes about 5 microns (average fission-fragment path length is about 8 
microns). The corresponding form of a heterogeneous target is a tablet 
consisting of a mix of spherical Tc metal particle in diameter of 5 
microns and a nuclear-inert stuff with Tc average density which in 20 
times is less, than Tc metal. In this case all fission-fragments, including 
106Ru, escape the Tc (Tc-Ru) grains to stuff. The average distance 
between Tc spherical grains is about 23 microns, between their surfaces 
is about 18 microns at regular distribution of Tc particles in a target. 
• Fission-fragment path length in the most applicable nuclear-inert 
materials (such as ZrO2, Y2O3, MgAl2O4, MgO, Y3Al5O12, SiC, Al2O3, ZrO2- 
Y2O3, ZrO2-CaO and many others) makes 12 – 15 microns, hence hit 
probability of 106Ru fission-fragments in the next Tc grain is negligibly 
small. Artificial ruthenium from such target would be almost free from 
106Ru nuclei. Additional purification of commercial Tc from actinide 
impurities would be not necessary at a choice of such target form 
instead of metal disks. In this case artificial ruthenium could be applied 
in non-nuclear field through 3 – 3.5 years after an irradiation, necessary 
to decay of transmutation product 103Ru (T1/2 = 39.3 days).
• References 
• 1. V. Peretroukhine, V. Radchenko, A. Kozar’ et al. Technetium 
transmutation and production of artifical stable ruthenium. // Comptes 
Rendus. – Ser. Chimie. – 2004. – Tome 7. – Fascicule 12. – P. 1215 – 
1218. 
• 2. А.А. Kozar’, V.F. Peretroukhin, K.Vразличные химические методы, а 
ские методы, а общий технеций, ка мишеналла рутения 
трансмутацией . Rotmanov, V.A. Tarasov. The elaboration of technology 
bases for the artificial stable ruthenium preparation from technetium- 
99 transmutation products. // 7th International Symposium on 
Technetium and Rhenium – Science and Utilization. Moscow, Russia, 
July 4 – 8, 2011. – Book of Proceedings. – P. 113. – Publishing House 
GRANITSA, Moscow, 2011. – 460 p. 
• 3. А.А. Kozar’, V.F. Peretroukhin, K.Vразличные химические методы, а 
ские методы, а общий технеций, ка мишеналла рутения 
трансмутацией . Rotmanov, V.A. Tarasov. The elaboration of technology 
bases for the artificial stable ruthenium preparation from technetium- 
99 transmutation products. // Ibid. – P. 113.
Thank you 
for the attention !

More Related Content

Viewers also liked

Reaviz surface phenomena adsorption-membranes 8
Reaviz surface phenomena adsorption-membranes 8Reaviz surface phenomena adsorption-membranes 8
Reaviz surface phenomena adsorption-membranes 8Konstantin German
 
Reaviz зубы-биохимия полости рта стомат
Reaviz зубы-биохимия полости рта стомат Reaviz зубы-биохимия полости рта стомат
Reaviz зубы-биохимия полости рта стомат Konstantin German
 
2008 corroz u and alloys russ
2008 corroz u and alloys russ2008 corroz u and alloys russ
2008 corroz u and alloys russKonstantin German
 
2010 terachem-technetium-symp-mazzi-final program
2010 terachem-technetium-symp-mazzi-final program2010 terachem-technetium-symp-mazzi-final program
2010 terachem-technetium-symp-mazzi-final programKonstantin German
 
Electrolytic dissociation lecture 5
Electrolytic dissociation lecture 5Electrolytic dissociation lecture 5
Electrolytic dissociation lecture 5Konstantin German
 
Reaviz биохимия жидкостей-полости_рта
Reaviz биохимия жидкостей-полости_ртаReaviz биохимия жидкостей-полости_рта
Reaviz биохимия жидкостей-полости_ртаKonstantin German
 
Reaviz равновесия кисл осн буферы
Reaviz равновесия кисл осн буферыReaviz равновесия кисл осн буферы
Reaviz равновесия кисл осн буферыKonstantin German
 
IGARSS2011_Koyama_Schneider.pptx
IGARSS2011_Koyama_Schneider.pptxIGARSS2011_Koyama_Schneider.pptx
IGARSS2011_Koyama_Schneider.pptxgrssieee
 
Pasolli_TU1_TO3.4.pptx
Pasolli_TU1_TO3.4.pptxPasolli_TU1_TO3.4.pptx
Pasolli_TU1_TO3.4.pptxgrssieee
 
MO4_T04_3_R_Sato.pptx
MO4_T04_3_R_Sato.pptxMO4_T04_3_R_Sato.pptx
MO4_T04_3_R_Sato.pptxgrssieee
 
Apres_DINSAR_IGARSS11.ppt
Apres_DINSAR_IGARSS11.pptApres_DINSAR_IGARSS11.ppt
Apres_DINSAR_IGARSS11.pptgrssieee
 

Viewers also liked (20)

1996 nrc4-tc
1996 nrc4-tc1996 nrc4-tc
1996 nrc4-tc
 
Reaviz surface phenomena adsorption-membranes 8
Reaviz surface phenomena adsorption-membranes 8Reaviz surface phenomena adsorption-membranes 8
Reaviz surface phenomena adsorption-membranes 8
 
Safonov
SafonovSafonov
Safonov
 
Reaviz зубы-биохимия полости рта стомат
Reaviz зубы-биохимия полости рта стомат Reaviz зубы-биохимия полости рта стомат
Reaviz зубы-биохимия полости рта стомат
 
1986 tc-99-nmr solids
1986 tc-99-nmr solids1986 tc-99-nmr solids
1986 tc-99-nmr solids
 
2013 proceed-apsorc-jrnc
2013 proceed-apsorc-jrnc2013 proceed-apsorc-jrnc
2013 proceed-apsorc-jrnc
 
2008 corroz u and alloys russ
2008 corroz u and alloys russ2008 corroz u and alloys russ
2008 corroz u and alloys russ
 
2007 guan re-o4
2007 guan re-o42007 guan re-o4
2007 guan re-o4
 
реавиз лекция 1
реавиз лекция 1реавиз лекция 1
реавиз лекция 1
 
реавиз лекция 1
реавиз лекция 1реавиз лекция 1
реавиз лекция 1
 
Migration 1995 krasnoyarsk
Migration 1995 krasnoyarskMigration 1995 krasnoyarsk
Migration 1995 krasnoyarsk
 
2010 terachem-technetium-symp-mazzi-final program
2010 terachem-technetium-symp-mazzi-final program2010 terachem-technetium-symp-mazzi-final program
2010 terachem-technetium-symp-mazzi-final program
 
Electrolytic dissociation lecture 5
Electrolytic dissociation lecture 5Electrolytic dissociation lecture 5
Electrolytic dissociation lecture 5
 
Reaviz биохимия жидкостей-полости_рта
Reaviz биохимия жидкостей-полости_ртаReaviz биохимия жидкостей-полости_рта
Reaviz биохимия жидкостей-полости_рта
 
Reaviz равновесия кисл осн буферы
Reaviz равновесия кисл осн буферыReaviz равновесия кисл осн буферы
Reaviz равновесия кисл осн буферы
 
реавиз лекция 1
реавиз лекция 1реавиз лекция 1
реавиз лекция 1
 
IGARSS2011_Koyama_Schneider.pptx
IGARSS2011_Koyama_Schneider.pptxIGARSS2011_Koyama_Schneider.pptx
IGARSS2011_Koyama_Schneider.pptx
 
Pasolli_TU1_TO3.4.pptx
Pasolli_TU1_TO3.4.pptxPasolli_TU1_TO3.4.pptx
Pasolli_TU1_TO3.4.pptx
 
MO4_T04_3_R_Sato.pptx
MO4_T04_3_R_Sato.pptxMO4_T04_3_R_Sato.pptx
MO4_T04_3_R_Sato.pptx
 
Apres_DINSAR_IGARSS11.ppt
Apres_DINSAR_IGARSS11.pptApres_DINSAR_IGARSS11.ppt
Apres_DINSAR_IGARSS11.ppt
 

Similar to 2014 kozar german-transmutation istr

application of carbon nano tube in chromatography
application of carbon nano tube in chromatographyapplication of carbon nano tube in chromatography
application of carbon nano tube in chromatographyAbdolah Karimgolan
 
15 Matei_WTTC15_proceeding_paper-kw
15 Matei_WTTC15_proceeding_paper-kw15 Matei_WTTC15_proceeding_paper-kw
15 Matei_WTTC15_proceeding_paper-kwLidia Matei
 
2000 guerman-pyrochemistry technetium
2000 guerman-pyrochemistry technetium2000 guerman-pyrochemistry technetium
2000 guerman-pyrochemistry technetiumKonstantin German
 
Vaneet K Sharma MS 2008
Vaneet K Sharma MS 2008Vaneet K Sharma MS 2008
Vaneet K Sharma MS 2008vsharma78
 
Effect of sintering time on the particle size and dielectric properties of La...
Effect of sintering time on the particle size and dielectric properties of La...Effect of sintering time on the particle size and dielectric properties of La...
Effect of sintering time on the particle size and dielectric properties of La...ijceronline
 
Radioisotope production and application
Radioisotope production and applicationRadioisotope production and application
Radioisotope production and applicationmadhavmb
 
MD simulations of radiation effects in Ti-Al based structural intermetallics
MD simulations of radiation effects in Ti-Al based structural intermetallicsMD simulations of radiation effects in Ti-Al based structural intermetallics
MD simulations of radiation effects in Ti-Al based structural intermetallicsRoman Voskoboynikov
 
Perovskite solar cells
Perovskite solar cellsPerovskite solar cells
Perovskite solar cellshadi maghsoudi
 
Pollutant abatement of nitrogen based fuel effluents over mono
Pollutant abatement of nitrogen based fuel effluents over monoPollutant abatement of nitrogen based fuel effluents over mono
Pollutant abatement of nitrogen based fuel effluents over monoimplax
 
Ceramic nanocomposites in solid oxide fuel cells (SOFC)
Ceramic nanocomposites in solid oxide fuel cells (SOFC)Ceramic nanocomposites in solid oxide fuel cells (SOFC)
Ceramic nanocomposites in solid oxide fuel cells (SOFC)Sum K
 
Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclearblachman
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...LandimarMendesDuarte
 
Atomic Absorption Spectroscopy
Atomic Absorption Spectroscopy Atomic Absorption Spectroscopy
Atomic Absorption Spectroscopy GaneshBhagure1
 
Ch18z7enuclear 110115233000-phpapp01
Ch18z7enuclear 110115233000-phpapp01Ch18z7enuclear 110115233000-phpapp01
Ch18z7enuclear 110115233000-phpapp01Cleophas Rwemera
 
bahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .pptbahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .pptZHENAHARYOP
 
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...Safwan Jaradat
 
Influence of obtaining conditions on sintering kinetics tetragonal zirconia n...
Influence of obtaining conditions on sintering kinetics tetragonal zirconia n...Influence of obtaining conditions on sintering kinetics tetragonal zirconia n...
Influence of obtaining conditions on sintering kinetics tetragonal zirconia n...Marharyta Lakusta
 

Similar to 2014 kozar german-transmutation istr (20)

application of carbon nano tube in chromatography
application of carbon nano tube in chromatographyapplication of carbon nano tube in chromatography
application of carbon nano tube in chromatography
 
15 Matei_WTTC15_proceeding_paper-kw
15 Matei_WTTC15_proceeding_paper-kw15 Matei_WTTC15_proceeding_paper-kw
15 Matei_WTTC15_proceeding_paper-kw
 
2000 guerman-pyrochemistry technetium
2000 guerman-pyrochemistry technetium2000 guerman-pyrochemistry technetium
2000 guerman-pyrochemistry technetium
 
Cnt ppt by bhargav
Cnt ppt by bhargavCnt ppt by bhargav
Cnt ppt by bhargav
 
Vaneet K Sharma MS 2008
Vaneet K Sharma MS 2008Vaneet K Sharma MS 2008
Vaneet K Sharma MS 2008
 
Effect of sintering time on the particle size and dielectric properties of La...
Effect of sintering time on the particle size and dielectric properties of La...Effect of sintering time on the particle size and dielectric properties of La...
Effect of sintering time on the particle size and dielectric properties of La...
 
Waste_Transm.ppt
Waste_Transm.pptWaste_Transm.ppt
Waste_Transm.ppt
 
Radioisotope production and application
Radioisotope production and applicationRadioisotope production and application
Radioisotope production and application
 
MD simulations of radiation effects in Ti-Al based structural intermetallics
MD simulations of radiation effects in Ti-Al based structural intermetallicsMD simulations of radiation effects in Ti-Al based structural intermetallics
MD simulations of radiation effects in Ti-Al based structural intermetallics
 
Perovskite solar cells
Perovskite solar cellsPerovskite solar cells
Perovskite solar cells
 
Pollutant abatement of nitrogen based fuel effluents over mono
Pollutant abatement of nitrogen based fuel effluents over monoPollutant abatement of nitrogen based fuel effluents over mono
Pollutant abatement of nitrogen based fuel effluents over mono
 
1 tc-renaissance2010
1 tc-renaissance20101 tc-renaissance2010
1 tc-renaissance2010
 
Ceramic nanocomposites in solid oxide fuel cells (SOFC)
Ceramic nanocomposites in solid oxide fuel cells (SOFC)Ceramic nanocomposites in solid oxide fuel cells (SOFC)
Ceramic nanocomposites in solid oxide fuel cells (SOFC)
 
Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclear
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
 
Atomic Absorption Spectroscopy
Atomic Absorption Spectroscopy Atomic Absorption Spectroscopy
Atomic Absorption Spectroscopy
 
Ch18z7enuclear 110115233000-phpapp01
Ch18z7enuclear 110115233000-phpapp01Ch18z7enuclear 110115233000-phpapp01
Ch18z7enuclear 110115233000-phpapp01
 
bahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .pptbahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .ppt
 
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
IMPACT OF THORIUM BASED MOLTEN SALT REACTOR ON THE CLOSURE OF THE NUCLEAR FUE...
 
Influence of obtaining conditions on sintering kinetics tetragonal zirconia n...
Influence of obtaining conditions on sintering kinetics tetragonal zirconia n...Influence of obtaining conditions on sintering kinetics tetragonal zirconia n...
Influence of obtaining conditions on sintering kinetics tetragonal zirconia n...
 

More from Konstantin German

2019 macromolecules and gels
2019 macromolecules and gels2019 macromolecules and gels
2019 macromolecules and gelsKonstantin German
 
2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna Kuzina2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna KuzinaKonstantin German
 
2018 istr book technetium rhenium content
2018 istr book technetium rhenium content2018 istr book technetium rhenium content
2018 istr book technetium rhenium contentKonstantin German
 
Proceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rheniumProceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rheniumKonstantin German
 
королева днк -фр-кам-2
королева   днк -фр-кам-2королева   днк -фр-кам-2
королева днк -фр-кам-2Konstantin German
 
структуры белков
структуры белковструктуры белков
структуры белковKonstantin German
 
основы биоорг.химии.
основы биоорг.химии.основы биоорг.химии.
основы биоорг.химии.Konstantin German
 
2016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 20162016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 2016Konstantin German
 
2016 физ-хим.методы граница
2016 физ-хим.методы  граница2016 физ-хим.методы  граница
2016 физ-хим.методы границаKonstantin German
 
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-162022016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202Konstantin German
 
Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...Konstantin German
 
фосфор в биоорг соед реавиз
фосфор в биоорг соед реавизфосфор в биоорг соед реавиз
фосфор в биоорг соед реавизKonstantin German
 
вторичная структура днк
вторичная структура днквторичная структура днк
вторичная структура днкKonstantin German
 
0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днк0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днкKonstantin German
 
углеводы и гетерополисахариды
углеводы и гетерополисахаридыуглеводы и гетерополисахариды
углеводы и гетерополисахаридыKonstantin German
 
герман оксикислоты реавиз
герман оксикислоты реавизгерман оксикислоты реавиз
герман оксикислоты реавизKonstantin German
 
аминокислоты Reaviz2016
аминокислоты Reaviz2016аминокислоты Reaviz2016
аминокислоты Reaviz2016Konstantin German
 
German pres2-prostate membrane antigen
German pres2-prostate membrane antigenGerman pres2-prostate membrane antigen
German pres2-prostate membrane antigenKonstantin German
 

More from Konstantin German (20)

2019 macromolecules and gels
2019 macromolecules and gels2019 macromolecules and gels
2019 macromolecules and gels
 
03 1-panasyuk
03 1-panasyuk03 1-panasyuk
03 1-panasyuk
 
2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna Kuzina2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna Kuzina
 
2018 istr book technetium rhenium content
2018 istr book technetium rhenium content2018 istr book technetium rhenium content
2018 istr book technetium rhenium content
 
Proceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rheniumProceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rhenium
 
королева днк -фр-кам-2
королева   днк -фр-кам-2королева   днк -фр-кам-2
королева днк -фр-кам-2
 
структуры белков
структуры белковструктуры белков
структуры белков
 
основы биоорг.химии.
основы биоорг.химии.основы биоорг.химии.
основы биоорг.химии.
 
1987 na tco4-4h2o
1987 na tco4-4h2o1987 na tco4-4h2o
1987 na tco4-4h2o
 
2016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 20162016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 2016
 
2016 физ-хим.методы граница
2016 физ-хим.методы  граница2016 физ-хим.методы  граница
2016 физ-хим.методы граница
 
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-162022016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
 
Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...
 
фосфор в биоорг соед реавиз
фосфор в биоорг соед реавизфосфор в биоорг соед реавиз
фосфор в биоорг соед реавиз
 
вторичная структура днк
вторичная структура днквторичная структура днк
вторичная структура днк
 
0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днк0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днк
 
углеводы и гетерополисахариды
углеводы и гетерополисахаридыуглеводы и гетерополисахариды
углеводы и гетерополисахариды
 
герман оксикислоты реавиз
герман оксикислоты реавизгерман оксикислоты реавиз
герман оксикислоты реавиз
 
аминокислоты Reaviz2016
аминокислоты Reaviz2016аминокислоты Reaviz2016
аминокислоты Reaviz2016
 
German pres2-prostate membrane antigen
German pres2-prostate membrane antigenGerman pres2-prostate membrane antigen
German pres2-prostate membrane antigen
 

Recently uploaded

General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxNikitaBankoti2
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 

Recently uploaded (20)

General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 

2014 kozar german-transmutation istr

  • 1. THE ROLE OF A CHOICE OF THE TARGET FORM FOR 99Tc TRANSMUTATION • А.А. Kozar’, • V.F. Peretrukhin, • K.E. German • Frumkin Institute of Physical Chemistry and Electrochemistry of RAS, • 31/4 Leninsky prosp., Moscow, 119071, Russia, • kozar@ipc.rssi.ru • guerman_k@mail.ru
  • 2. IT’S WELL KNOWN (SINCE 2000) - 99Tc transmutation can be the source of artificial stable ruthenium 100–102Ru, the second of the mjst interesting elements of the Periodic table. Such ruthenium has been synthesized as a result of a neutron irradiation of Tc targets up to 20 – 70 % burn-up (for 3 different groups of Tc targets) in experiments at SM high-flux reactor in 1999 – 2003 .
  • 3. Russian Tc - Transmutation program (1992-2003) -------------------------------------------------------------------------------------------------------------------------------------------------------------- ---------------- 99Tc(n,g)100Tc(b)100Ru 75,00% 50,00% 25,00% 0,00% = Pessimistic 0,67 % 1 2 3 4 5 Irradiation time, days Technetium-99 Burnup, % Hanford (USA) 1989 Wootan W Jordheim DP Matsumoto WY Petten (NL) 1994-1998 Konings RJM Franken WMP Conrad RP et al. Dimitrovgrad (Russia) IPC RAS - NIIAR 1999 - 2000 Kozar AA Peretroukhine VF Tarasov VA et al. 6% 18% 34% 65% 10.5 days 193 days 579 days 72 days 260 days 2
  • 4. Tc transmutation experiment (IPCE RAS – NIIAR, 1999-2008) In IPC RAS a set of metal disc targets (10x10x0.3 mm) prepared and assembled in two batches with total weight up to 5 g. Transmutation experiment was carried out at high flux SM-3 reactor ( NIIAR, Dimitrovgrad ) 2nd batch: Ft > 2 1015 cm-2s-1 1st batch: Ft=1.3 1015 cm-2s-1 99Tc burnups have made: 34  6 % and 65  11 % for the 1st and 2nd targets batches ----  The high 99Tc burn-ups were reached and about 2.5 g of new matter - transmutation ruthenium were accumulated as a result of experiments on SM-3 reactor  These values are significantly higher of burnups 6 and 16 % achieved on HFR in Petten earlier 9 12 96 86 76 66 56 46 КО3 КО4 95 85 75 65 55 45 94 84 54 44 93 83 53 43 92 82 72 62 52 42 81 71 61 51 41 КО1 91 КО2 3 7 АР 2 Д-9 1  центральный блок трансурановых мишеней; 2  бериллиевые вкладыши; 3  бериллиевые блоки отражателя; 4  центральный компенсирующий орган 7 Д-2  канал и его номер 81  автоматический регулятор  ячейка активной зоны с Т ВС  стержень аварийной защиты  компенсирующий орган 91 КО- 2 АР 1 4 3 2 1 Д-3 Д-1 Д-2 2 6 15 14 16 8 Д-4 Д-5 17 Д-6 Д-10 13 Д-8 АР1 19 4 10 Д-7 5 20 18 11 21 Рис.5. Картограмма реактора СМ 2
  • 5. IRRADIATION OF 99Tc METAL TARGETS IN NUCLEAR HIGH FLUX REACTORS Petten transmutation experiment 99Tc targets: metal cylinders Ø 4.8 mm and with height of 25 mm 99Tc burn-up in Petten reactor are 6 % (T1) and 16 – 18 % (T2). Dimitrovgrad transmutation experiment on SM high-flux reactor 99Tc targets: metal disks Ø 6.0  0.3 mm and with thickness of 0.3  0.02 mm Total targets mass is 10 g 3
  • 6. 99Tc BURN-UP AND HALF-CONVERSION PERIOD Measured and calculated 99Tc burn-up and half-conversion periods in SM reactor. № of group Burn-up, % Irradiation time, eff. days Half-conversion period , burn T 2 / 1 measured calculated eff. days 1 192 202 72.7 240 2 453 505 262.7 305 3 705 707 424.8 245 99Tc burn-up in Petten reactor are 6 % (T1) and 16 – 18 % (T2). 99Tc half-conversion period  2160 eff. days. burn T 1/ 2 Fig. 2. Calculated dependence of 99Tc burn-up on irradiation time () and its experimental values () for 3 groups of targets. 4
  • 7. ARTIFICIAL Ru ACTIVITY DECAY Actinide content in Tc: 5•10–8 g An per g of Tc (better values are expensive!) Actinide fission product 106Ru (T1/2=371.6 days) can’t be separated from artificial Ru by chemical methods. Activity of 106Ru + 106Rh in artificial Ru b - , 371.6 days b - , 29.8 sec 106Ru (pure b -radiator, γ is absent)  106Rh  106Pd (stable) 106Rh has 2 main g -lines with energies 511.8 keV and 621.8 keV In 2006 106Rh activity in Ru from 20 % burn-up targets later  2100 days {5.7 T1/2 (106Ru)} after irradiation stop: 106 A 15  2 Bk/g of Ru  total activity of pair 106Ru + 106Rh  30 Bk/g of Ru 1 lim A 106 A Later 10 years after irradiation stop: = 3.2  0.4 Bk/g of Ru < = 3.7 Bk/g   Since 2010 artificial Ru from 20% burn-up targets can be used without limitation Artificial Ru separated from 45 % and 70 % burn-up targets can be used in non-nuclear industry 9 and 8 years after synthesis correspondingly 5
  • 8. ARTIFICIAL STABLE RUTHENIUM PURIFICATION FROM 106Ru Relative yield Y of 106Ru nuclei recoiling from spherical grains of technetium powder, in dependence on their diameter D (average fission-fragment path length is about 8 microns). 6
  • 9. Transformation of disks Ø 6 mm × 0.3 mm in cylindrical targets Ø 6 mm × 6 mm Fig. 4. Relative position of Tc (Tc-Ru) grains in heterogeneous target. 7
  • 10. Possible target chemical substances • Tc Metal - Tc • Tc Carbide - Tc6C • Tc Dioxide - TcO2 • Tc Disulfide - TcS2 • and its mixtures with inert matter 8
  • 11. Target substances 1. Metal Instrumentation • Furnaces • 6% H2|Ar industurial balloon mixture • Ingots • Rolling-mill • et cetera… Sample type : • Ordinary Powder metal • Fused metal • Single crystal • Foil Starting material : • TcO2 • NH4TcO4 • R4NTcO4 9
  • 12. 1. Bulk Tc metal 11 • Set-up used for fusion and casting of Tc metal • Single crystal Tc metal
  • 13. 1. Tc metal – foil, X-ray study • d: 20 micrometers • Systematic absence of X-ray reflex • = Preferential orientation of crystallites with C axe perpendicular to the foil surface 12
  • 14. 1. Tc metal – foil, assembling 13 • Spacer grid-bush with 99Tc targets (1) and aluminium core (2) of capsule for loading in reactor.
  • 15. 1. Tc metal – foil chemical consequences • Dissolution in HNO3 dramatically slowed-down starting from 20% Tc to Ru conversion • Possible to increase the dissolution rate by aggressive agents addition (Ag2+, IO4 -) but corrosion problems arises • Possibly the best reprocessing procedure – burning in O2 – not approved by industry to date 12
  • 16. Target substances 2. Tc Carbide • Orthorhombic Tc metal is formed at low C content Grey bars : ref. hcp Tc metal Curves : exp. spectra 30 40 50 60 70 80 90 100 75 50 25 100 75 50 25 0 30 40 50 60 70 80 90 0 B I, % 2Theta, deg A I, %
  • 17. Target substances 2. Tc Carbide • Tc6C – non-stoechiometry • Tc6C + nC excess carbon for no slowing-down • Tc6C – formed by : • Tc + C reaction • Tc + C6H6 • R4NTcO4 thermal decomposition in Ar
  • 18. Target substances – Tc carbide 2. Tc6C + nC excess carbon • EXAFS study of Tc6C + nC [1] – wavelet presentation [1] K.German, Ya.Zubavichus ISTR2011
  • 19. 1. Tc carbide chemical consequences • Dissolution of Tc is more active as no RuC is known and so it is’nt formed during transmutation of Tc carbide to Ru - Tc and Ru being stabilized in separate phases • Drawback: Possible mechanical inclusions of Tc in Ru residue at high burn-ups • Mixtures with C excess could be the best choice because resonance energy neutrons are participating in transmutation due to enhanced thermolisation inside the target 12
  • 20. 1. Tc dioxide chemical consequences • Preparation by chemical reduction – high impurity content • Preparation from NH4TcO4 – similar to Tc metal • Target instability due to excess O released (Ru is stabilised as metal) • Some Tc2O7 formed at high burn-up • This target material is not recommended 12
  • 21. Preparation of artificial stable Ruthenium by transmutation of Technetium • New Ruthenium is almost monoisotopic Ru-100, it has different spectral properties • It is available only to several countries that develop nuclear industry  Tc target material:  Tc metal powder / Kozar (2008)  Tc – C composite Tc carbide / German (2005)  Rotmanov K. et all. Radiochemistry, 50 (2008) 408 :
  • 22. Conclusions • 99Tc transmutation can be the source of artificial stable ruthenium 100–102Ru. • Metal homogeneous Tc targets are possible • Tc carbide targets are favorabale • Artificial ruthenium demanded exposure during 8 – 10 years for application without restrictions • Application of heterogeneous targets with nuclear-inert stuff to reduce a 106Ru radioactivity in artificial Ru • The target form effect the artificial ruthenium purity at equal Tc nuclear density in irradiated volume.
  • 23. • Transformation of disks in cylinders in the conditions of identical irradiated volume could allow to lower 106Ru concentration in artificial ruthenium. The minimum fission-fragment path length in Tc metal makes about 5 microns (average fission-fragment path length is about 8 microns). The corresponding form of a heterogeneous target is a tablet consisting of a mix of spherical Tc metal particle in diameter of 5 microns and a nuclear-inert stuff with Tc average density which in 20 times is less, than Tc metal. In this case all fission-fragments, including 106Ru, escape the Tc (Tc-Ru) grains to stuff. The average distance between Tc spherical grains is about 23 microns, between their surfaces is about 18 microns at regular distribution of Tc particles in a target. • Fission-fragment path length in the most applicable nuclear-inert materials (such as ZrO2, Y2O3, MgAl2O4, MgO, Y3Al5O12, SiC, Al2O3, ZrO2- Y2O3, ZrO2-CaO and many others) makes 12 – 15 microns, hence hit probability of 106Ru fission-fragments in the next Tc grain is negligibly small. Artificial ruthenium from such target would be almost free from 106Ru nuclei. Additional purification of commercial Tc from actinide impurities would be not necessary at a choice of such target form instead of metal disks. In this case artificial ruthenium could be applied in non-nuclear field through 3 – 3.5 years after an irradiation, necessary to decay of transmutation product 103Ru (T1/2 = 39.3 days).
  • 24. • References • 1. V. Peretroukhine, V. Radchenko, A. Kozar’ et al. Technetium transmutation and production of artifical stable ruthenium. // Comptes Rendus. – Ser. Chimie. – 2004. – Tome 7. – Fascicule 12. – P. 1215 – 1218. • 2. А.А. Kozar’, V.F. Peretroukhin, K.Vразличные химические методы, а ские методы, а общий технеций, ка мишеналла рутения трансмутацией . Rotmanov, V.A. Tarasov. The elaboration of technology bases for the artificial stable ruthenium preparation from technetium- 99 transmutation products. // 7th International Symposium on Technetium and Rhenium – Science and Utilization. Moscow, Russia, July 4 – 8, 2011. – Book of Proceedings. – P. 113. – Publishing House GRANITSA, Moscow, 2011. – 460 p. • 3. А.А. Kozar’, V.F. Peretroukhin, K.Vразличные химические методы, а ские методы, а общий технеций, ка мишеналла рутения трансмутацией . Rotmanov, V.A. Tarasov. The elaboration of technology bases for the artificial stable ruthenium preparation from technetium- 99 transmutation products. // Ibid. – P. 113.
  • 25. Thank you for the attention !