CHAPTER   18  Nuclear  Chemistry 18.I Nuclear Stability & Radioactive Decay  pp I
Black dots are stable nuclides. As A (atomic mass) increases, nº/p +  ratio increases.
Subatomic Particles <ul><li>Protons - plus charge  </li></ul><ul><ul><ul><ul><ul><li>In the nucleus </li></ul></ul></ul></...
Radiation <ul><li>Radiation comes from the nucleus of an atom. </li></ul><ul><li>Unstable nucleus emits a particle or ener...
Types of Radiation <ul><li>Alpha particle (  ) </li></ul><ul><ul><li>helium nucleus </li></ul></ul>paper 2+ <ul><li>Beta ...
Radiation Protection   <ul><li>Shielding </li></ul><ul><li>alpha – paper, clothing </li></ul><ul><li>beta – lab coat, glov...
Radiation Protection
Nuclear Decay <ul><li>Alpha Emission </li></ul>Atomic & Mass Numbers must balance!! parent nuclide daughter nuclide alpha ...
Nuclear Decay <ul><li>Beta Emission </li></ul><ul><li>Positron Emission </li></ul>electron positron
Nuclear Decay <ul><li>Electron Capture  (of inner orbital electrons) </li></ul><ul><li>Gamma Emission </li></ul><ul><ul><l...
 
Gamma  radiation <ul><li>No change in atomic or mass number </li></ul><ul><li>11 B   11 B  +  0     </li></ul><ul><li>5  ...
 
Table 18.2 Types of Nuclear Processes p. 845
Learning Check <ul><li>Write the nuclear equation for the beta emitter Cobalt-60. . . </li></ul><ul><li>60 Co     60 Ni + ...
Producing Radioactive Isotopes <ul><li>Bombardment of atoms produces radioisotopes </li></ul><ul><li>  = 60  = 60 </li></u...
Learning Check NR2 <ul><li>What radioactive isotope is produced in the following bombardment of boron? </li></ul><ul><li>1...
Solution NR2 <ul><li>What radioactive isotope is produced in the following bombardment of boron? </li></ul><ul><li>10 B  +...
Nuclear Decay   pp <ul><li>Why nuclides decay… </li></ul><ul><ul><li>need stable ratio of neutrons to protons </li></ul></...
The decay series.
18.2 Kinetics of Radioactive Decay <ul><li>Rate of decay is a 1st order process, which is . . . </li></ul><ul><li>ln(N/N 0...
Half-life <ul><li>Half-life (t 1/2 ) </li></ul><ul><ul><li>Time required for half the atoms of a radioactive nuclide to de...
 
Examples of Half-Life <ul><li>Isotope  Half life </li></ul><ul><li>C-15 2.4 sec </li></ul><ul><li>Ra-224 3.6 days </li></u...
Learning Check NR3 <ul><li>The half life of Iodine-123 is 13 hr.  How much of a 64 mg sample of Iodine-123 is left after 2...
Solution NR3 <ul><li>t 1/2   = 13 hrs  </li></ul><ul><li>26 hours  =  2 x t 1/2 </li></ul><ul><li>Amount initial  = 64mg  ...
Half-life m f : final mass m i : initial mass n : # of half-lives
Half-life   pp <ul><li>Fluorine-21 has a half-life of 5.0 seconds.  If you start with 25 g of fluorine-21, how many grams ...
Kinetics of Nuclear Decay Problems  pp <ul><li>The rate constant for  99 43 Tc = 1.16 x 10 -1 /h  What is its half life? ....
Kinetics of Nuclear Decay Problems  pp <ul><li>How long for 87.5% of a sample of cobalt-60 to decay if t 1/2  = 5.26 years...
Actual AP question:  1989 MC #68  pp <ul><li>If k = 0.023 min -1  how much of X was originally present if have 40. g  afte...
18.3 Nuclear Transformations <ul><li>Transmutation  - change of one element into another. </li></ul><ul><li>Particle  and ...
A representation of a Geiger-Müller counter.
18.4 Detection & Uses of Radioactivity <ul><li>Half-life measurements of radioactive elements are used to determine the ag...
Synthetic Elements <ul><li>Transuranium Elements </li></ul><ul><ul><li>elements with atomic #s above 92 </li></ul></ul><ul...
Carbon-14 Dating  You will have a test question like this!   pp <ul><li>An ancient fire in an African cave has a  14 C dec...
Carbon-14 Dating  You will have a test question like this!   pp <ul><li>Ancient fire  14 C decay rate 3.1 cpm, fresh wood ...
Carbon-14 Dating  You will have  another  test question like  this !   pp <ul><li>A rock has ratio of Pb-206 to U-238 of 0...
Nuclear Medicine <ul><li>Radioisotope Tracers </li></ul><ul><ul><li>absorbed by specific organs and used to diagnose disea...
Other Uses <ul><li>Food Irradiation </li></ul><ul><ul><li>  radiation is used to kill bacteria </li></ul></ul><ul><li>Rad...
Radioisotopes Used As Tracers
18.5 Thermodynamic Stability of the Nucleus <ul><li>Mass Defect - difference from mass of an  atom  & the mass of its indi...
Nuclear Binding Energy <ul><li>Energy released when a nucleus is formed from nucleons. </li></ul><ul><li>High binding ener...
Nuclear Binding Energy <ul><li>Unstable nuclides  - radioactive & undergo radioactive decay. </li></ul><ul><li>Elements wi...
18.6 Nuclear Fission and Nuclear Fusion Fission  - splitting Fusion  - Combining Both produce more stable nuclides so they...
A. Nuclear Fission <ul><li>Splitting a nucleus into two or more smaller nuclei </li></ul><ul><li>1 g of  235 U =  3 tons o...
Nuclear Fission <ul><li>Fission </li></ul><ul><li>large nuclei break up </li></ul><ul><li>235 U  +  1 n  139 Ba  +   94 Kr...
Nuclear Power <ul><li>Fission Reactors </li></ul>Cooling Tower
Schematic of the reactor core.
Nuclear Power <ul><li>Fission Reactors </li></ul>
Fission <ul><li>chain reaction  - self-propagating reaction </li></ul><ul><li>critical mass  -  mass required  to sustain ...
 
Nuclear Fusion <ul><li>combining of two nuclei to form one nucleus of larger mass </li></ul><ul><li>thermonuclear reaction...
Nuclear Fusion <ul><li>Fusion  </li></ul><ul><li>small nuclei combine </li></ul><ul><li>2 H  +  3 H  4 He  +  1 n  + </li>...
Nuclear Power <ul><li>Fusion Reactors  (not yet sustainable) </li></ul>
Nuclear Power <ul><li>Fusion Reactors  (not yet sustainable) </li></ul>Tokomak Fusion Test Reactor Princeton University Na...
Fission vs. Fusion   pp <ul><li>235 U is limited </li></ul><ul><li>danger of meltdown </li></ul><ul><li>toxic waste </li><...
Learning Check NR4 <ul><li>Indicate if each of the following are </li></ul><ul><li>Fission (2) fusion </li></ul><ul><li>Nu...
Solution NR4 <ul><li>Indicate if each of the following are </li></ul><ul><li>Fission (2) fusion </li></ul><ul><li>1  Nucle...
E. Nuclear Weapons <ul><li>Atomic Bomb </li></ul><ul><ul><li>chemical explosion is used to form a critical mass of  235 U ...
18.7 Effects of Radiation  pp <ul><li>Somatic  - damage to the organism causing sickness or death. </li></ul><ul><li>Genet...
Factors for Biological Effects of Radiation  pp <ul><li>Energy  - higher energy content (rads) causes more damage. </li></...
 
Radioactive particles and rays vary greatly in penetrating power.
 
Diagram for the tentative plan for deep underground isolation of nuclear waste .
Upcoming SlideShare
Loading in …5
×

Ch18 z7e nuclear

2,229 views

Published on

Published in: Education
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,229
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
63
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide
  • Z5e 1022
  • Hrw 705-707; z5e 1024-1025
  • Hrw 706; z5e 1024
  • Hrw 706; z5e 1024-1025
  • Hrw 707; z5e 1024-1025
  • Hrw 707; z5e 1027
  • Hrw 710 z53 1027
  • Z5e 1028
  • Hrw 708; z5e 1028
  • Hrw 708; z5e 1030
  • Hrw 709; z5e 1028
  • Hrw 709; z5e 1028
  • Z5e text #21
  • AP 1989 MC #68
  • Z5e text #21
  • Hrw 714; z53 1033-1044
  • Hrw 715; z5e 1034
  • Hrw none; z5e 1032
  • Z5e 1035 SE 21.5
  • Z5e 1035 SE 21.5
  • Z5e 1035 SE 21.6
  • Hrw 715; z5e 1037
  • Hrw 715; z5e 1037
  • Hrw 715; z5e 1038
  • Hrw 701; Z5e 1038
  • Hrw 701-702; Z5e 1038-40
  • Hrw 702; z5e 1038-40
  • Z5e 1042 Fig. 21.10
  • Hrw 717; z5e 1042-1044
  • Hrw 718; no 1044
  • Hrw 718; z5e 1044
  • Hrw 1044; no z5e
  • Hrw 717; z5e 1042-1044
  • Hrw 718
  • Hrw 719; z5e 1047-1048
  • None (z5e 1044-1047)
  • Hrw none, z5e 1044-1047
  • Hrw 717-719; z5e 1041-1042
  • Hrw 716; z5e 1044
  • Z5e 1048
  • Hrw 713; z5e 1048
  • Hrw 715; z5e 1038
  • Ch18 z7e nuclear

    1. 1. CHAPTER 18 Nuclear Chemistry 18.I Nuclear Stability & Radioactive Decay pp I
    2. 2. Black dots are stable nuclides. As A (atomic mass) increases, nº/p + ratio increases.
    3. 3. Subatomic Particles <ul><li>Protons - plus charge </li></ul><ul><ul><ul><ul><ul><li>In the nucleus </li></ul></ul></ul></ul></ul><ul><li>Neutrons - neutral </li></ul><ul><li>Electrons - negative charge </li></ul><ul><li> Outside the nucleus </li></ul>
    4. 4. Radiation <ul><li>Radiation comes from the nucleus of an atom. </li></ul><ul><li>Unstable nucleus emits a particle or energy  alpha </li></ul><ul><li>  beta </li></ul><ul><li>  gamma </li></ul>
    5. 5. Types of Radiation <ul><li>Alpha particle (  ) </li></ul><ul><ul><li>helium nucleus </li></ul></ul>paper 2+ <ul><li>Beta particle (  -) </li></ul><ul><ul><li>electron </li></ul></ul>1- lead <ul><li>Positron (  +) </li></ul><ul><ul><li>positron </li></ul></ul>1+ <ul><li>Gamma (  ) </li></ul><ul><ul><li>high-energy photon </li></ul></ul>0 concrete
    6. 6. Radiation Protection <ul><li>Shielding </li></ul><ul><li>alpha – paper, clothing </li></ul><ul><li>beta – lab coat, gloves </li></ul><ul><li>gamma- lead, thick concrete </li></ul><ul><li>Limit time exposed </li></ul><ul><li>Keep distance from source </li></ul>
    7. 7. Radiation Protection
    8. 8. Nuclear Decay <ul><li>Alpha Emission </li></ul>Atomic & Mass Numbers must balance!! parent nuclide daughter nuclide alpha particle
    9. 9. Nuclear Decay <ul><li>Beta Emission </li></ul><ul><li>Positron Emission </li></ul>electron positron
    10. 10. Nuclear Decay <ul><li>Electron Capture (of inner orbital electrons) </li></ul><ul><li>Gamma Emission </li></ul><ul><ul><li>Usually follows other types of decay. </li></ul></ul><ul><li>Transmutation </li></ul><ul><ul><li>One element becomes another. </li></ul></ul>electron
    11. 12. Gamma radiation <ul><li>No change in atomic or mass number </li></ul><ul><li>11 B 11 B + 0  </li></ul><ul><li>5 5 0 </li></ul><ul><li>boron atom in a </li></ul><ul><li>high-energy state </li></ul>
    12. 14. Table 18.2 Types of Nuclear Processes p. 845
    13. 15. Learning Check <ul><li>Write the nuclear equation for the beta emitter Cobalt-60. . . </li></ul><ul><li>60 Co 60 Ni + 0 e 27 28 -1 </li></ul>
    14. 16. Producing Radioactive Isotopes <ul><li>Bombardment of atoms produces radioisotopes </li></ul><ul><li> = 60 = 60 </li></ul><ul><li>59 Co + 1 n 56 Mn + 4 H e </li></ul><ul><li>27 0 25 2 </li></ul><ul><li> = 27 = 27 </li></ul><ul><li>cobalt neutron manganese alpha </li></ul><ul><li>atom radioisotope particle </li></ul>
    15. 17. Learning Check NR2 <ul><li>What radioactive isotope is produced in the following bombardment of boron? </li></ul><ul><li>10 B + 4 He ? + 1 n </li></ul><ul><li>5 2 0 </li></ul>
    16. 18. Solution NR2 <ul><li>What radioactive isotope is produced in the following bombardment of boron? </li></ul><ul><li>10 B + 4 He 13 N + 1 n </li></ul><ul><li>5 2 7 0 </li></ul><ul><li> nitrogen </li></ul><ul><li> radioisotope </li></ul>
    17. 19. Nuclear Decay pp <ul><li>Why nuclides decay… </li></ul><ul><ul><li>need stable ratio of neutrons to protons </li></ul></ul>DECAY SERIES TRANSPARENCY
    18. 20. The decay series.
    19. 21. 18.2 Kinetics of Radioactive Decay <ul><li>Rate of decay is a 1st order process, which is . . . </li></ul><ul><li>ln(N/N 0 ) = -kt (memorize -- not on AP sheet) </li></ul><ul><li>N 0 = original number of nuclides at t = 0 N = nuclides remaining at time t </li></ul><ul><li>Half-life (t 1/2 ) = time for nuclides to reach half their original value. </li></ul><ul><li>t 1/2 = 0.693/k </li></ul>
    20. 22. Half-life <ul><li>Half-life (t 1/2 ) </li></ul><ul><ul><li>Time required for half the atoms of a radioactive nuclide to decay. </li></ul></ul><ul><ul><li>Shorter half-life = less stable. </li></ul></ul>
    21. 24. Examples of Half-Life <ul><li>Isotope Half life </li></ul><ul><li>C-15 2.4 sec </li></ul><ul><li>Ra-224 3.6 days </li></ul><ul><li>Ra-223 12 days </li></ul><ul><li>I-125 60 days </li></ul><ul><li>C-14 5700 years </li></ul><ul><li>U-235 710 000 000 years </li></ul>
    22. 25. Learning Check NR3 <ul><li>The half life of Iodine-123 is 13 hr. How much of a 64 mg sample of Iodine-123 is left after 26 hours? </li></ul>
    23. 26. Solution NR3 <ul><li>t 1/2 = 13 hrs </li></ul><ul><li>26 hours = 2 x t 1/2 </li></ul><ul><li>Amount initial = 64mg </li></ul><ul><li>Amount remaining = 64 mg x 1/2 x 1/2 </li></ul><ul><li> = 16 mg </li></ul>
    24. 27. Half-life m f : final mass m i : initial mass n : # of half-lives
    25. 28. Half-life pp <ul><li>Fluorine-21 has a half-life of 5.0 seconds. If you start with 25 g of fluorine-21, how many grams would remain after 60.0 s? </li></ul>GIVEN: T 1/2 = 5.0 s m i = 25 g m f = ? total time = 60.0 s n = 60.0s ÷ 5.0s =12 WORK : m f = m i (1/2) n m f = (25 g)(0.5) 12 m f = 0.0061 g
    26. 29. Kinetics of Nuclear Decay Problems pp <ul><li>The rate constant for 99 43 Tc = 1.16 x 10 -1 /h What is its half life? . . . </li></ul><ul><li>t 1/2 = 0.693/k = 0.693/(1.16 x 10 -1 /h) = 5.98 h </li></ul><ul><li>It will take 5.98 hours for a given sample of technetium-99 to decrease to half the original number of nuclides. </li></ul>
    27. 30. Kinetics of Nuclear Decay Problems pp <ul><li>How long for 87.5% of a sample of cobalt-60 to decay if t 1/2 = 5.26 years? Steps. . . </li></ul><ul><li>What % is left? . . . </li></ul><ul><li>12.5% </li></ul><ul><li>How many half-lives to get to this percent? </li></ul><ul><li>3. So, your answer to the problem is . . . </li></ul><ul><li>3 x 5.26 = 15.8 years. </li></ul>
    28. 31. Actual AP question: 1989 MC #68 pp <ul><li>If k = 0.023 min -1 how much of X was originally present if have 40. g after 60 min.? </li></ul><ul><li>Your answer is . . . </li></ul><ul><li>160. g . Solution . . . </li></ul><ul><li>t 1/2 = 0.693/k = 0.693/0.023 min -1 = 30 min. 60 minutes is 2 half-lives so going backwards 40. g to 80. g to 160. g. </li></ul>
    29. 32. 18.3 Nuclear Transformations <ul><li>Transmutation - change of one element into another. </li></ul><ul><li>Particle and linear accelerators are used to synthesize new elements (currently up to element number 119). </li></ul><ul><li>Difficult to characterize the chemical properties because with some only a few atoms are formed with very short half-lives. </li></ul>
    30. 33. A representation of a Geiger-Müller counter.
    31. 34. 18.4 Detection & Uses of Radioactivity <ul><li>Half-life measurements of radioactive elements are used to determine the age of an object </li></ul><ul><li>Decay rate indicates amount of radioactive material </li></ul><ul><li>EX : 14 C - up to 40,000 years 238 U and 40 K - over 300,000 years </li></ul>
    32. 35. Synthetic Elements <ul><li>Transuranium Elements </li></ul><ul><ul><li>elements with atomic #s above 92 </li></ul></ul><ul><ul><li>synthetically produced in nuclear reactors and accelerators </li></ul></ul><ul><ul><li>most decay very rapidly </li></ul></ul>
    33. 36. Carbon-14 Dating You will have a test question like this! pp <ul><li>An ancient fire in an African cave has a 14 C decay rate of 3.1 cpm (cts per minute). If fresh wood has 13.6 cpm how old is the campfire if t 1/2 = 5730 years? Steps . . . </li></ul><ul><li>Decay rates are directly proportional to nuclides so their ratio = N/N 0 What is the numerical ratio? Your answer . . . </li></ul><ul><li>3.1 cpm/13.6 cpm = 0.23 </li></ul><ul><li>Use the two previous equations to solve (next slide). </li></ul>
    34. 37. Carbon-14 Dating You will have a test question like this! pp <ul><li>Ancient fire 14 C decay rate 3.1 cpm, fresh wood 13.6 cpm how old if t 1/2 = 5730 yrs ? </li></ul><ul><li>3.1 cpm/13.6 cpm = 0.23 = N/N 0 </li></ul><ul><li>ln(N/N 0 ) = - k t and t 1/2 = 0.693/ k </li></ul><ul><li>You want to solve for t (vs. t 1/2 ) so use t 1/2 to get k then plug into the 1st equation and solve for t. Your answer is . . . </li></ul><ul><li>The campfire is 12 000 years old. ln( N/N 0 ) = ln( 0.23 ) = -(0.693/ 5730 ) t </li></ul><ul><li>Se Ex 18.4A & 18.4B in Study Guide </li></ul>
    35. 38. Carbon-14 Dating You will have another test question like this ! pp <ul><li>A rock has ratio of Pb-206 to U-238 of 0.115. How old is it if t 1/2 of U-238 = 4.5 x 10 9 yrs ? </li></ul><ul><li>Strategy: figure out N/N 0 of U-238, then use the 2 previous equations to get . . . </li></ul><ul><li>7.1 x 10 8 years . Calculations . . . </li></ul><ul><li>Pb /U = 115/1000 so N 0 U238 = 1115, N = 1000 </li></ul><ul><li>ln( 1000/1115 ) = -(0.693/ 4.5 x 10 9 ) t </li></ul>
    36. 39. Nuclear Medicine <ul><li>Radioisotope Tracers </li></ul><ul><ul><li>absorbed by specific organs and used to diagnose diseases </li></ul></ul><ul><li>Radiation Treatment </li></ul><ul><ul><li>larger doses are used to kill cancerous cells in targeted organs </li></ul></ul><ul><ul><li>internal or external radiation source </li></ul></ul>Radiation treatment using  -rays from cobalt-60.
    37. 40. Other Uses <ul><li>Food Irradiation </li></ul><ul><ul><li> radiation is used to kill bacteria </li></ul></ul><ul><li>Radioactive Tracers </li></ul><ul><ul><li>explore chemical pathways </li></ul></ul><ul><ul><li>trace water flow </li></ul></ul><ul><ul><li>study plant growth, photosynthesis </li></ul></ul><ul><li>Consumer Products </li></ul><ul><ul><li>ionizing smoke detectors - 241 Am </li></ul></ul>
    38. 41. Radioisotopes Used As Tracers
    39. 42. 18.5 Thermodynamic Stability of the Nucleus <ul><li>Mass Defect - difference from mass of an atom & the mass of its individual particles. </li></ul>4.00260 amu 4.03298 amu
    40. 43. Nuclear Binding Energy <ul><li>Energy released when a nucleus is formed from nucleons. </li></ul><ul><li>High binding energy = stable nucleus. </li></ul>E = mc 2 E: energy (J) m: mass defect ( kg ) c: speed of light (3.00 x 10 8 m/s)
    41. 44. Nuclear Binding Energy <ul><li>Unstable nuclides - radioactive & undergo radioactive decay. </li></ul><ul><li>Elements with intermediate atomic masses ( e.g. , Fe) have greatest binding energy, so are the most stable . </li></ul>
    42. 45. 18.6 Nuclear Fission and Nuclear Fusion Fission - splitting Fusion - Combining Both produce more stable nuclides so they are exothermic processes
    43. 46. A. Nuclear Fission <ul><li>Splitting a nucleus into two or more smaller nuclei </li></ul><ul><li>1 g of 235 U = 3 tons of coal </li></ul>
    44. 47. Nuclear Fission <ul><li>Fission </li></ul><ul><li>large nuclei break up </li></ul><ul><li>235 U + 1 n 139 Ba + 94 Kr + 3 1 n + </li></ul><ul><li>92 0 56 36 0 </li></ul>Energy
    45. 48. Nuclear Power <ul><li>Fission Reactors </li></ul>Cooling Tower
    46. 49. Schematic of the reactor core.
    47. 50. Nuclear Power <ul><li>Fission Reactors </li></ul>
    48. 51. Fission <ul><li>chain reaction - self-propagating reaction </li></ul><ul><li>critical mass - mass required to sustain a chain reaction </li></ul>
    49. 53. Nuclear Fusion <ul><li>combining of two nuclei to form one nucleus of larger mass </li></ul><ul><li>thermonuclear reaction – requires temp of 40,000,000 K to sustain </li></ul><ul><li>1 g of fusion fuel = 20 tons of coal (vs. 3 in fission) </li></ul><ul><li>occurs naturally in stars </li></ul>
    50. 54. Nuclear Fusion <ul><li>Fusion </li></ul><ul><li>small nuclei combine </li></ul><ul><li>2 H + 3 H 4 He + 1 n + </li></ul><ul><li>1 1 2 0 </li></ul><ul><li>Occurs in the sun and other stars </li></ul>Energy
    51. 55. Nuclear Power <ul><li>Fusion Reactors (not yet sustainable) </li></ul>
    52. 56. Nuclear Power <ul><li>Fusion Reactors (not yet sustainable) </li></ul>Tokomak Fusion Test Reactor Princeton University National Spherical Torus Experiment
    53. 57. Fission vs. Fusion pp <ul><li>235 U is limited </li></ul><ul><li>danger of meltdown </li></ul><ul><li>toxic waste </li></ul><ul><li>thermal pollution </li></ul><ul><li>fuel is abundant </li></ul><ul><li>no danger of meltdown </li></ul><ul><li>no toxic waste </li></ul><ul><li>not yet sustainable </li></ul>FISSION FUSION
    54. 58. Learning Check NR4 <ul><li>Indicate if each of the following are </li></ul><ul><li>Fission (2) fusion </li></ul><ul><li>Nucleus splits </li></ul><ul><li>Large amounts of energy released </li></ul><ul><li>Small nuclei form larger nuclei </li></ul><ul><li>Hydrogen nuclei react </li></ul>Energy
    55. 59. Solution NR4 <ul><li>Indicate if each of the following are </li></ul><ul><li>Fission (2) fusion </li></ul><ul><li>1 Nucleus splits </li></ul><ul><li>1 + 2 Large amounts of energy released </li></ul><ul><li>2 Small nuclei form larger nuclei </li></ul><ul><li>2 Hydrogen nuclei react </li></ul>
    56. 60. E. Nuclear Weapons <ul><li>Atomic Bomb </li></ul><ul><ul><li>chemical explosion is used to form a critical mass of 235 U or 239 Pu </li></ul></ul><ul><ul><li>fission develops into an uncontrolled chain reaction </li></ul></ul><ul><li>Hydrogen Bomb </li></ul><ul><ul><li>chemical explosion  fission  fusion </li></ul></ul><ul><ul><li>fusion increases the fission rate </li></ul></ul><ul><ul><li>more powerful than the atomic bomb </li></ul></ul>
    57. 61. 18.7 Effects of Radiation pp <ul><li>Somatic - damage to the organism causing sickness or death. </li></ul><ul><li>Genetic - damage to the genetic machinery causing birth defects. </li></ul>
    58. 62. Factors for Biological Effects of Radiation pp <ul><li>Energy - higher energy content (rads) causes more damage. </li></ul><ul><li>Penetrating Ability -  >  - >  </li></ul><ul><li>Ionizing Ability -  >  - >  (eating an  -particle producer like Pu is very deadly) </li></ul><ul><li>Chemical Properties </li></ul><ul><ul><li>Kr-85 is chemically inert, passes through quickly </li></ul></ul><ul><ul><li>Sr-90 collects in bone and stays a long time in the body. </li></ul></ul>
    59. 64. Radioactive particles and rays vary greatly in penetrating power.
    60. 66. Diagram for the tentative plan for deep underground isolation of nuclear waste .

    ×