SlideShare a Scribd company logo
1 of 6
Download to read offline
International Journal of Engineering Research and Development
e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com
Volume 8, Issue 2 (August 2013), PP. 62-67
62
Electroencephalographic Signals for Recognizing
Speaking Effort –Brain Computer Interface
1
Dr S P Venu Madhava Rao, 2
Jeevan Reddy Koya, 3
Naveen Kumar Mandadi,
4
Satish Kumar Mitta,
1
Professor, Dept. of ECE,SNIST, Hyderabad,A.P,India
2
Associate Professor, Dept. of EC, Oriental University Indore,M.P,India
3
Assistant Professor, Dept of EC,Acropolis Indore,M.P,India
4
Assistant Professor, Dept of EC,RIT, Indore,M.P,India
Abstract:- This research paper will explore the possibility of using Electroencephalographic (EEG) signals for
recognizing unspoken speech (trying to speak but not converted into speech ). Significant brain activations may
be observed in Functional Magnetic Response Imaging (fMRI Images) & EEG signals related to speaking effort.
.Brain activity patterns generated from speaking effort may be interpreted into words. .When a person tries to
speak we can identify the intensities of blood flow and oxidization in brain and in those regions electrodes of
EEG may be placed. From those electrical signals speaker effort will be captured and matched with library
patterns. This process leads to interpretation of brain signals to words. But however we come across a basic
problem that temporally correlated artifacts may interfere the signals to be recognized.
Index Terms:- EEG,fMRI, wavlet sub band coding , pattern recognition
I HISTORY (LITERATURE SURVEY)
This paper will deal with the possibilities to make use of EEG based recognition system for people with
speaking disabilities. Human brain requires adequate oxygen for its proper functionality. Due to various reasons
like hypoxic injuries - inadequate oxygen in brain lead to speaking disability. Acquired brain impairment can
occur as a result of trauma, hypoxia, infection, tumor, accidents, violence, substance abuse, degenerative
neurological diseases or stroke or because of age. This leads to partial or permanent disabilities. If oxygen is not
available for more than four minutes then serious injuries take place. Because of this permanent disability may
take place, a person may acquire mild, moderate and even severe speaking loss, this may be since infancy or
after learning to speak. Acquired brain impairment is injury to the brain that results in deterioration in cognitive,
physical, emotional or independent functioning.
When I was working for a Research institute of neuro science I observed many subjects lost speaking ability
after they learned to speak. I started planning for a new effective EEG based brain computer interface. Initially
using fMRI scans with speaking paradigms on healthy subjects I collected statistical average of brain activations
and mapped to a medium size head. Then I initially identified 10 electrodes for subjects and then optimized
them to 8 after many experiments. I also started a parallel work to understand these EEG signals using discrete
wavelet transform. The generation of baby wavelets led to separation of electrical signal into bands and sub
bands. Then I started experimenting on brain signals by capturing and mapping to a list of pre defined set of
words. These experiments were carried on healthy subject this gave me liberty to explain the subjects about the
experiment and also to get the evaluation of EEG-DWT test and it also led to substantial improvements in my
algorithm.
Most scientists are unaware that thought reading by electroencephalogram (EEG) was reported as
feasible in work begun over 30 years ago, I which more recently a number of groups confirm by
Electroencephalography (EEG), Magnetoencephalograpy (MEG), and functional Magnetic Resonance Imaging
(fMRI) technologies. This review focuses on literature relating to technologic thought reading, though also
treated are the discrimination of more general cognitive states, brainwave capture methods, and reports of
thought reading development, apparently covert to open literature. In addition to vocabulary knowledge,
everyday communication requires the timely retrieval and processing of words (i.e., lexical efficiency). Word
production and word comprehension both require efficient selection and discrimination of the intended words
from potentially competing words. Such processes typically implicate activation in left frontal lobe regions
(Noppeney, Phillips, & Price, 2004; Thompson-Schill, D‟Esposito, & Dan, 1999; Wagner, Pare-Blagoev, Clark,
& Poldrack, 2001). If so, inter-subject variability in lexical efficiency may correlate with structural differences.
Electroencephalographic Signals for Recognizing Speaking Effort…
63
I.I Brain Activation areas for Hearing effort
Significant brain activations can be observed in fMRI (Images)& EEG signals related to speaking
effort(hearing). When a person is trying to speak we can observe the intensities of blood flow and oxidization in
the brain in a area of interest and we can distinguish to that of normal speech generation. The human brain is
one of the most intriguing aspects of biological, medical and also philosophical research. The research deals
with increased activations in articulation, cerebellum, brocas, supramarginal gyri areas and the results related to
EEG and wavlet sub band coding are discussed in terms of cognitive neuro and language control process. Then a
FPGA based filter array may be designed to analyze and understand the EEG speech signals.
Using the basic example fMRI image fig 1.1.1 which is processed on SPM8 package on MATLAB we
may be able to know the basic areas of interest where activations are more in the brain (articulation (anterior
insula) , cerebellum, brocas, supramarginal gyri areas). We can understand the brain functional areas for
hearing effort can be summarized using the table .Here we can understand various brain areas responsible for
hearing effort ,hearing process and communication process and speech.
The image is taken On the SIEMENS 3.0 Tesla fMRI machine (fig 1.1.1)
These prior studies provide good evidence that brain structure correlates with vocabulary knowledge,
but do not indicate if these regions are sensitive to the efficiency of word use. Bilingual and multilingual
speakers vary in the efficiency with which they use words and also in the age at which they acquired their
second language. Both factors may influence or be influenced by different brain regions. Even the sheer number
of languages learned might influence inter-subject variability in brain structure We first describe our measures
and then our predictions and expectations.
These brain activation areas theory can be well used for electrode placement in EEG data acquisition. Then we
can collect data from electrodes related to gyrus.
Electroencephalographic Signals for Recognizing Speaking Effort…
64
II EEG SIGNAL PROCESSING
II.I Electroencephalograph
Electroencephalographic Signals are very complex that will provide underlying electric activity of
brain . The waves are taken from scalp they have very less electric potentials 1 to 400µV and frequency ranges
Delta (δ) 0.5-4.0 Hz,
Theta(Ǿ) 5-7 Hz,
Alpha(α)(8-13Hz),
Beeta (β) 14-30Hz,and
Gamma(γ) ≥30Hz
The EEG signals characteristics are highly dependent on
Degree of cerebral activity.
This research paper will explore options to recognize human emotion from brain signals measured with
EEG device. Literature survey will be performed to establish a suitable approach and determine the limited
number of electrodes for emotion recognition.
This research will be carried out relaying on scientific methods and experimentation.The field research
and subject studies are designed considering the assumption that there is not just a single answer for any
situation.Subject studies will be conducted in laboratory environments and the data will be gathered by using 32
channel EEG signal acquisition. This contains Controlled experiments where subject need to concentrate on
what he/she try to say and Think free experiments. Interaction assessment will be carried by physiologist and
other team members. Post experiment survey will be conducted.As the main goal of this research is emotion
recognition, the optimal electrode placement for the five electrodes will be chosen .A suitable paradigm will be
designed to take samples this will be done based on empirical validation and validation through interaction.
II.II EEG STEPS
The use of EEG signals as a vector of communication between men and machines represents one of the
current challenges in signal theory research. The principal element of such a communication system, more
known as “Brain Computer Interface”, is the interpretation of the EEG signals related to the characteristic
parameters of brain electrical activity.
The common structure of a Brain-Computer Interface is the following:
1) Signal Acquisition: the EEG signals are obtained from the brain through invasive or non-invasive methods
(for example, electrodes).
2) Signal Pre-Processing: once the signals are acquired, it is necessary to clean them.
3) Signal Classification: once the signals are cleaned, they will be processed and classified using Discrete wavlet
transform to find out which kind of mental task the subject is performing.
4) Computer Interaction: once the signals are classified, they will be used by an appropriate algorithm for the
development of a certain application.
.
From Wikipedia
II.III EEG Elctrode placement
Imagined speech (silent speech or covert speech) is thinking in the form of sound – “hearing” one‟s own voice
silently to oneself, without the intentional movement of any extremities such as the lips, tongue, or hands.
Logically, imagined speech has been possible since the EEG data may be interpreted to convert it into words.
Electroencephalographic Signals for Recognizing Speaking Effort…
65
So electrode placement is very important .as well as data obtained using alternative non-invasive, brain–
computer interface (BCI) devices.
Healthy control EEG data collection
Arousal: excitation presented a higher beta power and coherence in the parietal lobe, plus lower alpha activity.
Dominance: strength of an emotion, which is generally expressed in the EEG as an increase in the beta / alpha
activity ratio in the frontal lobe, plus an increase in beta activity at the parietal lobe.
Here subjects / Healthy controls EEG recordings are taken once they don‟t have any questions .Initially
we will be checking whether the data taken from EEG is readable then from the EEG recordings features may
extracted and healthy control will write which word he imagined using notebook .Then they will stored in a
training system .Many experiments need to be conducted so as to get the output for wide variety of words. So the
training process goes for very long duration.
Once the training process is completed now we can go for trail experimentation on subjects who may locked or
other people with speaking disabilities this section their EEG are recorded and then artifact filtering is done .Then
the data will be processed to match the words from training section .
EEG is typically recorded by contact electrodes with conductive paste, while MEG detectors are in an
array slightly removed from the head. Remote detection of brain rhythms by electrical impedance sensors is
described. Though non-contact is the only remote descriptor for EEG, this same detector design is applied to
monitoring electrocardiogram with wrist sensor location. Passive brain wave fields extend as far as 12 feet from
man as detected by a cryogenic antenna. This device is entirely adaptable to clandestine applications, and
pointed comments are made on the disappearance of physiological remote sensing literature since the 1970‟s for
animals and humans, while all other categories of remote sensing research greatly expanded.
Remote electric field determination of such a resultant waveform for decoding the encephalogram does have
covert development indication by news reports. The potential for thought reading and such a remote capacity is
cautioned by French government scientific panel. At various levels of remoteness numerous methods or
potentially exploitable mechanisms for detecting brainwave activity are described in open literature.
EEG cortical potentials are detected for both actual movement, and movement readiness potentials
(bereitschafts potential). EEG sufficiently differentiates just the imagination of movement to operate switches,
move a cursor in one or two dimensions, control prosthesis grasp, and guide wheel chairs left or right for
prompted responses. EEG detects such potentials to play Pac Man, and imagining the spinning of cubes, or arm
raising in appropriate direction guides robots through simulated rooms, both achieved without response
prompting. Unprompted slow cortical potentials also can turn on computer programs. Signals from implanted
brain electrodes in monkeys achieve even more complex grasping and reaching robot arm control without body
arm movement. Some ability to recognize evoked responses to numbers and tones in real time by a
commercial system called Brain Scope has limited report.
Though victims will regard their experience to affirm such a thought reading capability, professional
prejudice classifies such complaints as within Schneiderian symptoms defining psychiatric condition. The
certain fact is that these claims have had no adequate investigation, and the available evidence questions the
routinely egregious denial of civil rights to such individuals. Complaints involving mind reading must at least
receive rational investigation rather than ignorant professional dismissal convenient to practice with lucrative
livelihood benefit.
Electroencephalographic Signals for Recognizing Speaking Effort…
66
III WAVELET SUB BANDING OF EEG SIGNALS
Wavelet transformation has been applied in wide variety of engineering analysis. It includes machinery
fault diagnosis, in particular, time–frequency analysis of signals, fault feature extraction, singularity detection for
signals, de-noising and extraction of the weak signals, compression of vibration signals and system identification.
By combining the time domain and classical Fourier analysis, the wavelet transform provides simultaneously
spectral representation and temporal order of the signal decomposition components, which is also applied to
perform the analysis of NDE ultrasonic signal received during the inspection of reinforced composite materials.
Wavelet transform can be used to process acoustic emission signals to find faults such as micro-failure modes and
their interaction in composites.
dt
a
bt
tf
a
baw 







 
 )(
1
),(
Where
a is the dilation factor,
b is the translation factor and
ψ(t) is the mother wavelet.
1/a is an energy normalization term that makes wavelets of different scale has the same amount of energy.
The digital filter used in the EEG waves classification is 4th order pass band Elliptic filter, and the setting of the
band pass frequencies is from (3-to-30) Hz. The filtered signals have only EEG waves (delta, theta, alpha, and
Electroencephalographic Signals for Recognizing Speaking Effort…
67
beta) so this means that undesired frequencies (such as spikes) have been rejected. The main feature extracting
from this is that the signals contain low frequencies
IV PROPOSED EXTRACTION METHOD
The coefficients of DWT for a particular decomposition level represent the degree of correlation
between the EEG signal, x(t) and the wavelet function, ψ( l,n)(t) at different instances of time. These coefficients
carry useful information about the transient activity of the EEG signals. Therefore, we propose to use these DWT
coefficients as features for the emotion recognition experiment. The proposed feature extraction method fully
utilizes the time-frequency analysis of the DWT by preserving the temporal information contained in the
coefficients.
In this paper, we also study the effect of using different wavelet functions on the performance of the
emotion recognition system. The waveforms of the wavelet function should be as similar to the transient activity
to be detected in the EEG signals. However, since the optimal waveform for isunknown, various types of wavelet
function were considered: Daubechies („db4‟) Order 1 to 20, Symlets („sym‟) Order 1 to 20 and Coiflets („coif‟)
order 1 to 5.
V CONCLUSION
Experimental results showed large variation in emotion classification performance for other types of
wavelet functions. These results indicate the critical importance of choosing the right type of wavelet function
for emotion recognition from EEG signals. With this knowledge I strongly believe that unspoken speech may be
seen as text. My speaking aid may be helpful for disabled and it significantly improves their confidence.
However substantial improvements are required both in algorithm and EEG device to elevate this sevice to a
commercial scale.
REFERENCES
[1]. “Comparison of different wavelet features from EEG signals for classifying human emotions” 1
Murugappan M, 2
Nagarajan R,3
Yakoob S
[2]. Brain activity Investigation by EEG processing: Wavelet analysis,kurtosis and Renyi‟s Entropy
Artifact detection InsuoG , La Foresta F,Mammone N; Morabito F C
[3]. Lee, Devlin, Shakeshaft, & Stewart, 2007; Richardson, Thomas, Filippi, Harth, & Price, 2010
[4]. Noppeney, Phillips, & Price, 2004; Thompson-Schill, D‟Esposito, & Dan, 1999; Wagner, Pare-
Blagoev, Clark, & Poldrack, 20011
Suppes P, Han B, and Lu Z. “Brain-wave recognition of sentences”
Proc Natl Acad Sci 95: 15861-66, 1998. Printable free online thru Pubmed or at
http://www.pnas.org/cgi/content/full/95/26/15861
[5]. 1
Suppes P, Han B, Epelboim J, and Lu Z. “Invariance of brain-wave representations of simple visual
images and their names” Proc Natl Acad Sci 96: 14658-63, 1999. Printable free online thru Pubmed
or at http://www.pnas.org/cgi/content/full/96/25/14658
[6]. 1
Suppes P, Han B, Epelboim J, and Lu ZL. “Invariance between subjects of brain wave representations
of language” Proc Natl Acad Sci 96(22): 12953-8, 1999. Printable free online thru PubMed or at
http://www.pnas.org/cgi/content/full/96/22/12953
[7]. 1
Suppes P and Han B. “Brain-wave representation of words by superposition of a few sine waves” Proc
Natl Acad Sci 97: 8738-43, 2000. Printable free online thru Pubmed or at
http://www.pnas.org/cgi/content/full/97/15/8738
[8]. 1
de Barros JA, Carvalhaes CG, de Mendonca JPRF, and Suppes P. “Recognition of Words from the
EEG Laplacian” Brazilian Journal of Biomedical Engineering 21(2-3): 143-50, 2005. At
http://www.ecologia.ufjf.br/admin/upload/File/Barros%20et%20al.,%202006.pdf
[9]. 1
Harland CJ, Clark TD, and Prance RJ. “Remote detection of human electroencephalograms using
ultrahigh input impedance electric potential sensors” Appl Physics Lett 81(17): 3284-6, 2002.
[10]. 1
Harland CJ, Clark TD, and Prance RJ. “High resolution ambulatory electrocardiographic monitoring
using wrist mounted electric potential sensors” Meas Sci and Technol 14: 923-8, 2003. Abstract at
http://www.iop.org/EJ/abstract/0957-0233/14/7/305

More Related Content

What's hot

Synopsis Seminar Brain Finger Printing
Synopsis Seminar Brain Finger PrintingSynopsis Seminar Brain Finger Printing
Synopsis Seminar Brain Finger Printing
Garima Singh
 
Brain Finger Printing
Brain Finger PrintingBrain Finger Printing
Brain Finger Printing
Garima Singh
 
Brain fingerprinting
Brain fingerprintingBrain fingerprinting
Brain fingerprinting
sameer535
 

What's hot (17)

F1102024349
F1102024349F1102024349
F1102024349
 
Wbi real time synthesiser
Wbi real time synthesiserWbi real time synthesiser
Wbi real time synthesiser
 
Brain fingerprinting techology by madhavi rao
Brain fingerprinting techology by madhavi raoBrain fingerprinting techology by madhavi rao
Brain fingerprinting techology by madhavi rao
 
Let’s master the digital toolkit to harness lifelong neuroplasticity
Let’s master the digital toolkit to harness lifelong neuroplasticityLet’s master the digital toolkit to harness lifelong neuroplasticity
Let’s master the digital toolkit to harness lifelong neuroplasticity
 
Synopsis Seminar Brain Finger Printing
Synopsis Seminar Brain Finger PrintingSynopsis Seminar Brain Finger Printing
Synopsis Seminar Brain Finger Printing
 
Brain signal seminar
Brain signal seminar Brain signal seminar
Brain signal seminar
 
Tech.ppt2
Tech.ppt2Tech.ppt2
Tech.ppt2
 
IRJET- Deep Neural Network for the Automated Detection and Diagnosis of Seizu...
IRJET- Deep Neural Network for the Automated Detection and Diagnosis of Seizu...IRJET- Deep Neural Network for the Automated Detection and Diagnosis of Seizu...
IRJET- Deep Neural Network for the Automated Detection and Diagnosis of Seizu...
 
Communication via-brain-computer-interface[1]
Communication via-brain-computer-interface[1]Communication via-brain-computer-interface[1]
Communication via-brain-computer-interface[1]
 
Artificial intelligence turns brain activity into speech
Artificial intelligence turns brain activity into speechArtificial intelligence turns brain activity into speech
Artificial intelligence turns brain activity into speech
 
15 Trends In Neurotechnologies That Will Change The World
15 Trends In Neurotechnologies That Will Change The World15 Trends In Neurotechnologies That Will Change The World
15 Trends In Neurotechnologies That Will Change The World
 
Brain Finger Printing
Brain Finger PrintingBrain Finger Printing
Brain Finger Printing
 
Brain fingerprinting
Brain fingerprintingBrain fingerprinting
Brain fingerprinting
 
Electroenchephalography (EEG), BCI, & its Applications
Electroenchephalography (EEG), BCI, & its ApplicationsElectroenchephalography (EEG), BCI, & its Applications
Electroenchephalography (EEG), BCI, & its Applications
 
Proposal (20185748, ahmed nafiz ishtiaque)
Proposal (20185748, ahmed nafiz ishtiaque)Proposal (20185748, ahmed nafiz ishtiaque)
Proposal (20185748, ahmed nafiz ishtiaque)
 
[IJET-V1I5P6] Authors:M. Newlin Rajkumar, M. Lavanya
[IJET-V1I5P6] Authors:M. Newlin Rajkumar, M. Lavanya[IJET-V1I5P6] Authors:M. Newlin Rajkumar, M. Lavanya
[IJET-V1I5P6] Authors:M. Newlin Rajkumar, M. Lavanya
 
Rushita beladiya.pdf
Rushita beladiya.pdfRushita beladiya.pdf
Rushita beladiya.pdf
 

Viewers also liked

TGS IMG- Clari-Fi
TGS IMG- Clari-Fi TGS IMG- Clari-Fi
TGS IMG- Clari-Fi
TGS
 

Viewers also liked (15)

Halong Bay Cruise
Halong Bay CruiseHalong Bay Cruise
Halong Bay Cruise
 
Population and Migration
Population and MigrationPopulation and Migration
Population and Migration
 
Question 4 finished
Question 4 finishedQuestion 4 finished
Question 4 finished
 
Test aapna
Test aapnaTest aapna
Test aapna
 
Nl ecommerce aug 29 - sep 4, 2015
Nl ecommerce  aug 29 - sep 4, 2015Nl ecommerce  aug 29 - sep 4, 2015
Nl ecommerce aug 29 - sep 4, 2015
 
Audience Research
Audience ResearchAudience Research
Audience Research
 
TGS IMG- Clari-Fi
TGS IMG- Clari-Fi TGS IMG- Clari-Fi
TGS IMG- Clari-Fi
 
Question 4 finished
Question 4 finishedQuestion 4 finished
Question 4 finished
 
Track certificate 272758-photoshop
Track certificate 272758-photoshopTrack certificate 272758-photoshop
Track certificate 272758-photoshop
 
Business etiquette
Business etiquetteBusiness etiquette
Business etiquette
 
Bots Versus Bohemians: Resiliency of Labor Markets in Automated Cities
Bots Versus Bohemians: Resiliency of Labor Markets in Automated CitiesBots Versus Bohemians: Resiliency of Labor Markets in Automated Cities
Bots Versus Bohemians: Resiliency of Labor Markets in Automated Cities
 
Happy HR - 10 trends
Happy HR - 10 trendsHappy HR - 10 trends
Happy HR - 10 trends
 
Resilience in Spatial and Urban Systems
Resilience in Spatial and Urban SystemsResilience in Spatial and Urban Systems
Resilience in Spatial and Urban Systems
 
Money Mindsets Help Banks Align With Customers' Real Needs
Money Mindsets Help Banks Align With Customers' Real NeedsMoney Mindsets Help Banks Align With Customers' Real Needs
Money Mindsets Help Banks Align With Customers' Real Needs
 
Accenture Financial Services Sourcing and Procurement Solution Infographic
Accenture Financial Services Sourcing and Procurement Solution InfographicAccenture Financial Services Sourcing and Procurement Solution Infographic
Accenture Financial Services Sourcing and Procurement Solution Infographic
 

Similar to International Journal of Engineering Research and Development (IJERD)

Analysis of EEG data Using ICA and Algorithm Development for Energy Comparison
Analysis of EEG data Using ICA and Algorithm Development for Energy ComparisonAnalysis of EEG data Using ICA and Algorithm Development for Energy Comparison
Analysis of EEG data Using ICA and Algorithm Development for Energy Comparison
ijsrd.com
 
K-NN Classification of Brain Dominance
K-NN Classification of Brain Dominance  K-NN Classification of Brain Dominance
K-NN Classification of Brain Dominance
IJECEIAES
 
Brain fingerprinting
Brain fingerprintingBrain fingerprinting
Brain fingerprinting
Sai Mahesh
 
Brainfingerprinting 110326085605-phpapp01
Brainfingerprinting 110326085605-phpapp01Brainfingerprinting 110326085605-phpapp01
Brainfingerprinting 110326085605-phpapp01
agarwaljyothi
 
Brain fingerprinting report
Brain fingerprinting reportBrain fingerprinting report
Brain fingerprinting report
Samyuktha Rani
 

Similar to International Journal of Engineering Research and Development (IJERD) (20)

METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGSMETHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
 
METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGSMETHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
 
METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGSMETHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
 
METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGSMETHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
METHODS OF COMMAND RECOGNITION USING SINGLE-CHANNEL EEGS
 
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
 
H177 Midterm Dezoysa
H177 Midterm DezoysaH177 Midterm Dezoysa
H177 Midterm Dezoysa
 
Final prasoon
Final prasoonFinal prasoon
Final prasoon
 
A monkey model of auditory scene analysis
A monkey model of auditory scene analysisA monkey model of auditory scene analysis
A monkey model of auditory scene analysis
 
Analysis of EEG data Using ICA and Algorithm Development for Energy Comparison
Analysis of EEG data Using ICA and Algorithm Development for Energy ComparisonAnalysis of EEG data Using ICA and Algorithm Development for Energy Comparison
Analysis of EEG data Using ICA and Algorithm Development for Energy Comparison
 
NCP_Thesis_Francesca_Bocca.pdf
NCP_Thesis_Francesca_Bocca.pdfNCP_Thesis_Francesca_Bocca.pdf
NCP_Thesis_Francesca_Bocca.pdf
 
Presentation(lokesh)
Presentation(lokesh)Presentation(lokesh)
Presentation(lokesh)
 
Recognition of emotional states using EEG signals based on time-frequency ana...
Recognition of emotional states using EEG signals based on time-frequency ana...Recognition of emotional states using EEG signals based on time-frequency ana...
Recognition of emotional states using EEG signals based on time-frequency ana...
 
Denoising of EEG Signals for Analysis of Brain Disorders: A Review
Denoising of EEG Signals for Analysis of Brain Disorders: A ReviewDenoising of EEG Signals for Analysis of Brain Disorders: A Review
Denoising of EEG Signals for Analysis of Brain Disorders: A Review
 
EEG ppt
EEG pptEEG ppt
EEG ppt
 
K-NN Classification of Brain Dominance
K-NN Classification of Brain Dominance  K-NN Classification of Brain Dominance
K-NN Classification of Brain Dominance
 
Ab044195198
Ab044195198Ab044195198
Ab044195198
 
Brain fingerprinting
Brain fingerprintingBrain fingerprinting
Brain fingerprinting
 
Brainfingerprinting 110326085605-phpapp01
Brainfingerprinting 110326085605-phpapp01Brainfingerprinting 110326085605-phpapp01
Brainfingerprinting 110326085605-phpapp01
 
Brain fingerprinting report
Brain fingerprinting reportBrain fingerprinting report
Brain fingerprinting report
 
Basic Theories of Neurotechnology
Basic Theories of NeurotechnologyBasic Theories of Neurotechnology
Basic Theories of Neurotechnology
 

More from IJERD Editor

A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksA Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
IJERD Editor
 
Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’
IJERD Editor
 
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraGesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
IJERD Editor
 
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
IJERD Editor
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
IJERD Editor
 

More from IJERD Editor (20)

A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksA Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
 
MEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEMEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACE
 
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
 
Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’
 
Reducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignReducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding Design
 
Router 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationRouter 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and Verification
 
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
 
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRMitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
 
Study on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingStudy on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive Manufacturing
 
Spyware triggering system by particular string value
Spyware triggering system by particular string valueSpyware triggering system by particular string value
Spyware triggering system by particular string value
 
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
 
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeSecure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
 
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
 
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraGesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
 
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
 
Moon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingMoon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF Dxing
 
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
 
Importance of Measurements in Smart Grid
Importance of Measurements in Smart GridImportance of Measurements in Smart Grid
Importance of Measurements in Smart Grid
 
Study of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderStudy of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powder
 

Recently uploaded

Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
AlinaDevecerski
 

Recently uploaded (20)

♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
 
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
 
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
Call Girls Ooty Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Ooty Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Ooty Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
 

International Journal of Engineering Research and Development (IJERD)

  • 1. International Journal of Engineering Research and Development e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com Volume 8, Issue 2 (August 2013), PP. 62-67 62 Electroencephalographic Signals for Recognizing Speaking Effort –Brain Computer Interface 1 Dr S P Venu Madhava Rao, 2 Jeevan Reddy Koya, 3 Naveen Kumar Mandadi, 4 Satish Kumar Mitta, 1 Professor, Dept. of ECE,SNIST, Hyderabad,A.P,India 2 Associate Professor, Dept. of EC, Oriental University Indore,M.P,India 3 Assistant Professor, Dept of EC,Acropolis Indore,M.P,India 4 Assistant Professor, Dept of EC,RIT, Indore,M.P,India Abstract:- This research paper will explore the possibility of using Electroencephalographic (EEG) signals for recognizing unspoken speech (trying to speak but not converted into speech ). Significant brain activations may be observed in Functional Magnetic Response Imaging (fMRI Images) & EEG signals related to speaking effort. .Brain activity patterns generated from speaking effort may be interpreted into words. .When a person tries to speak we can identify the intensities of blood flow and oxidization in brain and in those regions electrodes of EEG may be placed. From those electrical signals speaker effort will be captured and matched with library patterns. This process leads to interpretation of brain signals to words. But however we come across a basic problem that temporally correlated artifacts may interfere the signals to be recognized. Index Terms:- EEG,fMRI, wavlet sub band coding , pattern recognition I HISTORY (LITERATURE SURVEY) This paper will deal with the possibilities to make use of EEG based recognition system for people with speaking disabilities. Human brain requires adequate oxygen for its proper functionality. Due to various reasons like hypoxic injuries - inadequate oxygen in brain lead to speaking disability. Acquired brain impairment can occur as a result of trauma, hypoxia, infection, tumor, accidents, violence, substance abuse, degenerative neurological diseases or stroke or because of age. This leads to partial or permanent disabilities. If oxygen is not available for more than four minutes then serious injuries take place. Because of this permanent disability may take place, a person may acquire mild, moderate and even severe speaking loss, this may be since infancy or after learning to speak. Acquired brain impairment is injury to the brain that results in deterioration in cognitive, physical, emotional or independent functioning. When I was working for a Research institute of neuro science I observed many subjects lost speaking ability after they learned to speak. I started planning for a new effective EEG based brain computer interface. Initially using fMRI scans with speaking paradigms on healthy subjects I collected statistical average of brain activations and mapped to a medium size head. Then I initially identified 10 electrodes for subjects and then optimized them to 8 after many experiments. I also started a parallel work to understand these EEG signals using discrete wavelet transform. The generation of baby wavelets led to separation of electrical signal into bands and sub bands. Then I started experimenting on brain signals by capturing and mapping to a list of pre defined set of words. These experiments were carried on healthy subject this gave me liberty to explain the subjects about the experiment and also to get the evaluation of EEG-DWT test and it also led to substantial improvements in my algorithm. Most scientists are unaware that thought reading by electroencephalogram (EEG) was reported as feasible in work begun over 30 years ago, I which more recently a number of groups confirm by Electroencephalography (EEG), Magnetoencephalograpy (MEG), and functional Magnetic Resonance Imaging (fMRI) technologies. This review focuses on literature relating to technologic thought reading, though also treated are the discrimination of more general cognitive states, brainwave capture methods, and reports of thought reading development, apparently covert to open literature. In addition to vocabulary knowledge, everyday communication requires the timely retrieval and processing of words (i.e., lexical efficiency). Word production and word comprehension both require efficient selection and discrimination of the intended words from potentially competing words. Such processes typically implicate activation in left frontal lobe regions (Noppeney, Phillips, & Price, 2004; Thompson-Schill, D‟Esposito, & Dan, 1999; Wagner, Pare-Blagoev, Clark, & Poldrack, 2001). If so, inter-subject variability in lexical efficiency may correlate with structural differences.
  • 2. Electroencephalographic Signals for Recognizing Speaking Effort… 63 I.I Brain Activation areas for Hearing effort Significant brain activations can be observed in fMRI (Images)& EEG signals related to speaking effort(hearing). When a person is trying to speak we can observe the intensities of blood flow and oxidization in the brain in a area of interest and we can distinguish to that of normal speech generation. The human brain is one of the most intriguing aspects of biological, medical and also philosophical research. The research deals with increased activations in articulation, cerebellum, brocas, supramarginal gyri areas and the results related to EEG and wavlet sub band coding are discussed in terms of cognitive neuro and language control process. Then a FPGA based filter array may be designed to analyze and understand the EEG speech signals. Using the basic example fMRI image fig 1.1.1 which is processed on SPM8 package on MATLAB we may be able to know the basic areas of interest where activations are more in the brain (articulation (anterior insula) , cerebellum, brocas, supramarginal gyri areas). We can understand the brain functional areas for hearing effort can be summarized using the table .Here we can understand various brain areas responsible for hearing effort ,hearing process and communication process and speech. The image is taken On the SIEMENS 3.0 Tesla fMRI machine (fig 1.1.1) These prior studies provide good evidence that brain structure correlates with vocabulary knowledge, but do not indicate if these regions are sensitive to the efficiency of word use. Bilingual and multilingual speakers vary in the efficiency with which they use words and also in the age at which they acquired their second language. Both factors may influence or be influenced by different brain regions. Even the sheer number of languages learned might influence inter-subject variability in brain structure We first describe our measures and then our predictions and expectations. These brain activation areas theory can be well used for electrode placement in EEG data acquisition. Then we can collect data from electrodes related to gyrus.
  • 3. Electroencephalographic Signals for Recognizing Speaking Effort… 64 II EEG SIGNAL PROCESSING II.I Electroencephalograph Electroencephalographic Signals are very complex that will provide underlying electric activity of brain . The waves are taken from scalp they have very less electric potentials 1 to 400µV and frequency ranges Delta (δ) 0.5-4.0 Hz, Theta(Ǿ) 5-7 Hz, Alpha(α)(8-13Hz), Beeta (β) 14-30Hz,and Gamma(γ) ≥30Hz The EEG signals characteristics are highly dependent on Degree of cerebral activity. This research paper will explore options to recognize human emotion from brain signals measured with EEG device. Literature survey will be performed to establish a suitable approach and determine the limited number of electrodes for emotion recognition. This research will be carried out relaying on scientific methods and experimentation.The field research and subject studies are designed considering the assumption that there is not just a single answer for any situation.Subject studies will be conducted in laboratory environments and the data will be gathered by using 32 channel EEG signal acquisition. This contains Controlled experiments where subject need to concentrate on what he/she try to say and Think free experiments. Interaction assessment will be carried by physiologist and other team members. Post experiment survey will be conducted.As the main goal of this research is emotion recognition, the optimal electrode placement for the five electrodes will be chosen .A suitable paradigm will be designed to take samples this will be done based on empirical validation and validation through interaction. II.II EEG STEPS The use of EEG signals as a vector of communication between men and machines represents one of the current challenges in signal theory research. The principal element of such a communication system, more known as “Brain Computer Interface”, is the interpretation of the EEG signals related to the characteristic parameters of brain electrical activity. The common structure of a Brain-Computer Interface is the following: 1) Signal Acquisition: the EEG signals are obtained from the brain through invasive or non-invasive methods (for example, electrodes). 2) Signal Pre-Processing: once the signals are acquired, it is necessary to clean them. 3) Signal Classification: once the signals are cleaned, they will be processed and classified using Discrete wavlet transform to find out which kind of mental task the subject is performing. 4) Computer Interaction: once the signals are classified, they will be used by an appropriate algorithm for the development of a certain application. . From Wikipedia II.III EEG Elctrode placement Imagined speech (silent speech or covert speech) is thinking in the form of sound – “hearing” one‟s own voice silently to oneself, without the intentional movement of any extremities such as the lips, tongue, or hands. Logically, imagined speech has been possible since the EEG data may be interpreted to convert it into words.
  • 4. Electroencephalographic Signals for Recognizing Speaking Effort… 65 So electrode placement is very important .as well as data obtained using alternative non-invasive, brain– computer interface (BCI) devices. Healthy control EEG data collection Arousal: excitation presented a higher beta power and coherence in the parietal lobe, plus lower alpha activity. Dominance: strength of an emotion, which is generally expressed in the EEG as an increase in the beta / alpha activity ratio in the frontal lobe, plus an increase in beta activity at the parietal lobe. Here subjects / Healthy controls EEG recordings are taken once they don‟t have any questions .Initially we will be checking whether the data taken from EEG is readable then from the EEG recordings features may extracted and healthy control will write which word he imagined using notebook .Then they will stored in a training system .Many experiments need to be conducted so as to get the output for wide variety of words. So the training process goes for very long duration. Once the training process is completed now we can go for trail experimentation on subjects who may locked or other people with speaking disabilities this section their EEG are recorded and then artifact filtering is done .Then the data will be processed to match the words from training section . EEG is typically recorded by contact electrodes with conductive paste, while MEG detectors are in an array slightly removed from the head. Remote detection of brain rhythms by electrical impedance sensors is described. Though non-contact is the only remote descriptor for EEG, this same detector design is applied to monitoring electrocardiogram with wrist sensor location. Passive brain wave fields extend as far as 12 feet from man as detected by a cryogenic antenna. This device is entirely adaptable to clandestine applications, and pointed comments are made on the disappearance of physiological remote sensing literature since the 1970‟s for animals and humans, while all other categories of remote sensing research greatly expanded. Remote electric field determination of such a resultant waveform for decoding the encephalogram does have covert development indication by news reports. The potential for thought reading and such a remote capacity is cautioned by French government scientific panel. At various levels of remoteness numerous methods or potentially exploitable mechanisms for detecting brainwave activity are described in open literature. EEG cortical potentials are detected for both actual movement, and movement readiness potentials (bereitschafts potential). EEG sufficiently differentiates just the imagination of movement to operate switches, move a cursor in one or two dimensions, control prosthesis grasp, and guide wheel chairs left or right for prompted responses. EEG detects such potentials to play Pac Man, and imagining the spinning of cubes, or arm raising in appropriate direction guides robots through simulated rooms, both achieved without response prompting. Unprompted slow cortical potentials also can turn on computer programs. Signals from implanted brain electrodes in monkeys achieve even more complex grasping and reaching robot arm control without body arm movement. Some ability to recognize evoked responses to numbers and tones in real time by a commercial system called Brain Scope has limited report. Though victims will regard their experience to affirm such a thought reading capability, professional prejudice classifies such complaints as within Schneiderian symptoms defining psychiatric condition. The certain fact is that these claims have had no adequate investigation, and the available evidence questions the routinely egregious denial of civil rights to such individuals. Complaints involving mind reading must at least receive rational investigation rather than ignorant professional dismissal convenient to practice with lucrative livelihood benefit.
  • 5. Electroencephalographic Signals for Recognizing Speaking Effort… 66 III WAVELET SUB BANDING OF EEG SIGNALS Wavelet transformation has been applied in wide variety of engineering analysis. It includes machinery fault diagnosis, in particular, time–frequency analysis of signals, fault feature extraction, singularity detection for signals, de-noising and extraction of the weak signals, compression of vibration signals and system identification. By combining the time domain and classical Fourier analysis, the wavelet transform provides simultaneously spectral representation and temporal order of the signal decomposition components, which is also applied to perform the analysis of NDE ultrasonic signal received during the inspection of reinforced composite materials. Wavelet transform can be used to process acoustic emission signals to find faults such as micro-failure modes and their interaction in composites. dt a bt tf a baw            )( 1 ),( Where a is the dilation factor, b is the translation factor and ψ(t) is the mother wavelet. 1/a is an energy normalization term that makes wavelets of different scale has the same amount of energy. The digital filter used in the EEG waves classification is 4th order pass band Elliptic filter, and the setting of the band pass frequencies is from (3-to-30) Hz. The filtered signals have only EEG waves (delta, theta, alpha, and
  • 6. Electroencephalographic Signals for Recognizing Speaking Effort… 67 beta) so this means that undesired frequencies (such as spikes) have been rejected. The main feature extracting from this is that the signals contain low frequencies IV PROPOSED EXTRACTION METHOD The coefficients of DWT for a particular decomposition level represent the degree of correlation between the EEG signal, x(t) and the wavelet function, ψ( l,n)(t) at different instances of time. These coefficients carry useful information about the transient activity of the EEG signals. Therefore, we propose to use these DWT coefficients as features for the emotion recognition experiment. The proposed feature extraction method fully utilizes the time-frequency analysis of the DWT by preserving the temporal information contained in the coefficients. In this paper, we also study the effect of using different wavelet functions on the performance of the emotion recognition system. The waveforms of the wavelet function should be as similar to the transient activity to be detected in the EEG signals. However, since the optimal waveform for isunknown, various types of wavelet function were considered: Daubechies („db4‟) Order 1 to 20, Symlets („sym‟) Order 1 to 20 and Coiflets („coif‟) order 1 to 5. V CONCLUSION Experimental results showed large variation in emotion classification performance for other types of wavelet functions. These results indicate the critical importance of choosing the right type of wavelet function for emotion recognition from EEG signals. With this knowledge I strongly believe that unspoken speech may be seen as text. My speaking aid may be helpful for disabled and it significantly improves their confidence. However substantial improvements are required both in algorithm and EEG device to elevate this sevice to a commercial scale. REFERENCES [1]. “Comparison of different wavelet features from EEG signals for classifying human emotions” 1 Murugappan M, 2 Nagarajan R,3 Yakoob S [2]. Brain activity Investigation by EEG processing: Wavelet analysis,kurtosis and Renyi‟s Entropy Artifact detection InsuoG , La Foresta F,Mammone N; Morabito F C [3]. Lee, Devlin, Shakeshaft, & Stewart, 2007; Richardson, Thomas, Filippi, Harth, & Price, 2010 [4]. Noppeney, Phillips, & Price, 2004; Thompson-Schill, D‟Esposito, & Dan, 1999; Wagner, Pare- Blagoev, Clark, & Poldrack, 20011 Suppes P, Han B, and Lu Z. “Brain-wave recognition of sentences” Proc Natl Acad Sci 95: 15861-66, 1998. Printable free online thru Pubmed or at http://www.pnas.org/cgi/content/full/95/26/15861 [5]. 1 Suppes P, Han B, Epelboim J, and Lu Z. “Invariance of brain-wave representations of simple visual images and their names” Proc Natl Acad Sci 96: 14658-63, 1999. Printable free online thru Pubmed or at http://www.pnas.org/cgi/content/full/96/25/14658 [6]. 1 Suppes P, Han B, Epelboim J, and Lu ZL. “Invariance between subjects of brain wave representations of language” Proc Natl Acad Sci 96(22): 12953-8, 1999. Printable free online thru PubMed or at http://www.pnas.org/cgi/content/full/96/22/12953 [7]. 1 Suppes P and Han B. “Brain-wave representation of words by superposition of a few sine waves” Proc Natl Acad Sci 97: 8738-43, 2000. Printable free online thru Pubmed or at http://www.pnas.org/cgi/content/full/97/15/8738 [8]. 1 de Barros JA, Carvalhaes CG, de Mendonca JPRF, and Suppes P. “Recognition of Words from the EEG Laplacian” Brazilian Journal of Biomedical Engineering 21(2-3): 143-50, 2005. At http://www.ecologia.ufjf.br/admin/upload/File/Barros%20et%20al.,%202006.pdf [9]. 1 Harland CJ, Clark TD, and Prance RJ. “Remote detection of human electroencephalograms using ultrahigh input impedance electric potential sensors” Appl Physics Lett 81(17): 3284-6, 2002. [10]. 1 Harland CJ, Clark TD, and Prance RJ. “High resolution ambulatory electrocardiographic monitoring using wrist mounted electric potential sensors” Meas Sci and Technol 14: 923-8, 2003. Abstract at http://www.iop.org/EJ/abstract/0957-0233/14/7/305