SlideShare a Scribd company logo
1 of 7
Download to read offline
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME
44
PERFORMANCE IMPROVEMENT OF DISTRIBUTION SYSTEM WITH
MULTI DISTRIBUTED GENERATION USING PARTICLE SWARM
OPTIMIZATION
P. Sobha Rani1
, Dr. A. Lakshmi Devi2
1
Assoc.Professor, Dept.E.E.E. , N.B.K.R.I.S.T, Vidyanagar, Andhrapradesh
2
Professor, Dept. E.E.E., S.V.University College of Engineering, Tirupathi
ABSTRACT
Distributed generators are beneficial in reducing losses effectively in distribution systems as
compared to other methods of loss reduction. Sizing and location of DG sources places an important
role in reducing losses in distribution network. In this paper both genetic algorithm and particle
swarm optimization methods are presented for optimal location and sizing of DG sources. The
methodology is based on exact loss formula. The objective of this methodology is to calculate size
and to identify the corresponding optimum location for DG placement for minimizing the total power
losses and to improve voltage profile in primary distribution system. The proposed methodology is
tested on IEEE-33 distribution system and the results are compared.
Keywords: Distributed generation (DG), exact loss formula, Genetic algorithm (GA), Particle swarm
optimization (PSO), Power losses.
1. INTRODUCTION
Distribution system provides a final link between the high voltage transmission and
consumers. Power loss in a distribution system is high because of low voltage and hence high
current. One of modern important techniques in electrical distribution systems to reduce losses is to
accommodate small scale decentralized generating units known as distributed generation (DG).
The DGs are small scale power generation technologies of low voltage type that provide
electrical power at a site closer to consumption centers. Developments of DGs will bring new
chances to traditional distribution systems. Appropriate size and location of DG play a significant
role in minimizing power losses in distribution systems. Examples of DG are diesel generators,
small hydro, wind electric systems, solar electric systems, batteries, photo voltaic and fuel systems.
INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING &
TECHNOLOGY (IJEET)
ISSN 0976 – 6545(Print)
ISSN 0976 – 6553(Online)
Volume 5, Issue 2, February (2014), pp. 44-50
© IAEME: www.iaeme.com/ijeet.asp
Journal Impact Factor (2014): 2.9312 (Calculated by GISI)
www.jifactor.com
IJEET
© I A E M E
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME
45
In the present vast load growing electrical system usage of DG have more advantages like
reduction of transmission and distribution cost, electricity price, saving of fuel, line loss reduction,
better voltage profile, power quality improvement.
DG can be classified into four major types based on their terminal characteristics in terms of
real and reactive power delivering capability as follows:
1. DG capable of injecting active power only.
2. DG capable of injecting reactive power only.
3. DG capable of injecting both active and reactive power.
4. DG capable of injecting active power but consuming reactive power.
Photo voltaic, micro turbines, fuel cells which are integrated to main grid with the help of
converters/ inverters are good examples of type1. Synchronous compensators such as gas turbines
are examples for type2. DG units that are based on synchronous machine fall in type 3. Type 4 is
mainly induction generators that are used in wind farms. This paper is organized as follows:
Methodology is explained in section II, Problem formulation is discussed in section III, Simulation
results are shown in section IV.
2. METHODOLOGY
Technical advances and availability of renewable energy sources have resulted in a constantly
increasing penetration of DG integrated with distribution networks. For the connection of new DG
installations to the networks a variety of factors have to be taken into account to ensure that the DG
doesn’t adversely affect the operation and power quality of networks. In a large distribution system
network with high power loss, it is difficult to select a particular bus from many buses so as to place
a DG unit for loss reduction. Power losses are present at every bus and identification of bus with
highest Power loss is important because losses at that bus includes majority of total losses in the
system. This can be partially accomplished by DG unit placement in the network. If DG size exceeds
certain value of limit, power loss at that bus becomes negative. This situation must be avoided. The
beneficial effects of DG mainly depend on its location and size.
Selection of optimal location and size of DG is a necessary process to maintain reliability of
existing system effectively before it is connected to grid. There are many approaches to determine
the optimum sizing and sitting of DG units in distribution systems considering overall system
efficiency, system reliability, voltage profile, load variation, network losses. In some research the
optimum location and size of a single DG unit is determined and in some others optimum location
and sizes of multiple DG units are determined. In this Paper exact loss formula is used to determine
the size and location of Type-1 and Type-2 DG.
3. PROBLEM FORMULATION
The objective of problem is to find the location of DGs and its size for type-1 and type-2 DG
to minimize the real power losses and to improve the voltage profile. Power loss in the system can be
calculated by equation (1), given the system operating condition,
∑==
−++=
n
ji
jijiijjijiijL QPPQQQPPP
1,1
)]()([ βα (1)
Where )( ji
ji
ij
ij Cos
VV
r
δδα −= and )( ji
ji
ij
ij Sin
VV
r
δδβ −=
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME
46
The objective is to minimize PL subject to power balance constraints as per equation(2)
Σ PDGi = Σ PDi + PL (2)
Voltage constraints: Vimin ≤ Vi ≤ Vimax
Where PL is real power loss in the system, PDGi is real power generation DG at bus i, PDi is power
delivered at bus i.
Type-1 DG
For type-1 DG, power factor is unity. The optimal size of DG at each bus i for minimizing losses is
given by equation (3).
∑≠=
−+





−=
n
ijij
ijjijjiii
ii
DiDGi QPQPP
,
)]([
1
βαβ
α
(3)
Type-2 DG
For type-2 DG, the optimal size of DG at each bus i for minimizing losses is given by equation (4)
∑≠=
+−





+=
n
ijij
ijjijjiii
ii
DiDGi PQPQQ
,
)]([
1
βαβ
α
(4)
The optimal sizes at various locations have been calculated for different types of DG and the
losses are calculated with optimal sizes for each case. The case with minimum losses is selected as
optimal location for each type DG. This paper uses GA and PSO for solving problems of optimal
sitting and sizing of DG.
3.1 Genetic algorithm
Genetic algorithms (GA) are a part of evolutionary computing which is a rapidly growing
area of artificial intelligence. GA begins with a set of solutions (represented by chromosomes) called
population. Solution from one population are taken and used to form a new population. This is
motivated by a hope that new population will be better than old one. Solutions that are then selected
to form new solutions (offspring) according to their fitness- the more suitable they are the more
chances to reproduce. This is repeated until some condition is satisfied. Simplicity of operation and
power of effect are advantages of GA approach.
Algorithm
1. Read the system data, perform load flow, and generate initial population size.
2. Start iteration count iter=1
3. Determine the sizes of DG units at each candidate node by decoding the population.
4. Place the DG unit at a candidate bus and run the load flow for each string of population and
find the losses. With the obtained losses, calculate the fitness function. Fitness=1/total loss.
5. Arrange the elements of the fitness function in the descending order and hence find the
maximum fit and average fit.
6. Find the error using Error=(maxfit) – (average fit) If this error is less than epsilon, go to
step 9.
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME
47
7. Carry out cross over and mutation on the off springs and generate new population. Increment
the iteration count.
8. If (iter<=itermax) go to step 3.
9. If the problem is converged in itermax iterations stop.
10. Print the DG unit rating and power losses after compensation.
3.2 Particle swarm optimization
Particle swarm optimization is an algorithm capable of optimizing a nonlinear and multi
dimensional problem which gives good solutions. The basic concept of algorithm is to create a
swarm of particles which move in the space around them (the problem space) searching for their
goal, the place which best suits their needs is given by a fitness function. Each particle keeps track of
its coordinates in the solution space which are associated with best solution (fitness) that has
achieved so far by that particle. This value is called personal best (pbest). Another best value is the
best value obtained so far by any particle in the neighborhood of that particle. This value is called
gbest.
The basic concept of PSO lies in accelerating each particle toward its pbest and gbest
locations with a random weighted acceleration. The modification of the particle’s position can be
mathematically modeled according the following equation:
Vi
k +1
= wVi
k
+c1 rand1(…) x (pbesti-si
k
) + c2 rand2(…) x (gbest-si
k
) (5)
where,
vi
k
: velocity of agent i at iteration k,
w: weighting function,
cj: weighting factor,
rand: uniformly distributed random number between 0 and 1,
si
k
: current position of agent i at iteration k,
pbesti: pbest of agent i,
gbest: gbest of the group.
The following weighting function is usually utilized in (6)
w = wMax-[(wMax-wMin) x iter]/maxIter (6)
where wMax = initial weight,
wMin = final weight,
maxIter = maximum iteration number,
iter = current iteration number.
si
k+1
= si
k
+ Vi
k+1
(7)
Algorithm
1. Read the system data, perform load flow
2. Randomly generate an initial population of particles with random positions and velocities on
dimensions in solution space.
3. Initialize the swarm from the solution space.
4. Evaluate fitness of individual particles.
5. Modify gbest, pbest and velocity.
6. Move each particle to a new position.
7. Go to step 3, and repeat until convergence or a stopping condition is satisfied.
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME
48
4. SIMULATION
The proposed algorithm is tested on IEEE-33 bus system. The original total real power loss
and reactive power loss in the system are found to be 301.696 kW and 220.6 kvar respectively by
conducting Backward-Forward load flow method. For GA parameters population size=100,
crossover probability=0.7; the maximum number of DG is 3 for each type. One type-1 DG can
reduce total real and reactive power loss by23.77 and 25.44 respectively. For three type-1 DGs they
can further reduce the loss by 66.68 compared to 29.65 in type-2 DG. The results are shown
following tables.
Table 1. Summary of results for type-1 DG
Number of
DG
Bus
Number
TPL(kw) DG size
(kw)
TQL(kvar) Voltage(p.u)
Without
DG
With
DG
% loss
reduction
Without
DG
With
DG
%loss
reduction
Without
DG
With
DG
% voltage
increment
1 DG
G
A
9 301.69 251.63 19.89 288.926 220.6 182.15 21.11 0.8866 0.9016 1.69
P
S
O
8 301.69 243.74 23.77 383.442 220.6 175.86 25.44 0.8971 0.9127 1.74
2DG
G
A
8 301.69 200.952 50.14 383.424 220.6 143.08 54.18 0.8971 0.9275 3.39
8 383.424
P
S
O
8 301.69 200.85 50.20 383.98 220.6 143.0 54.26 0.8971 0.9275 3.39
8 383.98
3DG
G
A
9 301.696 181.69 66.67 288.08 220.6 127.98 72.37 0.8866 0.9173 3.46
15 146.518 0.8613 0.8986 4.33
32 333.72 0.8868 0.9166 3.36
P
S
O
8 301.696 181.009 66.68 384.13 220.6 127.9 72.47 0.8971 0.9329 3.99
8 384.13 0.8971 0.9329 3.99
17 130.837 0.8565 0.9030 5.42
Table 2: Summary of results for type-2 DG
Number of
DG
Bus
Number
TPL(kw) DG size
(kvar)
TQL(kvar) Voltage(p.u)
Without
DG
With
DG
% loss
reduction
Without
DG
With
DG
%loss
reduction
Without
DG
With
DG
% voltage
increment
1 DG
G
A
31 301.696 263.74 14.39 339.274 220.6 191.88 14.96 0.8882 0.9029 1.65
PS
O
31 301.696 263.75 14.38 339.074 220.6 191.89 14.96 0.8882 0.9029 1.65
2 DG
G
A
27 301.696 247.43 21.93 350 220.6 182.03 21.18 0.9284 0.9378 1.012
32 279.471 0.8868 0.9076 2.345
PS
O
8 301.696 246.19 22.54 206.013 220.6 178.65 23.48 0.8971 0.9107 1.49
31 339.076 0.8882 0.9070 2.116
3 DG
G
A
9 301.696 232.71 29.64 179.038 220.6 170.6 29.31 0.8866 0.9043 1.996
27 349.937 0.9284 0.9403 1.282
32 279.469 0.8868 0.9082 2.41
PS
O
27 301.696 232.7 29.65 350 220.6 170.58 29.32 0.9284 0.9409 1.346
30 235.76 0.8966 0.9184 2.43
32 279.47 0.8868 0.9122 2.86
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME
49
Simulation results are shown in the following figures.
Fig 1: Bus voltages for one Type-1 DG
Fig 2: Line losses for one Type-1 DG
Fig 3: Bus voltages for three Type-2 DGS
0 5 10 15 20 25 30 35
0.85
0.9
0.95
1
BUS NUMBER
Voltageinp.u.
without DG
with DG GA
with DG PSO
0 5 10 15 20 25 30 35
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Branch Number
LineLosses
without DG
with DG GA
with DG PSO
0 5 10 15 20 25 30 35
0.85
0.9
0.95
1
Bus Number
Voltageinp.u
without DG
with DG GA
with DG PSO
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME
50
Fig 4: Line losses for three Type-2 DGs
5. CONCLUSION
In this paper both genetic algorithm and particle swarm optimization methods are used for
optimal placement of multi DG sources. Exact loss formula is used to determine optimal size and the
location for both type-1 and type-2 DGs. The two types of DGs effectively reduced the power loss
and voltage profile is also improved.
REFERENCES
[1]. M.H.Moradi, M.Abedini, A combination of genetic algorithm and particle swarm
optimization for optimal DG location and sizing in distribution system, Electric power
energy systems 34 (2012) 66-74.
[2]. P.Sobha Rani, Dr.A.Lakshmi Devi, Sizing and placement of multi DG using exact loss
formula,, International journal of advanced research in electrical electronics and
instrumentation engineering, vol.2, issue 11, Nov 2013.
[3]. Duong quoc Hung, Nadarajah Mithulananthan, Multiple distributed generations in primary
distribution networks for loss reduction, IEEE transactions on industrial electronics, vol.60,
No.4, April 13.
[4]. W. El-hattam, M.M.A. Salma, DG technologies definition and benefits, Electrical power
system research, vol.71, pp 119-128, 2004.
[5]. A.M.El-Zonkoly, optimal placement of multi DG units including different load models using
particle swarm optimization, Swarm and evolutionary computation, 1(2011) 50-59.
[6]. D. Zhu, R.P.Broad water, K.Tam, R. Seguin, H. Asgeirsson, Impact of DG placement on
reliability and efficiency with time varying loads, IEEE transactions on power systems 21(1)
2006,419-427.
[7]. T.Gozel, M.H.Hocaoglu, An analytical method for the sizing and sitting of distributed
generators in radial systems, International journal of electric power system research 79(2009)
912-918.
[8]. Dr.T.Ananthapadmanabha, Maruthi Prasanna.H.A., Veeresha.A.G. and Likith Kumar. M. V,
“A New Simplified Approach for Optimum Allocation of a Distributed Generation Unit in
the Distribution Network for Voltage Improvement and Loss Minimization”, International
Journal of Electrical Engineering & Technology (IJEET), Volume 4, Issue 2, 2013,
pp. 165 - 178, ISSN Print : 0976-6545, ISSN Online: 0976-6553.
0 5 10 15 20 25 30 35
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Branch Number
Lossinp.u
without DG
with DG GA
with DG PSO

More Related Content

What's hot

Cost Aware Expansion Planning with Renewable DGs using Particle Swarm Optimiz...
Cost Aware Expansion Planning with Renewable DGs using Particle Swarm Optimiz...Cost Aware Expansion Planning with Renewable DGs using Particle Swarm Optimiz...
Cost Aware Expansion Planning with Renewable DGs using Particle Swarm Optimiz...IJERA Editor
 
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...IRJET Journal
 
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...IRJET Journal
 
01 16286 32182-1-sm multiple (edit)
01 16286 32182-1-sm multiple (edit)01 16286 32182-1-sm multiple (edit)
01 16286 32182-1-sm multiple (edit)IAESIJEECS
 
Optimal electric distribution network configuration using adaptive sunflower ...
Optimal electric distribution network configuration using adaptive sunflower ...Optimal electric distribution network configuration using adaptive sunflower ...
Optimal electric distribution network configuration using adaptive sunflower ...journalBEEI
 
Initial Optimal Parameters of Artificial Neural Network and Support Vector Re...
Initial Optimal Parameters of Artificial Neural Network and Support Vector Re...Initial Optimal Parameters of Artificial Neural Network and Support Vector Re...
Initial Optimal Parameters of Artificial Neural Network and Support Vector Re...IJECEIAES
 
A review of optimal operation of microgrids
A review of optimal operation of microgrids A review of optimal operation of microgrids
A review of optimal operation of microgrids IJECEIAES
 
Performance based Comparison of Wind and Solar Distributed Generators using E...
Performance based Comparison of Wind and Solar Distributed Generators using E...Performance based Comparison of Wind and Solar Distributed Generators using E...
Performance based Comparison of Wind and Solar Distributed Generators using E...Editor IJLRES
 
Hybrid method for achieving Pareto front on economic emission dispatch
Hybrid method for achieving Pareto front on economic  emission dispatch Hybrid method for achieving Pareto front on economic  emission dispatch
Hybrid method for achieving Pareto front on economic emission dispatch IJECEIAES
 
Impact of Distributed Generation on Reliability of Distribution System
Impact of Distributed Generation on Reliability of Distribution SystemImpact of Distributed Generation on Reliability of Distribution System
Impact of Distributed Generation on Reliability of Distribution SystemIOSR Journals
 
Modeling of RF Power Amplifier with Memory Effects using Memory Polynomial
Modeling of RF Power Amplifier with Memory Effects using Memory PolynomialModeling of RF Power Amplifier with Memory Effects using Memory Polynomial
Modeling of RF Power Amplifier with Memory Effects using Memory PolynomialIJERA Editor
 
02 15033 distribution power loss minimization via (edit)
02 15033 distribution power loss minimization via (edit)02 15033 distribution power loss minimization via (edit)
02 15033 distribution power loss minimization via (edit)nooriasukmaningtyas
 
Multi-objective optimal placement of distributed generations for dynamic loads
Multi-objective optimal placement of distributed generations for dynamic loadsMulti-objective optimal placement of distributed generations for dynamic loads
Multi-objective optimal placement of distributed generations for dynamic loadsIJECEIAES
 
15325008%2 e2014%2e1002589
15325008%2 e2014%2e100258915325008%2 e2014%2e1002589
15325008%2 e2014%2e1002589rehman1oo
 
Comparison of optimization technique of power system stabilizer by using gea
Comparison of optimization technique of power system stabilizer by using geaComparison of optimization technique of power system stabilizer by using gea
Comparison of optimization technique of power system stabilizer by using geaIAEME Publication
 
Dissertation-_jufri_hazlan_11377.pdf
Dissertation-_jufri_hazlan_11377.pdfDissertation-_jufri_hazlan_11377.pdf
Dissertation-_jufri_hazlan_11377.pdfGoldi Patil
 
Paper id 37201503
Paper id 37201503Paper id 37201503
Paper id 37201503IJRAT
 

What's hot (19)

Cost Aware Expansion Planning with Renewable DGs using Particle Swarm Optimiz...
Cost Aware Expansion Planning with Renewable DGs using Particle Swarm Optimiz...Cost Aware Expansion Planning with Renewable DGs using Particle Swarm Optimiz...
Cost Aware Expansion Planning with Renewable DGs using Particle Swarm Optimiz...
 
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...
 
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...
IRJET- Optimal Placement and Size of DG and DER for Minimizing Power Loss and...
 
40220140503002
4022014050300240220140503002
40220140503002
 
01 16286 32182-1-sm multiple (edit)
01 16286 32182-1-sm multiple (edit)01 16286 32182-1-sm multiple (edit)
01 16286 32182-1-sm multiple (edit)
 
Optimal electric distribution network configuration using adaptive sunflower ...
Optimal electric distribution network configuration using adaptive sunflower ...Optimal electric distribution network configuration using adaptive sunflower ...
Optimal electric distribution network configuration using adaptive sunflower ...
 
Initial Optimal Parameters of Artificial Neural Network and Support Vector Re...
Initial Optimal Parameters of Artificial Neural Network and Support Vector Re...Initial Optimal Parameters of Artificial Neural Network and Support Vector Re...
Initial Optimal Parameters of Artificial Neural Network and Support Vector Re...
 
A review of optimal operation of microgrids
A review of optimal operation of microgrids A review of optimal operation of microgrids
A review of optimal operation of microgrids
 
Performance based Comparison of Wind and Solar Distributed Generators using E...
Performance based Comparison of Wind and Solar Distributed Generators using E...Performance based Comparison of Wind and Solar Distributed Generators using E...
Performance based Comparison of Wind and Solar Distributed Generators using E...
 
Hybrid method for achieving Pareto front on economic emission dispatch
Hybrid method for achieving Pareto front on economic  emission dispatch Hybrid method for achieving Pareto front on economic  emission dispatch
Hybrid method for achieving Pareto front on economic emission dispatch
 
Impact of Distributed Generation on Reliability of Distribution System
Impact of Distributed Generation on Reliability of Distribution SystemImpact of Distributed Generation on Reliability of Distribution System
Impact of Distributed Generation on Reliability of Distribution System
 
Modeling of RF Power Amplifier with Memory Effects using Memory Polynomial
Modeling of RF Power Amplifier with Memory Effects using Memory PolynomialModeling of RF Power Amplifier with Memory Effects using Memory Polynomial
Modeling of RF Power Amplifier with Memory Effects using Memory Polynomial
 
02 15033 distribution power loss minimization via (edit)
02 15033 distribution power loss minimization via (edit)02 15033 distribution power loss minimization via (edit)
02 15033 distribution power loss minimization via (edit)
 
Multi-objective optimal placement of distributed generations for dynamic loads
Multi-objective optimal placement of distributed generations for dynamic loadsMulti-objective optimal placement of distributed generations for dynamic loads
Multi-objective optimal placement of distributed generations for dynamic loads
 
15325008%2 e2014%2e1002589
15325008%2 e2014%2e100258915325008%2 e2014%2e1002589
15325008%2 e2014%2e1002589
 
64 tanushree
64 tanushree64 tanushree
64 tanushree
 
Comparison of optimization technique of power system stabilizer by using gea
Comparison of optimization technique of power system stabilizer by using geaComparison of optimization technique of power system stabilizer by using gea
Comparison of optimization technique of power system stabilizer by using gea
 
Dissertation-_jufri_hazlan_11377.pdf
Dissertation-_jufri_hazlan_11377.pdfDissertation-_jufri_hazlan_11377.pdf
Dissertation-_jufri_hazlan_11377.pdf
 
Paper id 37201503
Paper id 37201503Paper id 37201503
Paper id 37201503
 

Viewers also liked (10)

20320140503017 2
20320140503017 220320140503017 2
20320140503017 2
 
30120140502021 2
30120140502021 230120140502021 2
30120140502021 2
 
20320140503021
2032014050302120320140503021
20320140503021
 
20320140503013
2032014050301320320140503013
20320140503013
 
20120140502010
2012014050201020120140502010
20120140502010
 
50120140503011
5012014050301150120140503011
50120140503011
 
20120140502017
2012014050201720120140502017
20120140502017
 
50120140503010
5012014050301050120140503010
50120140503010
 
20320140503016
2032014050301620320140503016
20320140503016
 
Ijmet 07 06_005
Ijmet 07 06_005Ijmet 07 06_005
Ijmet 07 06_005
 

Similar to 40220140502004

Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...IJERA Editor
 
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...IDES Editor
 
Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...nooriasukmaningtyas
 
Fuzzy expert system based optimal capacitor allocation in distribution system-2
Fuzzy expert system based optimal capacitor allocation in distribution system-2Fuzzy expert system based optimal capacitor allocation in distribution system-2
Fuzzy expert system based optimal capacitor allocation in distribution system-2IAEME Publication
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
IRJET- Optimization of Distributed Generation using Genetics Algorithm an...
IRJET-  	  Optimization of Distributed Generation using Genetics Algorithm an...IRJET-  	  Optimization of Distributed Generation using Genetics Algorithm an...
IRJET- Optimization of Distributed Generation using Genetics Algorithm an...IRJET Journal
 
An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...IAEME Publication
 
Placement of Multiple Distributed Generators in Distribution Network for Loss...
Placement of Multiple Distributed Generators in Distribution Network for Loss...Placement of Multiple Distributed Generators in Distribution Network for Loss...
Placement of Multiple Distributed Generators in Distribution Network for Loss...IJMTST Journal
 
Determining the Pareto front of distributed generator and static VAR compens...
Determining the Pareto front of distributed generator and static  VAR compens...Determining the Pareto front of distributed generator and static  VAR compens...
Determining the Pareto front of distributed generator and static VAR compens...IJECEIAES
 
Analysis of economic load dispatch using fuzzified pso
Analysis of economic load dispatch using fuzzified psoAnalysis of economic load dispatch using fuzzified pso
Analysis of economic load dispatch using fuzzified psoeSAT Publishing House
 
Optimum capacity allocation of distributed generation
Optimum capacity allocation of distributed generationOptimum capacity allocation of distributed generation
Optimum capacity allocation of distributed generationeSAT Publishing House
 
Dg source allocation by fuzzy and sa in distribution system for loss reductio...
Dg source allocation by fuzzy and sa in distribution system for loss reductio...Dg source allocation by fuzzy and sa in distribution system for loss reductio...
Dg source allocation by fuzzy and sa in distribution system for loss reductio...Alexander Decker
 

Similar to 40220140502004 (20)

E010123337
E010123337E010123337
E010123337
 
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
 
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
 
Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...
 
Ka3418051809
Ka3418051809Ka3418051809
Ka3418051809
 
Fuzzy expert system based optimal capacitor allocation in distribution system-2
Fuzzy expert system based optimal capacitor allocation in distribution system-2Fuzzy expert system based optimal capacitor allocation in distribution system-2
Fuzzy expert system based optimal capacitor allocation in distribution system-2
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
IRJET- Optimization of Distributed Generation using Genetics Algorithm an...
IRJET-  	  Optimization of Distributed Generation using Genetics Algorithm an...IRJET-  	  Optimization of Distributed Generation using Genetics Algorithm an...
IRJET- Optimization of Distributed Generation using Genetics Algorithm an...
 
40220140504003
4022014050400340220140504003
40220140504003
 
An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...
 
Placement of Multiple Distributed Generators in Distribution Network for Loss...
Placement of Multiple Distributed Generators in Distribution Network for Loss...Placement of Multiple Distributed Generators in Distribution Network for Loss...
Placement of Multiple Distributed Generators in Distribution Network for Loss...
 
IJMTST020105
IJMTST020105IJMTST020105
IJMTST020105
 
A Case Study of Economic Load Dispatch for a Thermal Power Plant using Partic...
A Case Study of Economic Load Dispatch for a Thermal Power Plant using Partic...A Case Study of Economic Load Dispatch for a Thermal Power Plant using Partic...
A Case Study of Economic Load Dispatch for a Thermal Power Plant using Partic...
 
Determining the Pareto front of distributed generator and static VAR compens...
Determining the Pareto front of distributed generator and static  VAR compens...Determining the Pareto front of distributed generator and static  VAR compens...
Determining the Pareto front of distributed generator and static VAR compens...
 
Analysis of economic load dispatch using fuzzified pso
Analysis of economic load dispatch using fuzzified psoAnalysis of economic load dispatch using fuzzified pso
Analysis of economic load dispatch using fuzzified pso
 
Optimum capacity allocation of distributed generation
Optimum capacity allocation of distributed generationOptimum capacity allocation of distributed generation
Optimum capacity allocation of distributed generation
 
O044049498
O044049498O044049498
O044049498
 
40120140507002
4012014050700240120140507002
40120140507002
 
40120140507002
4012014050700240120140507002
40120140507002
 
Dg source allocation by fuzzy and sa in distribution system for loss reductio...
Dg source allocation by fuzzy and sa in distribution system for loss reductio...Dg source allocation by fuzzy and sa in distribution system for loss reductio...
Dg source allocation by fuzzy and sa in distribution system for loss reductio...
 

More from IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

More from IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Recently uploaded

Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 

Recently uploaded (20)

Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 

40220140502004

  • 1. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME 44 PERFORMANCE IMPROVEMENT OF DISTRIBUTION SYSTEM WITH MULTI DISTRIBUTED GENERATION USING PARTICLE SWARM OPTIMIZATION P. Sobha Rani1 , Dr. A. Lakshmi Devi2 1 Assoc.Professor, Dept.E.E.E. , N.B.K.R.I.S.T, Vidyanagar, Andhrapradesh 2 Professor, Dept. E.E.E., S.V.University College of Engineering, Tirupathi ABSTRACT Distributed generators are beneficial in reducing losses effectively in distribution systems as compared to other methods of loss reduction. Sizing and location of DG sources places an important role in reducing losses in distribution network. In this paper both genetic algorithm and particle swarm optimization methods are presented for optimal location and sizing of DG sources. The methodology is based on exact loss formula. The objective of this methodology is to calculate size and to identify the corresponding optimum location for DG placement for minimizing the total power losses and to improve voltage profile in primary distribution system. The proposed methodology is tested on IEEE-33 distribution system and the results are compared. Keywords: Distributed generation (DG), exact loss formula, Genetic algorithm (GA), Particle swarm optimization (PSO), Power losses. 1. INTRODUCTION Distribution system provides a final link between the high voltage transmission and consumers. Power loss in a distribution system is high because of low voltage and hence high current. One of modern important techniques in electrical distribution systems to reduce losses is to accommodate small scale decentralized generating units known as distributed generation (DG). The DGs are small scale power generation technologies of low voltage type that provide electrical power at a site closer to consumption centers. Developments of DGs will bring new chances to traditional distribution systems. Appropriate size and location of DG play a significant role in minimizing power losses in distribution systems. Examples of DG are diesel generators, small hydro, wind electric systems, solar electric systems, batteries, photo voltaic and fuel systems. INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) ISSN 0976 – 6545(Print) ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME: www.iaeme.com/ijeet.asp Journal Impact Factor (2014): 2.9312 (Calculated by GISI) www.jifactor.com IJEET © I A E M E
  • 2. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME 45 In the present vast load growing electrical system usage of DG have more advantages like reduction of transmission and distribution cost, electricity price, saving of fuel, line loss reduction, better voltage profile, power quality improvement. DG can be classified into four major types based on their terminal characteristics in terms of real and reactive power delivering capability as follows: 1. DG capable of injecting active power only. 2. DG capable of injecting reactive power only. 3. DG capable of injecting both active and reactive power. 4. DG capable of injecting active power but consuming reactive power. Photo voltaic, micro turbines, fuel cells which are integrated to main grid with the help of converters/ inverters are good examples of type1. Synchronous compensators such as gas turbines are examples for type2. DG units that are based on synchronous machine fall in type 3. Type 4 is mainly induction generators that are used in wind farms. This paper is organized as follows: Methodology is explained in section II, Problem formulation is discussed in section III, Simulation results are shown in section IV. 2. METHODOLOGY Technical advances and availability of renewable energy sources have resulted in a constantly increasing penetration of DG integrated with distribution networks. For the connection of new DG installations to the networks a variety of factors have to be taken into account to ensure that the DG doesn’t adversely affect the operation and power quality of networks. In a large distribution system network with high power loss, it is difficult to select a particular bus from many buses so as to place a DG unit for loss reduction. Power losses are present at every bus and identification of bus with highest Power loss is important because losses at that bus includes majority of total losses in the system. This can be partially accomplished by DG unit placement in the network. If DG size exceeds certain value of limit, power loss at that bus becomes negative. This situation must be avoided. The beneficial effects of DG mainly depend on its location and size. Selection of optimal location and size of DG is a necessary process to maintain reliability of existing system effectively before it is connected to grid. There are many approaches to determine the optimum sizing and sitting of DG units in distribution systems considering overall system efficiency, system reliability, voltage profile, load variation, network losses. In some research the optimum location and size of a single DG unit is determined and in some others optimum location and sizes of multiple DG units are determined. In this Paper exact loss formula is used to determine the size and location of Type-1 and Type-2 DG. 3. PROBLEM FORMULATION The objective of problem is to find the location of DGs and its size for type-1 and type-2 DG to minimize the real power losses and to improve the voltage profile. Power loss in the system can be calculated by equation (1), given the system operating condition, ∑== −++= n ji jijiijjijiijL QPPQQQPPP 1,1 )]()([ βα (1) Where )( ji ji ij ij Cos VV r δδα −= and )( ji ji ij ij Sin VV r δδβ −=
  • 3. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME 46 The objective is to minimize PL subject to power balance constraints as per equation(2) Σ PDGi = Σ PDi + PL (2) Voltage constraints: Vimin ≤ Vi ≤ Vimax Where PL is real power loss in the system, PDGi is real power generation DG at bus i, PDi is power delivered at bus i. Type-1 DG For type-1 DG, power factor is unity. The optimal size of DG at each bus i for minimizing losses is given by equation (3). ∑≠= −+      −= n ijij ijjijjiii ii DiDGi QPQPP , )]([ 1 βαβ α (3) Type-2 DG For type-2 DG, the optimal size of DG at each bus i for minimizing losses is given by equation (4) ∑≠= +−      += n ijij ijjijjiii ii DiDGi PQPQQ , )]([ 1 βαβ α (4) The optimal sizes at various locations have been calculated for different types of DG and the losses are calculated with optimal sizes for each case. The case with minimum losses is selected as optimal location for each type DG. This paper uses GA and PSO for solving problems of optimal sitting and sizing of DG. 3.1 Genetic algorithm Genetic algorithms (GA) are a part of evolutionary computing which is a rapidly growing area of artificial intelligence. GA begins with a set of solutions (represented by chromosomes) called population. Solution from one population are taken and used to form a new population. This is motivated by a hope that new population will be better than old one. Solutions that are then selected to form new solutions (offspring) according to their fitness- the more suitable they are the more chances to reproduce. This is repeated until some condition is satisfied. Simplicity of operation and power of effect are advantages of GA approach. Algorithm 1. Read the system data, perform load flow, and generate initial population size. 2. Start iteration count iter=1 3. Determine the sizes of DG units at each candidate node by decoding the population. 4. Place the DG unit at a candidate bus and run the load flow for each string of population and find the losses. With the obtained losses, calculate the fitness function. Fitness=1/total loss. 5. Arrange the elements of the fitness function in the descending order and hence find the maximum fit and average fit. 6. Find the error using Error=(maxfit) – (average fit) If this error is less than epsilon, go to step 9.
  • 4. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME 47 7. Carry out cross over and mutation on the off springs and generate new population. Increment the iteration count. 8. If (iter<=itermax) go to step 3. 9. If the problem is converged in itermax iterations stop. 10. Print the DG unit rating and power losses after compensation. 3.2 Particle swarm optimization Particle swarm optimization is an algorithm capable of optimizing a nonlinear and multi dimensional problem which gives good solutions. The basic concept of algorithm is to create a swarm of particles which move in the space around them (the problem space) searching for their goal, the place which best suits their needs is given by a fitness function. Each particle keeps track of its coordinates in the solution space which are associated with best solution (fitness) that has achieved so far by that particle. This value is called personal best (pbest). Another best value is the best value obtained so far by any particle in the neighborhood of that particle. This value is called gbest. The basic concept of PSO lies in accelerating each particle toward its pbest and gbest locations with a random weighted acceleration. The modification of the particle’s position can be mathematically modeled according the following equation: Vi k +1 = wVi k +c1 rand1(…) x (pbesti-si k ) + c2 rand2(…) x (gbest-si k ) (5) where, vi k : velocity of agent i at iteration k, w: weighting function, cj: weighting factor, rand: uniformly distributed random number between 0 and 1, si k : current position of agent i at iteration k, pbesti: pbest of agent i, gbest: gbest of the group. The following weighting function is usually utilized in (6) w = wMax-[(wMax-wMin) x iter]/maxIter (6) where wMax = initial weight, wMin = final weight, maxIter = maximum iteration number, iter = current iteration number. si k+1 = si k + Vi k+1 (7) Algorithm 1. Read the system data, perform load flow 2. Randomly generate an initial population of particles with random positions and velocities on dimensions in solution space. 3. Initialize the swarm from the solution space. 4. Evaluate fitness of individual particles. 5. Modify gbest, pbest and velocity. 6. Move each particle to a new position. 7. Go to step 3, and repeat until convergence or a stopping condition is satisfied.
  • 5. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME 48 4. SIMULATION The proposed algorithm is tested on IEEE-33 bus system. The original total real power loss and reactive power loss in the system are found to be 301.696 kW and 220.6 kvar respectively by conducting Backward-Forward load flow method. For GA parameters population size=100, crossover probability=0.7; the maximum number of DG is 3 for each type. One type-1 DG can reduce total real and reactive power loss by23.77 and 25.44 respectively. For three type-1 DGs they can further reduce the loss by 66.68 compared to 29.65 in type-2 DG. The results are shown following tables. Table 1. Summary of results for type-1 DG Number of DG Bus Number TPL(kw) DG size (kw) TQL(kvar) Voltage(p.u) Without DG With DG % loss reduction Without DG With DG %loss reduction Without DG With DG % voltage increment 1 DG G A 9 301.69 251.63 19.89 288.926 220.6 182.15 21.11 0.8866 0.9016 1.69 P S O 8 301.69 243.74 23.77 383.442 220.6 175.86 25.44 0.8971 0.9127 1.74 2DG G A 8 301.69 200.952 50.14 383.424 220.6 143.08 54.18 0.8971 0.9275 3.39 8 383.424 P S O 8 301.69 200.85 50.20 383.98 220.6 143.0 54.26 0.8971 0.9275 3.39 8 383.98 3DG G A 9 301.696 181.69 66.67 288.08 220.6 127.98 72.37 0.8866 0.9173 3.46 15 146.518 0.8613 0.8986 4.33 32 333.72 0.8868 0.9166 3.36 P S O 8 301.696 181.009 66.68 384.13 220.6 127.9 72.47 0.8971 0.9329 3.99 8 384.13 0.8971 0.9329 3.99 17 130.837 0.8565 0.9030 5.42 Table 2: Summary of results for type-2 DG Number of DG Bus Number TPL(kw) DG size (kvar) TQL(kvar) Voltage(p.u) Without DG With DG % loss reduction Without DG With DG %loss reduction Without DG With DG % voltage increment 1 DG G A 31 301.696 263.74 14.39 339.274 220.6 191.88 14.96 0.8882 0.9029 1.65 PS O 31 301.696 263.75 14.38 339.074 220.6 191.89 14.96 0.8882 0.9029 1.65 2 DG G A 27 301.696 247.43 21.93 350 220.6 182.03 21.18 0.9284 0.9378 1.012 32 279.471 0.8868 0.9076 2.345 PS O 8 301.696 246.19 22.54 206.013 220.6 178.65 23.48 0.8971 0.9107 1.49 31 339.076 0.8882 0.9070 2.116 3 DG G A 9 301.696 232.71 29.64 179.038 220.6 170.6 29.31 0.8866 0.9043 1.996 27 349.937 0.9284 0.9403 1.282 32 279.469 0.8868 0.9082 2.41 PS O 27 301.696 232.7 29.65 350 220.6 170.58 29.32 0.9284 0.9409 1.346 30 235.76 0.8966 0.9184 2.43 32 279.47 0.8868 0.9122 2.86
  • 6. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME 49 Simulation results are shown in the following figures. Fig 1: Bus voltages for one Type-1 DG Fig 2: Line losses for one Type-1 DG Fig 3: Bus voltages for three Type-2 DGS 0 5 10 15 20 25 30 35 0.85 0.9 0.95 1 BUS NUMBER Voltageinp.u. without DG with DG GA with DG PSO 0 5 10 15 20 25 30 35 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Branch Number LineLosses without DG with DG GA with DG PSO 0 5 10 15 20 25 30 35 0.85 0.9 0.95 1 Bus Number Voltageinp.u without DG with DG GA with DG PSO
  • 7. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 2, February (2014), pp. 44-50 © IAEME 50 Fig 4: Line losses for three Type-2 DGs 5. CONCLUSION In this paper both genetic algorithm and particle swarm optimization methods are used for optimal placement of multi DG sources. Exact loss formula is used to determine optimal size and the location for both type-1 and type-2 DGs. The two types of DGs effectively reduced the power loss and voltage profile is also improved. REFERENCES [1]. M.H.Moradi, M.Abedini, A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution system, Electric power energy systems 34 (2012) 66-74. [2]. P.Sobha Rani, Dr.A.Lakshmi Devi, Sizing and placement of multi DG using exact loss formula,, International journal of advanced research in electrical electronics and instrumentation engineering, vol.2, issue 11, Nov 2013. [3]. Duong quoc Hung, Nadarajah Mithulananthan, Multiple distributed generations in primary distribution networks for loss reduction, IEEE transactions on industrial electronics, vol.60, No.4, April 13. [4]. W. El-hattam, M.M.A. Salma, DG technologies definition and benefits, Electrical power system research, vol.71, pp 119-128, 2004. [5]. A.M.El-Zonkoly, optimal placement of multi DG units including different load models using particle swarm optimization, Swarm and evolutionary computation, 1(2011) 50-59. [6]. D. Zhu, R.P.Broad water, K.Tam, R. Seguin, H. Asgeirsson, Impact of DG placement on reliability and efficiency with time varying loads, IEEE transactions on power systems 21(1) 2006,419-427. [7]. T.Gozel, M.H.Hocaoglu, An analytical method for the sizing and sitting of distributed generators in radial systems, International journal of electric power system research 79(2009) 912-918. [8]. Dr.T.Ananthapadmanabha, Maruthi Prasanna.H.A., Veeresha.A.G. and Likith Kumar. M. V, “A New Simplified Approach for Optimum Allocation of a Distributed Generation Unit in the Distribution Network for Voltage Improvement and Loss Minimization”, International Journal of Electrical Engineering & Technology (IJEET), Volume 4, Issue 2, 2013, pp. 165 - 178, ISSN Print : 0976-6545, ISSN Online: 0976-6553. 0 5 10 15 20 25 30 35 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Branch Number Lossinp.u without DG with DG GA with DG PSO