SlideShare a Scribd company logo
1 of 2
Download to read offline
Common Derivatives and Integrals                                                                                              Common Derivatives and Integrals




                                                      Derivatives                                                                                                                      Integrals
Basic Properties/Formulas/Rules                                                                                             Basic Properties/Formulas/Rules
     d
        ( cf ( x ) ) = cf ¢ ( x ) , c is any constant. ( f ( x ) ± g ( x ) )¢ = f ¢ ( x ) ± g ¢ ( x )                        ò cf ( x ) dx = c ò f ( x ) dx , c is a constant.   ò f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx
     dx                                                                                                                        b                          b
     d n
        ( x ) = nxn-1 , n is any number.                    d
                                                              ( c ) = 0 , c is any constant.                                 ò a f ( x ) dx = F ( x ) a = F (b ) - F ( a ) where F ( x ) = ò f ( x ) dx
     dx                                                    dx                                                                  b                      b                                          b                                        b                     b
                                                                                                                             ò a cf ( x ) dx = c ò a f ( x ) dx , c is a constant. ò a f ( x ) ± g ( x ) dx = ò a f ( x ) dx ± òa g ( x ) dx
                                                           æ f ö¢ f ¢ g - f g ¢
    ( f g )¢ = f ¢ g + f g ¢ – (Product Rule) ç ÷ =                                  – (Quotient Rule)                         a                                                                 b                          a
                                                           ègø             g2                                                ò a f ( x ) dx = 0                                                 ò a f ( x ) dx = -òb f ( x ) dx
     d
           (              )
           f ( g ( x ) ) = f ¢ ( g ( x ) ) g ¢ ( x ) (Chain Rule)
                                                                                                                               b                  c                  b                           b

     dx                                                                                                                      ò a f ( x ) dx = ò a f ( x ) dx + òc f ( x ) dx                    ò a c dx = c ( b - a )
                                                              ( ln g ( x )) = g (x )
                                                                               g¢ x                                                                                          b


     dx
          e( )
     d g ( x)
                   = g ¢( x ) e ( )
                                g x                         d
                                                           dx                    ( )
                                                                                                                            If f ( x ) ³ 0 on a £ x £ b then               ò a f ( x ) dx ³ 0
                                                                                                                                                                                   b                      b
                                                                                                                            If f ( x ) ³ g ( x ) on a £ x £ b then               ò a f ( x ) dx ³ ò a g ( x ) dx
Common Derivatives
Polynomials                                                                                                                 Common Integrals
 d          d                               d                       d n                      d
dx
   (c) = 0
            dx
               ( x) = 1
                                            dx
                                               ( cx ) = c
                                                                    dx
                                                                       ( x ) = nxn-1         dx
                                                                                                ( cxn ) = ncxn -1           Polynomials
                                                                                                                                                                                                                                1
                                                                                                                            ò dx = x + c                        ò k dx = k x + c                              ò x dx = n + 1 x
                                                                                                                                                                                                                                              n+1
                                                                                                                                                                                                                    n
                                                                                                                                                                                                                                                    + c, n ¹ -1
Trig Functions
                                                                                                                            ó 1 dx = ln x + c                                                                                     1
                                                                                                                                                                òx                                            òx
                                                                                                                                                                                                                    -n
 d                                          d                                       d                                       ô
                                                                                                                                                                     -1
                                                                                                                                                                          dx = ln x + c                                  dx =          x - n +1 + c , n ¹ 1
   ( sin x ) = cos x                           ( cos x ) = - sin x                     ( tan x ) = sec2 x                   õx                                                                                                  -n + 1
dx                                          dx                                      dx                                                                                                               p                     p                              p+q
                                                                                                                            ó 1 dx = 1 ln ax + b + c                                                                1 q +1    q
 d                                          d                                       d
                                                                                                                                                                                                òx       dx =          x +c=                                    +c
                                                                                                                                                                                                     q                                                     q
   ( sec x ) = sec x tan x                     ( csc x ) = - csc x cot x               ( cot x ) = - csc2 x                 ô                                                                                                     x
dx                                          dx                                      dx                                      õ ax + b a                                                                          p
                                                                                                                                                                                                                q   +1       p+ q

Inverse Trig Functions                                                                                                      Trig Functions
 d
    ( sin -1 x ) = 1 2                      d
                                               ( cos-1 x ) = - 1 2                  d
                                                                                       ( tan -1 x ) = 1 +1x2                ò cos u du = sin u + c            ò sin u du = - cos u + c          ò sec u du = tan u + c
                                                                                                                                                                                                                                      2

 dx                1- x                     dx                 1- x                 dx
                                                                                                                            ò sec u tan u du = sec u + c ò csc u cot udu = - csc u + c ò csc u du = - cot u + c
                                                                                                                                                                                                                                      2

 d
 dx
    ( sec-1 x ) = 12                        d
                                            dx
                                               ( csc-1 x ) = - 12                   d
                                                                                    dx
                                                                                       ( cot -1 x ) = - 1 +1x2              ò tan u du = ln sec u + c                  ò cot u du = ln sin u + c
                  x x -1                                      x x -1
                                                                                                                                                                                     1
                                                                                                                            ò sec u du = ln sec u + tan u + c          ò sec u du = 2 ( sec u tan u + ln sec u + tan u ) + c
                                                                                                                                                                                         3

Exponential/Logarithm Functions
 d x                        d x                                                                                                                                                                           1
   ( a ) = a x ln ( a )        (e ) = ex                                                                                    ò csc u du = ln csc u - cot u + c                      ò csc
                                                                                                                                                                                           3
                                                                                                                                                                                               u du =
                                                                                                                                                                                                          2
                                                                                                                                                                                                            ( - csc u cot u + ln csc u - cot u ) + c
dx                          dx
 d
   ( ln ( x ) ) = 1 , x > 0 d
                               ( ln x ) = 1 , x ¹ 0
                                                                                    d                       1
dx                x         dx            x                                         dx
                                                                                       ( log a ( x ) ) = x ln a , x > 0     Exponential/Logarithm Functions
                                                                                                                                                                                        au
                                                                                                                            ò e du = e + c                                ò a du =          +c                             ò ln u du = u ln ( u ) - u + c
                                                                                                                               u      u                                      u
Hyperbolic Trig Functions                                                                                                                                                              ln a
 d                                          d                               d                                                                     e au
   ( sinh x ) = cosh x                         ( cosh x ) = sinh x             ( tanh x ) = sech 2 x                        òe
                                                                                                                                 au
                                                                                                                                      sin ( bu ) du =   ( a sin ( bu ) - b cos ( bu ) ) + c                                ò ue du = ( u - 1) e
                                                                                                                                                                                                                                  u                        u
                                                                                                                                                                                                                                                                +c
dx                                          dx                              dx                                                                   a + b2   2

 d                                          d                               d
   ( sech x ) = - sech x tanh x                ( csch x ) = - csch x coth x    ( coth x ) = - csch 2 x                        eau cos ( bu ) du = 2
                                                                                                                                                   e au
                                                                                                                                                        ( a cos ( bu ) + b sin ( bu ) ) + c                                ó 1 du = ln ln u + c
dx                                          dx                              dx                                              ò                    a + b2
                                                                                                                                                                                                                           ô
                                                                                                                                                                                                                           õ u ln u


Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.                   © 2005 Paul   Dawkins   Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.                                          © 2005 Paul   Dawkins
Common Derivatives and Integrals                                                                                              Common Derivatives and Integrals



Inverse Trig Functions
ó      1                æu ö                                                                                                  Trig Substitutions
            du = sin -1 ç ÷ + c                       ò sin
                                                              -1
ô                                                              u du = u sin -1 u + 1 - u 2 + c                                If the integral contains the following root use the given substitution and formula.
õ a -u2   2
                        èaø
                                                                                                                                                                        a
ó 1           1      æuö                                                              1                                                        a 2 - b2 x2   Þ       x = sin q      and    cos2 q = 1 - sin 2 q
ô 2      du = tan -1 ç ÷ + c                          ò tan
                                                              -1
                                                                   u du = u tan -1 u - ln (1 + u 2 ) + c                                                                b
õ a +u
       2
              a      èaø                                                              2                                                                                 a
                                                                                                                                               b2x2 - a 2    Þ       x = sec q      and    tan 2 q = sec 2 q -1
ó    1          1      æuö                                                                                                                                              b
            du = sec-1 ç ÷ + c                        ò cos
                                                              -1
ô                                                                  u du = u cos - 1 u - 1 - u 2 + c
õ u u2 - a2     a      èaø                                                                                                                                              a
                                                                                                                                               a2 + b2 x2    Þ       x = tan q      and    sec 2 q = 1 + tan 2 q
                                                                                                                                                                        b
Hyperbolic Trig Functions                                                                                                     Partial Fractions
ò sinh u du = cosh u + c                   ò cosh u du = sinh u + c        ò sech               u du = tanh u + c                             ó P ( x)
                                                                                            2

                                                                                                                              If integrating ô          dx where the degree (largest exponent) of P ( x ) is smaller than the
ò sech tanh u du = - sech u + c            ò csch coth u du = - csch u + c ò csch
                                                                                            2
                                                                                                u du = - coth u + c                           õ Q (x)
                                                                                                                              degree of Q ( x ) then factor the denominator as completely as possible and find the partial
ò tanh u du = ln ( cosh u ) + c            ò sech u du = tan sinh u + c
                                                                     -1

                                                                                                                              fraction decomposition of the rational expression. Integrate the partial fraction
                                                                                                                              decomposition (P.F.D.). For each factor in the denominator we get term(s) in the
Miscellaneous
                                                                                                                              decomposition according to the following table.
ó 1 du = 1 ln u + a + c                                             ó 1 du = 1 ln u - a + c
ô 2                                                                 ô 2
õ a - u2      2a u - a                                              õ u - a2 2a u + a                                           Factor in Q ( x )         Term in P.F.D Factor in Q ( x )                                    Term in P.F.D
                   u            a2
ò   a + u du =       a 2 + u 2 + ln u + a 2 + u 2 + c                                                                                                                                                                A1       A2                Ak
       2        2
                                                                                                                                                                  A                                                      +             +L +
                                                                                                                                                                                        ( ax + b )
                                                                                                                                                                                                     k
                   2            2                                                                                                      ax + b                                                                      ax + b ( ax + b ) 2      ( ax + b )
                                                                                                                                                                                                                                                       k
                                                                                                                                                                ax + b
                   u 2          a2
ò   u 2 - a 2 du =   u - a 2 - ln u + u 2 - a 2 + c                                                                                                            Ax + B                                                A1 x + B1
                                                                                                                                                                                                                               +L +
                                                                                                                                                                                                                                        Ak x + Bk
                   2            2
                                                                                                                                                                                   ( ax       + bx + c )
                                                                                                                                                                                          2                k
                                                                                                                                   ax 2 + bx + c                                                                   ax + bx + c      ( ax2 + bx + c )
                                                                                                                                                                                                                     2                               k
                   u 2          a2    æuö                                                                                                                   ax 2 + bx + c
ò   a - u du =       a - u + sin -1 ç ÷ + c
      2     2                2

                   2            2     èaø
                         u-a                                                                                                  Products and (some) Quotients of Trig Functions
                                         a2     æ a -u ö
ò    2au - u 2 du =
                          2
                             2 au - u 2 + cos-1 ç
                                         2      è a ø
                                                       ÷+c                                                                    ò sin x cos x dx
                                                                                                                                   n     m


                                                                                                                                  1. If n is odd. Strip one sine out and convert the remaining sines to cosines using
Standard Integration Techniques                                                                                                        sin 2 x = 1 - cos2 x , then use the substitution u = cos x
Note that all but the first one of these tend to be taught in a Calculus II class.                                                2. If m is odd. Strip one cosine out and convert the remaining cosines to sines
                                                                                                                                       using cos 2 x = 1 - sin 2 x , then use the substitution u = sin x
u Substitution                                                                                                                    3. If n and m are both odd. Use either 1. or 2.
       ò a f ( g ( x ) ) g¢ ( x ) dx then the substitution u = g ( x ) will convert this into the
            b
Given                                                                                                                             4. If n and m are both even. Use double angle formula for sine and/or half angle
                                                                                                                                       formulas to reduce the integral into a form that can be integrated.
                                           g ( b)
integral, ò f ( g ( x ) ) g ¢ ( x ) dx = ò                                                                                    ò
            b
                                                  f ( u ) du .                                                                  tan n x sec m x dx
           a                               g ( a)
                                                                                                                                   1. If n is odd. Strip one tangent and one secant out and convert the remaining
Integration by Parts                                                                                                                  tangents to secants using tan 2 x = sec 2 x - 1 , then use the substitution u = sec x
The standard formulas for integration by parts are,                                                                                2. If m is even. Strip two secants out and convert the remaining secants to tangents
                                                                           b          b     b                                         using sec 2 x = 1 + tan 2 x , then use the substitution u = tan x
                           ò udv = uv - ò vdu                             òa udv = uv a - òa vdu                                   3. If n is odd and m is even. Use either 1. or 2.
Choose u and dv and then compute du by differentiating u and compute v by using the                                                4. If n is even and m is odd. Each integral will be dealt with differently.
                                                                                                                              Convert Example : cos 6 x = ( cos 2 x ) = (1 - sin 2 x )
                                                                                                                                                                                    3                          3
fact that v = ò dv .


Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.                     © 2005 Paul   Dawkins   Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes.                         © 2005 Paul   Dawkins

More Related Content

What's hot

Partial differentiation
Partial differentiationPartial differentiation
Partial differentiationTanuj Parikh
 
3.2 Logarithmic Functions
3.2 Logarithmic Functions3.2 Logarithmic Functions
3.2 Logarithmic Functionslgemgnani
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minimaSanthanam Krishnan
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex planeAmit Amola
 
16 partial fraction decompositions x
16 partial fraction decompositions x16 partial fraction decompositions x
16 partial fraction decompositions xmath266
 
Hyperbolic functions dfs
Hyperbolic functions dfsHyperbolic functions dfs
Hyperbolic functions dfsFarhana Shaheen
 
ISI MSQE Entrance Question Paper (2011)
ISI MSQE Entrance Question Paper (2011)ISI MSQE Entrance Question Paper (2011)
ISI MSQE Entrance Question Paper (2011)CrackDSE
 
Transformations of functions
Transformations of functionsTransformations of functions
Transformations of functionsVictoria Ball
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiationmath265
 
Exponential and logrithmic functions
Exponential and logrithmic functionsExponential and logrithmic functions
Exponential and logrithmic functionsMalikahmad105
 
2.2 limits ii
2.2 limits ii2.2 limits ii
2.2 limits iimath265
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equationkishor pokar
 
26 the logarithm functions x
26 the logarithm functions x26 the logarithm functions x
26 the logarithm functions xmath260
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functionsrey castro
 

What's hot (20)

Partial differentiation
Partial differentiationPartial differentiation
Partial differentiation
 
3.2 Logarithmic Functions
3.2 Logarithmic Functions3.2 Logarithmic Functions
3.2 Logarithmic Functions
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Integrale indefinito
Integrale indefinitoIntegrale indefinito
Integrale indefinito
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex plane
 
16 partial fraction decompositions x
16 partial fraction decompositions x16 partial fraction decompositions x
16 partial fraction decompositions x
 
Hyperbolic functions dfs
Hyperbolic functions dfsHyperbolic functions dfs
Hyperbolic functions dfs
 
ISI MSQE Entrance Question Paper (2011)
ISI MSQE Entrance Question Paper (2011)ISI MSQE Entrance Question Paper (2011)
ISI MSQE Entrance Question Paper (2011)
 
Transformations of functions
Transformations of functionsTransformations of functions
Transformations of functions
 
The method of frobenius
The method of frobeniusThe method of frobenius
The method of frobenius
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation
 
Lesson 10: The Chain Rule
Lesson 10: The Chain RuleLesson 10: The Chain Rule
Lesson 10: The Chain Rule
 
Exponential and logrithmic functions
Exponential and logrithmic functionsExponential and logrithmic functions
Exponential and logrithmic functions
 
2.2 limits ii
2.2 limits ii2.2 limits ii
2.2 limits ii
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equation
 
26 the logarithm functions x
26 the logarithm functions x26 the logarithm functions x
26 the logarithm functions x
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
 

Viewers also liked

Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsolziich
 
Trigo cheat sheet_reduced
Trigo cheat sheet_reducedTrigo cheat sheet_reduced
Trigo cheat sheet_reducedKyro Fitkry
 
Integral table
Integral tableIntegral table
Integral tablebags07
 
Series expansion of exponential and logarithmic functions
Series expansion of exponential and logarithmic functionsSeries expansion of exponential and logarithmic functions
Series expansion of exponential and logarithmic functionsindu psthakur
 
Reverse power rule
Reverse power ruleReverse power rule
Reverse power rulemlobrien15
 
Calculus Derivatives Limits
Calculus Derivatives LimitsCalculus Derivatives Limits
Calculus Derivatives LimitsWisnu Suryaputra
 
Famous Book Fairs Around The World
Famous Book Fairs Around The WorldFamous Book Fairs Around The World
Famous Book Fairs Around The WorldMaps of World
 

Viewers also liked (9)

Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Trigo cheat sheet_reduced
Trigo cheat sheet_reducedTrigo cheat sheet_reduced
Trigo cheat sheet_reduced
 
Integral table
Integral tableIntegral table
Integral table
 
Series expansion of exponential and logarithmic functions
Series expansion of exponential and logarithmic functionsSeries expansion of exponential and logarithmic functions
Series expansion of exponential and logarithmic functions
 
Integral table
Integral tableIntegral table
Integral table
 
Reverse power rule
Reverse power ruleReverse power rule
Reverse power rule
 
Integral table
Integral tableIntegral table
Integral table
 
Calculus Derivatives Limits
Calculus Derivatives LimitsCalculus Derivatives Limits
Calculus Derivatives Limits
 
Famous Book Fairs Around The World
Famous Book Fairs Around The WorldFamous Book Fairs Around The World
Famous Book Fairs Around The World
 

Similar to Common derivatives integrals_reduced

Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt projectcea0001
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Matthew Leingang
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsMatthew Leingang
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculoHenry Romero
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Matthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Matthew Leingang
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guideakabaka12
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Mel Anthony Pepito
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230samhui48
 

Similar to Common derivatives integrals_reduced (20)

Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Regras diferenciacao
Regras diferenciacaoRegras diferenciacao
Regras diferenciacao
 
01 regras diferenciacao
01   regras diferenciacao01   regras diferenciacao
01 regras diferenciacao
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite Integrals
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Business math
Business mathBusiness math
Business math
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
Integration. area undera curve
Integration. area undera curveIntegration. area undera curve
Integration. area undera curve
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 

Common derivatives integrals_reduced

  • 1. Common Derivatives and Integrals Common Derivatives and Integrals Derivatives Integrals Basic Properties/Formulas/Rules Basic Properties/Formulas/Rules d ( cf ( x ) ) = cf ¢ ( x ) , c is any constant. ( f ( x ) ± g ( x ) )¢ = f ¢ ( x ) ± g ¢ ( x ) ò cf ( x ) dx = c ò f ( x ) dx , c is a constant. ò f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx dx b b d n ( x ) = nxn-1 , n is any number. d ( c ) = 0 , c is any constant. ò a f ( x ) dx = F ( x ) a = F (b ) - F ( a ) where F ( x ) = ò f ( x ) dx dx dx b b b b b ò a cf ( x ) dx = c ò a f ( x ) dx , c is a constant. ò a f ( x ) ± g ( x ) dx = ò a f ( x ) dx ± òa g ( x ) dx æ f ö¢ f ¢ g - f g ¢ ( f g )¢ = f ¢ g + f g ¢ – (Product Rule) ç ÷ = – (Quotient Rule) a b a ègø g2 ò a f ( x ) dx = 0 ò a f ( x ) dx = -òb f ( x ) dx d ( ) f ( g ( x ) ) = f ¢ ( g ( x ) ) g ¢ ( x ) (Chain Rule) b c b b dx ò a f ( x ) dx = ò a f ( x ) dx + òc f ( x ) dx ò a c dx = c ( b - a ) ( ln g ( x )) = g (x ) g¢ x b dx e( ) d g ( x) = g ¢( x ) e ( ) g x d dx ( ) If f ( x ) ³ 0 on a £ x £ b then ò a f ( x ) dx ³ 0 b b If f ( x ) ³ g ( x ) on a £ x £ b then ò a f ( x ) dx ³ ò a g ( x ) dx Common Derivatives Polynomials Common Integrals d d d d n d dx (c) = 0 dx ( x) = 1 dx ( cx ) = c dx ( x ) = nxn-1 dx ( cxn ) = ncxn -1 Polynomials 1 ò dx = x + c ò k dx = k x + c ò x dx = n + 1 x n+1 n + c, n ¹ -1 Trig Functions ó 1 dx = ln x + c 1 òx òx -n d d d ô -1 dx = ln x + c dx = x - n +1 + c , n ¹ 1 ( sin x ) = cos x ( cos x ) = - sin x ( tan x ) = sec2 x õx -n + 1 dx dx dx p p p+q ó 1 dx = 1 ln ax + b + c 1 q +1 q d d d òx dx = x +c= +c q q ( sec x ) = sec x tan x ( csc x ) = - csc x cot x ( cot x ) = - csc2 x ô x dx dx dx õ ax + b a p q +1 p+ q Inverse Trig Functions Trig Functions d ( sin -1 x ) = 1 2 d ( cos-1 x ) = - 1 2 d ( tan -1 x ) = 1 +1x2 ò cos u du = sin u + c ò sin u du = - cos u + c ò sec u du = tan u + c 2 dx 1- x dx 1- x dx ò sec u tan u du = sec u + c ò csc u cot udu = - csc u + c ò csc u du = - cot u + c 2 d dx ( sec-1 x ) = 12 d dx ( csc-1 x ) = - 12 d dx ( cot -1 x ) = - 1 +1x2 ò tan u du = ln sec u + c ò cot u du = ln sin u + c x x -1 x x -1 1 ò sec u du = ln sec u + tan u + c ò sec u du = 2 ( sec u tan u + ln sec u + tan u ) + c 3 Exponential/Logarithm Functions d x d x 1 ( a ) = a x ln ( a ) (e ) = ex ò csc u du = ln csc u - cot u + c ò csc 3 u du = 2 ( - csc u cot u + ln csc u - cot u ) + c dx dx d ( ln ( x ) ) = 1 , x > 0 d ( ln x ) = 1 , x ¹ 0 d 1 dx x dx x dx ( log a ( x ) ) = x ln a , x > 0 Exponential/Logarithm Functions au ò e du = e + c ò a du = +c ò ln u du = u ln ( u ) - u + c u u u Hyperbolic Trig Functions ln a d d d e au ( sinh x ) = cosh x ( cosh x ) = sinh x ( tanh x ) = sech 2 x òe au sin ( bu ) du = ( a sin ( bu ) - b cos ( bu ) ) + c ò ue du = ( u - 1) e u u +c dx dx dx a + b2 2 d d d ( sech x ) = - sech x tanh x ( csch x ) = - csch x coth x ( coth x ) = - csch 2 x eau cos ( bu ) du = 2 e au ( a cos ( bu ) + b sin ( bu ) ) + c ó 1 du = ln ln u + c dx dx dx ò a + b2 ô õ u ln u Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins
  • 2. Common Derivatives and Integrals Common Derivatives and Integrals Inverse Trig Functions ó 1 æu ö Trig Substitutions du = sin -1 ç ÷ + c ò sin -1 ô u du = u sin -1 u + 1 - u 2 + c If the integral contains the following root use the given substitution and formula. õ a -u2 2 èaø a ó 1 1 æuö 1 a 2 - b2 x2 Þ x = sin q and cos2 q = 1 - sin 2 q ô 2 du = tan -1 ç ÷ + c ò tan -1 u du = u tan -1 u - ln (1 + u 2 ) + c b õ a +u 2 a èaø 2 a b2x2 - a 2 Þ x = sec q and tan 2 q = sec 2 q -1 ó 1 1 æuö b du = sec-1 ç ÷ + c ò cos -1 ô u du = u cos - 1 u - 1 - u 2 + c õ u u2 - a2 a èaø a a2 + b2 x2 Þ x = tan q and sec 2 q = 1 + tan 2 q b Hyperbolic Trig Functions Partial Fractions ò sinh u du = cosh u + c ò cosh u du = sinh u + c ò sech u du = tanh u + c ó P ( x) 2 If integrating ô dx where the degree (largest exponent) of P ( x ) is smaller than the ò sech tanh u du = - sech u + c ò csch coth u du = - csch u + c ò csch 2 u du = - coth u + c õ Q (x) degree of Q ( x ) then factor the denominator as completely as possible and find the partial ò tanh u du = ln ( cosh u ) + c ò sech u du = tan sinh u + c -1 fraction decomposition of the rational expression. Integrate the partial fraction decomposition (P.F.D.). For each factor in the denominator we get term(s) in the Miscellaneous decomposition according to the following table. ó 1 du = 1 ln u + a + c ó 1 du = 1 ln u - a + c ô 2 ô 2 õ a - u2 2a u - a õ u - a2 2a u + a Factor in Q ( x ) Term in P.F.D Factor in Q ( x ) Term in P.F.D u a2 ò a + u du = a 2 + u 2 + ln u + a 2 + u 2 + c A1 A2 Ak 2 2 A + +L + ( ax + b ) k 2 2 ax + b ax + b ( ax + b ) 2 ( ax + b ) k ax + b u 2 a2 ò u 2 - a 2 du = u - a 2 - ln u + u 2 - a 2 + c Ax + B A1 x + B1 +L + Ak x + Bk 2 2 ( ax + bx + c ) 2 k ax 2 + bx + c ax + bx + c ( ax2 + bx + c ) 2 k u 2 a2 æuö ax 2 + bx + c ò a - u du = a - u + sin -1 ç ÷ + c 2 2 2 2 2 èaø u-a Products and (some) Quotients of Trig Functions a2 æ a -u ö ò 2au - u 2 du = 2 2 au - u 2 + cos-1 ç 2 è a ø ÷+c ò sin x cos x dx n m 1. If n is odd. Strip one sine out and convert the remaining sines to cosines using Standard Integration Techniques sin 2 x = 1 - cos2 x , then use the substitution u = cos x Note that all but the first one of these tend to be taught in a Calculus II class. 2. If m is odd. Strip one cosine out and convert the remaining cosines to sines using cos 2 x = 1 - sin 2 x , then use the substitution u = sin x u Substitution 3. If n and m are both odd. Use either 1. or 2. ò a f ( g ( x ) ) g¢ ( x ) dx then the substitution u = g ( x ) will convert this into the b Given 4. If n and m are both even. Use double angle formula for sine and/or half angle formulas to reduce the integral into a form that can be integrated. g ( b) integral, ò f ( g ( x ) ) g ¢ ( x ) dx = ò ò b f ( u ) du . tan n x sec m x dx a g ( a) 1. If n is odd. Strip one tangent and one secant out and convert the remaining Integration by Parts tangents to secants using tan 2 x = sec 2 x - 1 , then use the substitution u = sec x The standard formulas for integration by parts are, 2. If m is even. Strip two secants out and convert the remaining secants to tangents b b b using sec 2 x = 1 + tan 2 x , then use the substitution u = tan x ò udv = uv - ò vdu òa udv = uv a - òa vdu 3. If n is odd and m is even. Use either 1. or 2. Choose u and dv and then compute du by differentiating u and compute v by using the 4. If n is even and m is odd. Each integral will be dealt with differently. Convert Example : cos 6 x = ( cos 2 x ) = (1 - sin 2 x ) 3 3 fact that v = ò dv . Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins