Incremental Reasoning on Streams and Rich Background Knowledge  http://streamreasoning.org   Emanuele Della Valle  DEI - P...
Agenda <ul><li>Motivation </li></ul><ul><li>Background  </li></ul><ul><li>Stream Reasoning Concept  </li></ul><ul><li>Past...
Motivation It‘s a streaming World!  [IEEE-IS2009] <ul><li>Sensor networks, … </li></ul><ul><li>traffic engineering, … </li...
Motivation Questions People are Asking <ul><li>Given this brand of turbine, what is the expected time to failure when the ...
Motivation Problem Statement <ul><li>Making sense  </li></ul><ul><ul><li>in real time  </li></ul></ul><ul><ul><li>of gigan...
Background  What are data streams anyway? <ul><li>Formally:  </li></ul><ul><ul><li>Data streams are unbounded sequences of...
Background  Can the Semantic Web Process Data Stream? <ul><li>The Semantic Web, the Web of Data  is doing fine </li></ul><...
Background  Continuous Semantics <ul><li>Processing data streams in the space of  one-time semantics  is difficult  becaus...
Background  Stream Processing <ul><li>Continuous   queries registered  over streams that are observed trough  windows </li...
Background  Key Optimization in Stream Processing  <ul><li>When a continuous query is registered, generate a query executi...
Background  Data Stream Management Systems (DSMS) <ul><li>Research Prototypes </li></ul><ul><ul><li>Amazon/Cougar (Cornell...
Concept Stream Reasoning  [IEEE-IS2009,Dagstuhl2010]  <ul><li>Idea origination </li></ul><ul><ul><li>Can  continuous seman...
Concept  Research Challenges (selection) [IEEE-IS2009] <ul><li>Relation with data-stream systems </li></ul><ul><ul><li>Jus...
Past Achievements  Explored Continuous Semantics for SeWeb <ul><li>We gave up one-time semantics in Semantic Web and explo...
Past Achievements  RDF Stream <ul><li>RDF Stream Data Type </li></ul><ul><ul><li>Ordered sequence of pairs, where each pai...
Past  Achievements  An Example of C-SPARQL Query <ul><li>Who has landed in USA in the last hour? </li></ul><ul><li>REGISTE...
Past  Achievements  An Example of C-SPARQL Query Explained <ul><li>Who has landed in USA in the last hour? </li></ul><ul><...
Past  Achievements C-SPARQL Engine Architecture <ul><li>We implemented a C-SPARQL engine based on LarKC conceptual framewo...
Main Contribution  Achievements vs. Research Challenges <ul><li>Relation with data-stream systems </li></ul><ul><ul><li>No...
Main Contribution  State-of-the-Art Approach  [Ceri1994,Volz2005] <ul><li>Overestimation of deletion : Overestimates delet...
Main Contribution  Our approach 1/2 <ul><li>Assumption </li></ul><ul><ul><li>Insertions and deletions are triples respecti...
Main Contribution  Our approach 2/2 <ul><li>The algorithm </li></ul><ul><ul><li>computes the entailments derived by the in...
Main Contribution  Our Approach at Work ESWC 2010, Heraklion, Greece, June 1st, 2010 12 Jan 2009 A B A B C 1 2 TS  Triples...
Main Contribution  Comparative Evaluation <ul><li>Hypothesis </li></ul><ul><ul><li>Background knowledge do not change and ...
Retrospective and Conclusions  Achievements vs. Research Challenges <ul><li>Relation with data-stream systems </li></ul><u...
References (selection) <ul><li>Vision  </li></ul><ul><ul><li>[IEEE-IS2009] Emanuele Della Valle, Stefano Ceri, Frank van H...
Thank You! Questions? Much More to Come! Keep an eye on  http://www.streamreasoning.org   ESWC 2010, Heraklion, Greece, Ju...
Back-up Slides  The Entailment Regime That We  Used <ul><li>In the current implementation we support RDF-S++  </li></ul><u...
Back-up Slides  Volz 2005 rewriting rules ESWC 2010, Heraklion, Greece, June 1st, 2010
Back-up Slides  Example of maintenance program <ul><li>Original Rule </li></ul><ul><li>Maintenance Program </li></ul>ESWC ...
Back-up Slides  Our rewriting rules ESWC 2010, Heraklion, Greece, June 1st, 2010
Back-up Slides  Example of maintenance program for streams <ul><li>Original Rule </li></ul><ul><li>Maintenance Program </l...
Back-up Slides  Simple Stream Reasoner Architecture ESWC 2010, Heraklion, Greece, June 1st, 2010
Achievements   Incremental Reasoning: State-of-the-Art <ul><li>Incremental Maintenance of Materialized Views </li></ul><ul...
Upcoming SlideShare
Loading in …5
×

Incremental Reasoning on Streams and Rich Background Knowledge

2,149 views

Published on

The presentation I gave at ESWC 2010 in Heraklion, Greece, June 1st, 2010

Published in: Technology, Education
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,149
On SlideShare
0
From Embeds
0
Number of Embeds
13
Actions
Shares
0
Downloads
64
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide
  • Service-Finder
  • Incremental Reasoning on Streams and Rich Background Knowledge

    1. 1. Incremental Reasoning on Streams and Rich Background Knowledge http://streamreasoning.org Emanuele Della Valle DEI - Politecnico di Milano [email_address] http://emanueledellavalle.org Joint work with: Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael Grossniklaus
    2. 2. Agenda <ul><li>Motivation </li></ul><ul><li>Background </li></ul><ul><li>Stream Reasoning Concept </li></ul><ul><li>Past Achievements </li></ul><ul><li>Main Contribution </li></ul><ul><li>Retrospective and Conclusions </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    3. 3. Motivation It‘s a streaming World! [IEEE-IS2009] <ul><li>Sensor networks, … </li></ul><ul><li>traffic engineering, … </li></ul><ul><li>social networking, … </li></ul><ul><li>… and many others … </li></ul><ul><li>generate streams! </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    4. 4. Motivation Questions People are Asking <ul><li>Given this brand of turbine, what is the expected time to failure when the barring starts to vibrate as now detected? </li></ul><ul><li>Is a traffic jam going to happen in this highway? And is then convenient to reallocate travelers based upon the forecast? </li></ul><ul><li>Who are the opinion makers? i.e., the users who are likely to influence the behavior of other users who follow them </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    5. 5. Motivation Problem Statement <ul><li>Making sense </li></ul><ul><ul><li>in real time </li></ul></ul><ul><ul><li>of gigantic and inevitably noisy data streams </li></ul></ul><ul><ul><li>in order to support the decision process of extremely large numbers of concurrent users </li></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    6. 6. Background What are data streams anyway? <ul><li>Formally: </li></ul><ul><ul><li>Data streams are unbounded sequences of time-varying data elements </li></ul></ul><ul><li>Less formally: </li></ul><ul><ul><li>an (almost) “continuous” flow of information </li></ul></ul><ul><ul><li>with the recent information being more relevant as it describes the current state of a dynamic system </li></ul></ul>time ESWC 2010, Heraklion, Greece, June 1st, 2010
    7. 7. Background Can the Semantic Web Process Data Stream? <ul><li>The Semantic Web, the Web of Data is doing fine </li></ul><ul><ul><li>RDF, RDF Schema, SPARQL, OWL, DL </li></ul></ul><ul><ul><li>well understood theory, </li></ul></ul><ul><ul><li>rapid increase in scalability </li></ul></ul><ul><li>BUT it pretends that the world is static or at best a low change rate both in change-volume and change-frequency </li></ul><ul><ul><li>ontology versioning </li></ul></ul><ul><ul><li>belief revision </li></ul></ul><ul><ul><li>time stamps on named graphs </li></ul></ul><ul><li>It sticks to the traditional one-time semantics </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    8. 8. Background Continuous Semantics <ul><li>Processing data streams in the space of one-time semantics is difficult because of the very nature of the underlying data </li></ul><ul><li>Innovative * assumption: continuous semantics! </li></ul><ul><ul><li>streams can be consumed on the fly rather than being stored forever and </li></ul></ul><ul><ul><li>queries are registered and continuously produce answers </li></ul></ul><ul><li>* This innovation arose in DB community in ’90s </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    9. 9. Background Stream Processing <ul><li>Continuous queries registered over streams that are observed trough windows </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010 window input stream stream of answer Registered Continuous Query
    10. 10. Background Key Optimization in Stream Processing <ul><li>When a continuous query is registered, generate a query execution plan </li></ul><ul><ul><li>New plan merged with existing plans </li></ul></ul><ul><ul><li>Global scheduler for plan execution maximizing experience gathered with previous queries. </li></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    11. 11. Background Data Stream Management Systems (DSMS) <ul><li>Research Prototypes </li></ul><ul><ul><li>Amazon/Cougar (Cornell) – sensors </li></ul></ul><ul><ul><li>Aurora (Brown/MIT) – sensor monitoring, dataflow </li></ul></ul><ul><ul><li>Gigascope: AT&T Labs – Network Monitoring </li></ul></ul><ul><ul><li>Hancock (AT&T) – Telecom streams </li></ul></ul><ul><ul><li>Niagara (OGI/Wisconsin) – Internet DBs & XML </li></ul></ul><ul><ul><li>OpenCQ (Georgia) – triggers, view maintenance </li></ul></ul><ul><ul><li>Stream (Stanford) – general-purpose DSMS </li></ul></ul><ul><ul><li>Stream Mill (UCLA) - power & extensibility </li></ul></ul><ul><ul><li>Tapestry (Xerox) – publish/subscribe filtering </li></ul></ul><ul><ul><li>Telegraph (Berkeley) – adaptive engine for sensors </li></ul></ul><ul><ul><li>Tribeca (Bellcore) – network monitoring </li></ul></ul><ul><li>High-tech startups </li></ul><ul><ul><li>Streambase, Coral8, Apama, Truviso </li></ul></ul><ul><li>Major DBMS vendors are all adding stream extensions as well </li></ul><ul><ul><li>Oracle http://www.oracle.com/technology/products/dataint/htdocs/streams_fo.html </li></ul></ul><ul><ul><li>DB2 http://www.eweek.com/c/a/Database/IBM-DB2-Turns-25-and-Prepares-for-New-Life/ </li></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    12. 12. Concept Stream Reasoning [IEEE-IS2009,Dagstuhl2010] <ul><li>Idea origination </li></ul><ul><ul><li>Can continuous semantics be ported to reasoning? </li></ul></ul><ul><ul><li>This is an unexplored yet high impact research area! </li></ul></ul><ul><li>Stream Reasoning </li></ul><ul><ul><li>Logical reasoning in real time on gigantic and inevitably noisy data streams in order to support the decision process of extremely large numbers of concurrent users. </li></ul></ul><ul><ul><li>-- S. Ceri , E. Della Valle , F. van Harmelen and H. Stuckenschmidt , 2010 </li></ul></ul><ul><li>Note: making sense of streams necessarily requires processing them against rich background knowledge </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    13. 13. Concept Research Challenges (selection) [IEEE-IS2009] <ul><li>Relation with data-stream systems </li></ul><ul><ul><li>Just as RDF relates to data-base systems? </li></ul></ul><ul><li>Query languages for semantic streams </li></ul><ul><ul><li>Just as SPARQL for RDF but with continuous semantics? </li></ul></ul><ul><li>Reasoning on Streams </li></ul><ul><ul><li>Efficient incremental updates of deductive closures? </li></ul></ul><ul><ul><li>How to combine streams and background knowledge? </li></ul></ul><ul><li>Distributed and parallel processing </li></ul><ul><ul><li>Streams are parallel in nature </li></ul></ul><ul><li>Real time constrains </li></ul><ul><ul><li>A reasoning task must be completed before the answer become useless </li></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    14. 14. Past Achievements Explored Continuous Semantics for SeWeb <ul><li>We gave up one-time semantics in Semantic Web and explored the benefits provided by continuous semantics when dealing with streams </li></ul><ul><li>We investigated </li></ul><ul><ul><li>RDF streams [WWW2009] </li></ul></ul><ul><ul><ul><li>the natural extension of the RDF data model to the new continuous scenario and </li></ul></ul></ul><ul><ul><li>Continuous SPARQL (or simply C-SPARQL ) [WWW2009, EDBT2010] </li></ul></ul><ul><ul><ul><li>A syntactic and semantic extension of SPARQL for querying RDF streams </li></ul></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    15. 15. Past Achievements RDF Stream <ul><li>RDF Stream Data Type </li></ul><ul><ul><li>Ordered sequence of pairs, where each pair is made of an RDF triple and its timestamp t </li></ul></ul><ul><ul><ul><li>(< triple >, t) </li></ul></ul></ul><ul><li>E.g., </li></ul><ul><ul><li>(<:ourmaninsa :isIn :Munich>, 2010-05-31T18:34:41) </li></ul></ul><ul><ul><li>(<:MadamMichelle :isIn :SouthAfrica >, 2010-05-31T18:24:28) </li></ul></ul><ul><ul><li>(<:Ayngelina :isIn :Nicaragua >, 2010-05-31T18:19:21) </li></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010 “ just arrived in”
    16. 16. Past Achievements An Example of C-SPARQL Query <ul><li>Who has landed in USA in the last hour? </li></ul><ul><li>REGISTER QUERY WhoHasLandedInUSAinTheLastHour AS </li></ul><ul><li>PREFIX gno: <http://www.geonames.org/ontology#> </li></ul><ul><li>PREFIX c: < http://www.geonames.org/countries/#> </li></ul><ul><li>PREFIX : <http://example> </li></ul><ul><li>SELECT ?traveller ?place ?type </li></ul><ul><li>FROM <http://sws.geonames.org/nonExistingUSfeatureGraph> </li></ul><ul><li>FROM STREAM <http://someStreamGeneratedFromTwitter> </li></ul><ul><li>[ RANGE 60m STEP 5m ] </li></ul><ul><li>WHERE { </li></ul><ul><li>?traveller :isIn ?place . </li></ul><ul><li>?place gno:inCountry c:US . </li></ul><ul><li>?place gno:featureCode ?type . </li></ul><ul><li>} </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    17. 17. Past Achievements An Example of C-SPARQL Query Explained <ul><li>Who has landed in USA in the last hour? </li></ul><ul><li>REGISTER QUERY WhoHasLandedInUSAinTheLastHour AS </li></ul><ul><li>PREFIX gno: <http://www.geonames.org/ontology#> </li></ul><ul><li>PREFIX c: < http://www.geonames.org/countries/#> </li></ul><ul><li>PREFIX : <http://example> </li></ul><ul><li>SELECT ?traveller ?place ?type </li></ul><ul><li>FROM <http://sws.geonames.org/nonExistingUSfeatureGraph> </li></ul><ul><li>FROM STREAM <http://someStreamGeneratedFromTwitter> </li></ul><ul><li>[ RANGE 60m STEP 5m ] </li></ul><ul><li>WHERE { </li></ul><ul><li>?traveller :isIn ?place . </li></ul><ul><li>?place gno:inCountry c:US . </li></ul><ul><li>?place gno:featureCode ?type . </li></ul><ul><li>} </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010 Combined with triples a RDF graph triples from a stream Query registration (for continuous execution) FROM STREAM clause WINDOW
    18. 18. Past Achievements C-SPARQL Engine Architecture <ul><li>We implemented a C-SPARQL engine based on LarKC conceptual framework </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010 Performed by a DSMS Select Abstract Reason Streamed Input Window Content RDF Streams Answers Streams Window RDF Graphs
    19. 19. Main Contribution Achievements vs. Research Challenges <ul><li>Relation with data-stream systems </li></ul><ul><ul><li>Notion of RDF stream [WWW2009] </li></ul></ul><ul><li>Query languages for semantic streams </li></ul><ul><ul><li>C-SPARQL [WWW2009,EDBT2010] </li></ul></ul><ul><li>Reasoning on Streams </li></ul><ul><ul><li>Efficient incremental updates of deductive closures </li></ul></ul><ul><ul><li>How to combine streams and background knowledge </li></ul></ul><ul><li>Distributed and parallel processing </li></ul><ul><ul><li>Streams are parallel in nature </li></ul></ul><ul><li>Real time constrains </li></ul><ul><ul><li>A reasoning task must be completed before the answer become useless </li></ul></ul>Contribution of this work ESWC 2010, Heraklion, Greece, June 1st, 2010
    20. 20. Main Contribution State-of-the-Art Approach [Ceri1994,Volz2005] <ul><li>Overestimation of deletion : Overestimates deletions by computing all direct consequences of a deletion. </li></ul><ul><li>Rederivation : Prunes those estimated deletions for which alternative derivations (via some other facts in the program) exist. </li></ul><ul><li>Insertion : Adds the new derivations that are consequences of insertions to extensional predicates. </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    21. 21. Main Contribution Our approach 1/2 <ul><li>Assumption </li></ul><ul><ul><li>Insertions and deletions are triples respectively entering and exiting the window </li></ul></ul><ul><ul><li>The window size is known </li></ul></ul><ul><li>Therefore </li></ul><ul><ul><li>The time when each triple will expire is known and determined by the window size </li></ul></ul><ul><ul><ul><li>E.g. if the window is 10s long a triple entering at time t then it will exit at time t+10s </li></ul></ul></ul><ul><ul><li>Note: all knowledge can be annotated with an expiration time </li></ul></ul><ul><ul><ul><li>i.e., background knowledge is annotated with +  </li></ul></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    22. 22. Main Contribution Our approach 2/2 <ul><li>The algorithm </li></ul><ul><ul><li>computes the entailments derived by the inserts, </li></ul></ul><ul><ul><li>annotates each entailed triple with a expiration time, and </li></ul></ul><ul><ul><li>eliminates from the current state all copies of derived triples except the one with the highest timestamp. </li></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    23. 23. Main Contribution Our Approach at Work ESWC 2010, Heraklion, Greece, June 1st, 2010 12 Jan 2009 A B A B C 1 2 TS Triples in the Window Entailments in the Window A C [11] [11] [11] [12] A B C 3 A C [11] [11] [12] D [13] D B [12] [11] A B C 4 A C [11] [11] [12] D [13] D B [12] [11] E [14] [14] [14] x A B C 12 A C [12] D [13] D B [12] E [14] [14] [14] A C 13 A D [13] D E [14] [14] [14] [11] [11] 11
    24. 24. Main Contribution Comparative Evaluation <ul><li>Hypothesis </li></ul><ul><ul><li>Background knowledge do not change and it is materialized </li></ul></ul><ul><ul><li>Changes only take place in the window </li></ul></ul><ul><li>An experiment comparing the time required to compute a new materialization using </li></ul><ul><ul><li>Re-computing from scratch (i.e.,1250 ms in our setting) </li></ul></ul><ul><ul><li>State of the art incremental approach [Volz, 2005] </li></ul></ul><ul><ul><li>Our approach </li></ul></ul><ul><li>Results at increasing % of the triples updated </li></ul><ul><li>. </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    25. 25. Retrospective and Conclusions Achievements vs. Research Challenges <ul><li>Relation with data-stream systems </li></ul><ul><ul><li>Notion of RDF stream :-| </li></ul></ul><ul><li>Query languages for semantic streams </li></ul><ul><ul><li>C-SPARQL :-D </li></ul></ul><ul><li>Reasoning on Streams </li></ul><ul><ul><li>Efficient incremental updates of deductive closures </li></ul></ul><ul><ul><ul><li>This paper :-) ... but much more work is needed! </li></ul></ul></ul><ul><ul><li>How to combine streams and background knowledge </li></ul></ul><ul><ul><ul><li>This paper :-| ... but a lot needs to be studied ... </li></ul></ul></ul><ul><li>Distributed and parallel processing </li></ul><ul><ul><li>Future work :-P </li></ul></ul><ul><li>Real time constrains </li></ul><ul><ul><li>Future work :-P </li></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    26. 26. References (selection) <ul><li>Vision </li></ul><ul><ul><li>[IEEE-IS2009] Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, Dieter Fensel It's a Streaming World! Reasoning upon Rapidly Changing Information . IEEE Intelligent Systems 24(6): 83-89 (2009) bibtex </li></ul></ul><ul><li>Continuous SPARQL (C-SPARQL) </li></ul><ul><ul><li>[EDBT2010] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri and Michael Grossniklaus. An Execution Environment for C-SPARQL Queries . EDBT 2010 </li></ul></ul><ul><ul><li>[WWW2009] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, Michael Grossniklaus: C-SPARQL: SPARQL for continuous querying . WWW 2009: 1061-1062 bibtex </li></ul></ul><ul><li>Stream Reasoning </li></ul><ul><ul><li>[Dagstuhl2010] Heiner Stuckenschmidt, Stefano Ceri, Emanuele Della Valle and Frank van Harmelen. Towards Expressive Stream Reasoning. Proceedings of the Dagstuhl Seminar on Semantic Aspects of Sensor Networks, 2010. </li></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    27. 27. Thank You! Questions? Much More to Come! Keep an eye on http://www.streamreasoning.org ESWC 2010, Heraklion, Greece, June 1st, 2010
    28. 28. Back-up Slides The Entailment Regime That We Used <ul><li>In the current implementation we support RDF-S++ </li></ul><ul><ul><li>rdf:type </li></ul></ul><ul><ul><li>rdfs:subClassOf </li></ul></ul><ul><ul><li>rdfs:domain and rdfs:range </li></ul></ul><ul><ul><li>rdfs:subPropertyOf </li></ul></ul><ul><ul><li>owl:sameAs </li></ul></ul><ul><ul><li>owl:inverseOf </li></ul></ul><ul><ul><li>owl:TransitiveProperty </li></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    29. 29. Back-up Slides Volz 2005 rewriting rules ESWC 2010, Heraklion, Greece, June 1st, 2010
    30. 30. Back-up Slides Example of maintenance program <ul><li>Original Rule </li></ul><ul><li>Maintenance Program </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    31. 31. Back-up Slides Our rewriting rules ESWC 2010, Heraklion, Greece, June 1st, 2010
    32. 32. Back-up Slides Example of maintenance program for streams <ul><li>Original Rule </li></ul><ul><li>Maintenance Program </li></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010
    33. 33. Back-up Slides Simple Stream Reasoner Architecture ESWC 2010, Heraklion, Greece, June 1st, 2010
    34. 34. Achievements Incremental Reasoning: State-of-the-Art <ul><li>Incremental Maintenance of Materialized Views </li></ul><ul><ul><li>Stefano Ceri, Jennifer Widom: Deriving Incremental Production Rules for Deductive Data. Inf. Syst. 19(6): 467-490 (1994) </li></ul></ul><ul><ul><li>HA Kuno, EA Rundensteiner: Incremental Maintenance of Materialized Object-Oriented Views in MultiView: Strategies and Performance Evaluation. TDKE 1998 </li></ul></ul><ul><ul><li>Raphael Volz, Steffen Staab, Boris Motik: Incrementally Maintaining Materializations of Ontologies Stored in Logic Databases. J. Data Semantics 2: 1-34 (2005) </li></ul></ul><ul><li>Incremental Rule-based Reasoning </li></ul><ul><ul><li>F Fabret, M Regnier, E Simon: An Adaptive Algorithm for Incremental Evaluation of Production Rules in Databases. VLDB 1993 </li></ul></ul><ul><ul><li>B. Berster: Extending the RETE Algorithm for Event Management.TIME’02 </li></ul></ul><ul><li>Incremental DL Reasoning </li></ul><ul><ul><li>Cuenca-Grau et al : History Matters: Incremental Ontology Reasoning Using Modules. ISWC 2007. </li></ul></ul><ul><ul><li>Parsia et al: Towards incremental reasoning through updates in OWL-DL. - Reasoning on the Web-Workshop at WWW-2006 </li></ul></ul>ESWC 2010, Heraklion, Greece, June 1st, 2010

    ×