SlideShare a Scribd company logo
1 of 55
Review of Basic Concepts

     Pekik Argo Dahono
Average and RMS Concepts
• Periodic signals x(t ) = x(t + T )
• Average value
                    1 t o +T
                 x=
                    T to∫    x(t )dt

• RMS value
                     1 t o +T 2
               X =
                    T to∫     x (t )dt
Single-Phase Power Concept
• Sinusoidal voltage and current

           v = 2V cos(ωt )
          i = 2 I cos(ωt − φ )
• Instantaneous power
 p = vi = VI 444+ cos(2ω3] + VI 44 sin (2ωt )
          1  cos φ [12444t ) 1sin φ244   3
              resistive part       reactive part
Single-Phase Power Concept
• Active or Average Power
                          t o +T
                      ∫
                  1
               P=                  pdt =VI cos φ
                  T   to

• Reactive Power
                   Q = VI sin φ
• Apparent Power
                   S = VI
Single-Phase Power Concept
• Power triangle

            S = P +Q
              2    2   2

• Power factor
                 P
             PF = = cos φ
                 S
Single-Phase Power Concept
                                      E 2 = (V + ΔV )2 + δV 2
    I                    P + jQ



        E
            R       jX
                           Load   V   δV 2 << (V + ΔV )2
                                      Thus
                                      ΔV ≈ E-V = RI cos φ + XI sin φ
                                           RP + XQ XQ
                                         =           ≈
                E                             V         V
                            δV
                                      Losses = RI 2 = R(S / V )2
                δ
        φ V
I                   ΔV                           [
                                             = R (P / V )2 + (Q / V )2   ]
Balanced Three-Phase Power
• Voltage and current
            va = 2V cos(ωt )
                         (    π
            vb = 2V cos ωt − 23   )
            vc =   2V cos(ωt + 23 )
                                π



            ia = 2 I cos(ωt − φ )
                             ( π
            ib = 2 I cos ωt − 23 − φ       )
                         (     π
            ic = 2 I cos ωt + 23 − φ   )
Balanced Three-Phase Power
• Instantaneous power
      p = va ia + vb ib + vc ic
            p = 3VI cos φ

• Instantaneous power is a constant that is
  equal to average power
Balanced Three-Phase Power
• Reactive power is defined as

           Q = 3VI sin φ
• Apparent power is defined as

             S = 3VI
Three-Phase Power System
   Rs    I                   Rs      3I


   Rs    I                    Rs



   Rs    I                   Rs


             Ro   Ro   Ro
                                              Ro / 3
   Rs
                             Rs



Losses = 3RI 2              Losses = 18RI 2
 PF = 1.0                   PF = ?
Three-Phase Power System
         Rs



         Rs



         Rs


                 − j1   j1   1
         Rs



              PF = ?
Three-Phase Four-Wire Systems
Series Losses Consideration :                              Three - Phase Three - Wire System
         (
ΔP = rs I a + I b + I c + I n
          2     2     2     2
                                 )   (unbalanced)
                                                           Ie =    (I
                                                                    2
                                                                                  )
                                                                         + Ib + Ic / 3
                                                                            2    2
                                                                    a
ΔP   = 3rs I e
             2

                                                                   (V                   )
                                     (balanced)

             I a + Ib + Ic + I n
               2    2    2     2                           Ve =      2
                                                                    an    + Vbn + Vcn / 3
                                                                              2     2
Thus, I e =
                      3
Shunt Losses Consideration :                                 =    (V 2
                                                                    ab   + Vbc + Vca
                                                                             2     2
                                                                                       )/ 9
     Vao + Vbo + Vco + Vno
       2     2     2     2
ΔP =                                  (unbalanced)
               Rsh
       Ve2
ΔP = 3                                (balanced)
       Rsh

           Vao + Vbo + Vco + Vno
             2     2     2     2
Thus, Ve =
                     3
or Ve =      (V   2
                 an
                          2     2     2     2     2
                                                    )
                      + Vbn + Vcn + Vab + Vbc + Vca / 12
Apparent Power S e = 3Ve I e
Power Factor = P / S e
Fourier Series Representation
• Fourier series
                          ∞
        x(t ) = co + 2   ∑C
                         n =1
                                     n   sin (nωt + θ n )

• Average value
                   x = co
• RMS Value
                         ∞
             X = co +
                  2
                        ∑n =1
                                 2
                                Cn
Total Harmonic Distortion (THD)

• Voltage signal
                      ∞
             v= 2    ∑V
                      n =1
                             n   sin (nωt + θ n )

• Total Harmonic Distortion
                                 1/ 2
                    ⎛  ∞    ⎞
                    ⎜ ∑
                    ⎜ Vn2 ⎟
                            ⎟
              THD = ⎝ n=2 ⎠
                         V1
Power concept under nonsinusoidal waveforms

                            ∞
• Voltage     v = Vo + 2   ∑V
                           n =1
                                  n   cos(nωt + α n )

                           ∞
• Current     i = Io + 2   ∑I
                           n =1
                                  n   cos(nωt + β n )



• Instantaneous power
                 p = vi
Power concept under nonsinusoidal waveforms

• Average power
                          ∞
           P = Vo I o +   ∑V I
                          n =1
                                 n n    cos(α n − β n )


• Apparent power
                                 S = Vrms I rms
• Power factor
                                  ∞


               P
                     Vo I o +    ∑V I
                                 n =1
                                        n n   cos(α n − β n )
           PF = =
               S                      Vrms I rms
Example
• Voltage
        v = 1 + 210 cos(100πt ) + 2 2 cos(300πt )
• Current
                     (              )
       i = 2 5 cos 100πt − 60 − 2 cos(300πt )
                               o

• Average power
                          ( )
           P = 50 cos 60 o + 2 cos(π ) = 25
• RMS Voltage and Current
 V = 12 + 10 2 + 2 2 = 105      I = 5 2 + 12 = 26
• Power factor
                          P    25
                   PF =     =       = 0,478
                          S   105 6
Sinusoidal voltage case
Average power :        P = V1 I1 cos(α1 − β1 )
Power factor :
                P   I                         I1
            PF =  = 1 cos(α1 − β1 ) =                      cos φ1
                S I rms               ⎡ 2 ∞ 2⎤
                                                      1/ 2

                                      ⎢ I1 +
                                      ⎢
                                                ∑In ⎥
                                                    ⎥
                                      ⎣             ⎦
          φ1 = α1 − β1
                                             n=2
where :
Relationship between power factor and THD:

                                 cos φ1
                     PF =
                               1 + THD 2
Transformer and inductor
• Inductor is used to store temporary energy and
  also used to smoothing the current
• Transformer is used for voltage conversion,
  galvanic isolation, and also used to store
  temporary energy.
• Transformer and inductor are the heaviest
  component in power electronics system.
• In power electronics applications, transformer
  sometimes has to operate with both dc and ac
  voltages or currents.
Electromagnetism
                       Hukum Ampere :

                       ∫ H.dl = ℑ = NI          At
                       Hlc = NI
I    Φ                 H=
                            NI
                               At/m
                            lc
                A                    μNI
                       B = μH =                Wb/m 2
N lilit                               lc
                                     μA
                       Φ = BA =            NI Wb
                                     lc
                                     μAN 2
                       λ = NΦ =                 I
                                          lc
                            λ       μAN 2
                       L=       =
                            I        lc
Airgap Influence
                    ℑ = NI = H c lc + H g g

                           Bc            Bg      ⎛ l      g        ⎞
                    NI =          lc +      g = Φ⎜ c +             ⎟
                            μ            μo      ⎜ μAc μ o Ag      ⎟
                                                 ⎝                 ⎠
                    Ac ≈ Ag = A
I
     Φ              μ = μ r μo
                                   NI
                    Φ=
N lilit         g            lc               g
                                      +
                           μr μo A        μo A
                                              N 2I
                    λ = NΦ =
                                         lc            g
                                                  +
                                    μr μo A           μo A
                                   N2
                    L=                            ≈ μ o AN 2 / g
                             lc               g
                                     +
                         μr μo A          μo A
Transformer

i1                 i2

v1     N1   N2          v2
Ideal Transformer

 i1                 i2

        •     •            v1 N1
                             =    =−
                                     i2
v1 N1             N 2 v2   v2 N 2    i1
                           Ideal transformer neither
                           dissipates nor stores energy
Practical Transformer

     i1                             i2


      Ll1             •   •        Ll 2
v1          Lm   N1           N2          v2
Symmetrical Components
Any unbalanced three-phase quantities can be
  composed into three symmetrical components:
- Positive sequence components
- Negative sequence components
- Zero sequence components
                              Ib2
         I c1


                                           I ao = I bo = I co
                I a1                I a2

  I b1                 I c2
Symmetrical Components

⎡Vao ⎤   ⎡1 1      1 ⎤ ⎡Va ⎤                 ⎡Va ⎤ ⎡ 1           1      1⎤ ⎡Va1 ⎤
⎢V ⎥ = 1 ⎢1 a                                ⎢V ⎥ = ⎢a 2                1⎥ ⎢Va 2 ⎥
⎢ a1 ⎥ 3 ⎢        a 2 ⎥ ⎢Vb ⎥
                      ⎥⎢ ⎥                   ⎢ b⎥ ⎢              a       ⎥⎢ ⎥
⎢Va 2 ⎥  ⎢1 a 2    a ⎥ ⎢Vc ⎥                 ⎢Vc ⎥ ⎢ a
                                             ⎣ ⎦ ⎣               a2     1⎥ ⎢Vao ⎥
                                                                         ⎦⎣ ⎦
⎣ ⎦      ⎣            ⎦⎣ ⎦

        2π
      j
a=   e 3                I co
                               I c2
                                           I c1
                                                            Ia
                                      Ic
                                                                        I ao
                               Ib
                                                     I a1        I a2
                       I bo
                                              I b1
                               I b2
Balanced nonsinusoidal quantities
  Let assume:
                                                                                    ∞
       ∞                                 ∞

                                         ∑            [(                )]          ∑              [(         )]
       ∑
                                                                                                          π
                                                                                           Vn cos n ωt + 23
va =          Vn cos[n(ωt )]      vb =          Vn cos n ωt −      2π
                                                                    3
                                                                             vc =
                                                                                    n =1
       n =1                              n =1


   For n=1:
va1 = V1 cos(ωt )                                 (π
                                vb1 = V1 cos ωt − 23       )                           π
                                                                    vc1 = V1 cos ωt + 23   (        )
   For n=2:
va 2 = V2 cos(2ωt )                              (  π
                               vb 2 = V2 cos 2ωt + 23          )                             π
                                                                        vc 2 = V2 cos 2ωt − 23 (        )
  For n=3:
  va 3 = V3 cos(3ωt )             vb3 = V3 cos(3ωt )                         vc3 = V3 cos(3ωt )
Balanced nonsinusoidal quantities
For n=3k-2, The harmonics are similar to
  positive sequence quantities.
For n=3k-1, the harmonics are similar to
  negative sequence quantities.
For n=3k, the harmonics are similar to zero
  quantities.
Symmetrical components
• Symmetrical components theory can be
  applied to both steady-state phasor
  quantities and instantaneous quantities.
• Symmetrical components theory can be
  derived also by using linear algebra and
  treated as variable transformation
Voltage and Current across the inductor

          diL                   1 to + t
   vL = L                   iL = ∫ vL dt + iL (to )
          dt                    L to
Steady-state:
iL (t ) = iL (t + T )          vL (t ) = vL (t + T )
Thus            t +T
              ∫t        vL dt = 0

Average voltage across the inductor under
 steady-state condition is zero.
Voltage and current across the capacitor

         dvC                   1 to + t
  iC = C                   vC = ∫ iC dt + vC (to )
          dt                   C to
Steady-state:
iC (t ) = iC (t + T )          vC (t ) = vC (t + T )
Thus            t +T
              ∫t        iC dt = 0

Average current through the capacitor under
 steady-state conditions is zero.
Batasan Topologi
• Sumber tegangan hanya boleh diparalel jika sama
  besar
• Sumber arus hanya boleh diseri jika sama besar
• Sumber tegangan tidak boleh dihubungsingkat
• Sumber arus tidak boleh dibuka
• Sumber tegangan bisa berupa kapasitor
• Sumber arus bisa berupa induktor
Hubungan Berikut Harus Dihindari

    +




+
Dualitas
Sumber tegangan             Sumber arus

Hubungan paralel            Hubungan seri

Induktor                    Kapasitor

Resistor                    Konduktor

Reverse conducting switch   Reverse blocking switch

Variabel tegangan           Variabel arus
Contoh Dualitas
               R     L     C

     +
          Vs                   is    Ip       vp    G       C       L




             dis 1 t                               dv p1 t
Vs = Ris + L    + ∫ is dt + vC (0)   I p = Gv p + C   + ∫ v p dt + iL (0)
             dt C 0                                 dt L 0
Contoh Dualitas

+                     +
Penggunaan Komputer
• PSIM, MATLAB, EMTP, PSPICE, etc.
• Switching Concept
• Averaging Concept
Switching Concept
     ii              io
                               vo=SwEd
          S1
                           R   Vo(ω)=Sw(ω)Ed
Ed
               S2   vo         Io(ω)=Vo(ω)/Z(ω)
                           L   Ii(ω)=Sw(ω)Io(ω)


Sw=1 IF S1 ON and S2 OFF
Sw=0 IF S1 OFF and S2 ON
Switching Concept
       ii       S1         io


                                R
  Ed
                      S 2 vo        IF vref > car THEN S w = 1 ELSE S w = 0
                                L   dio
                                         = (S w E d − Rio ) / L
                                     dt
                                    ii = S wio
vref
            +
car         −
Averaging Concept
                                     0 < t < TON
       ii       S1          io
                                               dio
                                     Rio + L        = Ed
                                               dt
                                 R   TON   < t < Ts
                       S 2 vo               dio
  Ed                                 Rio + L    =0
                                            dt
                                 L
                                     Averaging
                                                          dio
                                     Rio (TON + TOFF ) + L    (TON + TOFF ) = Ed TON
                                                           dt
vref                                 Divided by Ts results in
            +                                  dio      T
                                     Rio + L       = E d ON = vo
car         −                                  dt        Ts
D-Q Transform
f qdo = Kf abc                                           f abc = K -1f qdo

(f qdo )T = [ f q   fd       fo   ]                          ⎡ cos θ                sin θ         1⎤

(f abc )
       T
           = [ fa            fc ]
                                                             ⎢
                                                                      (π
                                                         K = ⎢cos θ − 23
                                                          -1
                                                                             )      (     π
                                                                                 sin θ − 23   )    ⎥
                                                                                                  1⎥
                    fb
                                                                      (
                                                             ⎢cos θ + 2π     )      (     π
                                                                                 sin θ + 23   )   1⎥
    ⎡cosθ                (   π
                    cos θ - 23        )      (     π)
                                          cos θ + 23 ⎤
                                                             ⎣         3                           ⎦
   2⎢
K = ⎢ sinθ
   3⎢ 1
                         (   π
                    sin θ - 23        )      (      )
                                                   π ⎥
                                          sin θ + 23 ⎥
                             1                 1     ⎥
    ⎣ 2                      2                 2     ⎦
       t
θ = ∫ ω (ς )dς + θ o
       0
D-Q Transform
fb


             fq


                  θ



                  fa




        fd
 fc
Example
ia = 2 I cos ω s t
                ( 23π )
ib = 2 I cos ω s t +
ic =     2 I cos(ω s t − 23 )
                          π


iq =
       2 2I
         3
              [                       (     π) (
            cos ω s t cos ωt + cos ω s t + 23 cos ωt +   2π
                                                          3
                                                              )+ cos(ω s t − 23π )cos(ωt − 23π )]
iq = 2 I cos(ω s − ω )t

id =
       2 2I
         3
               [                  (         ) (
                                            π           π )        (     π    ) (    π
            sin ω s t sin ωt + sin ω s t + 23 sin ωt + 23 + sin ω s t − 23 sin ωt − 23      )]
id = 2 I sin (ω s − ω )t
io = 0
D-Q Transform
Power Invariance
Pabc = va ia + vb ib + vc ic
             3
                   (
Pabc = Pqdo = vq iq + vd id + 2vo io
             2
                                       )
Instantaneous Reactive Power :
   3
       (
q = v q id − v d iq
   2
                       )
DQ Transform of Stationary Elements

                      v abc = pλabc
                                  [          ]          [ ]
                      v qdo = Kp K -1λabc = Kp K -1 λqdo + KK -1 pλqdo
                                   ⎡ − sin θ                cos θ         0⎤
v abc = ri abc         [ ]
                      p K -1
                                   ⎢
                                         (      π
                               = ω ⎢ − sin θ − 23   )         (   π
                                                         cos θ − 23   )    ⎥
                                                                          0⎥

v qdo = KrK i qdo-1                ⎣     (
                                   ⎢− sin θ + 2π
                                                3
                                                    )         (   π
                                                         cos θ + 23   )   0⎥
                                                                           ⎦
                      Thus
KrK -1 = r                          ⎡ 0 1 0⎤
                         [ ]
                      Kp K -1   = ω ⎢ − 1 0 0⎥
                                    ⎢        ⎥
                                    ⎢ 0 0 0⎥
                                    ⎣        ⎦
DQ Transform of Stationary Elements

v qdo = ωλdq + pλqdo
(λdq ) = [λd
     T
               − λq   ]
vq = ωλd + pλq
vd = −ωλq + pλd
v o = pλ o
DQ Transform of Stationary Elements
                          iq   R     L

                                          +
    ia   R     L          vq       ωLid

a                         id         L
                               R
    ib
                   n      vd       ωLiq
b                                         +
    ic                    io   R     L
c
                          vo
DQ Transform
• If the speed of reference frame ω is equal to
  the supply frequency, it is called
  synchronous reference frame.
• If the speed of reference frame is zero, it is
  called stationary reference frame.
• If the speed of reference frame is not equal
  to the supply frequency, it is called
  asynchronous reference frame.
Space Vector
    N        N e jθ + e − jθ
na = cos θ =
    2        2      2
                              (       π
                               j θ − 23   ) + e − j (θ − 23π )
nb =
       N
       2
             (    π
         cos θ − 23 =)2
                          N e
                                             2
                              (       π
                               j θ + 23   ) + e − j (θ + 23π )
nc =
     N
     2
             (     π
        cos θ + 23 = )    N e
                           2                 2
Fa = na ia + nb ib + nc ic
   N jθ ⎛                π
                    − j 23         j 23 ⎞
                                      π   N − jθ ⎛     π
                                                    j 23        − j 23 ⎞
                                                                     π
= e ⎜ ia + ib e            + ic e ⎟ + e ⎜ ia + ib e      + ic e        ⎟
    4     ⎝                             ⎠ 4      ⎝                     ⎠
   3 N jθ r 3 N − jθ r *
=      e i+         e i
    8          8
r 2⎡                π
               − j 23         j 23 ⎤
                                 π
i = ia + ib e          + ic e
      3⎢
       ⎣                           ⎥
                                   ⎦
is called space vector of current.
The same definitions apply to voltage and current.
Example of Space Vector

ia = 2 I cos ω s t =
                            2
                             2
                                     [
                               I e jω s t + e − jω s t       ]
                  (
ib = 2 I cos ω s t +       2π
                                )   =
                                       2
                                             I ⎡e j (ω s t + 23π ) + e − j (ω s t + 23π ) ⎤
                            3
                                      2        ⎢
                                               ⎣                                          ⎥
                                                                                          ⎦
                                          2 ⎡ j (ω s t − 23π ) − j (ω s t − 23π ) ⎤
                  (   π
ic = 2 I cos ω s t − 23 =       )        2
                                           I e
                                            ⎢
                                            ⎣
                                                              +e
                                                                                  ⎥
                                                                                  ⎦
r
i =
      3
       2
             ⎨
             ⎩
              [                      ]  ⎢
                                        ⎣
                                           j (ω t + 2π )
           I ⎧ e j ω s t + e − jω s t + ⎡ e s 3 + e
                                                         − j (ω s t + 23 ) ⎤ − j 23
                                                                       π

                                                                           ⎥
                                                                           ⎦
                                                                             e
                                                                                  π

                                                                                      ⎢
                                                                                      ⎣
                                                                                        j (ω t − 2π )
                                                                                    + ⎡e s 3 + e
                                                                                                      − j (ω s t − 23 ) ⎤ j 23 ⎫
                                                                                                                    π

                                                                                                                        ⎥
                                                                                                                        ⎦
                                                                                                                          e ⎬
                                                                                                                             π


                                                                                                                               ⎭
r
i = 2 Ie jω s t
Transformation of Space Vector
     r ω r − j ωt
     x = xe
     Previous example
     rω          j (ω s −ω )t
     i = 2 Ie
     It should be noted :
              r
     xa = Re[x ]
               r
             ⎡ xe j 23π ⎤
     xb = Re
             ⎢
             ⎣           ⎥
                         ⎦
               r
             ⎡ xe − j 23π ⎤
     xc = Re
             ⎢
             ⎣             ⎥
                           ⎦
Numerical Methods To Solve Differential Equations
             Let
             f ' ( x, t ); x (t o ) = xo ; h
             Euler Method :
             x(t o + h ) = x(t o ) + hf ' ( xo , t o )
             Fourth - Order Runge - Kutta Method :
             k1 = f (xo , t o )
                     ⎛       k1          h⎞
             k 2 = f ⎜ xo + , t o + ⎟
                     ⎝       2           2⎠
                     ⎛       k            h⎞
             k 3 = f ⎜ xo + 2 , t o + ⎟
                     ⎝        2           2⎠
             k 4 = f ( xo + k 3 , t o + h )
                                        h
             x(t o + h ) = x(t o ) +      (k1 + 2k 2 + 2k3 + k 4 )
                                        6
Example
 di
    = 10 − 5i
dt
i0 = 0
h = 0 .1
i (0.1) = 0 + 0.1× (10 − 5 × 0 ) = 1
i (0.2 ) = 1 + 0.1× (10 − 5 × 1) = 1.5
i (0.3) = 1.5 + 0.1× (10 − 5 × 1.5) = 1.75
i (0.4 ) = 1.75 + 0.1× (10 − 5 × 1.75) = 1.875
Numerical Integration
We have N data for the function y in the interval from a to b :
        b−a
Let h =
         N
    b      N −1
           ∑
∫a ydt = h n=0 yi   (the simplest rule)

    b  h⎡             N −1 ⎤

∫                         ∑
  ydt = ⎢ y0 + y N + 2 yi ⎥
       2⎢             n =1 ⎥
a
        ⎣                  ⎦
Example
T   0   0.1           0.2           0.3   0.4    0.5   0.6   0.7   0.8   0.9
i   1   2             3             1     2      3     1     2     3     1




         h = 0.1
         N = 10
                            N −1

         ∫0idt = h ∑ i = 1.9
              0.9

                   0
                                   N −1
                                   ∑ i 2 = 4.3
              0.9 2
         ∫0         i dt = h
                                    0

More Related Content

What's hot

Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier TransformAbhishek Choksi
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrixRumah Belajar
 
Concept of-complex-frequency
Concept of-complex-frequencyConcept of-complex-frequency
Concept of-complex-frequencyVishal Thakur
 
IVR - Chapter 3 - Basics of filtering II: Spectral filters
IVR - Chapter 3 - Basics of filtering II: Spectral filtersIVR - Chapter 3 - Basics of filtering II: Spectral filters
IVR - Chapter 3 - Basics of filtering II: Spectral filtersCharles Deledalle
 
Construction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic ResiduesConstruction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic Residuesiosrjce
 
Fourier series example
Fourier series exampleFourier series example
Fourier series exampleAbi finni
 
Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
Signal fundamentals
Signal fundamentalsSignal fundamentals
Signal fundamentalsLalit Kanoje
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula SheetHaris Hassan
 
Chapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier TransformChapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier TransformAttaporn Ninsuwan
 

What's hot (20)

Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Chapter 5 (maths 3)
Chapter 5 (maths 3)Chapter 5 (maths 3)
Chapter 5 (maths 3)
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Concept of-complex-frequency
Concept of-complex-frequencyConcept of-complex-frequency
Concept of-complex-frequency
 
16 fft
16 fft16 fft
16 fft
 
03 image transform
03 image transform03 image transform
03 image transform
 
IVR - Chapter 3 - Basics of filtering II: Spectral filters
IVR - Chapter 3 - Basics of filtering II: Spectral filtersIVR - Chapter 3 - Basics of filtering II: Spectral filters
IVR - Chapter 3 - Basics of filtering II: Spectral filters
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Ch13
Ch13Ch13
Ch13
 
Construction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic ResiduesConstruction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic Residues
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Properties of dft
Properties of dftProperties of dft
Properties of dft
 
Lecture 9
Lecture 9Lecture 9
Lecture 9
 
Hw4sol
Hw4solHw4sol
Hw4sol
 
Signal fundamentals
Signal fundamentalsSignal fundamentals
Signal fundamentals
 
662 magnetrons
662 magnetrons662 magnetrons
662 magnetrons
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
 
Chapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier TransformChapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier Transform
 

Similar to Review of basic concepts (kuliah ke 3)

Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsmolmodbasics
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsSEENET-MTP
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level codingsrkrishna341
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
007 isometric process
007 isometric process007 isometric process
007 isometric processphysics101
 
006 isobaric process
006 isobaric process006 isobaric process
006 isobaric processphysics101
 
Example triple integral
Example triple integralExample triple integral
Example triple integralZulaikha Ahmad
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFTtaha25
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 

Similar to Review of basic concepts (kuliah ke 3) (20)

Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanics
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
Standard formula
Standard formulaStandard formula
Standard formula
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Gr aph of cosine
Gr aph of cosineGr aph of cosine
Gr aph of cosine
 
Sect1 6
Sect1 6Sect1 6
Sect1 6
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
Physics
PhysicsPhysics
Physics
 
007 isometric process
007 isometric process007 isometric process
007 isometric process
 
006 isobaric process
006 isobaric process006 isobaric process
006 isobaric process
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
Schrodingermaxwell
SchrodingermaxwellSchrodingermaxwell
Schrodingermaxwell
 
Example triple integral
Example triple integralExample triple integral
Example triple integral
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1
 
Ch15s
Ch15sCh15s
Ch15s
 

More from Sugeng Widodo

Call for papers ICPERE 2012
Call for papers ICPERE 2012Call for papers ICPERE 2012
Call for papers ICPERE 2012Sugeng Widodo
 
Binary Pass-Band Modulation Techniques
Binary Pass-Band Modulation TechniquesBinary Pass-Band Modulation Techniques
Binary Pass-Band Modulation TechniquesSugeng Widodo
 
Cascaded multilevel converter for Photovoltaic applications
Cascaded multilevel converter for Photovoltaic applicationsCascaded multilevel converter for Photovoltaic applications
Cascaded multilevel converter for Photovoltaic applicationsSugeng Widodo
 
fourier representation of signal and systems
fourier representation of signal and systemsfourier representation of signal and systems
fourier representation of signal and systemsSugeng Widodo
 
introdution to analog and digital communication
introdution to analog and digital communicationintrodution to analog and digital communication
introdution to analog and digital communicationSugeng Widodo
 
control of AC machines
control of AC machines control of AC machines
control of AC machines Sugeng Widodo
 
Konverter ac ac (minggu ke 6)
Konverter ac ac (minggu ke 6)Konverter ac ac (minggu ke 6)
Konverter ac ac (minggu ke 6)Sugeng Widodo
 
Konverter thyristor (kuliah ke 5)
Konverter thyristor (kuliah ke 5)Konverter thyristor (kuliah ke 5)
Konverter thyristor (kuliah ke 5)Sugeng Widodo
 
Penyearah dioda (kuliah ke 4)
Penyearah dioda (kuliah ke 4)Penyearah dioda (kuliah ke 4)
Penyearah dioda (kuliah ke 4)Sugeng Widodo
 
Penyearah dioda (kuliah ke 4)
Penyearah dioda (kuliah ke 4)Penyearah dioda (kuliah ke 4)
Penyearah dioda (kuliah ke 4)Sugeng Widodo
 
Elektronika daya kuliah ke 2
Elektronika daya kuliah ke 2Elektronika daya kuliah ke 2
Elektronika daya kuliah ke 2Sugeng Widodo
 

More from Sugeng Widodo (20)

Paper
PaperPaper
Paper
 
Call for papers ICPERE 2012
Call for papers ICPERE 2012Call for papers ICPERE 2012
Call for papers ICPERE 2012
 
Binary Pass-Band Modulation Techniques
Binary Pass-Band Modulation TechniquesBinary Pass-Band Modulation Techniques
Binary Pass-Band Modulation Techniques
 
가족의 기능
가족의 기능가족의 기능
가족의 기능
 
Cascaded multilevel converter for Photovoltaic applications
Cascaded multilevel converter for Photovoltaic applicationsCascaded multilevel converter for Photovoltaic applications
Cascaded multilevel converter for Photovoltaic applications
 
fourier representation of signal and systems
fourier representation of signal and systemsfourier representation of signal and systems
fourier representation of signal and systems
 
introdution to analog and digital communication
introdution to analog and digital communicationintrodution to analog and digital communication
introdution to analog and digital communication
 
geothermal system
geothermal systemgeothermal system
geothermal system
 
Hydropower
HydropowerHydropower
Hydropower
 
DC motors
DC motorsDC motors
DC motors
 
control of AC machines
control of AC machines control of AC machines
control of AC machines
 
Inverter
InverterInverter
Inverter
 
Inverters
InvertersInverters
Inverters
 
DC-DC converters
DC-DC convertersDC-DC converters
DC-DC converters
 
Konverter ac ac (minggu ke 6)
Konverter ac ac (minggu ke 6)Konverter ac ac (minggu ke 6)
Konverter ac ac (minggu ke 6)
 
Konverter thyristor (kuliah ke 5)
Konverter thyristor (kuliah ke 5)Konverter thyristor (kuliah ke 5)
Konverter thyristor (kuliah ke 5)
 
Penyearah dioda (kuliah ke 4)
Penyearah dioda (kuliah ke 4)Penyearah dioda (kuliah ke 4)
Penyearah dioda (kuliah ke 4)
 
Penyearah dioda (kuliah ke 4)
Penyearah dioda (kuliah ke 4)Penyearah dioda (kuliah ke 4)
Penyearah dioda (kuliah ke 4)
 
Elektronika daya kuliah ke 2
Elektronika daya kuliah ke 2Elektronika daya kuliah ke 2
Elektronika daya kuliah ke 2
 
Proposal(20april11)
Proposal(20april11)Proposal(20april11)
Proposal(20april11)
 

Recently uploaded

ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 

Recently uploaded (20)

ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 

Review of basic concepts (kuliah ke 3)

  • 1. Review of Basic Concepts Pekik Argo Dahono
  • 2. Average and RMS Concepts • Periodic signals x(t ) = x(t + T ) • Average value 1 t o +T x= T to∫ x(t )dt • RMS value 1 t o +T 2 X = T to∫ x (t )dt
  • 3. Single-Phase Power Concept • Sinusoidal voltage and current v = 2V cos(ωt ) i = 2 I cos(ωt − φ ) • Instantaneous power p = vi = VI 444+ cos(2ω3] + VI 44 sin (2ωt ) 1 cos φ [12444t ) 1sin φ244 3 resistive part reactive part
  • 4. Single-Phase Power Concept • Active or Average Power t o +T ∫ 1 P= pdt =VI cos φ T to • Reactive Power Q = VI sin φ • Apparent Power S = VI
  • 5. Single-Phase Power Concept • Power triangle S = P +Q 2 2 2 • Power factor P PF = = cos φ S
  • 6. Single-Phase Power Concept E 2 = (V + ΔV )2 + δV 2 I P + jQ E R jX Load V δV 2 << (V + ΔV )2 Thus ΔV ≈ E-V = RI cos φ + XI sin φ RP + XQ XQ = ≈ E V V δV Losses = RI 2 = R(S / V )2 δ φ V I ΔV [ = R (P / V )2 + (Q / V )2 ]
  • 7. Balanced Three-Phase Power • Voltage and current va = 2V cos(ωt ) ( π vb = 2V cos ωt − 23 ) vc = 2V cos(ωt + 23 ) π ia = 2 I cos(ωt − φ ) ( π ib = 2 I cos ωt − 23 − φ ) ( π ic = 2 I cos ωt + 23 − φ )
  • 8. Balanced Three-Phase Power • Instantaneous power p = va ia + vb ib + vc ic p = 3VI cos φ • Instantaneous power is a constant that is equal to average power
  • 9. Balanced Three-Phase Power • Reactive power is defined as Q = 3VI sin φ • Apparent power is defined as S = 3VI
  • 10. Three-Phase Power System Rs I Rs 3I Rs I Rs Rs I Rs Ro Ro Ro Ro / 3 Rs Rs Losses = 3RI 2 Losses = 18RI 2 PF = 1.0 PF = ?
  • 11. Three-Phase Power System Rs Rs Rs − j1 j1 1 Rs PF = ?
  • 12. Three-Phase Four-Wire Systems Series Losses Consideration : Three - Phase Three - Wire System ( ΔP = rs I a + I b + I c + I n 2 2 2 2 ) (unbalanced) Ie = (I 2 ) + Ib + Ic / 3 2 2 a ΔP = 3rs I e 2 (V ) (balanced) I a + Ib + Ic + I n 2 2 2 2 Ve = 2 an + Vbn + Vcn / 3 2 2 Thus, I e = 3 Shunt Losses Consideration : = (V 2 ab + Vbc + Vca 2 2 )/ 9 Vao + Vbo + Vco + Vno 2 2 2 2 ΔP = (unbalanced) Rsh Ve2 ΔP = 3 (balanced) Rsh Vao + Vbo + Vco + Vno 2 2 2 2 Thus, Ve = 3 or Ve = (V 2 an 2 2 2 2 2 ) + Vbn + Vcn + Vab + Vbc + Vca / 12 Apparent Power S e = 3Ve I e Power Factor = P / S e
  • 13. Fourier Series Representation • Fourier series ∞ x(t ) = co + 2 ∑C n =1 n sin (nωt + θ n ) • Average value x = co • RMS Value ∞ X = co + 2 ∑n =1 2 Cn
  • 14. Total Harmonic Distortion (THD) • Voltage signal ∞ v= 2 ∑V n =1 n sin (nωt + θ n ) • Total Harmonic Distortion 1/ 2 ⎛ ∞ ⎞ ⎜ ∑ ⎜ Vn2 ⎟ ⎟ THD = ⎝ n=2 ⎠ V1
  • 15. Power concept under nonsinusoidal waveforms ∞ • Voltage v = Vo + 2 ∑V n =1 n cos(nωt + α n ) ∞ • Current i = Io + 2 ∑I n =1 n cos(nωt + β n ) • Instantaneous power p = vi
  • 16. Power concept under nonsinusoidal waveforms • Average power ∞ P = Vo I o + ∑V I n =1 n n cos(α n − β n ) • Apparent power S = Vrms I rms • Power factor ∞ P Vo I o + ∑V I n =1 n n cos(α n − β n ) PF = = S Vrms I rms
  • 17. Example • Voltage v = 1 + 210 cos(100πt ) + 2 2 cos(300πt ) • Current ( ) i = 2 5 cos 100πt − 60 − 2 cos(300πt ) o • Average power ( ) P = 50 cos 60 o + 2 cos(π ) = 25 • RMS Voltage and Current V = 12 + 10 2 + 2 2 = 105 I = 5 2 + 12 = 26 • Power factor P 25 PF = = = 0,478 S 105 6
  • 18. Sinusoidal voltage case Average power : P = V1 I1 cos(α1 − β1 ) Power factor : P I I1 PF = = 1 cos(α1 − β1 ) = cos φ1 S I rms ⎡ 2 ∞ 2⎤ 1/ 2 ⎢ I1 + ⎢ ∑In ⎥ ⎥ ⎣ ⎦ φ1 = α1 − β1 n=2 where : Relationship between power factor and THD: cos φ1 PF = 1 + THD 2
  • 19. Transformer and inductor • Inductor is used to store temporary energy and also used to smoothing the current • Transformer is used for voltage conversion, galvanic isolation, and also used to store temporary energy. • Transformer and inductor are the heaviest component in power electronics system. • In power electronics applications, transformer sometimes has to operate with both dc and ac voltages or currents.
  • 20. Electromagnetism Hukum Ampere : ∫ H.dl = ℑ = NI At Hlc = NI I Φ H= NI At/m lc A μNI B = μH = Wb/m 2 N lilit lc μA Φ = BA = NI Wb lc μAN 2 λ = NΦ = I lc λ μAN 2 L= = I lc
  • 21. Airgap Influence ℑ = NI = H c lc + H g g Bc Bg ⎛ l g ⎞ NI = lc + g = Φ⎜ c + ⎟ μ μo ⎜ μAc μ o Ag ⎟ ⎝ ⎠ Ac ≈ Ag = A I Φ μ = μ r μo NI Φ= N lilit g lc g + μr μo A μo A N 2I λ = NΦ = lc g + μr μo A μo A N2 L= ≈ μ o AN 2 / g lc g + μr μo A μo A
  • 22. Transformer i1 i2 v1 N1 N2 v2
  • 23. Ideal Transformer i1 i2 • • v1 N1 = =− i2 v1 N1 N 2 v2 v2 N 2 i1 Ideal transformer neither dissipates nor stores energy
  • 24. Practical Transformer i1 i2 Ll1 • • Ll 2 v1 Lm N1 N2 v2
  • 25. Symmetrical Components Any unbalanced three-phase quantities can be composed into three symmetrical components: - Positive sequence components - Negative sequence components - Zero sequence components Ib2 I c1 I ao = I bo = I co I a1 I a2 I b1 I c2
  • 26. Symmetrical Components ⎡Vao ⎤ ⎡1 1 1 ⎤ ⎡Va ⎤ ⎡Va ⎤ ⎡ 1 1 1⎤ ⎡Va1 ⎤ ⎢V ⎥ = 1 ⎢1 a ⎢V ⎥ = ⎢a 2 1⎥ ⎢Va 2 ⎥ ⎢ a1 ⎥ 3 ⎢ a 2 ⎥ ⎢Vb ⎥ ⎥⎢ ⎥ ⎢ b⎥ ⎢ a ⎥⎢ ⎥ ⎢Va 2 ⎥ ⎢1 a 2 a ⎥ ⎢Vc ⎥ ⎢Vc ⎥ ⎢ a ⎣ ⎦ ⎣ a2 1⎥ ⎢Vao ⎥ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ 2π j a= e 3 I co I c2 I c1 Ia Ic I ao Ib I a1 I a2 I bo I b1 I b2
  • 27. Balanced nonsinusoidal quantities Let assume: ∞ ∞ ∞ ∑ [( )] ∑ [( )] ∑ π Vn cos n ωt + 23 va = Vn cos[n(ωt )] vb = Vn cos n ωt − 2π 3 vc = n =1 n =1 n =1 For n=1: va1 = V1 cos(ωt ) (π vb1 = V1 cos ωt − 23 ) π vc1 = V1 cos ωt + 23 ( ) For n=2: va 2 = V2 cos(2ωt ) ( π vb 2 = V2 cos 2ωt + 23 ) π vc 2 = V2 cos 2ωt − 23 ( ) For n=3: va 3 = V3 cos(3ωt ) vb3 = V3 cos(3ωt ) vc3 = V3 cos(3ωt )
  • 28. Balanced nonsinusoidal quantities For n=3k-2, The harmonics are similar to positive sequence quantities. For n=3k-1, the harmonics are similar to negative sequence quantities. For n=3k, the harmonics are similar to zero quantities.
  • 29. Symmetrical components • Symmetrical components theory can be applied to both steady-state phasor quantities and instantaneous quantities. • Symmetrical components theory can be derived also by using linear algebra and treated as variable transformation
  • 30. Voltage and Current across the inductor diL 1 to + t vL = L iL = ∫ vL dt + iL (to ) dt L to Steady-state: iL (t ) = iL (t + T ) vL (t ) = vL (t + T ) Thus t +T ∫t vL dt = 0 Average voltage across the inductor under steady-state condition is zero.
  • 31. Voltage and current across the capacitor dvC 1 to + t iC = C vC = ∫ iC dt + vC (to ) dt C to Steady-state: iC (t ) = iC (t + T ) vC (t ) = vC (t + T ) Thus t +T ∫t iC dt = 0 Average current through the capacitor under steady-state conditions is zero.
  • 32. Batasan Topologi • Sumber tegangan hanya boleh diparalel jika sama besar • Sumber arus hanya boleh diseri jika sama besar • Sumber tegangan tidak boleh dihubungsingkat • Sumber arus tidak boleh dibuka • Sumber tegangan bisa berupa kapasitor • Sumber arus bisa berupa induktor
  • 33. Hubungan Berikut Harus Dihindari + +
  • 34. Dualitas Sumber tegangan Sumber arus Hubungan paralel Hubungan seri Induktor Kapasitor Resistor Konduktor Reverse conducting switch Reverse blocking switch Variabel tegangan Variabel arus
  • 35. Contoh Dualitas R L C + Vs is Ip vp G C L dis 1 t dv p1 t Vs = Ris + L + ∫ is dt + vC (0) I p = Gv p + C + ∫ v p dt + iL (0) dt C 0 dt L 0
  • 37. Penggunaan Komputer • PSIM, MATLAB, EMTP, PSPICE, etc. • Switching Concept • Averaging Concept
  • 38. Switching Concept ii io vo=SwEd S1 R Vo(ω)=Sw(ω)Ed Ed S2 vo Io(ω)=Vo(ω)/Z(ω) L Ii(ω)=Sw(ω)Io(ω) Sw=1 IF S1 ON and S2 OFF Sw=0 IF S1 OFF and S2 ON
  • 39. Switching Concept ii S1 io R Ed S 2 vo IF vref > car THEN S w = 1 ELSE S w = 0 L dio = (S w E d − Rio ) / L dt ii = S wio vref + car −
  • 40. Averaging Concept 0 < t < TON ii S1 io dio Rio + L = Ed dt R TON < t < Ts S 2 vo dio Ed Rio + L =0 dt L Averaging dio Rio (TON + TOFF ) + L (TON + TOFF ) = Ed TON dt vref Divided by Ts results in + dio T Rio + L = E d ON = vo car − dt Ts
  • 41. D-Q Transform f qdo = Kf abc f abc = K -1f qdo (f qdo )T = [ f q fd fo ] ⎡ cos θ sin θ 1⎤ (f abc ) T = [ fa fc ] ⎢ (π K = ⎢cos θ − 23 -1 ) ( π sin θ − 23 ) ⎥ 1⎥ fb ( ⎢cos θ + 2π ) ( π sin θ + 23 ) 1⎥ ⎡cosθ ( π cos θ - 23 ) ( π) cos θ + 23 ⎤ ⎣ 3 ⎦ 2⎢ K = ⎢ sinθ 3⎢ 1 ( π sin θ - 23 ) ( ) π ⎥ sin θ + 23 ⎥ 1 1 ⎥ ⎣ 2 2 2 ⎦ t θ = ∫ ω (ς )dς + θ o 0
  • 42. D-Q Transform fb fq θ fa fd fc
  • 43. Example ia = 2 I cos ω s t ( 23π ) ib = 2 I cos ω s t + ic = 2 I cos(ω s t − 23 ) π iq = 2 2I 3 [ ( π) ( cos ω s t cos ωt + cos ω s t + 23 cos ωt + 2π 3 )+ cos(ω s t − 23π )cos(ωt − 23π )] iq = 2 I cos(ω s − ω )t id = 2 2I 3 [ ( ) ( π π ) ( π ) ( π sin ω s t sin ωt + sin ω s t + 23 sin ωt + 23 + sin ω s t − 23 sin ωt − 23 )] id = 2 I sin (ω s − ω )t io = 0
  • 44. D-Q Transform Power Invariance Pabc = va ia + vb ib + vc ic 3 ( Pabc = Pqdo = vq iq + vd id + 2vo io 2 ) Instantaneous Reactive Power : 3 ( q = v q id − v d iq 2 )
  • 45. DQ Transform of Stationary Elements v abc = pλabc [ ] [ ] v qdo = Kp K -1λabc = Kp K -1 λqdo + KK -1 pλqdo ⎡ − sin θ cos θ 0⎤ v abc = ri abc [ ] p K -1 ⎢ ( π = ω ⎢ − sin θ − 23 ) ( π cos θ − 23 ) ⎥ 0⎥ v qdo = KrK i qdo-1 ⎣ ( ⎢− sin θ + 2π 3 ) ( π cos θ + 23 ) 0⎥ ⎦ Thus KrK -1 = r ⎡ 0 1 0⎤ [ ] Kp K -1 = ω ⎢ − 1 0 0⎥ ⎢ ⎥ ⎢ 0 0 0⎥ ⎣ ⎦
  • 46. DQ Transform of Stationary Elements v qdo = ωλdq + pλqdo (λdq ) = [λd T − λq ] vq = ωλd + pλq vd = −ωλq + pλd v o = pλ o
  • 47. DQ Transform of Stationary Elements iq R L + ia R L vq ωLid a id L R ib n vd ωLiq b + ic io R L c vo
  • 48. DQ Transform • If the speed of reference frame ω is equal to the supply frequency, it is called synchronous reference frame. • If the speed of reference frame is zero, it is called stationary reference frame. • If the speed of reference frame is not equal to the supply frequency, it is called asynchronous reference frame.
  • 49. Space Vector N N e jθ + e − jθ na = cos θ = 2 2 2 ( π j θ − 23 ) + e − j (θ − 23π ) nb = N 2 ( π cos θ − 23 =)2 N e 2 ( π j θ + 23 ) + e − j (θ + 23π ) nc = N 2 ( π cos θ + 23 = ) N e 2 2 Fa = na ia + nb ib + nc ic N jθ ⎛ π − j 23 j 23 ⎞ π N − jθ ⎛ π j 23 − j 23 ⎞ π = e ⎜ ia + ib e + ic e ⎟ + e ⎜ ia + ib e + ic e ⎟ 4 ⎝ ⎠ 4 ⎝ ⎠ 3 N jθ r 3 N − jθ r * = e i+ e i 8 8 r 2⎡ π − j 23 j 23 ⎤ π i = ia + ib e + ic e 3⎢ ⎣ ⎥ ⎦ is called space vector of current. The same definitions apply to voltage and current.
  • 50. Example of Space Vector ia = 2 I cos ω s t = 2 2 [ I e jω s t + e − jω s t ] ( ib = 2 I cos ω s t + 2π ) = 2 I ⎡e j (ω s t + 23π ) + e − j (ω s t + 23π ) ⎤ 3 2 ⎢ ⎣ ⎥ ⎦ 2 ⎡ j (ω s t − 23π ) − j (ω s t − 23π ) ⎤ ( π ic = 2 I cos ω s t − 23 = ) 2 I e ⎢ ⎣ +e ⎥ ⎦ r i = 3 2 ⎨ ⎩ [ ] ⎢ ⎣ j (ω t + 2π ) I ⎧ e j ω s t + e − jω s t + ⎡ e s 3 + e − j (ω s t + 23 ) ⎤ − j 23 π ⎥ ⎦ e π ⎢ ⎣ j (ω t − 2π ) + ⎡e s 3 + e − j (ω s t − 23 ) ⎤ j 23 ⎫ π ⎥ ⎦ e ⎬ π ⎭ r i = 2 Ie jω s t
  • 51. Transformation of Space Vector r ω r − j ωt x = xe Previous example rω j (ω s −ω )t i = 2 Ie It should be noted : r xa = Re[x ] r ⎡ xe j 23π ⎤ xb = Re ⎢ ⎣ ⎥ ⎦ r ⎡ xe − j 23π ⎤ xc = Re ⎢ ⎣ ⎥ ⎦
  • 52. Numerical Methods To Solve Differential Equations Let f ' ( x, t ); x (t o ) = xo ; h Euler Method : x(t o + h ) = x(t o ) + hf ' ( xo , t o ) Fourth - Order Runge - Kutta Method : k1 = f (xo , t o ) ⎛ k1 h⎞ k 2 = f ⎜ xo + , t o + ⎟ ⎝ 2 2⎠ ⎛ k h⎞ k 3 = f ⎜ xo + 2 , t o + ⎟ ⎝ 2 2⎠ k 4 = f ( xo + k 3 , t o + h ) h x(t o + h ) = x(t o ) + (k1 + 2k 2 + 2k3 + k 4 ) 6
  • 53. Example di = 10 − 5i dt i0 = 0 h = 0 .1 i (0.1) = 0 + 0.1× (10 − 5 × 0 ) = 1 i (0.2 ) = 1 + 0.1× (10 − 5 × 1) = 1.5 i (0.3) = 1.5 + 0.1× (10 − 5 × 1.5) = 1.75 i (0.4 ) = 1.75 + 0.1× (10 − 5 × 1.75) = 1.875
  • 54. Numerical Integration We have N data for the function y in the interval from a to b : b−a Let h = N b N −1 ∑ ∫a ydt = h n=0 yi (the simplest rule) b h⎡ N −1 ⎤ ∫ ∑ ydt = ⎢ y0 + y N + 2 yi ⎥ 2⎢ n =1 ⎥ a ⎣ ⎦
  • 55. Example T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 i 1 2 3 1 2 3 1 2 3 1 h = 0.1 N = 10 N −1 ∫0idt = h ∑ i = 1.9 0.9 0 N −1 ∑ i 2 = 4.3 0.9 2 ∫0 i dt = h 0