SlideShare a Scribd company logo
1 of 22
Download to read offline
KATA PEKATA PEKATA PEKATA PENNNNGANTARGANTARGANTARGANTAR
Puji syukur kami panjatkan ke hadirat Tuhan Yang Maha Esa, karena atas
karunia-Nya, bahan ajar ini dapat diselesaikan dengan baik. Bahan ajar ini
digunakan pada Diklat Guru Pengembang Matematika SMK Jenjang Dasar
Tahun 2009, pola 120 jam yang diselenggarakan oleh PPPPTK Matematika
Yogyakarta.
Bahan ajar ini diharapkan dapat menjadi salah satu rujukan dalam usaha
peningkatan mutu pengelolaan pembelajaran matematika di sekolah serta dapat
dipelajari secara mandiri oleh peserta diklat di dalam maupun di luar kegiatan
diklat.
Diharapkan dengan mempelajari bahan ajar ini, peserta diklat dapat menambah
wawasan dan pengetahuan sehingga dapat mengadakan refleksi sejauh mana
pemahaman terhadap mata diklat yang sedang/telah diikuti.
Kami mengucapkan terima kasih kepada berbagai pihak yang telah
berpartisipasi dalam proses penyusunan bahan ajar ini. Kepada para pemerhati
dan pelaku pendidikan, kami berharap bahan ajar ini dapat dimanfaatkan dengan
baik guna peningkatan mutu pembelajaran matematika di negeri ini.
Demi perbaikan bahan ajar ini, kami mengharapkan adanya saran untuk
penyempurnaan bahan ajar ini di masa yang akan datang.
Saran dapat disampaikan kepada kami di PPPPTK Matematika dengan alamat:
Jl. Kaliurang KM. 6, Sambisari, Condongcatur, Depok, Sleman, DIY, Kotak Pos
31 YK-BS Yogyakarta 55281. Telepon (0274) 881717, 885725, Fax. (0274)
885752. email: p4tkmatematika@yahoo.com
Sleman, 11 Mei 2009
Kepala,
Kasman Sulyono
NIP. 130352806
ii
Daftar Isi
Kata Pengantar ------------------------------------------------------------------------------------ i
Daftar Isi ---------------------------------------------------------------------------------------ii
Kompetensi/Sub Kompetensi dan Peta Bahan Ajar ------------------------------------- iii
Skenario Pembelajaran -------------------------------------------------------------------------iv
Unit 1 Numbers -------------------------------------------------------------------------- 1
Unit 2 2-Dimensional ------------------------------------------------------------------- 5
Unit 3 Reading --------------------------------------------------------------------------13
iii
KOMPETENSI
Mampu memahami literatur berbahasa Inggris.
SUB KOMPETENSI
Memiliki kemampuan membaca dan menjelaskan hal-hal yang berkait
dengan bilangan dalam bahasa Inggris.
Memiliki kemampuan membaca dan menjelaskan hal-hal yang berkait
dengan geometri dimensi dua dalam bahasa Inggris.
Memiliki kemampuan membaca artikel dalam bahasa Inggris serta dapat
menentukan beberapa point penting pada artikel tersebut.
PETA BAHAN AJAR
Mata diklat untuk jenjang dasar ini membutuhkan pengetahuan prasyarat berupa
pengetahuan bahasa Inggris dasar. Pada diklat jenjang dasar ini kepada para
peserta hanya diberikan pengetahuan yang berkait dengan bilangan dan istilah
pada geometri dimensi dua (geometri datar).
Pada diklat tahap lanjut dan menengah, kepada para peserta diharapkan sudah
lebih mampu memahami buku maupun literaratur berbahasa Inggris.
iv
SKENARIO PEMBELAJARAN
Pendahuluan (5’)
Tujuan
Ruang Lingkup
Langkah-langkah
Penyampaian Mtr (60’)
Mempelajari
Bilangan (Numbers)
Geometri Datar (2-
Dimensional)
Penugasan (45’)
Membaca artikel dalam
bahasa Inggris
Menemukan tiga point pada
artikel tersebut
Laporan (20’)
Hasil diskusi
Masalah
Penutup (5’)
Rangkuman
Refleksi
Tugas
Unit I
Introduction
A. Rationale
English is very important, not only for students of SMK (Secondary Vocational School); but also for
mathematics teacher of secondary vocational school. The reason is, there are a lot of mathematics or
mathematics education books, periodicals, jurnals, video cassette recorders, or films, are written ot
talked in english such as:
o The Art of Algebra by Abrahamson, D; Gray, M.C. (1971). Adelaide: Rigby Limited.
o 40 Investigational Work, by Bastow, B.; Hughes, J.; Kissane, B.; & Randall, R.; (1984). Perth:
Mawa.
o Dictionary of Mathematics by Borowski, E.J.; Borwein, J.M. (1989). London: Collins
o 7th
International Congress on Mathematical Education (ICME-7). Topic Group 10: Constructivist
Interpretations of Teaching and Learning Mathematics. Perth: Curtin University of Technology.
o An Introduction to Matrices,Vectors, and Linear Programming (2nd
Ed) by Campbell, H.G. (1977).
New Jersey: Prentice-Hall, Inc.
o Dynamics of Teaching Secondary School Mathematics by Cooney, T.J.; Davis, E.J.; Henderson,
K.B. (1975). Boston: Houghton Mifflin Company.
o Introduction to Logic by Copi, I.M. (1978). New York: Macmillan.
o What is Mathematics by Courant, R.; Courant, H. (1981) Oxford University Press: Oxford.
o Mathematical Literacy for Living from OECD-PISA Perspective by De Lange, J. (2005). Paris:
OECD-PISA.
In addition, some of Secondary Vocational School has been or will be declared to be Schools Based
International (Sekolah Berwawasan Internasional = SBI). In those schools, english is used or will be
used during the teaching and learning process. In anticipating the situation, mathematics teacher
should be provicient in english, written or orally. In other to fulfill the needs, during the inservice
training, one of the topic is ‘Bahasa Inggris dalam Pembelajaran Matematika’ or ‘English in Teaching
Mathematics.’ This materials will be used during the session.
B. Objectives
The general aim of the session is to help mathematics teacher to understand english literature
especially in mathematics and mathematics education literature. After the session, the participant will
be able to:
Read and explain the materials concerning numbers.
Read and explain the materials concerning 2-Dimensional Geometry
Read and explain the articles written in english.
C. The Used of Materials
The materials are written in such a way that can be learned by participants by themselves. Ideally,
the materials can be learned before the session. During the session participants can ask to the tutor
(Widyaiswara) about those materials, especially the spoken problems.
2
Unit 2
Numbers
A. 17 (seventeen) is an example of a number. It is a whole number or integer. A number
consists of one or more digit. 13, 5, and 35 are odd numbers; while 2, 4, and 18 are
even numbers.
• When we add one quantity to another we use the symbol ‘+’ (plus). The name of this
operation is addition. The result of this operation is called the sum.
• When we subtract one quantity to another we use the symbol ‘−’ (minus). The name
of this operation is subtraction. The result of this operation is called the difference.
• When we multiply one quantity to another we use the symbol ‘×’ (multiplied by or
times). The result of this operation is called the product.
• When we divide one quantity to another we use the symbol ‘:’ (divided by). The
name of this operation is division. The result of this operation is called the quotient.
• The result of these operation are indicated by the symbol = (equals).
Practice 1.A
1. Read out the following
a. 6
b. 34
c. 578
d. 9.573
e. 812.934
f. 1.234.567
g. 9 + 7 = 16
h. 78 − 24 = 54
i. 14 × 27 = 378
j. 36 : 9 = 4
2. Fill in the blank spaces in the following sentences by using single words.
a. The ---- of three and four is seven.
b. The operation which uses the symbol “×” is called ---- .
c. Twelve ---- six equals two.
d. The result of a subtraction problem is called the ---- .
e. An integer is also known as a ---- .
f. Any number consists of combination of ---- .
g. Seventeen subtracted ---- twenty equals ---- .
h. Seven multiplied ---- five equals ---- .
i. When we ---- two quantities, for example eight plus twelve, the answer (twenty) is
called the ---- .
j. The product is the result when one quantity is ---- another
B.
5
4
(four fifths or four over five) is an example of a fraction. In this fraction, 4 is the
numerator and 5 is the denominator.
5
16
is an improper fraction. 4
5
4
is a mixed
number.
3
To add or to subtract vulgar fraction, we must express them in terms of the lowest
common denominator. For example (e.g.) in this subtraction
5
1
3
2
− , the lowest common
denominator is 15.
To multiply or divide vulgar fraction e.g.
4
3
1
5
2
2
3
2
2 ×× , we must first change the mixed
number to improper fraction
4
7
5
12
3
8
×× and then cancel where it is possible. Then
multiply the numerators and the denominators and express the result as a mixed number.
To write a decimal fraction we use a decimal point. For example, if we convert
4
1
2 into
a decimal fraction, the result is 2,25 (two point two five). if we convert
3
2
into a decimal
fraction, the result is 0,6 (nought point six recurring).
17 : 3 = 5,6 or 5,67 correct to two decimal places, while π is equal to 3,142 correct to
four significant figures.
Practice 1.B
1. Read out the following
a.
2
1
b.
3
1
c.
4
1
d.
13
2
e.
5
1
×
3
1
f.
3
1
×
5
3
g.
3
2
4
7
÷
h.
20
19
5
10
7
2
4
1
3 =+
i.
15
7
5
1
3
2
=−
j.
24
1
8
1
6
1
=−
k. 81,355
l. 3,6 + 7,2 = 10,8
m. 10 : 6 = 1,6
n. 655 : 3 = 218,3
o. 6,5 × 42,6 = 276,9
p. 781,9 + 63,5 = 845,4
2. Using single words, fill in the blank spaces in the following sentences:
a. In the vulgar fraction seven ninths, ---- is the denominator and ---- is the ---- .
b. To ---- a vulgar fraction to a decimal fraction, we simply ---- the numerator by
the denominator.
c. The ---- ---- ---- of two third and a half is six.
d. An integer plus a fraction makes a ---- ---- .
e. An improper fraction exists when the ---- is greater than the ---- .
f. To multiply a decimal fraction by ten, we simply move the ---- ---- one place
to the right.
g. 57,074 correct to ---- ---- ---- is 57,1.
4
h. To add or subtract vulgar fraction, we must ---- them in ---- ---- their
lowest common denominator.
i. To devide a decimal fraction by ---- we simply move the decimal point one ----
to the ---- .
j.
9
2
2
5
× becomes
9
5
if we ---- the two’s.
C. If in a given classroom, there are fourteen boys and seven girls, we say that the ratio of
girls to boys is 1 : 2 (one to two).
When we build a model ship, we make it to scale. For example, if a model is built to scale
of 1 : 30 (one to thirty), this mean that 10 centimeters on the model represent 300
centimeters on the ship itself. The scale of a map shows the ratio of the distance on the
map to the distance on the area covered by the map. On a map this ratio is called the
representatives fraction.
3 : 6 (three to six) and 5 : 10 (five to ten) are two equal ratios, in other words 3,6 and 5,10
are in proportion, in direct proportion, or directly proportional. If it takes 5 men one
hour to do a job, and 10 men half an hour to do the same job, we can say that the number
of men and the time are in inverse proportion, or that these quantities are inversely
proportional.
36% (thirty-six percent) is really a fraction with a numerator of thirty-six and a
denominator of one hundred. The farction
40
8
expressed as a percentage is 20%. If a
number is decreased by 10%, the ratio of the new number to the old number is 90 : 100.
If a number is increased by 10%, the ratio of the new number to the old number is 110 :
100. If we borrow a sum of money at a rate of interest of 10%, we must pay back the
money in the same proportion. If a student scores 81% in one exam and 87% in the next,
his average (or mean) percentage is 84%.
Practice 1.C
1. Answer these question.
a. Which fraction with a denominator of sxteen is in proportion to one over four?
b. If a plan is drawn to a scale of 1 : 50 (one to fifty), what is the actual measurement
which is shown on the plan as four centimetres?
c. Divide one hundred and forty sheep into two groups in the ratio of 3 : 4.
d. The scale of a map is five centimetres to one kilometre. What is the representative
fraction of the map?
e. On the same map, what length will represent nine kilometres?
f. Divide thirty-six pounds into three parts in the ratio 6 : 5 : 1.
g. Five families have a total of 100 sheep. How many sheep will six families have if
the numbers are in proportion?
h. A concrete mix of cement, sand and gravel is made in the ratio of 2 : 5 : 8. What is
the weight of each part in thirty tonnes of concrete?
i. In a class of student the ratio of successes to falures in an examination was 9 : 2.
If eighteen students passed the examination, how many failed?
j. If ten litres of oil weigh eight kilograms, and a litre of water weighs one kilogram,
what is the ratio of the relative density of oil and water?
5
2. Answer these question.
a. What is four and a half percent of eight hundred people?
b. What is thirty percent of fifty?
c. Express fifty-six as a percentage of seventy.
d. What percentage is four fifths?
e. What fraction is seventy-five percent?
f. What decimal fraction is sixty-three point nine percent?
g. What is the ratio of men to women if sixty percent are men?
h. How much interest has a bank been paid if it receives a total of six fifths of the
sum borrowed?
i. In a class of twenty-five students, twenty come to school by bus and five by car.
What is the ratio of those who come by car to those who come by bus, and what
percentage of the class does each group represent?
j. The numerator of a fraction is 6. This numerator is equal to thirty-three point three
recurring percent of the denominator. What is the fraction?
3. Fill in the blank spaces in the following sentences:
a. To convert a ---- to a fraction, divide ---- 100.
b. If three metres of material cost 225 units of money and eight metres cost six
hundred units of money, the lengths and prices are ---- ---- .
c. If the plan of building is drawn to a ---- of 1 : 65, one centimetre on the plan ----
sixty-five centimetres on the building.
d. In a certain country, rainy days and dry days are in the ---- 1 : 7.
e. If we wish to ---- a vulgar ---- as a ---- , we must ---- by one hundred.
6
Unit 3
2-Dimensional Figures
A. This line is horizontal.
This line is vertical.
This line is oblique.
These lines are curved.
These two lines are parallel. They are
equidistant at all points.
A straight line drawn across a set of two or more
parallel lines is called transversal.
The broken line marks the locus of a point
equidistant from AB to CD. The locus of a point is
the the path traced by that point when it moves in
accordances with a given law.
Practice 2.A
1. Look at the figure and say which lines are:
a. vertical
b. transversal
c. parallel
d. oblique
e. horizontal
f. curved
2. Using the word you have learned, describe the following mathematical symbols.
A
X
P
Y
Z
B
C Q F
R
S
D
A
C
B
D
7
a. the plus symbol
b. the minus symbol
c. the multiplication symbol
d. the equals symbol
e. the pi symbol
B. These two lines meet at an angle. This angle
is less than 90° (ninety degrees). It is an acute
angle.
This is an obtuse angle.
This is a reflex angle.
These two lines meet at an angle of 90°. They
form a right angle. The two lines are
perpendicular to each other.
Lines FK and AB intersect at point
X. The angles FXB and BXK are
next to each other, or adjacent. The
sum of these angles is 180°. They
are supplementary angles.
Angles ABY and YBC are equal.
Line BY bisect angle ABC. BY is the
bisector of angle ABC. The sum of
angle ABY and YBC is 90°. They are
complimentary angles.
This figure shows a transversal line
drawn across two parallel lines.
Angles r and q are equal (opposite
angles). Angles b and q are equal
(corresponding angles). Angles b
and r are equal (alternate angles).
A
B
K
F
X
A
B
C
Y
p q
r s
a b
c d
8
Practice 2.B
1. Describe the lines and angles in the following figures.
a. .
b. .
c. .
d. .
C. A triangle is a three-sided figure. The three sides of a triangle meet at points called
vertices (singular: vertex). The vertex at the top of a triangle may be called the
apex, and the line at the bottom may be called the base.
In triangle ABC, line BC is
produced to point X. ACB is
an interior angle, and ACX is
an exterior angle.
A
B
C
Z
Y
Z
F
K
P
Z
R
Q
P
S
B
T
A
M
N
P
Q
B
A
C
X
9
This is an isosceles triangle.
This is an equilateral triangle.
This is a right angled triangle. In a right
angled triangle the side opposite the right
angle is called the hypotenuse. The
theorem of Pythagoras states:
“In a right angled triangle the square on the hypotenuse is equal to the sum of the
squares on the other two sides.”
If the following parts of two triangles are equal,
a. two sides and the included angle; or
b. a right angle, hypotenuse, and side; or
c. two angles and a corresponding side; or
d. all three sides;
then the two triangles are congruent.
If two triangles have their corresponding
angles equal, they are similar.
These two triangles are on either side of an
axis of symmetry (or centre line). They are
symmetrical triangles.
10
Practice 2.C
1. Describe each triangle, and use your ruler to discover any relationships between
the triangles (i.e. symmetry, similarity, or congruence)
a. .
b. .
c. .
d. .
e. .
f. .
g. .
h. .
i. .
2. Using the word you have learned, fill in the blank spaces in the following
sentences.
a. If each of the angles in a triangle is equal to 60°, the triangle is called ---- .
b. A line which meets another ---- at 90° is called a ---- line.
c. If two angles of a triangle are equal to 45°, the triangle is called a ----
triangle.
d. If we ---- a right angles, we have two ---- angles of 45°.
e. Each triangle has three points, or ---- .
D. This is a circle. The centre of a circle is called its
point of origin. The distance around a circle is
called its circumference.
O
11
A half circle is called a semi-circle.
The line drawn from the point of origin to the
circumference is called the radius (plural: radii).
The line drawn from one side of the circle to
the other, passing through the point of origin
to the circumference, is called the diameter.
A part of the circumference of a circle is called an arc.
A straight line joining the ends of an arc is called a
chord. The part of a circle enclosed by an arc and a
chord is called a segment.
A part of a circle enclosed by two radii and an arc is
called a sector.
A line meeting the
circumference but which (when
produced) does not intersect it
is called a tangent.
A line which intersects the circumference in two
places is called a secant.
A circle which passes through the vertices of
a triangle is called the circumcircle of the
triangle, and its centre is called its
circumcentre. The circle is circumscribed
around the triangle.
The angle subtended at the centre by
an arc of a circle is equal to twice the
angle subtended by that arc at the
circumference.
These circles have the
same point of origin.
O
O
O
12
They are concentric.
Practice 2.D
1. Do these task.
a. A circle has a radius of 3 centimeters. Calculate:
i. the diameter
ii. the circumference.
b. A circumference of a circle is approximately 15,7 cm. Calculate:
i. the approximate radius
ii. the approximate diameter.
c. What is the angle subtended by a semi-circle equal to?
d. The angle subtended by an arc at the circumference is 35°.
i. What is the angle subtended by the same arc at the point of origin.
ii. How can you calculate the answer to (i)?
e. If two chord of a circle, AB and CD, intersect at O, what is the relationship
between AO × OB and CO × OD?
2. Using the word you have learned, fill in the blank spaces in the following
sentences.
a. If we draw the ---- of a circle, the line divides the circle into two equal ---- .
b. ---- circles are circles which have the same ---- of ---- .
c. A semi-circles ----- an angle of 90° at the ---- .
d. A triangle has been ---- if a circle passes through its ---- .
e. A ----- is the area enclosed by an arc and two ---- , while a ---- is the area
enclosed by an arc and a ---- .
f. If a line passes through a circle and intersects the circumference, it is called a
---- , but a ---- meets the circumference without intersecting it.
E. A line is 1-dimensional. Triangles and circle are 2-dimensional. Here are some
more 2-dimensional figures.
This is a square. Objects shaped like a square are square.
This is a rectangle. Objects shaped like a rectangle are
rectangular. The line drawn from one corner to the
opposite corner is called the diagonal.
This is a rhombus.
This is a parallelogram or rhomboid.
13
This is a quadrilateral or quadrangle.
This is a pentagon. Objects
shaped like a pentagon are
pentagonal.
This is a hexagon. Objects shaped like
a hexagon are hexagonal.
This is an ellipse. Objects shaped like a ellipse are elliptical.
This is an trapezium.
Note:
A figure with many, or an unspecified number of, sides is called polygon.
A four-sides figure which is circumscribed by a circle called cyclic quadrilateral.
The sum of the sides of a two dimensional figure is called the perimeter.
Practice 2.E
1. Using the word you have learned, fill in the blank spaces in the following
sentences.
a. A ---- is a ---- with six sides.
b. A four-sided figure is called a ---- .
c. A shape with five sides is a ---- .
d. A four-sided figure with two sides parallel is called a ---- .
e. A rhomboid has two ---- and two ---- angles.
f. The ---- of the ---- angles of quadrilateral is equal to 360°.
g. A ---- may be called an equilateral rectangle.
h. If two ---- of a parallelogram are vertical, the other two are ---- .
i. A ---- which has length and width is ---- - ----
j. A figure with four equal ---- but no right angles is called a ---- .
14
Unit 4
Reading
This article was written by Fadjar Shadiq in 1987 and published in SAMEN (Science and
Mathematics Education Newsletter) as bulletin news of SMEC (Science and Mathematics
Education Centre), Curtin University of Technology, Perth, Western Australia.
Please find out three important points from the article.
WHAT RESEARCH SAYS ABOUT MATHEMATICAL PROBLEM SOLVING
The development of the ability to solve problems has long been recognized as one of the
major goals of mathematics education. Every individual in our society is faced with making
decisions, they must have the ability to think creatively, laterally, divergently, rationally,
objectively, and systematically. Teaching mathematical problem-solving means teaching how
to: define the problem to be solved, devise a plan, choose appropriate strategies, collect and
analyze relevant information, evaluate relevant information, evaluate the results and make
decisions.
A problem was defined by Cooney, Davis & Henderson (1975) as: “… a question which
presents a challenge that cannot be resolved by some routine procedure known to students.”
Two types of problems have been identified (Charles, 1982: le Blanc, Proudfit & Putt, 1980):
(1) standard textbook (translation) problems, and (2) process problems. In solving translation
problem, the emphasis is on translating a real word situation in the problem into mathematical
terminology or mathematical sentence in the solution. The Translation problem requires only
the application of skills, principles, or concepts known to students, while the process problem
requires, in addition, the use of strategy or some non-algorithmic approach. Process
problems emphasize the process of obtaining the solution rather than solution itself.
Solving problems is one of the most difficult activities in the mathematics curriculum at all
grade levels. The National Assessment of Educational Progress (NAEP) reported in 1988 that
only 29 percent of large national sample of 17-years-old in the USA were able to solve the
following problem:
Lemonade cost 95c for one 56 once bottle. At the school fair, Bob sold
cups holding 8 ounces for 20c each. How much money did the school
make on each bottle?
In 1980, the National Council of Teachers of Mathematics (NCTM) recommended that
problem-solving should be the focus of the school mathematics in the United States. Although
problem-solving is one of the major goals of mathematics education many students still have
difficulties with this important task. The performance of United States’ students increased
from NAEP II to NAEP IV. However, in reporting the fourth NAEP results Kouba et al (1988)
stated: ”Students have trouble with items that do not involve routine, familiar tasks.”
WHAT IS NEEDED IN SOLVING PROBLEMS
Shoenfeld (1985), in his book Mathematical Problem Solving, described four requirements for
solving mathematical problems:
15
1. Resources. Mathematical knowledge possessed by the individual that can be brought to
bear on the problem at hand.
2. Heuristic. Strategies and techniques for making progress on unfamiliar or nonstandard
problems; rules of thumb for effective problem solving
3. Control. Global decisions regarding the selection and implementation of resources and
strategies.
4. Belief Systems. One’s mathematical world view”, the set of (not necessarily conscious)
determinants of an individual’s behavior.
Problem solving activities in school focus mostly on instructional techniques such as problem-
solving strategies, Polya’s four steps method (understanding, the problem, devising a plan,
carrying out, and looking back), and the teaching of computer programming languages such
as LOGO or BASIC (Frank, 1988). This means that research on the teaching of problem-
solving has been concerned largely with heuristics, rather than with other requirements such
as students’ beliefs system.
Students’ beliefs, views, ideas, and conceptions of mathematics are developed in the
classroom over a long period. Inevitably, students’ beliefs about mathematics can help or
hinder them as good problem solvers. (Garafalo, 1987; Erlwanger, 1975). Research on
students’ beliefs about mathematics has revealed: mathematics to be regarded as
computation (Frank, 1988), rule based (NAEP IV), and mostly memorizing (NAEP IV); formal
mathematics has little or nothing to do with real thinking (Schoenfeld, 1985); the primary aim
in mathematics is to get the answer (Confrey, 1980; Frank, 1988); and mathematics problems
are solved in less than 10 minutes (Schoenfeld, 1985) and in a few steps (Frank, 1988).
As mathematics teachers, one of our tasks is to help students to develop an awareness of
their cognitive functioning, so that they are better able to control and regulate their cognitive
actions during their problem solving activities. Teaching strategies are required to focus
students’ attention on their assumptions and beliefs. For example, teacher question such as:
”Why did you use this strategy?”; ”Are you sure about this pattern?”; “What happens if x is a
negative number?”, or “Why do you think you usually make this error?” can help students to
become more aware of their cognitive functioning as a first step towards evaluating and
modifying it.
Recent research has attempted to find ways of better shaping students’ beliefs about
mathematics. Frank (1988) suggested four strategies for mathematics teachers to help their
students develop positive beliefs about mathematical problem-solving activities:
1. Start problem-solving early
2. Be sure your problems are problems, i.e., non-routine
3. Focus on solution, not answer
4. de-emphasize computation
IMPLICATION FOR MATHEMATICS EDUCATION IN INDONESIA
The Indonesian Department of Education and Culture (Depdikbud, 1987) formulated the
following aims of mathematics teaching for primary and secondary school students:
16
(a) to enable learners to be able to successfully tackle situations in their changeable lives,
through action training based on thinking; logically and rationally, critically and
accurately, objectively, creatively, and effectively
(b) to enable learners to apply their knowledge of mathematics correctly in their daily lives
and in other subjects
The first aim can be achieved if students learn how to solve process problems which require
logical, rational, creative, and systematic thinking, and ingenuity in conception and reflection.
The second aim can be attained if students also learn how to solve translation problems
which emphasize translating real-world situations into mathematical terminology and solving
the problem by using mathematical principles or mathematical concepts.
Since 1982, problem-solving has been discussed during the in-service and On-service
training courses for secondary school mathematics teachers. In 1987, the team of Indonesian
instructors of mathematics provided a collection of problems appropriate for secondary school
students. However, the intended curriculum, which is prescribed in the national syllabuses,
must be completed on time. This forces teachers to focus on the products, or learning
outcomes rather than on processes such as problem-solving. This is compounded by
mathematical instruction which is focused too much on content and not enough on
mathematical behavior.
We need to change this situation. Indonesian students must be active learners rather than
mere knower of mathematical fact and procedures. Mathematics teachers in Indonesia
should committed to their primary mission to help learners to be better problem-solvers. This
commitment is based on our mathematics teaching aims. Based on the research findings
described above we should be aware that mathematical problem-solving instruction should
not focus on only on resources and heuristics, but also on students’ belief system.
REFERENCES
Carpenter, T.P., Corbitt, M.K., Kepner, H.S., Lindquitst, M.M., & Reys, R.E.. (1981). National
Assestment. In Fennema, E. (Ed.), Mathematics Education Research: Implications for the
80’s (pp. 22-40). Reston, Virginia: NTCM
Charles, R.I. (1982). An Instructional System for mathematical Problem-solving. In Rachlin,S.
& Mc Donald, J. (Eds), Problem Solving in the mathematics Classroom (pp. 17-32). Alberta:
MCATA
Cooney, T.J., Davis, E.J., & Henderson, K.B., (1975). Dynamics of Teaching Secondary
School Mathematics. Boston : Houghton Mifflin Company
Confrey, J., & Lanier, P (1980). Students’ Mathematicals Abilities: A Focus for the
Improvement of Teaching General mathematics. School Science and Mathematics,
November, 549-556
Departemen Pendidikan dan Kebudayaan RI (1987). Kurikulum Sekolah Menengah Umum
Tingkat Pertama (SMP). Garis-garis Besar Program Pengajaran (GBPP). Jakarta :
Depdikbud RI
Flavell, J.H. (1976). Metacognitive Aspects of Problem-Solving. In L. Resnick (Ed), The
Nature of Intelligence (pp. 231-236). Hillsdale, New Jersey: Erlbaum
17
Frank, M.L. (1988). Problem-Solving and Mathematical Beliefs. Arithmetic Teacher, January,
32-34.
Garofalo, J. (1988). Metacognition and School Mathematics. Arithmetic Teacher, May, 22-23
Kouba, V.L. (1988). Result of the Fourth NAEP Assessment of Mathematics: Measurement,
Geometry, Data Interpretation, Attitudes, and Other Topics. Arithmetics Teacher, 35(9), 10-16
Le Blanc, J.F., Proudfit, L., & Putt, I.J. (1980). Teaching Problem Solving in the Elementary
School. In Krulik, S. (Ed), Problem Solving in School mathematics (pp. 104-116) Reston,
Virginioa: NTCM.
Schoenfeld, A.H. (1985). Mathematical Problem-solving. New York: Academic Press Inc.
Silver, E.A. (1985). Research on teaching mathematical Problem-solving: Some
Underpresented Themes and Needed Direction. In Silver, E.A., Teaching and Learning
Mathematical Problem-solving. Multiple Research Perspective (pp. 247-266). Hillsdale, New
Jersey: LEA, Publishers.
Kouba, V.L., Brown, C.A., Carpenter, T.P., Lindquist, M.M., & Silver, E.A (1988). Result of the
Fourth NAEP Assesment of Matehamtics. Arithmetics Teacher, 35(8), 15-19.
* Fadjar is secondary Mathematics instructor in Timor, Indonesia. He is a full-time, internal
student in the Master of Applied Science (Science Education) course at SMEC.

More Related Content

What's hot

Modul 4 kongruensi linier
Modul 4   kongruensi linierModul 4   kongruensi linier
Modul 4 kongruensi linierAcika Karunila
 
Homomorfisma grup
Homomorfisma grupHomomorfisma grup
Homomorfisma grupYadi Pura
 
Teori bilangan
Teori bilanganTeori bilangan
Teori bilanganUjang Kbm
 
Sub grup normal dan grup fakto
Sub grup normal dan grup faktoSub grup normal dan grup fakto
Sub grup normal dan grup faktoYadi Pura
 
Sistem bilangan bulat (makul teori bilangan)
Sistem bilangan bulat (makul teori bilangan)Sistem bilangan bulat (makul teori bilangan)
Sistem bilangan bulat (makul teori bilangan)Ig Fandy Jayanto
 
Himpunan, Relasi & Fungsi, dan Logika Matematika
Himpunan, Relasi & Fungsi, dan Logika MatematikaHimpunan, Relasi & Fungsi, dan Logika Matematika
Himpunan, Relasi & Fungsi, dan Logika Matematikasiska sri asali
 
Aljabar 3-struktur-aljabar
Aljabar 3-struktur-aljabarAljabar 3-struktur-aljabar
Aljabar 3-struktur-aljabarmaman wijaya
 
Analisis bab1 bab2
Analisis bab1 bab2Analisis bab1 bab2
Analisis bab1 bab2Charro NieZz
 
Keterbagian, KPK & FPB
Keterbagian, KPK & FPBKeterbagian, KPK & FPB
Keterbagian, KPK & FPBHyronimus Lado
 
Statistik matematika BEBERAPA TEKNIK PEMBILANG DAN ATURAN PERKALIAN PERMUTASI...
Statistik matematika BEBERAPA TEKNIK PEMBILANG DAN ATURAN PERKALIAN PERMUTASI...Statistik matematika BEBERAPA TEKNIK PEMBILANG DAN ATURAN PERKALIAN PERMUTASI...
Statistik matematika BEBERAPA TEKNIK PEMBILANG DAN ATURAN PERKALIAN PERMUTASI...evansugianto
 
Analisis Real (Barisan dan Bilangan Real) Latihan bagian 2.5
Analisis Real (Barisan dan Bilangan Real) Latihan bagian 2.5Analisis Real (Barisan dan Bilangan Real) Latihan bagian 2.5
Analisis Real (Barisan dan Bilangan Real) Latihan bagian 2.5Arvina Frida Karela
 

What's hot (20)

Modul 4 kongruensi linier
Modul 4   kongruensi linierModul 4   kongruensi linier
Modul 4 kongruensi linier
 
Grup siklik
Grup siklikGrup siklik
Grup siklik
 
Homomorfisma grup
Homomorfisma grupHomomorfisma grup
Homomorfisma grup
 
Ring
RingRing
Ring
 
Teori bilangan
Teori bilanganTeori bilangan
Teori bilangan
 
Grup permutasi
Grup permutasiGrup permutasi
Grup permutasi
 
Sub grup normal dan grup fakto
Sub grup normal dan grup faktoSub grup normal dan grup fakto
Sub grup normal dan grup fakto
 
Sistem bilangan bulat (makul teori bilangan)
Sistem bilangan bulat (makul teori bilangan)Sistem bilangan bulat (makul teori bilangan)
Sistem bilangan bulat (makul teori bilangan)
 
ANALISIS REAL
ANALISIS REALANALISIS REAL
ANALISIS REAL
 
Himpunan, Relasi & Fungsi, dan Logika Matematika
Himpunan, Relasi & Fungsi, dan Logika MatematikaHimpunan, Relasi & Fungsi, dan Logika Matematika
Himpunan, Relasi & Fungsi, dan Logika Matematika
 
Operasi pada pecahan
Operasi pada pecahanOperasi pada pecahan
Operasi pada pecahan
 
Teori Group
Teori GroupTeori Group
Teori Group
 
Teori bilangan
Teori bilanganTeori bilangan
Teori bilangan
 
Pertidaksamaan pecahan
Pertidaksamaan pecahanPertidaksamaan pecahan
Pertidaksamaan pecahan
 
Aljabar 3-struktur-aljabar
Aljabar 3-struktur-aljabarAljabar 3-struktur-aljabar
Aljabar 3-struktur-aljabar
 
Analisis bab1 bab2
Analisis bab1 bab2Analisis bab1 bab2
Analisis bab1 bab2
 
Keterbagian, KPK & FPB
Keterbagian, KPK & FPBKeterbagian, KPK & FPB
Keterbagian, KPK & FPB
 
Statistik matematika BEBERAPA TEKNIK PEMBILANG DAN ATURAN PERKALIAN PERMUTASI...
Statistik matematika BEBERAPA TEKNIK PEMBILANG DAN ATURAN PERKALIAN PERMUTASI...Statistik matematika BEBERAPA TEKNIK PEMBILANG DAN ATURAN PERKALIAN PERMUTASI...
Statistik matematika BEBERAPA TEKNIK PEMBILANG DAN ATURAN PERKALIAN PERMUTASI...
 
Analisis Real (Barisan dan Bilangan Real) Latihan bagian 2.5
Analisis Real (Barisan dan Bilangan Real) Latihan bagian 2.5Analisis Real (Barisan dan Bilangan Real) Latihan bagian 2.5
Analisis Real (Barisan dan Bilangan Real) Latihan bagian 2.5
 
Basis Bilangan
Basis BilanganBasis Bilangan
Basis Bilangan
 

Similar to Bahasa Inggris dalam Pembelajaran Matematika

MATH7 ADM MODULE 3.pdf
MATH7 ADM MODULE 3.pdfMATH7 ADM MODULE 3.pdf
MATH7 ADM MODULE 3.pdfNelsonNelson56
 
Huraian sukatan mat tingkatan 1
Huraian sukatan mat tingkatan 1Huraian sukatan mat tingkatan 1
Huraian sukatan mat tingkatan 1nicolesky
 
G6 m4-a-lesson 1-t
G6 m4-a-lesson 1-tG6 m4-a-lesson 1-t
G6 m4-a-lesson 1-tmlabuski
 
Cuadernillo de matemática_2019
Cuadernillo de matemática_2019Cuadernillo de matemática_2019
Cuadernillo de matemática_2019jorgeveliz18
 
BBS April 2010 Singapore Math in Indonesia by BBS Maths Consultant Dr Yeap Ba...
BBS April 2010 Singapore Math in Indonesia by BBS Maths Consultant Dr Yeap Ba...BBS April 2010 Singapore Math in Indonesia by BBS Maths Consultant Dr Yeap Ba...
BBS April 2010 Singapore Math in Indonesia by BBS Maths Consultant Dr Yeap Ba...Jimmy Keng
 
7 - the language of algebra.docx
7 - the language of algebra.docx7 - the language of algebra.docx
7 - the language of algebra.docxJoelynRubio1
 
G6 m4-a-lesson 1-t
G6 m4-a-lesson 1-tG6 m4-a-lesson 1-t
G6 m4-a-lesson 1-tmlabuski
 
Topic 2 fractions
Topic 2 fractionsTopic 2 fractions
Topic 2 fractionsTee Teh
 
Teaching multiplication of numbers from 1 to 10 stkip surya students using ma...
Teaching multiplication of numbers from 1 to 10 stkip surya students using ma...Teaching multiplication of numbers from 1 to 10 stkip surya students using ma...
Teaching multiplication of numbers from 1 to 10 stkip surya students using ma...Sulistiawati .
 
410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.docJosephSPalileoJr
 
co (addition of polynomials).docx
co (addition of polynomials).docxco (addition of polynomials).docx
co (addition of polynomials).docxNelynDegala
 
G6 m4-b-lesson 5-t
G6 m4-b-lesson 5-tG6 m4-b-lesson 5-t
G6 m4-b-lesson 5-tmlabuski
 
Better mathematics workshop pack spring 2015: secondary
Better mathematics workshop pack spring 2015: secondaryBetter mathematics workshop pack spring 2015: secondary
Better mathematics workshop pack spring 2015: secondaryOfsted
 
Factoring Non-Perfect Square Trinomial Lesson Plan
Factoring Non-Perfect Square Trinomial Lesson PlanFactoring Non-Perfect Square Trinomial Lesson Plan
Factoring Non-Perfect Square Trinomial Lesson PlanLorie Jane Letada
 

Similar to Bahasa Inggris dalam Pembelajaran Matematika (20)

MATH7 ADM MODULE 3.pdf
MATH7 ADM MODULE 3.pdfMATH7 ADM MODULE 3.pdf
MATH7 ADM MODULE 3.pdf
 
Mathematic form1
Mathematic form1Mathematic form1
Mathematic form1
 
Huraian sukatan mat tingkatan 1
Huraian sukatan mat tingkatan 1Huraian sukatan mat tingkatan 1
Huraian sukatan mat tingkatan 1
 
Hsp maths f1
Hsp maths f1Hsp maths f1
Hsp maths f1
 
RPP Matematika IGCSE
RPP Matematika IGCSERPP Matematika IGCSE
RPP Matematika IGCSE
 
G6 m4-a-lesson 1-t
G6 m4-a-lesson 1-tG6 m4-a-lesson 1-t
G6 m4-a-lesson 1-t
 
Cuadernillo de matemática_2019
Cuadernillo de matemática_2019Cuadernillo de matemática_2019
Cuadernillo de matemática_2019
 
BBS April 2010 Singapore Math in Indonesia by BBS Maths Consultant Dr Yeap Ba...
BBS April 2010 Singapore Math in Indonesia by BBS Maths Consultant Dr Yeap Ba...BBS April 2010 Singapore Math in Indonesia by BBS Maths Consultant Dr Yeap Ba...
BBS April 2010 Singapore Math in Indonesia by BBS Maths Consultant Dr Yeap Ba...
 
7 - the language of algebra.docx
7 - the language of algebra.docx7 - the language of algebra.docx
7 - the language of algebra.docx
 
G6 m4-a-lesson 1-t
G6 m4-a-lesson 1-tG6 m4-a-lesson 1-t
G6 m4-a-lesson 1-t
 
Topic 2 fractions
Topic 2 fractionsTopic 2 fractions
Topic 2 fractions
 
Teaching multiplication of numbers from 1 to 10 stkip surya students using ma...
Teaching multiplication of numbers from 1 to 10 stkip surya students using ma...Teaching multiplication of numbers from 1 to 10 stkip surya students using ma...
Teaching multiplication of numbers from 1 to 10 stkip surya students using ma...
 
7 math lm mod3
7 math lm mod37 math lm mod3
7 math lm mod3
 
Tg 9780195979701
Tg 9780195979701Tg 9780195979701
Tg 9780195979701
 
410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc
 
WEEK 4.doc
WEEK 4.docWEEK 4.doc
WEEK 4.doc
 
co (addition of polynomials).docx
co (addition of polynomials).docxco (addition of polynomials).docx
co (addition of polynomials).docx
 
G6 m4-b-lesson 5-t
G6 m4-b-lesson 5-tG6 m4-b-lesson 5-t
G6 m4-b-lesson 5-t
 
Better mathematics workshop pack spring 2015: secondary
Better mathematics workshop pack spring 2015: secondaryBetter mathematics workshop pack spring 2015: secondary
Better mathematics workshop pack spring 2015: secondary
 
Factoring Non-Perfect Square Trinomial Lesson Plan
Factoring Non-Perfect Square Trinomial Lesson PlanFactoring Non-Perfect Square Trinomial Lesson Plan
Factoring Non-Perfect Square Trinomial Lesson Plan
 

More from NASuprawoto Sunardjo

PRESENTASI SOSIALISASI SPJ - BOS 2012
PRESENTASI SOSIALISASI SPJ - BOS 2012PRESENTASI SOSIALISASI SPJ - BOS 2012
PRESENTASI SOSIALISASI SPJ - BOS 2012NASuprawoto Sunardjo
 
KISI-KISI SOAL UJIAN NASIONAL SD/MI TAHUN 2012
KISI-KISI SOAL UJIAN NASIONAL SD/MI TAHUN 2012KISI-KISI SOAL UJIAN NASIONAL SD/MI TAHUN 2012
KISI-KISI SOAL UJIAN NASIONAL SD/MI TAHUN 2012NASuprawoto Sunardjo
 
POS UJIAN NASIONAL TAHUN 2011-2012
POS UJIAN NASIONAL TAHUN 2011-2012POS UJIAN NASIONAL TAHUN 2011-2012
POS UJIAN NASIONAL TAHUN 2011-2012NASuprawoto Sunardjo
 
KTI dalam PENGEMBANGAN PROFESI GURU
KTI dalam PENGEMBANGAN PROFESI GURUKTI dalam PENGEMBANGAN PROFESI GURU
KTI dalam PENGEMBANGAN PROFESI GURUNASuprawoto Sunardjo
 
PERHITUNGAN ANGKA KREDIT PENILAIAN KINERJA KEPALA SEKOLAH
PERHITUNGAN ANGKA KREDIT PENILAIAN KINERJA KEPALA SEKOLAHPERHITUNGAN ANGKA KREDIT PENILAIAN KINERJA KEPALA SEKOLAH
PERHITUNGAN ANGKA KREDIT PENILAIAN KINERJA KEPALA SEKOLAHNASuprawoto Sunardjo
 
IMPLEMENTASI PENDIDIKAN KARAKTER BANGSA DI SEKOLAH
IMPLEMENTASI PENDIDIKAN KARAKTER BANGSA DI SEKOLAHIMPLEMENTASI PENDIDIKAN KARAKTER BANGSA DI SEKOLAH
IMPLEMENTASI PENDIDIKAN KARAKTER BANGSA DI SEKOLAHNASuprawoto Sunardjo
 
PKPS - PEMBIMBINGAN DAN PELATIHAN PROFESIONAL GURU DAN ATAU KEPALA SEKOLAH
PKPS - PEMBIMBINGAN DAN PELATIHAN PROFESIONAL GURU DAN ATAU KEPALA SEKOLAHPKPS - PEMBIMBINGAN DAN PELATIHAN PROFESIONAL GURU DAN ATAU KEPALA SEKOLAH
PKPS - PEMBIMBINGAN DAN PELATIHAN PROFESIONAL GURU DAN ATAU KEPALA SEKOLAHNASuprawoto Sunardjo
 
PKPS - EVALUASI PELAKSANAAN PROGRAM PENGAWASAN
PKPS - EVALUASI PELAKSANAAN PROGRAM PENGAWASANPKPS - EVALUASI PELAKSANAAN PROGRAM PENGAWASAN
PKPS - EVALUASI PELAKSANAAN PROGRAM PENGAWASANNASuprawoto Sunardjo
 
PKPS - PELAKSANAAN PROGRAM PENGAWASAN
PKPS - PELAKSANAAN PROGRAM PENGAWASANPKPS - PELAKSANAAN PROGRAM PENGAWASAN
PKPS - PELAKSANAAN PROGRAM PENGAWASANNASuprawoto Sunardjo
 
PKPS - PENYUSUNAN PROGRAM PENGAWASAN
PKPS - PENYUSUNAN PROGRAM PENGAWASANPKPS - PENYUSUNAN PROGRAM PENGAWASAN
PKPS - PENYUSUNAN PROGRAM PENGAWASANNASuprawoto Sunardjo
 
PETUNJUK TEKNIS PENILAIAN KINERJA PENGAWAS SEKOLAH (PKPS)
PETUNJUK TEKNIS PENILAIAN KINERJA PENGAWAS SEKOLAH (PKPS)PETUNJUK TEKNIS PENILAIAN KINERJA PENGAWAS SEKOLAH (PKPS)
PETUNJUK TEKNIS PENILAIAN KINERJA PENGAWAS SEKOLAH (PKPS)NASuprawoto Sunardjo
 
GAMBARAN UMUM PENILAIAN KINERJA PENGAWAS SEKOLAH
GAMBARAN UMUM PENILAIAN KINERJA PENGAWAS SEKOLAH GAMBARAN UMUM PENILAIAN KINERJA PENGAWAS SEKOLAH
GAMBARAN UMUM PENILAIAN KINERJA PENGAWAS SEKOLAH NASuprawoto Sunardjo
 
KARYA TULIS ILMIAH PENGAWAS SEKOLAH
KARYA TULIS ILMIAH PENGAWAS SEKOLAHKARYA TULIS ILMIAH PENGAWAS SEKOLAH
KARYA TULIS ILMIAH PENGAWAS SEKOLAHNASuprawoto Sunardjo
 

More from NASuprawoto Sunardjo (20)

Draft Kurikulum 2013
Draft Kurikulum 2013Draft Kurikulum 2013
Draft Kurikulum 2013
 
JUKNIS SPJ-BOS TAHUN 2012
JUKNIS SPJ-BOS TAHUN 2012JUKNIS SPJ-BOS TAHUN 2012
JUKNIS SPJ-BOS TAHUN 2012
 
PRESENTASI SOSIALISASI SPJ - BOS 2012
PRESENTASI SOSIALISASI SPJ - BOS 2012PRESENTASI SOSIALISASI SPJ - BOS 2012
PRESENTASI SOSIALISASI SPJ - BOS 2012
 
TANYA JAWAB UN 2012
TANYA JAWAB UN 2012TANYA JAWAB UN 2012
TANYA JAWAB UN 2012
 
KRITERIA KELULUSAN UJIAN NASIONAL
KRITERIA KELULUSAN UJIAN NASIONALKRITERIA KELULUSAN UJIAN NASIONAL
KRITERIA KELULUSAN UJIAN NASIONAL
 
KISI-KISI SOAL UJIAN NASIONAL SD/MI TAHUN 2012
KISI-KISI SOAL UJIAN NASIONAL SD/MI TAHUN 2012KISI-KISI SOAL UJIAN NASIONAL SD/MI TAHUN 2012
KISI-KISI SOAL UJIAN NASIONAL SD/MI TAHUN 2012
 
SOSIALISASI UJIAN NASIONAL 2012
SOSIALISASI UJIAN NASIONAL 2012SOSIALISASI UJIAN NASIONAL 2012
SOSIALISASI UJIAN NASIONAL 2012
 
POS UJIAN NASIONAL TAHUN 2011-2012
POS UJIAN NASIONAL TAHUN 2011-2012POS UJIAN NASIONAL TAHUN 2011-2012
POS UJIAN NASIONAL TAHUN 2011-2012
 
KTI dalam PENGEMBANGAN PROFESI GURU
KTI dalam PENGEMBANGAN PROFESI GURUKTI dalam PENGEMBANGAN PROFESI GURU
KTI dalam PENGEMBANGAN PROFESI GURU
 
PERMASALAHAN KTI GURU
PERMASALAHAN KTI GURUPERMASALAHAN KTI GURU
PERMASALAHAN KTI GURU
 
PERHITUNGAN ANGKA KREDIT PENILAIAN KINERJA KEPALA SEKOLAH
PERHITUNGAN ANGKA KREDIT PENILAIAN KINERJA KEPALA SEKOLAHPERHITUNGAN ANGKA KREDIT PENILAIAN KINERJA KEPALA SEKOLAH
PERHITUNGAN ANGKA KREDIT PENILAIAN KINERJA KEPALA SEKOLAH
 
IMPLEMENTASI PENDIDIKAN KARAKTER BANGSA DI SEKOLAH
IMPLEMENTASI PENDIDIKAN KARAKTER BANGSA DI SEKOLAHIMPLEMENTASI PENDIDIKAN KARAKTER BANGSA DI SEKOLAH
IMPLEMENTASI PENDIDIKAN KARAKTER BANGSA DI SEKOLAH
 
LAPORAN PELAKSANAAN PKPS
LAPORAN PELAKSANAAN PKPSLAPORAN PELAKSANAAN PKPS
LAPORAN PELAKSANAAN PKPS
 
PKPS - PEMBIMBINGAN DAN PELATIHAN PROFESIONAL GURU DAN ATAU KEPALA SEKOLAH
PKPS - PEMBIMBINGAN DAN PELATIHAN PROFESIONAL GURU DAN ATAU KEPALA SEKOLAHPKPS - PEMBIMBINGAN DAN PELATIHAN PROFESIONAL GURU DAN ATAU KEPALA SEKOLAH
PKPS - PEMBIMBINGAN DAN PELATIHAN PROFESIONAL GURU DAN ATAU KEPALA SEKOLAH
 
PKPS - EVALUASI PELAKSANAAN PROGRAM PENGAWASAN
PKPS - EVALUASI PELAKSANAAN PROGRAM PENGAWASANPKPS - EVALUASI PELAKSANAAN PROGRAM PENGAWASAN
PKPS - EVALUASI PELAKSANAAN PROGRAM PENGAWASAN
 
PKPS - PELAKSANAAN PROGRAM PENGAWASAN
PKPS - PELAKSANAAN PROGRAM PENGAWASANPKPS - PELAKSANAAN PROGRAM PENGAWASAN
PKPS - PELAKSANAAN PROGRAM PENGAWASAN
 
PKPS - PENYUSUNAN PROGRAM PENGAWASAN
PKPS - PENYUSUNAN PROGRAM PENGAWASANPKPS - PENYUSUNAN PROGRAM PENGAWASAN
PKPS - PENYUSUNAN PROGRAM PENGAWASAN
 
PETUNJUK TEKNIS PENILAIAN KINERJA PENGAWAS SEKOLAH (PKPS)
PETUNJUK TEKNIS PENILAIAN KINERJA PENGAWAS SEKOLAH (PKPS)PETUNJUK TEKNIS PENILAIAN KINERJA PENGAWAS SEKOLAH (PKPS)
PETUNJUK TEKNIS PENILAIAN KINERJA PENGAWAS SEKOLAH (PKPS)
 
GAMBARAN UMUM PENILAIAN KINERJA PENGAWAS SEKOLAH
GAMBARAN UMUM PENILAIAN KINERJA PENGAWAS SEKOLAH GAMBARAN UMUM PENILAIAN KINERJA PENGAWAS SEKOLAH
GAMBARAN UMUM PENILAIAN KINERJA PENGAWAS SEKOLAH
 
KARYA TULIS ILMIAH PENGAWAS SEKOLAH
KARYA TULIS ILMIAH PENGAWAS SEKOLAHKARYA TULIS ILMIAH PENGAWAS SEKOLAH
KARYA TULIS ILMIAH PENGAWAS SEKOLAH
 

Recently uploaded

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 

Recently uploaded (20)

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 

Bahasa Inggris dalam Pembelajaran Matematika

  • 1.
  • 2. KATA PEKATA PEKATA PEKATA PENNNNGANTARGANTARGANTARGANTAR Puji syukur kami panjatkan ke hadirat Tuhan Yang Maha Esa, karena atas karunia-Nya, bahan ajar ini dapat diselesaikan dengan baik. Bahan ajar ini digunakan pada Diklat Guru Pengembang Matematika SMK Jenjang Dasar Tahun 2009, pola 120 jam yang diselenggarakan oleh PPPPTK Matematika Yogyakarta. Bahan ajar ini diharapkan dapat menjadi salah satu rujukan dalam usaha peningkatan mutu pengelolaan pembelajaran matematika di sekolah serta dapat dipelajari secara mandiri oleh peserta diklat di dalam maupun di luar kegiatan diklat. Diharapkan dengan mempelajari bahan ajar ini, peserta diklat dapat menambah wawasan dan pengetahuan sehingga dapat mengadakan refleksi sejauh mana pemahaman terhadap mata diklat yang sedang/telah diikuti. Kami mengucapkan terima kasih kepada berbagai pihak yang telah berpartisipasi dalam proses penyusunan bahan ajar ini. Kepada para pemerhati dan pelaku pendidikan, kami berharap bahan ajar ini dapat dimanfaatkan dengan baik guna peningkatan mutu pembelajaran matematika di negeri ini. Demi perbaikan bahan ajar ini, kami mengharapkan adanya saran untuk penyempurnaan bahan ajar ini di masa yang akan datang. Saran dapat disampaikan kepada kami di PPPPTK Matematika dengan alamat: Jl. Kaliurang KM. 6, Sambisari, Condongcatur, Depok, Sleman, DIY, Kotak Pos 31 YK-BS Yogyakarta 55281. Telepon (0274) 881717, 885725, Fax. (0274) 885752. email: p4tkmatematika@yahoo.com Sleman, 11 Mei 2009 Kepala, Kasman Sulyono NIP. 130352806
  • 3. ii Daftar Isi Kata Pengantar ------------------------------------------------------------------------------------ i Daftar Isi ---------------------------------------------------------------------------------------ii Kompetensi/Sub Kompetensi dan Peta Bahan Ajar ------------------------------------- iii Skenario Pembelajaran -------------------------------------------------------------------------iv Unit 1 Numbers -------------------------------------------------------------------------- 1 Unit 2 2-Dimensional ------------------------------------------------------------------- 5 Unit 3 Reading --------------------------------------------------------------------------13
  • 4. iii KOMPETENSI Mampu memahami literatur berbahasa Inggris. SUB KOMPETENSI Memiliki kemampuan membaca dan menjelaskan hal-hal yang berkait dengan bilangan dalam bahasa Inggris. Memiliki kemampuan membaca dan menjelaskan hal-hal yang berkait dengan geometri dimensi dua dalam bahasa Inggris. Memiliki kemampuan membaca artikel dalam bahasa Inggris serta dapat menentukan beberapa point penting pada artikel tersebut. PETA BAHAN AJAR Mata diklat untuk jenjang dasar ini membutuhkan pengetahuan prasyarat berupa pengetahuan bahasa Inggris dasar. Pada diklat jenjang dasar ini kepada para peserta hanya diberikan pengetahuan yang berkait dengan bilangan dan istilah pada geometri dimensi dua (geometri datar). Pada diklat tahap lanjut dan menengah, kepada para peserta diharapkan sudah lebih mampu memahami buku maupun literaratur berbahasa Inggris.
  • 5. iv SKENARIO PEMBELAJARAN Pendahuluan (5’) Tujuan Ruang Lingkup Langkah-langkah Penyampaian Mtr (60’) Mempelajari Bilangan (Numbers) Geometri Datar (2- Dimensional) Penugasan (45’) Membaca artikel dalam bahasa Inggris Menemukan tiga point pada artikel tersebut Laporan (20’) Hasil diskusi Masalah Penutup (5’) Rangkuman Refleksi Tugas
  • 6. Unit I Introduction A. Rationale English is very important, not only for students of SMK (Secondary Vocational School); but also for mathematics teacher of secondary vocational school. The reason is, there are a lot of mathematics or mathematics education books, periodicals, jurnals, video cassette recorders, or films, are written ot talked in english such as: o The Art of Algebra by Abrahamson, D; Gray, M.C. (1971). Adelaide: Rigby Limited. o 40 Investigational Work, by Bastow, B.; Hughes, J.; Kissane, B.; & Randall, R.; (1984). Perth: Mawa. o Dictionary of Mathematics by Borowski, E.J.; Borwein, J.M. (1989). London: Collins o 7th International Congress on Mathematical Education (ICME-7). Topic Group 10: Constructivist Interpretations of Teaching and Learning Mathematics. Perth: Curtin University of Technology. o An Introduction to Matrices,Vectors, and Linear Programming (2nd Ed) by Campbell, H.G. (1977). New Jersey: Prentice-Hall, Inc. o Dynamics of Teaching Secondary School Mathematics by Cooney, T.J.; Davis, E.J.; Henderson, K.B. (1975). Boston: Houghton Mifflin Company. o Introduction to Logic by Copi, I.M. (1978). New York: Macmillan. o What is Mathematics by Courant, R.; Courant, H. (1981) Oxford University Press: Oxford. o Mathematical Literacy for Living from OECD-PISA Perspective by De Lange, J. (2005). Paris: OECD-PISA. In addition, some of Secondary Vocational School has been or will be declared to be Schools Based International (Sekolah Berwawasan Internasional = SBI). In those schools, english is used or will be used during the teaching and learning process. In anticipating the situation, mathematics teacher should be provicient in english, written or orally. In other to fulfill the needs, during the inservice training, one of the topic is ‘Bahasa Inggris dalam Pembelajaran Matematika’ or ‘English in Teaching Mathematics.’ This materials will be used during the session. B. Objectives The general aim of the session is to help mathematics teacher to understand english literature especially in mathematics and mathematics education literature. After the session, the participant will be able to: Read and explain the materials concerning numbers. Read and explain the materials concerning 2-Dimensional Geometry Read and explain the articles written in english. C. The Used of Materials The materials are written in such a way that can be learned by participants by themselves. Ideally, the materials can be learned before the session. During the session participants can ask to the tutor (Widyaiswara) about those materials, especially the spoken problems.
  • 7. 2 Unit 2 Numbers A. 17 (seventeen) is an example of a number. It is a whole number or integer. A number consists of one or more digit. 13, 5, and 35 are odd numbers; while 2, 4, and 18 are even numbers. • When we add one quantity to another we use the symbol ‘+’ (plus). The name of this operation is addition. The result of this operation is called the sum. • When we subtract one quantity to another we use the symbol ‘−’ (minus). The name of this operation is subtraction. The result of this operation is called the difference. • When we multiply one quantity to another we use the symbol ‘×’ (multiplied by or times). The result of this operation is called the product. • When we divide one quantity to another we use the symbol ‘:’ (divided by). The name of this operation is division. The result of this operation is called the quotient. • The result of these operation are indicated by the symbol = (equals). Practice 1.A 1. Read out the following a. 6 b. 34 c. 578 d. 9.573 e. 812.934 f. 1.234.567 g. 9 + 7 = 16 h. 78 − 24 = 54 i. 14 × 27 = 378 j. 36 : 9 = 4 2. Fill in the blank spaces in the following sentences by using single words. a. The ---- of three and four is seven. b. The operation which uses the symbol “×” is called ---- . c. Twelve ---- six equals two. d. The result of a subtraction problem is called the ---- . e. An integer is also known as a ---- . f. Any number consists of combination of ---- . g. Seventeen subtracted ---- twenty equals ---- . h. Seven multiplied ---- five equals ---- . i. When we ---- two quantities, for example eight plus twelve, the answer (twenty) is called the ---- . j. The product is the result when one quantity is ---- another B. 5 4 (four fifths or four over five) is an example of a fraction. In this fraction, 4 is the numerator and 5 is the denominator. 5 16 is an improper fraction. 4 5 4 is a mixed number.
  • 8. 3 To add or to subtract vulgar fraction, we must express them in terms of the lowest common denominator. For example (e.g.) in this subtraction 5 1 3 2 − , the lowest common denominator is 15. To multiply or divide vulgar fraction e.g. 4 3 1 5 2 2 3 2 2 ×× , we must first change the mixed number to improper fraction 4 7 5 12 3 8 ×× and then cancel where it is possible. Then multiply the numerators and the denominators and express the result as a mixed number. To write a decimal fraction we use a decimal point. For example, if we convert 4 1 2 into a decimal fraction, the result is 2,25 (two point two five). if we convert 3 2 into a decimal fraction, the result is 0,6 (nought point six recurring). 17 : 3 = 5,6 or 5,67 correct to two decimal places, while π is equal to 3,142 correct to four significant figures. Practice 1.B 1. Read out the following a. 2 1 b. 3 1 c. 4 1 d. 13 2 e. 5 1 × 3 1 f. 3 1 × 5 3 g. 3 2 4 7 ÷ h. 20 19 5 10 7 2 4 1 3 =+ i. 15 7 5 1 3 2 =− j. 24 1 8 1 6 1 =− k. 81,355 l. 3,6 + 7,2 = 10,8 m. 10 : 6 = 1,6 n. 655 : 3 = 218,3 o. 6,5 × 42,6 = 276,9 p. 781,9 + 63,5 = 845,4 2. Using single words, fill in the blank spaces in the following sentences: a. In the vulgar fraction seven ninths, ---- is the denominator and ---- is the ---- . b. To ---- a vulgar fraction to a decimal fraction, we simply ---- the numerator by the denominator. c. The ---- ---- ---- of two third and a half is six. d. An integer plus a fraction makes a ---- ---- . e. An improper fraction exists when the ---- is greater than the ---- . f. To multiply a decimal fraction by ten, we simply move the ---- ---- one place to the right. g. 57,074 correct to ---- ---- ---- is 57,1.
  • 9. 4 h. To add or subtract vulgar fraction, we must ---- them in ---- ---- their lowest common denominator. i. To devide a decimal fraction by ---- we simply move the decimal point one ---- to the ---- . j. 9 2 2 5 × becomes 9 5 if we ---- the two’s. C. If in a given classroom, there are fourteen boys and seven girls, we say that the ratio of girls to boys is 1 : 2 (one to two). When we build a model ship, we make it to scale. For example, if a model is built to scale of 1 : 30 (one to thirty), this mean that 10 centimeters on the model represent 300 centimeters on the ship itself. The scale of a map shows the ratio of the distance on the map to the distance on the area covered by the map. On a map this ratio is called the representatives fraction. 3 : 6 (three to six) and 5 : 10 (five to ten) are two equal ratios, in other words 3,6 and 5,10 are in proportion, in direct proportion, or directly proportional. If it takes 5 men one hour to do a job, and 10 men half an hour to do the same job, we can say that the number of men and the time are in inverse proportion, or that these quantities are inversely proportional. 36% (thirty-six percent) is really a fraction with a numerator of thirty-six and a denominator of one hundred. The farction 40 8 expressed as a percentage is 20%. If a number is decreased by 10%, the ratio of the new number to the old number is 90 : 100. If a number is increased by 10%, the ratio of the new number to the old number is 110 : 100. If we borrow a sum of money at a rate of interest of 10%, we must pay back the money in the same proportion. If a student scores 81% in one exam and 87% in the next, his average (or mean) percentage is 84%. Practice 1.C 1. Answer these question. a. Which fraction with a denominator of sxteen is in proportion to one over four? b. If a plan is drawn to a scale of 1 : 50 (one to fifty), what is the actual measurement which is shown on the plan as four centimetres? c. Divide one hundred and forty sheep into two groups in the ratio of 3 : 4. d. The scale of a map is five centimetres to one kilometre. What is the representative fraction of the map? e. On the same map, what length will represent nine kilometres? f. Divide thirty-six pounds into three parts in the ratio 6 : 5 : 1. g. Five families have a total of 100 sheep. How many sheep will six families have if the numbers are in proportion? h. A concrete mix of cement, sand and gravel is made in the ratio of 2 : 5 : 8. What is the weight of each part in thirty tonnes of concrete? i. In a class of student the ratio of successes to falures in an examination was 9 : 2. If eighteen students passed the examination, how many failed? j. If ten litres of oil weigh eight kilograms, and a litre of water weighs one kilogram, what is the ratio of the relative density of oil and water?
  • 10. 5 2. Answer these question. a. What is four and a half percent of eight hundred people? b. What is thirty percent of fifty? c. Express fifty-six as a percentage of seventy. d. What percentage is four fifths? e. What fraction is seventy-five percent? f. What decimal fraction is sixty-three point nine percent? g. What is the ratio of men to women if sixty percent are men? h. How much interest has a bank been paid if it receives a total of six fifths of the sum borrowed? i. In a class of twenty-five students, twenty come to school by bus and five by car. What is the ratio of those who come by car to those who come by bus, and what percentage of the class does each group represent? j. The numerator of a fraction is 6. This numerator is equal to thirty-three point three recurring percent of the denominator. What is the fraction? 3. Fill in the blank spaces in the following sentences: a. To convert a ---- to a fraction, divide ---- 100. b. If three metres of material cost 225 units of money and eight metres cost six hundred units of money, the lengths and prices are ---- ---- . c. If the plan of building is drawn to a ---- of 1 : 65, one centimetre on the plan ---- sixty-five centimetres on the building. d. In a certain country, rainy days and dry days are in the ---- 1 : 7. e. If we wish to ---- a vulgar ---- as a ---- , we must ---- by one hundred.
  • 11. 6 Unit 3 2-Dimensional Figures A. This line is horizontal. This line is vertical. This line is oblique. These lines are curved. These two lines are parallel. They are equidistant at all points. A straight line drawn across a set of two or more parallel lines is called transversal. The broken line marks the locus of a point equidistant from AB to CD. The locus of a point is the the path traced by that point when it moves in accordances with a given law. Practice 2.A 1. Look at the figure and say which lines are: a. vertical b. transversal c. parallel d. oblique e. horizontal f. curved 2. Using the word you have learned, describe the following mathematical symbols. A X P Y Z B C Q F R S D A C B D
  • 12. 7 a. the plus symbol b. the minus symbol c. the multiplication symbol d. the equals symbol e. the pi symbol B. These two lines meet at an angle. This angle is less than 90° (ninety degrees). It is an acute angle. This is an obtuse angle. This is a reflex angle. These two lines meet at an angle of 90°. They form a right angle. The two lines are perpendicular to each other. Lines FK and AB intersect at point X. The angles FXB and BXK are next to each other, or adjacent. The sum of these angles is 180°. They are supplementary angles. Angles ABY and YBC are equal. Line BY bisect angle ABC. BY is the bisector of angle ABC. The sum of angle ABY and YBC is 90°. They are complimentary angles. This figure shows a transversal line drawn across two parallel lines. Angles r and q are equal (opposite angles). Angles b and q are equal (corresponding angles). Angles b and r are equal (alternate angles). A B K F X A B C Y p q r s a b c d
  • 13. 8 Practice 2.B 1. Describe the lines and angles in the following figures. a. . b. . c. . d. . C. A triangle is a three-sided figure. The three sides of a triangle meet at points called vertices (singular: vertex). The vertex at the top of a triangle may be called the apex, and the line at the bottom may be called the base. In triangle ABC, line BC is produced to point X. ACB is an interior angle, and ACX is an exterior angle. A B C Z Y Z F K P Z R Q P S B T A M N P Q B A C X
  • 14. 9 This is an isosceles triangle. This is an equilateral triangle. This is a right angled triangle. In a right angled triangle the side opposite the right angle is called the hypotenuse. The theorem of Pythagoras states: “In a right angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides.” If the following parts of two triangles are equal, a. two sides and the included angle; or b. a right angle, hypotenuse, and side; or c. two angles and a corresponding side; or d. all three sides; then the two triangles are congruent. If two triangles have their corresponding angles equal, they are similar. These two triangles are on either side of an axis of symmetry (or centre line). They are symmetrical triangles.
  • 15. 10 Practice 2.C 1. Describe each triangle, and use your ruler to discover any relationships between the triangles (i.e. symmetry, similarity, or congruence) a. . b. . c. . d. . e. . f. . g. . h. . i. . 2. Using the word you have learned, fill in the blank spaces in the following sentences. a. If each of the angles in a triangle is equal to 60°, the triangle is called ---- . b. A line which meets another ---- at 90° is called a ---- line. c. If two angles of a triangle are equal to 45°, the triangle is called a ---- triangle. d. If we ---- a right angles, we have two ---- angles of 45°. e. Each triangle has three points, or ---- . D. This is a circle. The centre of a circle is called its point of origin. The distance around a circle is called its circumference. O
  • 16. 11 A half circle is called a semi-circle. The line drawn from the point of origin to the circumference is called the radius (plural: radii). The line drawn from one side of the circle to the other, passing through the point of origin to the circumference, is called the diameter. A part of the circumference of a circle is called an arc. A straight line joining the ends of an arc is called a chord. The part of a circle enclosed by an arc and a chord is called a segment. A part of a circle enclosed by two radii and an arc is called a sector. A line meeting the circumference but which (when produced) does not intersect it is called a tangent. A line which intersects the circumference in two places is called a secant. A circle which passes through the vertices of a triangle is called the circumcircle of the triangle, and its centre is called its circumcentre. The circle is circumscribed around the triangle. The angle subtended at the centre by an arc of a circle is equal to twice the angle subtended by that arc at the circumference. These circles have the same point of origin. O O O
  • 17. 12 They are concentric. Practice 2.D 1. Do these task. a. A circle has a radius of 3 centimeters. Calculate: i. the diameter ii. the circumference. b. A circumference of a circle is approximately 15,7 cm. Calculate: i. the approximate radius ii. the approximate diameter. c. What is the angle subtended by a semi-circle equal to? d. The angle subtended by an arc at the circumference is 35°. i. What is the angle subtended by the same arc at the point of origin. ii. How can you calculate the answer to (i)? e. If two chord of a circle, AB and CD, intersect at O, what is the relationship between AO × OB and CO × OD? 2. Using the word you have learned, fill in the blank spaces in the following sentences. a. If we draw the ---- of a circle, the line divides the circle into two equal ---- . b. ---- circles are circles which have the same ---- of ---- . c. A semi-circles ----- an angle of 90° at the ---- . d. A triangle has been ---- if a circle passes through its ---- . e. A ----- is the area enclosed by an arc and two ---- , while a ---- is the area enclosed by an arc and a ---- . f. If a line passes through a circle and intersects the circumference, it is called a ---- , but a ---- meets the circumference without intersecting it. E. A line is 1-dimensional. Triangles and circle are 2-dimensional. Here are some more 2-dimensional figures. This is a square. Objects shaped like a square are square. This is a rectangle. Objects shaped like a rectangle are rectangular. The line drawn from one corner to the opposite corner is called the diagonal. This is a rhombus. This is a parallelogram or rhomboid.
  • 18. 13 This is a quadrilateral or quadrangle. This is a pentagon. Objects shaped like a pentagon are pentagonal. This is a hexagon. Objects shaped like a hexagon are hexagonal. This is an ellipse. Objects shaped like a ellipse are elliptical. This is an trapezium. Note: A figure with many, or an unspecified number of, sides is called polygon. A four-sides figure which is circumscribed by a circle called cyclic quadrilateral. The sum of the sides of a two dimensional figure is called the perimeter. Practice 2.E 1. Using the word you have learned, fill in the blank spaces in the following sentences. a. A ---- is a ---- with six sides. b. A four-sided figure is called a ---- . c. A shape with five sides is a ---- . d. A four-sided figure with two sides parallel is called a ---- . e. A rhomboid has two ---- and two ---- angles. f. The ---- of the ---- angles of quadrilateral is equal to 360°. g. A ---- may be called an equilateral rectangle. h. If two ---- of a parallelogram are vertical, the other two are ---- . i. A ---- which has length and width is ---- - ---- j. A figure with four equal ---- but no right angles is called a ---- .
  • 19. 14 Unit 4 Reading This article was written by Fadjar Shadiq in 1987 and published in SAMEN (Science and Mathematics Education Newsletter) as bulletin news of SMEC (Science and Mathematics Education Centre), Curtin University of Technology, Perth, Western Australia. Please find out three important points from the article. WHAT RESEARCH SAYS ABOUT MATHEMATICAL PROBLEM SOLVING The development of the ability to solve problems has long been recognized as one of the major goals of mathematics education. Every individual in our society is faced with making decisions, they must have the ability to think creatively, laterally, divergently, rationally, objectively, and systematically. Teaching mathematical problem-solving means teaching how to: define the problem to be solved, devise a plan, choose appropriate strategies, collect and analyze relevant information, evaluate relevant information, evaluate the results and make decisions. A problem was defined by Cooney, Davis & Henderson (1975) as: “… a question which presents a challenge that cannot be resolved by some routine procedure known to students.” Two types of problems have been identified (Charles, 1982: le Blanc, Proudfit & Putt, 1980): (1) standard textbook (translation) problems, and (2) process problems. In solving translation problem, the emphasis is on translating a real word situation in the problem into mathematical terminology or mathematical sentence in the solution. The Translation problem requires only the application of skills, principles, or concepts known to students, while the process problem requires, in addition, the use of strategy or some non-algorithmic approach. Process problems emphasize the process of obtaining the solution rather than solution itself. Solving problems is one of the most difficult activities in the mathematics curriculum at all grade levels. The National Assessment of Educational Progress (NAEP) reported in 1988 that only 29 percent of large national sample of 17-years-old in the USA were able to solve the following problem: Lemonade cost 95c for one 56 once bottle. At the school fair, Bob sold cups holding 8 ounces for 20c each. How much money did the school make on each bottle? In 1980, the National Council of Teachers of Mathematics (NCTM) recommended that problem-solving should be the focus of the school mathematics in the United States. Although problem-solving is one of the major goals of mathematics education many students still have difficulties with this important task. The performance of United States’ students increased from NAEP II to NAEP IV. However, in reporting the fourth NAEP results Kouba et al (1988) stated: ”Students have trouble with items that do not involve routine, familiar tasks.” WHAT IS NEEDED IN SOLVING PROBLEMS Shoenfeld (1985), in his book Mathematical Problem Solving, described four requirements for solving mathematical problems:
  • 20. 15 1. Resources. Mathematical knowledge possessed by the individual that can be brought to bear on the problem at hand. 2. Heuristic. Strategies and techniques for making progress on unfamiliar or nonstandard problems; rules of thumb for effective problem solving 3. Control. Global decisions regarding the selection and implementation of resources and strategies. 4. Belief Systems. One’s mathematical world view”, the set of (not necessarily conscious) determinants of an individual’s behavior. Problem solving activities in school focus mostly on instructional techniques such as problem- solving strategies, Polya’s four steps method (understanding, the problem, devising a plan, carrying out, and looking back), and the teaching of computer programming languages such as LOGO or BASIC (Frank, 1988). This means that research on the teaching of problem- solving has been concerned largely with heuristics, rather than with other requirements such as students’ beliefs system. Students’ beliefs, views, ideas, and conceptions of mathematics are developed in the classroom over a long period. Inevitably, students’ beliefs about mathematics can help or hinder them as good problem solvers. (Garafalo, 1987; Erlwanger, 1975). Research on students’ beliefs about mathematics has revealed: mathematics to be regarded as computation (Frank, 1988), rule based (NAEP IV), and mostly memorizing (NAEP IV); formal mathematics has little or nothing to do with real thinking (Schoenfeld, 1985); the primary aim in mathematics is to get the answer (Confrey, 1980; Frank, 1988); and mathematics problems are solved in less than 10 minutes (Schoenfeld, 1985) and in a few steps (Frank, 1988). As mathematics teachers, one of our tasks is to help students to develop an awareness of their cognitive functioning, so that they are better able to control and regulate their cognitive actions during their problem solving activities. Teaching strategies are required to focus students’ attention on their assumptions and beliefs. For example, teacher question such as: ”Why did you use this strategy?”; ”Are you sure about this pattern?”; “What happens if x is a negative number?”, or “Why do you think you usually make this error?” can help students to become more aware of their cognitive functioning as a first step towards evaluating and modifying it. Recent research has attempted to find ways of better shaping students’ beliefs about mathematics. Frank (1988) suggested four strategies for mathematics teachers to help their students develop positive beliefs about mathematical problem-solving activities: 1. Start problem-solving early 2. Be sure your problems are problems, i.e., non-routine 3. Focus on solution, not answer 4. de-emphasize computation IMPLICATION FOR MATHEMATICS EDUCATION IN INDONESIA The Indonesian Department of Education and Culture (Depdikbud, 1987) formulated the following aims of mathematics teaching for primary and secondary school students:
  • 21. 16 (a) to enable learners to be able to successfully tackle situations in their changeable lives, through action training based on thinking; logically and rationally, critically and accurately, objectively, creatively, and effectively (b) to enable learners to apply their knowledge of mathematics correctly in their daily lives and in other subjects The first aim can be achieved if students learn how to solve process problems which require logical, rational, creative, and systematic thinking, and ingenuity in conception and reflection. The second aim can be attained if students also learn how to solve translation problems which emphasize translating real-world situations into mathematical terminology and solving the problem by using mathematical principles or mathematical concepts. Since 1982, problem-solving has been discussed during the in-service and On-service training courses for secondary school mathematics teachers. In 1987, the team of Indonesian instructors of mathematics provided a collection of problems appropriate for secondary school students. However, the intended curriculum, which is prescribed in the national syllabuses, must be completed on time. This forces teachers to focus on the products, or learning outcomes rather than on processes such as problem-solving. This is compounded by mathematical instruction which is focused too much on content and not enough on mathematical behavior. We need to change this situation. Indonesian students must be active learners rather than mere knower of mathematical fact and procedures. Mathematics teachers in Indonesia should committed to their primary mission to help learners to be better problem-solvers. This commitment is based on our mathematics teaching aims. Based on the research findings described above we should be aware that mathematical problem-solving instruction should not focus on only on resources and heuristics, but also on students’ belief system. REFERENCES Carpenter, T.P., Corbitt, M.K., Kepner, H.S., Lindquitst, M.M., & Reys, R.E.. (1981). National Assestment. In Fennema, E. (Ed.), Mathematics Education Research: Implications for the 80’s (pp. 22-40). Reston, Virginia: NTCM Charles, R.I. (1982). An Instructional System for mathematical Problem-solving. In Rachlin,S. & Mc Donald, J. (Eds), Problem Solving in the mathematics Classroom (pp. 17-32). Alberta: MCATA Cooney, T.J., Davis, E.J., & Henderson, K.B., (1975). Dynamics of Teaching Secondary School Mathematics. Boston : Houghton Mifflin Company Confrey, J., & Lanier, P (1980). Students’ Mathematicals Abilities: A Focus for the Improvement of Teaching General mathematics. School Science and Mathematics, November, 549-556 Departemen Pendidikan dan Kebudayaan RI (1987). Kurikulum Sekolah Menengah Umum Tingkat Pertama (SMP). Garis-garis Besar Program Pengajaran (GBPP). Jakarta : Depdikbud RI Flavell, J.H. (1976). Metacognitive Aspects of Problem-Solving. In L. Resnick (Ed), The Nature of Intelligence (pp. 231-236). Hillsdale, New Jersey: Erlbaum
  • 22. 17 Frank, M.L. (1988). Problem-Solving and Mathematical Beliefs. Arithmetic Teacher, January, 32-34. Garofalo, J. (1988). Metacognition and School Mathematics. Arithmetic Teacher, May, 22-23 Kouba, V.L. (1988). Result of the Fourth NAEP Assessment of Mathematics: Measurement, Geometry, Data Interpretation, Attitudes, and Other Topics. Arithmetics Teacher, 35(9), 10-16 Le Blanc, J.F., Proudfit, L., & Putt, I.J. (1980). Teaching Problem Solving in the Elementary School. In Krulik, S. (Ed), Problem Solving in School mathematics (pp. 104-116) Reston, Virginioa: NTCM. Schoenfeld, A.H. (1985). Mathematical Problem-solving. New York: Academic Press Inc. Silver, E.A. (1985). Research on teaching mathematical Problem-solving: Some Underpresented Themes and Needed Direction. In Silver, E.A., Teaching and Learning Mathematical Problem-solving. Multiple Research Perspective (pp. 247-266). Hillsdale, New Jersey: LEA, Publishers. Kouba, V.L., Brown, C.A., Carpenter, T.P., Lindquist, M.M., & Silver, E.A (1988). Result of the Fourth NAEP Assesment of Matehamtics. Arithmetics Teacher, 35(8), 15-19. * Fadjar is secondary Mathematics instructor in Timor, Indonesia. He is a full-time, internal student in the Master of Applied Science (Science Education) course at SMEC.