SlideShare a Scribd company logo
1 of 22
Download to read offline
Influence of Creep on the Stability of
 Pultruded E-Glass / Polyester Composite
Columns at Elevated Service Temperatures




              By: Evan A. Bennett

         Advisor: David W. Scott, Ph. D.
FRP in Civil Engineering

FRP Components in Civil Engineering
  No Reliable Design Criteria
  Long-Term Behavior
  Elevated Temperatures

Goals of the Current Work
  Expand on Previous Creep Studies on FRP
  Components
  Develop Semi-empirical Predictive Equations for
  Lateral Creep Displacement
  Better Understanding of Long-Term Behavior
  Examine Impact of Elevated Temperatures
Short-Term Properties



Test Specimens                  4
  Pultruded 4 x 4 x ¼”
  Square Tubes
  6 ft Length
                                      4
  Extren Series 500       1/4
  Isophthalic Polyester
  Resin
  E-Glass Rovings and
  CSM
Buckling Loads
            π 2 EL I
                 C
                                                     PE
     PE =                              Pe =
                                            1 + (ns PE Ag GLT )
               2
                       (1)                                      (2)
              Leff



               Short-Term Critical Load Approximations
                                 Approximation
         Current Study      Butz          Euler     Modified Euler
         (Experimental) (Experimental) (Equation 1) (Equation 2)
  Pcr
              50.5             46.6           53.5            49.9
(kips)
Testing Apparatus
                    Top Plate

                                                    Knife Edge



Typical Creep Frame
(Room Temp. Tests)

                           L eff = 75 in
                                                     1-1/2" Threaded Rod




         1-1/2" Hexagonal Nut
                                                      Middle Plate
                     20 x 20 x 1" Steel              Spring
                     Plate
                                                    Bottom Plate
                                                     Hydraulic Jack
                       Load Cell


                                       FRONT VIEW
Testing Apparatus
Elevated Temperature Chambers
Manufacturers Recommendations




From Strongwell Corporation Extren Design Manual (2002)


F.O.S. = 3
Long-Term Testing

               Creep Test Matrix

                        Temperature   Duration
Specimen    l (P/Pcr)
                           (°F)       (hours)
PG-33-R       0.33           73        1000

PG-33-E       0.33          150        1000

PG-67-R       0.67           73        1000

PG-67-E       0.67          150        1000

PG-90-R       0.90           73        1000

PG-90-E       0.90          150        1000
Long-Term Results
                   Midheight Lateral Deflection of All Specimens
                                                                       0.14
                 PG-33-R
                 PG-33-E
                 PG-67-R                                               0.12
         3
                 PG-67-E
                 PG-90-R
                 PG-90-E
                                                                       0.10



         2                                                             0.08
d (mm)




                                                                              d (in)
                                                                       0.06



         1                                                             0.04



                                                                       0.02



         0                                                             0.00
             0        200     400       600        800    1000     1200

                                    Time (hours)
Quasielastic Method

Schapery (1965)
Vinogradov (1987)
Kang (2001)
Remove Eccentricity from Kang’s Analysis

                 λ                               tn
      δ = Ai             (3)          ψ (t ) =        (4)
               1− λ                              β

                             λ [1 +ψ (t )]
               δ (t ) = Ai                     (5)
                           1 − λ [1 +ψ (t )]
Determination of Quasielastic Parameters

         3.0       Room Temperature                                               0.12
                      Specimens

         2.5                                                                      0.10
                                                         PG-33-R
                                                         PG-67-R
                                                         PG-90-R
         2.0                                                                      0.08
                                                         PG-33-R Prediction
                                                         PG-67-R Prediction
d (mm)




                                                                                         d (in)
                                                         PG-90-R Prediction
         1.5                                                                      0.06



         1.0                                                                      0.04



         0.5                                                                      0.02



         0.0                                                                      0.00
               0      200     400       600        800         1000           1200

                                    Time (hours)
Determination of Quasielastic Parameters
                                                                                  0.14

                 Elevated Temperature
                      Specimens                                                   0.12
         3


                                                                                  0.10



         2                                                                        0.08
d (mm)




                                                         PG-33-E




                                                                                         d (in)
                                                         PG-67-E
                                                         PG-90-E
                                                         PG-33-E Prediction       0.06
                                                         PG-67-E Prediction
                                                         PG-90-E Prediction
         1                                                                        0.04



                                                                                  0.02



         0                                                                        0.00
             0       200      400       600        800         1000           1200

                                    Time (hours)
Findley’s Power Law
                                                                                         1


                                      10        PG-90-R

ε (t ) = ε 0 + mt n   (6)
                                                                                         0.1


                                       1




                            d (mm)
                                                m




                                                                                                  d (in)
                                                                                         0.01
                                                          n

δ (t ) = δ 0 + mt n
                                      0.1
                      (7)
                                                                                         0.001


                                     0.01



                                                                                         0.0001
                                            1             10       100        1000   10000

                                                               Time (hours)

log[δ (t ) − δ 0 ] = log(m ) + n log(t ) (8)
Inclusion of Temperature Effects in Predictive Model

  Findley et al. (1956)

                       ⎛σ        ⎞              ⎛σ ⎞
     ε (t ) = ε '0 sinh⎜
                       ⎜σ        ⎟ + m' t n sinh⎜
                                 ⎟              ⎜σ ⎟
                                                   ⎟   (9)
                       ⎝ ε       ⎠              ⎝ m⎠
  Applied to Lateral Deflection

                             ⎛ λ ⎞
     δ (t ) − δ 0 = m' t sinh⎜ ⎟
                      n
                             ⎜λ ⎟
                                           (10)
                             ⎝ m⎠
  Including Temperature

                                 ⎛ λ ⎞
     δ (t ,τ ) − δ 0 = τm' t sinh⎜ ⎟ (11)
                                                                 T
                             n
                                 ⎜λ ⎟                        τ =      (12)
                                 ⎝ m⎠                            TR
Findley Predictions of Lateral Creep
                                                                                0.14
                 Room Temperature
                    Specimens
         3                                                                      0.12

                                                       PG-33-R
                                                       PG-67-R                  0.10
                                                       PG-90-R
                                                       PG-33-R Prediction
                                                       PG-67-R Prediction
d (mm)




                                                                                       d (in)
         2                                                                      0.08
                                                       PG-90-R Prediction


                                                                                0.06



         1                                                                      0.04


                                                                                0.02


         0                                                                      0.00
             0      200     400       600        800         1000           1200

                                  Time (hours)
Findley Predictions of Lateral Creep
                                                                                  0.14

                 Elevated Temperature
                      Specimens                                                   0.12
         3


                                                                                  0.10
                                                         PG-33-E
                                                         PG-67-E
                                                         PG-90-E
         2                                               PG-33-E Prediction       0.08
d (mm)




                                                                                         d (in)
                                                         PG-67-E Prediction
                                                         PG-90-E Prediction
                                                                                  0.06



         1                                                                        0.04



                                                                                  0.02



         0                                                                        0.00
             0       200      400       600        800        1000            1200

                                    Time (hours)
Extended Predictions of Lateral Creep
                 Deflection

                    Predicted Lateral Deflection (in)
Specimen    1000
                     1 Year     5 Years   10 Years 25 Years
            Hours
PG-33-R     0.004     0.007      0.010      0.012       0.015
 PG-33-E    0.008     0.014      0.021      0.025       0.031
PG-67-R     0.013     0.022      0.032      0.038       0.048
 PG-67-E    0.026     0.045      0.066      0.078       0.098
PG-90-R     0.027     0.046      0.068      0.080       0.100
*PG-90-E    0.127     -7.694    -0.288      -0.219      -0.174

*Predicted using Quasielastic Creep Parameters
Post-Creep Buckling Tests

                                                                                     d (in)
Recovery                                    0.0     0.2     0.4   0.6           0.8       1.0          1.2         1.4     1.6     1.8
                                                                                                                                         60
   1 Week (168 Hours)                 250         PG-33-E

Permanent Modulus                                                                                                                        50

Reduction                             200


         π 2 EL I
              C                                                                                                                          40

  PE =




                                                                                                                                              Load (kips)
                                                                           50


                          Load (kN)
            2                         150
           Leff                                                            40                                                            30




                                                                  d (mm)
                                                                           30
                                      100
Specimen Failure                                                           20                      Slope = 227 kN (50.9 kips)            20

                                                                           10
                                      50
                                                                           0                                                             10
                                                                           0.00       0.05      0.10        0.15    0.20    0.25

                                                                                                d/P (mm/kN)
                                       0                                                                                                 0
                                            0               10                  20                     30                  40

                                                                                  d (mm)
Specimen Failure
Post-Creep Buckling Test Results

            Experimental Buckling Loads
                  Pexp      Pexp /PE      Pexp /PST
Specimen
                 (kips)       (%)           (%)
PG-33-R          50.5        94.4           99.9
PG-33-E          50.9        95.3          100.8
PG-67-R          50.5        94.4           99.9
PG-67-E          34.1        63.7           67.5
PG-90-R          59.2        110.7         117.2
PG-90-E          32.5        60.7           64.4
PE (kips)        53.5      PST (kips)       50.5
Conclusions


Quasielastic Method Effective with Bending

Power Law Model Effective without Bending

Transition Point Between l = 0.67 and l = 0.90

Sustained Loads and Elevated Temperatures
Reduce Modulus

F.S. = 3 Appears Reasonable

More Related Content

What's hot

Senergy Formation Damage Presentation
Senergy Formation Damage PresentationSenergy Formation Damage Presentation
Senergy Formation Damage Presentationduggatj
 
16.40 o10 d wiltshire
16.40 o10 d wiltshire16.40 o10 d wiltshire
16.40 o10 d wiltshireNZIP
 
Nanoscience seminar Grenoble March 2012
Nanoscience seminar Grenoble March 2012Nanoscience seminar Grenoble March 2012
Nanoscience seminar Grenoble March 2012hankeijzers
 
Graphs on Synthetic Data
Graphs on Synthetic DataGraphs on Synthetic Data
Graphs on Synthetic Datapdi2013
 
precRec vs. baselines
precRec vs. baselinesprecRec vs. baselines
precRec vs. baselinespdi2013
 
Spatially resolved characterization of capping using nondestructive ultrasoni...
Spatially resolved characterization of capping using nondestructive ultrasoni...Spatially resolved characterization of capping using nondestructive ultrasoni...
Spatially resolved characterization of capping using nondestructive ultrasoni...Boehringer Ingelheim Pharmaceuticals, Inc.
 
Application of survival data analysis introduction and discussion
Application of survival data analysis  introduction and discussionApplication of survival data analysis  introduction and discussion
Application of survival data analysis introduction and discussionASQ Reliability Division
 
Mandeep asme ectc_2011
Mandeep asme ectc_2011Mandeep asme ectc_2011
Mandeep asme ectc_2011msharm3
 
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEMOPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEMYousef Sardahi
 
Maste Thesis Ap Thiago Assis
Maste Thesis Ap Thiago AssisMaste Thesis Ap Thiago Assis
Maste Thesis Ap Thiago AssisThiago Assis
 
Using Graph Partitioning Techniques for Neighbour Selection in User-Based Col...
Using Graph Partitioning Techniques for Neighbour Selection in User-Based Col...Using Graph Partitioning Techniques for Neighbour Selection in User-Based Col...
Using Graph Partitioning Techniques for Neighbour Selection in User-Based Col...Alejandro Bellogin
 

What's hot (13)

Senergy Formation Damage Presentation
Senergy Formation Damage PresentationSenergy Formation Damage Presentation
Senergy Formation Damage Presentation
 
16.40 o10 d wiltshire
16.40 o10 d wiltshire16.40 o10 d wiltshire
16.40 o10 d wiltshire
 
Nanoscience seminar Grenoble March 2012
Nanoscience seminar Grenoble March 2012Nanoscience seminar Grenoble March 2012
Nanoscience seminar Grenoble March 2012
 
Graphs on Synthetic Data
Graphs on Synthetic DataGraphs on Synthetic Data
Graphs on Synthetic Data
 
precRec vs. baselines
precRec vs. baselinesprecRec vs. baselines
precRec vs. baselines
 
Spatially resolved characterization of capping using nondestructive ultrasoni...
Spatially resolved characterization of capping using nondestructive ultrasoni...Spatially resolved characterization of capping using nondestructive ultrasoni...
Spatially resolved characterization of capping using nondestructive ultrasoni...
 
Application of survival data analysis introduction and discussion
Application of survival data analysis  introduction and discussionApplication of survival data analysis  introduction and discussion
Application of survival data analysis introduction and discussion
 
Bfi_barcelona08
Bfi_barcelona08Bfi_barcelona08
Bfi_barcelona08
 
Mandeep asme ectc_2011
Mandeep asme ectc_2011Mandeep asme ectc_2011
Mandeep asme ectc_2011
 
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEMOPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
 
Maste Thesis Ap Thiago Assis
Maste Thesis Ap Thiago AssisMaste Thesis Ap Thiago Assis
Maste Thesis Ap Thiago Assis
 
Lk2419191924
Lk2419191924Lk2419191924
Lk2419191924
 
Using Graph Partitioning Techniques for Neighbour Selection in User-Based Col...
Using Graph Partitioning Techniques for Neighbour Selection in User-Based Col...Using Graph Partitioning Techniques for Neighbour Selection in User-Based Col...
Using Graph Partitioning Techniques for Neighbour Selection in User-Based Col...
 

Similar to Influence of Creep on Pultruded FRP Columns

PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...grssieee
 
Jag Trasgo Helsinki091002
Jag Trasgo Helsinki091002Jag Trasgo Helsinki091002
Jag Trasgo Helsinki091002Miguel Morales
 
SPICE MODEL of D5LC20U (Professional Model) in SPICE PARK
SPICE MODEL of D5LC20U (Professional Model) in SPICE PARKSPICE MODEL of D5LC20U (Professional Model) in SPICE PARK
SPICE MODEL of D5LC20U (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of SSM3J113TU (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3J113TU (Standard+BDS Model) in SPICE PARKSPICE MODEL of SSM3J113TU (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3J113TU (Standard+BDS Model) in SPICE PARKTsuyoshi Horigome
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentationbinzhao2004
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : WaveletsGabriel Peyré
 
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steel
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steelDynamic Recrystallization of a Nb bearing Al-Si TRIP steel
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steelPello Uranga
 
SPICE MODEL of FMLG14S (Professional Model) in SPICE PARK
SPICE MODEL of FMLG14S (Professional Model) in SPICE PARKSPICE MODEL of FMLG14S (Professional Model) in SPICE PARK
SPICE MODEL of FMLG14S (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARK
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARKSPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARK
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Professional Model) in SPI...
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Professional Model) in SPI...SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Professional Model) in SPI...
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Professional Model) in SPI...Tsuyoshi Horigome
 
SPICE MODEL of S3L60 (Professional Model) in SPICE PARK
SPICE MODEL of S3L60 (Professional Model) in SPICE PARKSPICE MODEL of S3L60 (Professional Model) in SPICE PARK
SPICE MODEL of S3L60 (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of FMLG14S (Standard Model) in SPICE PARK
SPICE MODEL of FMLG14S (Standard Model) in SPICE PARKSPICE MODEL of FMLG14S (Standard Model) in SPICE PARK
SPICE MODEL of FMLG14S (Standard Model) in SPICE PARKTsuyoshi Horigome
 
On The Measurement Of Yield Strength
On The Measurement Of Yield StrengthOn The Measurement Of Yield Strength
On The Measurement Of Yield Strengtherikgherbert
 
SPICE MODEL of SF20LC30 (Standard Model) in SPICE PARK
SPICE MODEL of SF20LC30 (Standard Model) in SPICE PARKSPICE MODEL of SF20LC30 (Standard Model) in SPICE PARK
SPICE MODEL of SF20LC30 (Standard Model) in SPICE PARKTsuyoshi Horigome
 
Carbon International Conference 2007 Bin Zhao Oral Presentation
Carbon International Conference  2007   Bin Zhao Oral PresentationCarbon International Conference  2007   Bin Zhao Oral Presentation
Carbon International Conference 2007 Bin Zhao Oral Presentationbinzhao2004
 
SPICE MODEL of S3L60 (Standard Model) in SPICE PARK
SPICE MODEL of S3L60 (Standard Model) in SPICE PARKSPICE MODEL of S3L60 (Standard Model) in SPICE PARK
SPICE MODEL of S3L60 (Standard Model) in SPICE PARKTsuyoshi Horigome
 

Similar to Influence of Creep on Pultruded FRP Columns (20)

PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
 
Jag Trasgo Helsinki091002
Jag Trasgo Helsinki091002Jag Trasgo Helsinki091002
Jag Trasgo Helsinki091002
 
SPICE MODEL of D5LC20U (Professional Model) in SPICE PARK
SPICE MODEL of D5LC20U (Professional Model) in SPICE PARKSPICE MODEL of D5LC20U (Professional Model) in SPICE PARK
SPICE MODEL of D5LC20U (Professional Model) in SPICE PARK
 
SPICE MODEL of SSM3J113TU (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3J113TU (Standard+BDS Model) in SPICE PARKSPICE MODEL of SSM3J113TU (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3J113TU (Standard+BDS Model) in SPICE PARK
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentation
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : Wavelets
 
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steel
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steelDynamic Recrystallization of a Nb bearing Al-Si TRIP steel
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steel
 
SPICE MODEL of FMLG14S (Professional Model) in SPICE PARK
SPICE MODEL of FMLG14S (Professional Model) in SPICE PARKSPICE MODEL of FMLG14S (Professional Model) in SPICE PARK
SPICE MODEL of FMLG14S (Professional Model) in SPICE PARK
 
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARK
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARKSPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARK
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARK
 
Final
FinalFinal
Final
 
Prez Baljaa09
Prez Baljaa09Prez Baljaa09
Prez Baljaa09
 
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Professional Model) in SPI...
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Professional Model) in SPI...SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Professional Model) in SPI...
SPICE MODEL of SLP-WB89A-51 , White ,TA=-40degree (Professional Model) in SPI...
 
SPICE MODEL of S3L60 (Professional Model) in SPICE PARK
SPICE MODEL of S3L60 (Professional Model) in SPICE PARKSPICE MODEL of S3L60 (Professional Model) in SPICE PARK
SPICE MODEL of S3L60 (Professional Model) in SPICE PARK
 
SPICE MODEL of FMLG14S (Standard Model) in SPICE PARK
SPICE MODEL of FMLG14S (Standard Model) in SPICE PARKSPICE MODEL of FMLG14S (Standard Model) in SPICE PARK
SPICE MODEL of FMLG14S (Standard Model) in SPICE PARK
 
On The Measurement Of Yield Strength
On The Measurement Of Yield StrengthOn The Measurement Of Yield Strength
On The Measurement Of Yield Strength
 
SPICE MODEL of SF20LC30 (Standard Model) in SPICE PARK
SPICE MODEL of SF20LC30 (Standard Model) in SPICE PARKSPICE MODEL of SF20LC30 (Standard Model) in SPICE PARK
SPICE MODEL of SF20LC30 (Standard Model) in SPICE PARK
 
Carbon International Conference 2007 Bin Zhao Oral Presentation
Carbon International Conference  2007   Bin Zhao Oral PresentationCarbon International Conference  2007   Bin Zhao Oral Presentation
Carbon International Conference 2007 Bin Zhao Oral Presentation
 
SPICE MODEL of S3L60 (Standard Model) in SPICE PARK
SPICE MODEL of S3L60 (Standard Model) in SPICE PARKSPICE MODEL of S3L60 (Standard Model) in SPICE PARK
SPICE MODEL of S3L60 (Standard Model) in SPICE PARK
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 

Influence of Creep on Pultruded FRP Columns

  • 1. Influence of Creep on the Stability of Pultruded E-Glass / Polyester Composite Columns at Elevated Service Temperatures By: Evan A. Bennett Advisor: David W. Scott, Ph. D.
  • 2. FRP in Civil Engineering FRP Components in Civil Engineering No Reliable Design Criteria Long-Term Behavior Elevated Temperatures Goals of the Current Work Expand on Previous Creep Studies on FRP Components Develop Semi-empirical Predictive Equations for Lateral Creep Displacement Better Understanding of Long-Term Behavior Examine Impact of Elevated Temperatures
  • 3. Short-Term Properties Test Specimens 4 Pultruded 4 x 4 x ¼” Square Tubes 6 ft Length 4 Extren Series 500 1/4 Isophthalic Polyester Resin E-Glass Rovings and CSM
  • 4. Buckling Loads π 2 EL I C PE PE = Pe = 1 + (ns PE Ag GLT ) 2 (1) (2) Leff Short-Term Critical Load Approximations Approximation Current Study Butz Euler Modified Euler (Experimental) (Experimental) (Equation 1) (Equation 2) Pcr 50.5 46.6 53.5 49.9 (kips)
  • 5. Testing Apparatus Top Plate Knife Edge Typical Creep Frame (Room Temp. Tests) L eff = 75 in 1-1/2" Threaded Rod 1-1/2" Hexagonal Nut Middle Plate 20 x 20 x 1" Steel Spring Plate Bottom Plate Hydraulic Jack Load Cell FRONT VIEW
  • 8. Manufacturers Recommendations From Strongwell Corporation Extren Design Manual (2002) F.O.S. = 3
  • 9. Long-Term Testing Creep Test Matrix Temperature Duration Specimen l (P/Pcr) (°F) (hours) PG-33-R 0.33 73 1000 PG-33-E 0.33 150 1000 PG-67-R 0.67 73 1000 PG-67-E 0.67 150 1000 PG-90-R 0.90 73 1000 PG-90-E 0.90 150 1000
  • 10. Long-Term Results Midheight Lateral Deflection of All Specimens 0.14 PG-33-R PG-33-E PG-67-R 0.12 3 PG-67-E PG-90-R PG-90-E 0.10 2 0.08 d (mm) d (in) 0.06 1 0.04 0.02 0 0.00 0 200 400 600 800 1000 1200 Time (hours)
  • 11. Quasielastic Method Schapery (1965) Vinogradov (1987) Kang (2001) Remove Eccentricity from Kang’s Analysis λ tn δ = Ai (3) ψ (t ) = (4) 1− λ β λ [1 +ψ (t )] δ (t ) = Ai (5) 1 − λ [1 +ψ (t )]
  • 12. Determination of Quasielastic Parameters 3.0 Room Temperature 0.12 Specimens 2.5 0.10 PG-33-R PG-67-R PG-90-R 2.0 0.08 PG-33-R Prediction PG-67-R Prediction d (mm) d (in) PG-90-R Prediction 1.5 0.06 1.0 0.04 0.5 0.02 0.0 0.00 0 200 400 600 800 1000 1200 Time (hours)
  • 13. Determination of Quasielastic Parameters 0.14 Elevated Temperature Specimens 0.12 3 0.10 2 0.08 d (mm) PG-33-E d (in) PG-67-E PG-90-E PG-33-E Prediction 0.06 PG-67-E Prediction PG-90-E Prediction 1 0.04 0.02 0 0.00 0 200 400 600 800 1000 1200 Time (hours)
  • 14. Findley’s Power Law 1 10 PG-90-R ε (t ) = ε 0 + mt n (6) 0.1 1 d (mm) m d (in) 0.01 n δ (t ) = δ 0 + mt n 0.1 (7) 0.001 0.01 0.0001 1 10 100 1000 10000 Time (hours) log[δ (t ) − δ 0 ] = log(m ) + n log(t ) (8)
  • 15. Inclusion of Temperature Effects in Predictive Model Findley et al. (1956) ⎛σ ⎞ ⎛σ ⎞ ε (t ) = ε '0 sinh⎜ ⎜σ ⎟ + m' t n sinh⎜ ⎟ ⎜σ ⎟ ⎟ (9) ⎝ ε ⎠ ⎝ m⎠ Applied to Lateral Deflection ⎛ λ ⎞ δ (t ) − δ 0 = m' t sinh⎜ ⎟ n ⎜λ ⎟ (10) ⎝ m⎠ Including Temperature ⎛ λ ⎞ δ (t ,τ ) − δ 0 = τm' t sinh⎜ ⎟ (11) T n ⎜λ ⎟ τ = (12) ⎝ m⎠ TR
  • 16. Findley Predictions of Lateral Creep 0.14 Room Temperature Specimens 3 0.12 PG-33-R PG-67-R 0.10 PG-90-R PG-33-R Prediction PG-67-R Prediction d (mm) d (in) 2 0.08 PG-90-R Prediction 0.06 1 0.04 0.02 0 0.00 0 200 400 600 800 1000 1200 Time (hours)
  • 17. Findley Predictions of Lateral Creep 0.14 Elevated Temperature Specimens 0.12 3 0.10 PG-33-E PG-67-E PG-90-E 2 PG-33-E Prediction 0.08 d (mm) d (in) PG-67-E Prediction PG-90-E Prediction 0.06 1 0.04 0.02 0 0.00 0 200 400 600 800 1000 1200 Time (hours)
  • 18. Extended Predictions of Lateral Creep Deflection Predicted Lateral Deflection (in) Specimen 1000 1 Year 5 Years 10 Years 25 Years Hours PG-33-R 0.004 0.007 0.010 0.012 0.015 PG-33-E 0.008 0.014 0.021 0.025 0.031 PG-67-R 0.013 0.022 0.032 0.038 0.048 PG-67-E 0.026 0.045 0.066 0.078 0.098 PG-90-R 0.027 0.046 0.068 0.080 0.100 *PG-90-E 0.127 -7.694 -0.288 -0.219 -0.174 *Predicted using Quasielastic Creep Parameters
  • 19. Post-Creep Buckling Tests d (in) Recovery 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 60 1 Week (168 Hours) 250 PG-33-E Permanent Modulus 50 Reduction 200 π 2 EL I C 40 PE = Load (kips) 50 Load (kN) 2 150 Leff 40 30 d (mm) 30 100 Specimen Failure 20 Slope = 227 kN (50.9 kips) 20 10 50 0 10 0.00 0.05 0.10 0.15 0.20 0.25 d/P (mm/kN) 0 0 0 10 20 30 40 d (mm)
  • 21. Post-Creep Buckling Test Results Experimental Buckling Loads Pexp Pexp /PE Pexp /PST Specimen (kips) (%) (%) PG-33-R 50.5 94.4 99.9 PG-33-E 50.9 95.3 100.8 PG-67-R 50.5 94.4 99.9 PG-67-E 34.1 63.7 67.5 PG-90-R 59.2 110.7 117.2 PG-90-E 32.5 60.7 64.4 PE (kips) 53.5 PST (kips) 50.5
  • 22. Conclusions Quasielastic Method Effective with Bending Power Law Model Effective without Bending Transition Point Between l = 0.67 and l = 0.90 Sustained Loads and Elevated Temperatures Reduce Modulus F.S. = 3 Appears Reasonable