SlideShare a Scribd company logo
1 of 25
Download to read offline
UANTUM Computing
By:
M Raja Sekhar
OVERVIEW
• Introduction and History
a. Classical Computers
b. Quantum Computers
• Data Representation
• Conclusion and Scope
Evolution of Classical Computers
• First generation(1939-’54)-Vacuum tubes
• Second generation(1954-’59)-Transistors
• Third generation(1959-’71)- IC
• Fourth generation(1971-’91)- Microprocessor
• Fifth generation(1991 & beyond)
Comment on Classical Computer::
• Gordon Moore, Intel Co-founder said that the number of transistors economically
crammed into a single computer chip was doubling every two years.
Functions of Classical Computers
•Accurate and speedy computation machine
•Part of life because logical work can also be done
Advantages of Classical Computer
• Any complex computation or logical work like laboratory work
become easy
• Many kinds of numerical problems cannot be solved using
conventional computers.
• Example: Factorization of a number
• The computer time required to factor an integer containing N
digits is believed to increase exponentially with N.
Concepts of Quantum Computers..
 Introduction & History
Basic concept of quantum computer
 Applications
 Advantages
 Disadvantages and Problems
 Future work
 The word "quantum", in quantum computer, originates from "quantum
mechanics," a basic theory in physics. In brief, on the scale of atoms and
molecules, matter behaves in a quantum manner.
What does "quantum" mean?
INTRODUCTION
What is a Quantum Computer?
 A quantum computer is a machine that performs calculations based on the
laws of quantum mechanics, which is the behavior of particles at the sub-atomic
level.
HISTORY
• In 1918 - Max Planck’s -Energy quantum
• In 1921- Einstein’s discovery of the photon
• In 1980 - Idea of quantum computation
• In 1996, Grover’s came up with an algorithm to search a name in unsorted
database. Grover’s algorithm and the law of super-positioning makes this
possible.
• (Super-positioning is discussed later in this PPT)
• In December of last year, Anton Zeilinger made a fantastic accomplishment.
This feat was achieved using a principle called quantum entanglement.
• (quantum entanglement is discussed later in this PPT)
Basic Concept Of Quantum Computers & Differences With Existing Computers:
• In existing computers, all information is expressed in terms of 0s and 1s, and the entity
that carries such information is called a "bit.“
• A bit can be in either a 0 or 1 state at any one moment in time.
• A quantum computer, on the other hand, uses a “quantum bit” or "qubit" instead of a bit.
• A qubit also makes use of two states (0 and 1) to hold information, but in contrast to a bit,
In this state, a qubit can take on the properties of 0 and 1 simultaneously at any one
moment.
• Accordingly, two qubits in this state can express the four values of 00, 01, 10, and 11 all
at one time .
A qubit in superposition is in both of the states
|1> and |0> at the same time.
Classical bit Vs Qubits:
• Classical bit: {0, 1}
• Qubits: {0, 1, superposed states of 0 and 1}
HOW Q-bits Working in QUANTUM COMPUTER(VIDEO 1)
There is much that is different between quantum computers and classical computers.
But am going to explain only few:
1. Quantum Super Positioning
2. Quantum Entanglement
3. Quantum Teleportation
WHAT IS DIFFERENT ABOUT QUANTUM COMPUTERS?
Applications:
Quantum Superposition
• Super Positioning is a big word for an old concept: that two things can
overlap each other without interfering with each other.
• In classical computers, electrons cannot occupy the same space at the same
time, but as waves, they can.
• One may think of this as a vector of the probabilities drawn in a two-
dimensional coordinate system of the Complex plane, that is, coordinates of
the form x+iy where
• x is a coordinate on the Real number line, and
• y is a coordinate on the Imaginary number line.
• Classical bits are either vectors of 0 or 1 and have no Imaginary component.
•Quantum bits, or "qubits", have both components.
•If the probabilities were equal, the vector could be represented
as 45 degrees from vertical; if the probability of 1 were twice
that of 0, the vector could be represented as 30 degrees from
vertical.
•This vector represents the superposition of the probability of 1
and the probability of 0 simultaneously. In this way, the state
vectors of classical bits are "collapsed" qubit state vectors
How Superposition State Working in QUANTUM COMPUTER(VIDEO 2)
 Entanglement is the ability of quantum systems to exhibit correlations
between states within a superposition.
 Quantum entanglement is one of the central principles of quantum physics,
though it is also highly misunderstood.
 In short, quantum entanglement means that multiple particles are linked
together in a way such that the measurement of one particle's quantum state
determines the possible quantum states of the other particles.
 When this happens, the state of the two particles is said to be entangled.
Quantum Entanglement
Quantum Teleportation
• Quantum teleportation is a technique used to transfer information on a
quantum level, usually from one particle to another.
• Its distinguishing feature is that it can transmit the information present in a
quantum superposition, useful for quantum communication and
computation.
Applications:
• Encryption Technology
• Ultra-secure And Super-dense Communications
• Improved Error Correction And Error Detection
• Molecular Simulations
• True Randomness
• Cryptography
• Searching
• Factorization
• Simulating
• Encryption Problem & Quantum Chemistry Problem
Advantages :
• Could process massive amount of complex data.
• Ability to solve scientific and commercial problems.
• Process data in a much faster speed.
• Capability to convey more accurate answers.
• More can be computed in less time.
• These are used to protect secure Web pages, encrypted email, and many
other types of data.
 Hard to control quantum particles
 Lots of heat
 Expensive
 Difficult to build
 Not suitable for word processing and email.
 Problem of it need of a noise free & Cool Environment.
 Complex hardware schemes like superconductors
Disadvantages and Problems:
• Silicon Quantum Computer
• It may become technology sooner than we expect
• At the current rate of chip miniaturization, energy efficiency, and economics, the
classical computer of the year 2020 (if it could happen at all), would contain a
CPU running at 40 GHz (or 40,000 MHz), with 160 GB (160,000 MB) RAM, and
run on 40 watts of power.
• New algorithms and communication
• Maximum exploitation
• Simulate other quantum systems.
Feature work :
Conclusion and Scope
 Very Advance Technology
 Very Faster & Powerful
 Stage of Infancy
 Implementation is Difficult
ueries
Any

More Related Content

Similar to csonqc-150120184546-conversion-gate01.pdf

QuantumComputersPresentation
QuantumComputersPresentationQuantumComputersPresentation
QuantumComputersPresentationVinayak Suresh
 
Quantum Computers PART 1 & 2 by Prof Lili Saghafi
Quantum Computers  PART 1 & 2 by Prof Lili SaghafiQuantum Computers  PART 1 & 2 by Prof Lili Saghafi
Quantum Computers PART 1 & 2 by Prof Lili SaghafiProfessor Lili Saghafi
 
Quantum Computers New Generation of Computers PART1 by Prof Lili Saghafi
Quantum Computers New Generation of Computers PART1 by Prof Lili SaghafiQuantum Computers New Generation of Computers PART1 by Prof Lili Saghafi
Quantum Computers New Generation of Computers PART1 by Prof Lili SaghafiProfessor Lili Saghafi
 
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili Saghafi
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili SaghafiQuantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili Saghafi
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili SaghafiProfessor Lili Saghafi
 
Quantum Computing by Elisha.pptx
Quantum  Computing by Elisha.pptxQuantum  Computing by Elisha.pptx
Quantum Computing by Elisha.pptxAsheMathew
 
quantumcomputers-090715210946-phpapp01.pptx
quantumcomputers-090715210946-phpapp01.pptxquantumcomputers-090715210946-phpapp01.pptx
quantumcomputers-090715210946-phpapp01.pptxSateeshKumar410844
 
Quantum computers
Quantum computersQuantum computers
Quantum computersJAy Patel
 
Introduction_to_Quantum_Computers.pdf
Introduction_to_Quantum_Computers.pdfIntroduction_to_Quantum_Computers.pdf
Introduction_to_Quantum_Computers.pdfsunnypatil1778
 
Quantum computers by Emran
Quantum computers by EmranQuantum computers by Emran
Quantum computers by EmranEmran Hossain
 
Seminar on quatum
Seminar on quatumSeminar on quatum
Seminar on quatumaprameyabr1
 
Quantum computation - Introduction
Quantum computation - IntroductionQuantum computation - Introduction
Quantum computation - IntroductionAakash Martand
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum ComputingKeshav
 
A Technical Seminar on Quantum Computers By SAIKIRAN PANJALA
A Technical Seminar on Quantum Computers By SAIKIRAN PANJALAA Technical Seminar on Quantum Computers By SAIKIRAN PANJALA
A Technical Seminar on Quantum Computers By SAIKIRAN PANJALASaikiran Panjala
 
Strengths and limitations of quantum computing
Strengths and limitations of quantum computingStrengths and limitations of quantum computing
Strengths and limitations of quantum computingVinayak Sharma
 
Presentation on quantum_computing
Presentation on quantum_computingPresentation on quantum_computing
Presentation on quantum_computingAltafAlam12
 

Similar to csonqc-150120184546-conversion-gate01.pdf (20)

Quantum computers
Quantum computersQuantum computers
Quantum computers
 
QuantumComputersPresentation
QuantumComputersPresentationQuantumComputersPresentation
QuantumComputersPresentation
 
Quantum Computers PART 1 & 2 by Prof Lili Saghafi
Quantum Computers  PART 1 & 2 by Prof Lili SaghafiQuantum Computers  PART 1 & 2 by Prof Lili Saghafi
Quantum Computers PART 1 & 2 by Prof Lili Saghafi
 
Quantum computing
Quantum computingQuantum computing
Quantum computing
 
Quantum Computers New Generation of Computers PART1 by Prof Lili Saghafi
Quantum Computers New Generation of Computers PART1 by Prof Lili SaghafiQuantum Computers New Generation of Computers PART1 by Prof Lili Saghafi
Quantum Computers New Generation of Computers PART1 by Prof Lili Saghafi
 
Quantum computing
Quantum computingQuantum computing
Quantum computing
 
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili Saghafi
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili SaghafiQuantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili Saghafi
Quantum Computing Quantum Internet 2020_unit 1 By: Prof. Lili Saghafi
 
Quantum Computing by Elisha.pptx
Quantum  Computing by Elisha.pptxQuantum  Computing by Elisha.pptx
Quantum Computing by Elisha.pptx
 
quantumcomputers-090715210946-phpapp01.pptx
quantumcomputers-090715210946-phpapp01.pptxquantumcomputers-090715210946-phpapp01.pptx
quantumcomputers-090715210946-phpapp01.pptx
 
Quantum computers
Quantum computersQuantum computers
Quantum computers
 
Introduction_to_Quantum_Computers.pdf
Introduction_to_Quantum_Computers.pdfIntroduction_to_Quantum_Computers.pdf
Introduction_to_Quantum_Computers.pdf
 
Quantum computers by Emran
Quantum computers by EmranQuantum computers by Emran
Quantum computers by Emran
 
Seminar on quatum
Seminar on quatumSeminar on quatum
Seminar on quatum
 
Quantum computation - Introduction
Quantum computation - IntroductionQuantum computation - Introduction
Quantum computation - Introduction
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
A Technical Seminar on Quantum Computers By SAIKIRAN PANJALA
A Technical Seminar on Quantum Computers By SAIKIRAN PANJALAA Technical Seminar on Quantum Computers By SAIKIRAN PANJALA
A Technical Seminar on Quantum Computers By SAIKIRAN PANJALA
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
Strengths and limitations of quantum computing
Strengths and limitations of quantum computingStrengths and limitations of quantum computing
Strengths and limitations of quantum computing
 
Quantum computer
Quantum computerQuantum computer
Quantum computer
 
Presentation on quantum_computing
Presentation on quantum_computingPresentation on quantum_computing
Presentation on quantum_computing
 

Recently uploaded

18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 

Recently uploaded (20)

Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 

csonqc-150120184546-conversion-gate01.pdf

  • 2. OVERVIEW • Introduction and History a. Classical Computers b. Quantum Computers • Data Representation • Conclusion and Scope
  • 3. Evolution of Classical Computers • First generation(1939-’54)-Vacuum tubes • Second generation(1954-’59)-Transistors • Third generation(1959-’71)- IC • Fourth generation(1971-’91)- Microprocessor • Fifth generation(1991 & beyond)
  • 4. Comment on Classical Computer:: • Gordon Moore, Intel Co-founder said that the number of transistors economically crammed into a single computer chip was doubling every two years. Functions of Classical Computers •Accurate and speedy computation machine •Part of life because logical work can also be done
  • 5. Advantages of Classical Computer • Any complex computation or logical work like laboratory work become easy • Many kinds of numerical problems cannot be solved using conventional computers. • Example: Factorization of a number • The computer time required to factor an integer containing N digits is believed to increase exponentially with N.
  • 6. Concepts of Quantum Computers..  Introduction & History Basic concept of quantum computer  Applications  Advantages  Disadvantages and Problems  Future work
  • 7.  The word "quantum", in quantum computer, originates from "quantum mechanics," a basic theory in physics. In brief, on the scale of atoms and molecules, matter behaves in a quantum manner. What does "quantum" mean? INTRODUCTION What is a Quantum Computer?  A quantum computer is a machine that performs calculations based on the laws of quantum mechanics, which is the behavior of particles at the sub-atomic level.
  • 8. HISTORY • In 1918 - Max Planck’s -Energy quantum • In 1921- Einstein’s discovery of the photon • In 1980 - Idea of quantum computation • In 1996, Grover’s came up with an algorithm to search a name in unsorted database. Grover’s algorithm and the law of super-positioning makes this possible. • (Super-positioning is discussed later in this PPT) • In December of last year, Anton Zeilinger made a fantastic accomplishment. This feat was achieved using a principle called quantum entanglement. • (quantum entanglement is discussed later in this PPT)
  • 9. Basic Concept Of Quantum Computers & Differences With Existing Computers: • In existing computers, all information is expressed in terms of 0s and 1s, and the entity that carries such information is called a "bit.“ • A bit can be in either a 0 or 1 state at any one moment in time. • A quantum computer, on the other hand, uses a “quantum bit” or "qubit" instead of a bit. • A qubit also makes use of two states (0 and 1) to hold information, but in contrast to a bit, In this state, a qubit can take on the properties of 0 and 1 simultaneously at any one moment. • Accordingly, two qubits in this state can express the four values of 00, 01, 10, and 11 all at one time .
  • 10. A qubit in superposition is in both of the states |1> and |0> at the same time.
  • 11. Classical bit Vs Qubits: • Classical bit: {0, 1} • Qubits: {0, 1, superposed states of 0 and 1}
  • 12. HOW Q-bits Working in QUANTUM COMPUTER(VIDEO 1)
  • 13. There is much that is different between quantum computers and classical computers. But am going to explain only few: 1. Quantum Super Positioning 2. Quantum Entanglement 3. Quantum Teleportation WHAT IS DIFFERENT ABOUT QUANTUM COMPUTERS? Applications:
  • 14. Quantum Superposition • Super Positioning is a big word for an old concept: that two things can overlap each other without interfering with each other. • In classical computers, electrons cannot occupy the same space at the same time, but as waves, they can. • One may think of this as a vector of the probabilities drawn in a two- dimensional coordinate system of the Complex plane, that is, coordinates of the form x+iy where • x is a coordinate on the Real number line, and • y is a coordinate on the Imaginary number line. • Classical bits are either vectors of 0 or 1 and have no Imaginary component.
  • 15. •Quantum bits, or "qubits", have both components. •If the probabilities were equal, the vector could be represented as 45 degrees from vertical; if the probability of 1 were twice that of 0, the vector could be represented as 30 degrees from vertical. •This vector represents the superposition of the probability of 1 and the probability of 0 simultaneously. In this way, the state vectors of classical bits are "collapsed" qubit state vectors
  • 16. How Superposition State Working in QUANTUM COMPUTER(VIDEO 2)
  • 17.  Entanglement is the ability of quantum systems to exhibit correlations between states within a superposition.  Quantum entanglement is one of the central principles of quantum physics, though it is also highly misunderstood.  In short, quantum entanglement means that multiple particles are linked together in a way such that the measurement of one particle's quantum state determines the possible quantum states of the other particles.  When this happens, the state of the two particles is said to be entangled. Quantum Entanglement
  • 18.
  • 19. Quantum Teleportation • Quantum teleportation is a technique used to transfer information on a quantum level, usually from one particle to another. • Its distinguishing feature is that it can transmit the information present in a quantum superposition, useful for quantum communication and computation.
  • 20. Applications: • Encryption Technology • Ultra-secure And Super-dense Communications • Improved Error Correction And Error Detection • Molecular Simulations • True Randomness • Cryptography • Searching • Factorization • Simulating • Encryption Problem & Quantum Chemistry Problem
  • 21. Advantages : • Could process massive amount of complex data. • Ability to solve scientific and commercial problems. • Process data in a much faster speed. • Capability to convey more accurate answers. • More can be computed in less time. • These are used to protect secure Web pages, encrypted email, and many other types of data.
  • 22.  Hard to control quantum particles  Lots of heat  Expensive  Difficult to build  Not suitable for word processing and email.  Problem of it need of a noise free & Cool Environment.  Complex hardware schemes like superconductors Disadvantages and Problems:
  • 23. • Silicon Quantum Computer • It may become technology sooner than we expect • At the current rate of chip miniaturization, energy efficiency, and economics, the classical computer of the year 2020 (if it could happen at all), would contain a CPU running at 40 GHz (or 40,000 MHz), with 160 GB (160,000 MB) RAM, and run on 40 watts of power. • New algorithms and communication • Maximum exploitation • Simulate other quantum systems. Feature work :
  • 24. Conclusion and Scope  Very Advance Technology  Very Faster & Powerful  Stage of Infancy  Implementation is Difficult