SlideShare a Scribd company logo
1 of 6
1
Group : 1 ( Page 1-8 Kalkulus)
Name :
1. Azhari Rahman
2. MuhammadPachroni Suryana
3. Yudiansyah
Class: 1EA
Exercise 1.1
Compute the value of f(x) whenx hasthe indicatedvaluesgivenin(a) and(b).For(c),make an
observationbasedonyourresultsin(a) and(b).
1. f(x)=
π‘₯+2
π‘₯βˆ’5
a. x= 3.001
Solutions:
f(3.001)=
π‘₯+2
π‘₯βˆ’5
f(x) =
3.001+2
3.001βˆ’5
=βˆ’
5.001
1.999
= - 2.501
b. x= 2.99
Solutions:
f(2.99)=
π‘₯+2
π‘₯βˆ’5
f(x)=
2.99+2
2.99βˆ’5
=βˆ’
4.99
2.01
= - 2.482
c. Observation?
It appearsthan whenx isclose to 3 invalue, thenf(x) isclose to -2.5in value.
2. f(x)=
π‘₯βˆ’5
4π‘₯
a. x= 1.002
f(1.002)=
π‘₯βˆ’5
4π‘₯
f(x)=
1.002βˆ’5
4(1.002)
=βˆ’
3.998
4.008
= - 0.997
b. x= .993
f(.993)=
π‘₯βˆ’5
4π‘₯
f(x)=
.993βˆ’5
4(.993)
=βˆ’
4.007
3.972
= - 1.008
c. Observation?
It appearsthan whenx isclose to 1 invalue,thenf(x) isclose to -1in value.
2
3. f(x)=
3π‘₯
π‘₯
2
a. x= .001
f(.001)=
3π‘₯
π‘₯
2
f(x)=
3(.001)
.001
2
=
0.000003
.001
= 0.003
b. x= -.001
f(-.001)=
3π‘₯
π‘₯
2
f(x)=
3(βˆ’.001)
βˆ’.001
2
=βˆ’
0.000003
.001
= - 0.003
c. Observation?
It appearsthan whenx isclose to 0 invalue,f(x) isnotclose toanyfixednumberinvalue.
Exercise 1.2
Findthe followinglimitsorindicate nonexistence.
1. lim
π‘₯β†’3
π‘₯2βˆ’4
π‘₯+1
Solutions: lim
π‘₯β†’3
π‘₯2βˆ’4
π‘₯+1
=
lim
π‘₯β†’3
π‘₯2βˆ’4
lim
π‘₯β†’3
π‘₯+1
=
5
4
2. lim
π‘₯β†’2
π‘₯2βˆ’9
π‘₯βˆ’2
Solutions: lim
π‘₯β†’2
π‘₯2βˆ’9
π‘₯βˆ’2
=
βˆ’5
0
= ~
3. lim
π‘₯β†’1
√π‘₯3 + 7
Solutions: lim
π‘₯β†’1
√π‘₯3 + 7 = √8
= 2√2
4. lim
π‘₯β†’πœ‹
(5π‘₯2 + 9)
Solutions: lim
π‘₯β†’πœ‹
(5π‘₯2 + 9) = 5πœ‹2 + 9
3
5. lim
π‘₯β†’0
5βˆ’3π‘₯
π‘₯+11
Solutions: lim
π‘₯β†’0
5βˆ’3π‘₯
π‘₯+11
=
lim
π‘₯β†’0
5βˆ’3π‘₯
lim
π‘₯β†’0
π‘₯+11
=
5
11
6. lim
π‘₯β†’0
9+3π‘₯2
π‘₯3+11
Solutions: lim
π‘₯β†’0
9+3π‘₯2
π‘₯3+11
=
lim
π‘₯β†’0
9+3π‘₯2
lim
π‘₯β†’0
π‘₯3+11
=
9
11
7. lim
π‘₯β†’1
π‘₯2βˆ’2π‘₯+1
π‘₯2βˆ’1
Solutions: lim
π‘₯β†’1
π‘₯2βˆ’2π‘₯+1
π‘₯2βˆ’1
= lim
π‘₯β†’1
(π‘₯βˆ’1)(π‘₯βˆ’1)
( π‘₯βˆ’1)(π‘₯+1)
= lim
π‘₯β†’1
π‘₯βˆ’1
π‘₯+1
=
0
2
= 0
8. lim
π‘₯β†’4
6βˆ’3π‘₯
π‘₯2βˆ’16
Solutions: lim
π‘₯β†’4
6βˆ’3π‘₯
π‘₯2βˆ’16
= lim
π‘₯β†’4
6βˆ’3π‘₯
(π‘₯βˆ’4)(π‘₯+4)
=
βˆ’ 6
0
= ~
9. lim
π‘₯β†’βˆ’2
√4π‘₯3 + 11
Solutions: lim
π‘₯β†’βˆ’2
√4π‘₯3 + 11= βˆšβˆ’32 + 11
= √21
10. lim
π‘₯β†’βˆ’6
8βˆ’3π‘₯
π‘₯βˆ’6
Solutions: lim
π‘₯β†’βˆ’6
8βˆ’3π‘₯
π‘₯βˆ’6
=
lim
π‘₯β†’βˆ’6
8βˆ’3π‘₯
lim
π‘₯β†’βˆ’6
π‘₯βˆ’6
= βˆ’
26
12
= βˆ’
13
6
4
Exercise 2.1
Evalute the followinglimits.
1. lim
π‘₯β†’3
π‘₯βˆ’3
π‘₯2+π‘₯βˆ’12
Solutions: lim
π‘₯β†’3
π‘₯βˆ’3
π‘₯2+π‘₯βˆ’12
= lim
π‘₯β†’3
π‘₯βˆ’3
( π‘₯βˆ’3)(π‘₯+4)
= lim
π‘₯β†’3
1
(π‘₯+4)
=
1
7
2. lim
β„Žβ†’0
(π‘₯+β„Ž)2βˆ’π‘₯2
β„Ž
Solutions: lim
β„Žβ†’0
(π‘₯+β„Ž)2βˆ’π‘₯2
β„Ž
= lim
β„Žβ†’0
π‘₯2+2β„Žπ‘₯+β„Ž2βˆ’π‘₯2
β„Ž
= lim
β„Žβ†’0
2β„Žπ‘₯+β„Ž2
β„Ž
= lim
β„Žβ†’0
β„Ž(2π‘₯+β„Ž)
β„Ž
= lim
β„Žβ†’0
2π‘₯ + β„Ž
= 2x
3. lim
π‘₯β†’4
π‘₯3βˆ’64
π‘₯2βˆ’16
Solutions: lim
π‘₯β†’4
π‘₯3βˆ’64
π‘₯2βˆ’16
= lim
π‘₯β†’4
π‘₯3βˆ’64
π‘₯2βˆ’16
= lim
π‘₯β†’4
(π‘₯βˆ’4)(π‘₯2+4π‘₯+16)
( π‘₯βˆ’4)(π‘₯+4)
= lim
π‘₯β†’4
π‘₯2+4π‘₯+16
π‘₯+4
=
48
8
= 6
4. If f(x) = 5x+8, find lim
β„Žβ†’0
𝑓( π‘₯+β„Ž)βˆ’π‘“(π‘₯)
β„Ž
Solutions: lim
β„Žβ†’0
𝑓( π‘₯+β„Ž)βˆ’π‘“(π‘₯)
β„Ž
= lim
β„Žβ†’0
(5( π‘₯+β„Ž)+8)βˆ’(5x+8)
β„Ž
= lim
β„Žβ†’0
(5π‘₯+5β„Ž+8)βˆ’(5x+8)
β„Ž
= lim
β„Žβ†’0
5β„Ž
β„Ž
5
= ~
5. lim
π‘₯β†’βˆ’3
5π‘₯+7
π‘₯2βˆ’3
Solutions: lim
π‘₯β†’βˆ’3
5π‘₯+7
π‘₯2βˆ’3
=
lim
π‘₯β†’3
5π‘₯+7
lim
π‘₯β†’3
π‘₯2βˆ’3
= βˆ’
8
6
= -
4
3
6. lim
π‘₯β†’25
√ π‘₯βˆ’5
π‘₯βˆ’25
Solutions: lim
π‘₯β†’25
√ π‘₯βˆ’5
π‘₯βˆ’25
= lim
π‘₯β†’25
(√ π‘₯βˆ’5)
(π‘₯βˆ’25)
(√ π‘₯+5)
(√ π‘₯+5)
= lim
π‘₯β†’25
π‘₯βˆ’25
π‘₯√ π‘₯+ 5π‘₯βˆ’25√ π‘₯βˆ’125
=
0
0
= ~
7. If g(x) =π‘₯2 , find lim
π‘₯β†’2
𝑔( π‘₯)βˆ’π‘”(2)
π‘₯βˆ’2
Solutions: lim
π‘₯β†’2
𝑔( π‘₯)βˆ’π‘”(2)
π‘₯βˆ’2
= lim
π‘₯β†’2
π‘₯2βˆ’4
π‘₯βˆ’2
= lim
π‘₯β†’2
(π‘₯+2)(π‘₯βˆ’2)
π‘₯βˆ’2
= lim
π‘₯β†’2
π‘₯ + 2
= 4
8. lim
π‘₯β†’0
2π‘₯2βˆ’ 4π‘₯
π‘₯
Solutions: lim
π‘₯β†’0
2π‘₯2βˆ’ 4π‘₯
π‘₯
= lim
π‘₯β†’0
(2π‘₯βˆ’ 4)π‘₯
π‘₯
= lim
π‘₯β†’0
(2π‘₯ βˆ’ 4)
= -4
9. lim
π‘Ÿβ†’0
√ π‘₯+π‘Ÿβˆ’βˆš π‘₯
π‘Ÿ
Solutions:lim
π‘Ÿβ†’0
√ π‘₯+π‘Ÿβˆ’βˆš π‘₯
π‘Ÿ
= lim
π‘Ÿβ†’0
(√ π‘₯+π‘Ÿβˆ’βˆšπ‘₯)
π‘Ÿ
(√ π‘₯+π‘Ÿ+√π‘₯)
√ π‘₯+π‘Ÿ+√ π‘₯
= lim
π‘Ÿβ†’0
π‘₯+π‘Ÿβˆ’π‘₯
π‘Ÿ(√ π‘₯+π‘Ÿ+√ π‘₯)
=
0
0
= ~
10. lim
π‘₯β†’4
π‘₯3+6
π‘₯βˆ’4
6
Solutions: lim
π‘₯β†’4
π‘₯3+6
π‘₯βˆ’4
= lim
π‘₯β†’4
π‘₯3+6
π‘₯βˆ’4
π‘₯+4
π‘₯+4
=
π‘₯4+4π‘₯3+6π‘₯+24
(π‘₯βˆ’4)(π‘₯+4)
=
70
0
= ~

More Related Content

What's hot

1.6 sign charts and inequalities t
1.6 sign charts and inequalities t1.6 sign charts and inequalities t
1.6 sign charts and inequalities tmath260
Β 
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...Hareem Aslam
Β 
Algebra and function
Algebra and functionAlgebra and function
Algebra and functionAzlan Ahmad
Β 
4.1 inverse functions t
4.1 inverse functions t4.1 inverse functions t
4.1 inverse functions tmath260
Β 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Mohd. Noor Abdul Hamid
Β 
Zeros of a polynomial function
Zeros of a polynomial functionZeros of a polynomial function
Zeros of a polynomial functionMartinGeraldine
Β 
Evaluating a function
Evaluating a functionEvaluating a function
Evaluating a functionMartinGeraldine
Β 
Addition and Subtraction of Functions
Addition and Subtraction of FunctionsAddition and Subtraction of Functions
Addition and Subtraction of Functionsjordhuffman
Β 
Math example
Math exampleMath example
Math examplejordhuffman
Β 
Zeros or roots of a polynomial if a greater than1
Zeros or roots of a polynomial if a greater than1Zeros or roots of a polynomial if a greater than1
Zeros or roots of a polynomial if a greater than1MartinGeraldine
Β 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions xmath260
Β 
Multiplying monomial
Multiplying monomialMultiplying monomial
Multiplying monomialMartinGeraldine
Β 
Finding zeros of a quadratic function
Finding zeros of a quadratic functionFinding zeros of a quadratic function
Finding zeros of a quadratic functionAaron James Lico
Β 

What's hot (17)

1.6 sign charts and inequalities t
1.6 sign charts and inequalities t1.6 sign charts and inequalities t
1.6 sign charts and inequalities t
Β 
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
Β 
Algebra and function
Algebra and functionAlgebra and function
Algebra and function
Β 
4.1 inverse functions t
4.1 inverse functions t4.1 inverse functions t
4.1 inverse functions t
Β 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor
Β 
Parabola
ParabolaParabola
Parabola
Β 
Zeros of a polynomial function
Zeros of a polynomial functionZeros of a polynomial function
Zeros of a polynomial function
Β 
Evaluating a function
Evaluating a functionEvaluating a function
Evaluating a function
Β 
Vertex
VertexVertex
Vertex
Β 
Addition and Subtraction of Functions
Addition and Subtraction of FunctionsAddition and Subtraction of Functions
Addition and Subtraction of Functions
Β 
Math example
Math exampleMath example
Math example
Β 
Zeros or roots of a polynomial if a greater than1
Zeros or roots of a polynomial if a greater than1Zeros or roots of a polynomial if a greater than1
Zeros or roots of a polynomial if a greater than1
Β 
Polynomials
PolynomialsPolynomials
Polynomials
Β 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
Β 
Multiplying monomial
Multiplying monomialMultiplying monomial
Multiplying monomial
Β 
Finding zeros of a quadratic function
Finding zeros of a quadratic functionFinding zeros of a quadratic function
Finding zeros of a quadratic function
Β 
Derivadas
DerivadasDerivadas
Derivadas
Β 

Viewers also liked

Matematika kalkulus
Matematika kalkulusMatematika kalkulus
Matematika kalkulusAzhari-Rahman
Β 
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 2
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 2KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 2
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 2Cantel Widodo
Β 
kalkulus dasar
kalkulus dasarkalkulus dasar
kalkulus dasarangga maulana
Β 
T U G A S 2 K A L K U L U S A F I T M I R A N T O G1 D009001
T U G A S 2  K A L K U L U S  A F I T  M I R A N T O  G1 D009001T U G A S 2  K A L K U L U S  A F I T  M I R A N T O  G1 D009001
T U G A S 2 K A L K U L U S A F I T M I R A N T O G1 D009001Afit Miranto
Β 
Makalah kalkulus lanjut
Makalah kalkulus lanjutMakalah kalkulus lanjut
Makalah kalkulus lanjutEnggar Dewa
Β 
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 1
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 1KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 1
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 1Cantel Widodo
Β 

Viewers also liked (6)

Matematika kalkulus
Matematika kalkulusMatematika kalkulus
Matematika kalkulus
Β 
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 2
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 2KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 2
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 2
Β 
kalkulus dasar
kalkulus dasarkalkulus dasar
kalkulus dasar
Β 
T U G A S 2 K A L K U L U S A F I T M I R A N T O G1 D009001
T U G A S 2  K A L K U L U S  A F I T  M I R A N T O  G1 D009001T U G A S 2  K A L K U L U S  A F I T  M I R A N T O  G1 D009001
T U G A S 2 K A L K U L U S A F I T M I R A N T O G1 D009001
Β 
Makalah kalkulus lanjut
Makalah kalkulus lanjutMakalah kalkulus lanjut
Makalah kalkulus lanjut
Β 
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 1
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 1KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 1
KALKULUS SEMESTER 1 UNINDRA PERTEMUAN 1
Β 

Similar to Matematika kalkulus (inggri

Tugas 3 Matematika kalkulus
Tugas 3 Matematika kalkulusTugas 3 Matematika kalkulus
Tugas 3 Matematika kalkulusyudiansyah1996
Β 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functionsdionesioable
Β 
Lesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxLesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxAlfredoLabador
Β 
Chapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesChapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesIrfaan Bahadoor
Β 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Juan Miguel Palero
Β 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functionsdionesioable
Β 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functionsdionesioable
Β 
some important questions for practice clas 12
some important questions for practice clas 12  some important questions for practice clas 12
some important questions for practice clas 12 nitishguptamaps
Β 
Appendex
AppendexAppendex
Appendexswavicky
Β 
Section 3.3 quadratic functions and their properties
Section 3.3 quadratic functions and their properties Section 3.3 quadratic functions and their properties
Section 3.3 quadratic functions and their properties Wong Hsiung
Β 
Finding Equation of a Line.pptx
Finding Equation of a Line.pptxFinding Equation of a Line.pptx
Finding Equation of a Line.pptxMartinGeraldine
Β 
Taylor Polynomials and Series
Taylor Polynomials and SeriesTaylor Polynomials and Series
Taylor Polynomials and SeriesMatthew Leingang
Β 
Maths important questions for 2018
Maths important questions for 2018Maths important questions for 2018
Maths important questions for 2018KarunaGupta1982
Β 
Maths imp questions for 2018
Maths imp questions for 2018Maths imp questions for 2018
Maths imp questions for 2018KarunaGupta1982
Β 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functionsdionesioable
Β 
Chapter1 functions
Chapter1 functionsChapter1 functions
Chapter1 functionsSofia Mahmood
Β 
Chapter1 functions
Chapter1 functionsChapter1 functions
Chapter1 functionsMonie Joey
Β 

Similar to Matematika kalkulus (inggri (20)

Tugas 3 Matematika kalkulus
Tugas 3 Matematika kalkulusTugas 3 Matematika kalkulus
Tugas 3 Matematika kalkulus
Β 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functions
Β 
Lesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxLesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptx
Β 
Curve sketching 4
Curve sketching 4Curve sketching 4
Curve sketching 4
Β 
Chapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesChapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin series
Β 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)
Β 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
Β 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
Β 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functions
Β 
some important questions for practice clas 12
some important questions for practice clas 12  some important questions for practice clas 12
some important questions for practice clas 12
Β 
Appendex
AppendexAppendex
Appendex
Β 
FUNCTIONS .pdf
FUNCTIONS .pdfFUNCTIONS .pdf
FUNCTIONS .pdf
Β 
Section 3.3 quadratic functions and their properties
Section 3.3 quadratic functions and their properties Section 3.3 quadratic functions and their properties
Section 3.3 quadratic functions and their properties
Β 
Finding Equation of a Line.pptx
Finding Equation of a Line.pptxFinding Equation of a Line.pptx
Finding Equation of a Line.pptx
Β 
Taylor Polynomials and Series
Taylor Polynomials and SeriesTaylor Polynomials and Series
Taylor Polynomials and Series
Β 
Maths important questions for 2018
Maths important questions for 2018Maths important questions for 2018
Maths important questions for 2018
Β 
Maths imp questions for 2018
Maths imp questions for 2018Maths imp questions for 2018
Maths imp questions for 2018
Β 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functions
Β 
Chapter1 functions
Chapter1 functionsChapter1 functions
Chapter1 functions
Β 
Chapter1 functions
Chapter1 functionsChapter1 functions
Chapter1 functions
Β 

More from yudiansyah1996

Tugas mtk 3 yori
Tugas mtk 3 yoriTugas mtk 3 yori
Tugas mtk 3 yoriyudiansyah1996
Β 
Tugas 1 mtk2 yori
Tugas 1 mtk2 yori Tugas 1 mtk2 yori
Tugas 1 mtk2 yori yudiansyah1996
Β 
TUGAS MATEMATIKA 2 ( Turunan menggunakan Dalil Rantai )
TUGAS MATEMATIKA 2 ( Turunan menggunakan Dalil Rantai )TUGAS MATEMATIKA 2 ( Turunan menggunakan Dalil Rantai )
TUGAS MATEMATIKA 2 ( Turunan menggunakan Dalil Rantai )yudiansyah1996
Β 

More from yudiansyah1996 (7)

Tugas mtk 3 yori
Tugas mtk 3 yoriTugas mtk 3 yori
Tugas mtk 3 yori
Β 
Tugas 2 mtk 2
Tugas 2 mtk 2  Tugas 2 mtk 2
Tugas 2 mtk 2
Β 
Tugas 1 mtk2 yori
Tugas 1 mtk2 yori Tugas 1 mtk2 yori
Tugas 1 mtk2 yori
Β 
Tugas 3
Tugas 3Tugas 3
Tugas 3
Β 
Tugas 3
Tugas 3Tugas 3
Tugas 3
Β 
TUGAS MATEMATIKA 2 ( Turunan menggunakan Dalil Rantai )
TUGAS MATEMATIKA 2 ( Turunan menggunakan Dalil Rantai )TUGAS MATEMATIKA 2 ( Turunan menggunakan Dalil Rantai )
TUGAS MATEMATIKA 2 ( Turunan menggunakan Dalil Rantai )
Β 
Tugas mtk
Tugas mtkTugas mtk
Tugas mtk
Β 

Matematika kalkulus (inggri

  • 1. 1 Group : 1 ( Page 1-8 Kalkulus) Name : 1. Azhari Rahman 2. MuhammadPachroni Suryana 3. Yudiansyah Class: 1EA Exercise 1.1 Compute the value of f(x) whenx hasthe indicatedvaluesgivenin(a) and(b).For(c),make an observationbasedonyourresultsin(a) and(b). 1. f(x)= π‘₯+2 π‘₯βˆ’5 a. x= 3.001 Solutions: f(3.001)= π‘₯+2 π‘₯βˆ’5 f(x) = 3.001+2 3.001βˆ’5 =βˆ’ 5.001 1.999 = - 2.501 b. x= 2.99 Solutions: f(2.99)= π‘₯+2 π‘₯βˆ’5 f(x)= 2.99+2 2.99βˆ’5 =βˆ’ 4.99 2.01 = - 2.482 c. Observation? It appearsthan whenx isclose to 3 invalue, thenf(x) isclose to -2.5in value. 2. f(x)= π‘₯βˆ’5 4π‘₯ a. x= 1.002 f(1.002)= π‘₯βˆ’5 4π‘₯ f(x)= 1.002βˆ’5 4(1.002) =βˆ’ 3.998 4.008 = - 0.997 b. x= .993 f(.993)= π‘₯βˆ’5 4π‘₯ f(x)= .993βˆ’5 4(.993) =βˆ’ 4.007 3.972 = - 1.008 c. Observation? It appearsthan whenx isclose to 1 invalue,thenf(x) isclose to -1in value.
  • 2. 2 3. f(x)= 3π‘₯ π‘₯ 2 a. x= .001 f(.001)= 3π‘₯ π‘₯ 2 f(x)= 3(.001) .001 2 = 0.000003 .001 = 0.003 b. x= -.001 f(-.001)= 3π‘₯ π‘₯ 2 f(x)= 3(βˆ’.001) βˆ’.001 2 =βˆ’ 0.000003 .001 = - 0.003 c. Observation? It appearsthan whenx isclose to 0 invalue,f(x) isnotclose toanyfixednumberinvalue. Exercise 1.2 Findthe followinglimitsorindicate nonexistence. 1. lim π‘₯β†’3 π‘₯2βˆ’4 π‘₯+1 Solutions: lim π‘₯β†’3 π‘₯2βˆ’4 π‘₯+1 = lim π‘₯β†’3 π‘₯2βˆ’4 lim π‘₯β†’3 π‘₯+1 = 5 4 2. lim π‘₯β†’2 π‘₯2βˆ’9 π‘₯βˆ’2 Solutions: lim π‘₯β†’2 π‘₯2βˆ’9 π‘₯βˆ’2 = βˆ’5 0 = ~ 3. lim π‘₯β†’1 √π‘₯3 + 7 Solutions: lim π‘₯β†’1 √π‘₯3 + 7 = √8 = 2√2 4. lim π‘₯β†’πœ‹ (5π‘₯2 + 9) Solutions: lim π‘₯β†’πœ‹ (5π‘₯2 + 9) = 5πœ‹2 + 9
  • 3. 3 5. lim π‘₯β†’0 5βˆ’3π‘₯ π‘₯+11 Solutions: lim π‘₯β†’0 5βˆ’3π‘₯ π‘₯+11 = lim π‘₯β†’0 5βˆ’3π‘₯ lim π‘₯β†’0 π‘₯+11 = 5 11 6. lim π‘₯β†’0 9+3π‘₯2 π‘₯3+11 Solutions: lim π‘₯β†’0 9+3π‘₯2 π‘₯3+11 = lim π‘₯β†’0 9+3π‘₯2 lim π‘₯β†’0 π‘₯3+11 = 9 11 7. lim π‘₯β†’1 π‘₯2βˆ’2π‘₯+1 π‘₯2βˆ’1 Solutions: lim π‘₯β†’1 π‘₯2βˆ’2π‘₯+1 π‘₯2βˆ’1 = lim π‘₯β†’1 (π‘₯βˆ’1)(π‘₯βˆ’1) ( π‘₯βˆ’1)(π‘₯+1) = lim π‘₯β†’1 π‘₯βˆ’1 π‘₯+1 = 0 2 = 0 8. lim π‘₯β†’4 6βˆ’3π‘₯ π‘₯2βˆ’16 Solutions: lim π‘₯β†’4 6βˆ’3π‘₯ π‘₯2βˆ’16 = lim π‘₯β†’4 6βˆ’3π‘₯ (π‘₯βˆ’4)(π‘₯+4) = βˆ’ 6 0 = ~ 9. lim π‘₯β†’βˆ’2 √4π‘₯3 + 11 Solutions: lim π‘₯β†’βˆ’2 √4π‘₯3 + 11= βˆšβˆ’32 + 11 = √21 10. lim π‘₯β†’βˆ’6 8βˆ’3π‘₯ π‘₯βˆ’6 Solutions: lim π‘₯β†’βˆ’6 8βˆ’3π‘₯ π‘₯βˆ’6 = lim π‘₯β†’βˆ’6 8βˆ’3π‘₯ lim π‘₯β†’βˆ’6 π‘₯βˆ’6 = βˆ’ 26 12 = βˆ’ 13 6
  • 4. 4 Exercise 2.1 Evalute the followinglimits. 1. lim π‘₯β†’3 π‘₯βˆ’3 π‘₯2+π‘₯βˆ’12 Solutions: lim π‘₯β†’3 π‘₯βˆ’3 π‘₯2+π‘₯βˆ’12 = lim π‘₯β†’3 π‘₯βˆ’3 ( π‘₯βˆ’3)(π‘₯+4) = lim π‘₯β†’3 1 (π‘₯+4) = 1 7 2. lim β„Žβ†’0 (π‘₯+β„Ž)2βˆ’π‘₯2 β„Ž Solutions: lim β„Žβ†’0 (π‘₯+β„Ž)2βˆ’π‘₯2 β„Ž = lim β„Žβ†’0 π‘₯2+2β„Žπ‘₯+β„Ž2βˆ’π‘₯2 β„Ž = lim β„Žβ†’0 2β„Žπ‘₯+β„Ž2 β„Ž = lim β„Žβ†’0 β„Ž(2π‘₯+β„Ž) β„Ž = lim β„Žβ†’0 2π‘₯ + β„Ž = 2x 3. lim π‘₯β†’4 π‘₯3βˆ’64 π‘₯2βˆ’16 Solutions: lim π‘₯β†’4 π‘₯3βˆ’64 π‘₯2βˆ’16 = lim π‘₯β†’4 π‘₯3βˆ’64 π‘₯2βˆ’16 = lim π‘₯β†’4 (π‘₯βˆ’4)(π‘₯2+4π‘₯+16) ( π‘₯βˆ’4)(π‘₯+4) = lim π‘₯β†’4 π‘₯2+4π‘₯+16 π‘₯+4 = 48 8 = 6 4. If f(x) = 5x+8, find lim β„Žβ†’0 𝑓( π‘₯+β„Ž)βˆ’π‘“(π‘₯) β„Ž Solutions: lim β„Žβ†’0 𝑓( π‘₯+β„Ž)βˆ’π‘“(π‘₯) β„Ž = lim β„Žβ†’0 (5( π‘₯+β„Ž)+8)βˆ’(5x+8) β„Ž = lim β„Žβ†’0 (5π‘₯+5β„Ž+8)βˆ’(5x+8) β„Ž = lim β„Žβ†’0 5β„Ž β„Ž
  • 5. 5 = ~ 5. lim π‘₯β†’βˆ’3 5π‘₯+7 π‘₯2βˆ’3 Solutions: lim π‘₯β†’βˆ’3 5π‘₯+7 π‘₯2βˆ’3 = lim π‘₯β†’3 5π‘₯+7 lim π‘₯β†’3 π‘₯2βˆ’3 = βˆ’ 8 6 = - 4 3 6. lim π‘₯β†’25 √ π‘₯βˆ’5 π‘₯βˆ’25 Solutions: lim π‘₯β†’25 √ π‘₯βˆ’5 π‘₯βˆ’25 = lim π‘₯β†’25 (√ π‘₯βˆ’5) (π‘₯βˆ’25) (√ π‘₯+5) (√ π‘₯+5) = lim π‘₯β†’25 π‘₯βˆ’25 π‘₯√ π‘₯+ 5π‘₯βˆ’25√ π‘₯βˆ’125 = 0 0 = ~ 7. If g(x) =π‘₯2 , find lim π‘₯β†’2 𝑔( π‘₯)βˆ’π‘”(2) π‘₯βˆ’2 Solutions: lim π‘₯β†’2 𝑔( π‘₯)βˆ’π‘”(2) π‘₯βˆ’2 = lim π‘₯β†’2 π‘₯2βˆ’4 π‘₯βˆ’2 = lim π‘₯β†’2 (π‘₯+2)(π‘₯βˆ’2) π‘₯βˆ’2 = lim π‘₯β†’2 π‘₯ + 2 = 4 8. lim π‘₯β†’0 2π‘₯2βˆ’ 4π‘₯ π‘₯ Solutions: lim π‘₯β†’0 2π‘₯2βˆ’ 4π‘₯ π‘₯ = lim π‘₯β†’0 (2π‘₯βˆ’ 4)π‘₯ π‘₯ = lim π‘₯β†’0 (2π‘₯ βˆ’ 4) = -4 9. lim π‘Ÿβ†’0 √ π‘₯+π‘Ÿβˆ’βˆš π‘₯ π‘Ÿ Solutions:lim π‘Ÿβ†’0 √ π‘₯+π‘Ÿβˆ’βˆš π‘₯ π‘Ÿ = lim π‘Ÿβ†’0 (√ π‘₯+π‘Ÿβˆ’βˆšπ‘₯) π‘Ÿ (√ π‘₯+π‘Ÿ+√π‘₯) √ π‘₯+π‘Ÿ+√ π‘₯ = lim π‘Ÿβ†’0 π‘₯+π‘Ÿβˆ’π‘₯ π‘Ÿ(√ π‘₯+π‘Ÿ+√ π‘₯) = 0 0 = ~ 10. lim π‘₯β†’4 π‘₯3+6 π‘₯βˆ’4