SlideShare a Scribd company logo
1 of 14
Stoichiometry Lab – The Chemistry Behind Carbonates reacting
with Vinegar
Objectives: To visually observe what a limiting reactant is.
To measure the change in mass during a chemical reaction due
to loss of a gas.
To calculate CO2 loss and compare actual loss to expected CO2
loss predicted by the balanced chemical equation.
Materials needed: Note: Plan ahead as you’ll need to let Part
1 sit for at least 24 hours.
plastic beaker graduated cylinder
electronic balance 2 eggs
1 plastic cup baking soda (5 g)
dropper vinegar (500mL)
2 identical cups or glasses (at least 500 mL)
Safety considerations: Safety goggles are highly recommended
for this lab as baking soda and vinegar chemicals can be
irritating to the eyes. If your skin becomes irritated from
contact with these chemicals, rinse with cool water for 15
minutes.
Introduction:
The reaction between baking soda and vinegar is a fun activity
for young people. Most children (and adults!) enjoy watching
the foamy eruption that occurs upon mixing these two
household substances. The reaction has often been used for
erupting volcanoes in elementary science classes. The addition
of food coloring makes it even more fun. The reaction involves
an acid-base reaction that produces a gas (CO2). Acid-base
reactions typically involve the transfer of a hydrogen ion (H+)
from the acid (HA) to the base (B−):
HA + B− --> A− + BH (eq #1)
acid base
The base often (although not always) carries a negative charge.
The acid usually (although not always) becomes negatively
charged through the course of the reaction because it lost an
H+. An example of a typical acid base reaction is below:
HCl(aq) + NaOH(aq) --> NaCl(aq) +
H2O(l) (eq #2)
The reaction is actually taking place between the hydrogen ion
(H+) and the hydroxide ion (OH−). The chloride and sodium are
spectator ions. To write the reaction in the same form as eq #1:
HCl(aq) + OH- --> Cl- + H2O (l)
(eq #3)
Sodium bicarbonate (NaHCO3) will dissociate in water to form
sodium ion (Na+) and bicarbonate ion (HCO3−).
NaHCO3 --> Na+ + HCO3− (eq #4)
Vinegar is usually a 5% solution of acetic acid in water. The
bicarbonate anion (HCO3−) can act as a base, accepting a
hydrogen ion from the acetic acid (HC2H3O2) in the vinegar.
The Na+ is just a spectator ion and does nothing.
HCO3− + HC2H3O2 --> H2CO3 + C2H3O2−
(eq#5)
Bicarbonate acetic acid carbonic acid acetate ion
The carbonic acid that is formed (H2CO3) decomposes to form
water and carbon dioxide:
H2CO3 --> H2O(l) + CO2(g)
(eq#6)
carbonic acid water carbon dioxide
The latter reaction (production of carbon dioxide) accounts for
the bubbles and the foaming that is observed upon mixing
vinegar and baking soda. So the overall molecular reaction is:
1NaHCO3 (aq) + HC2H3O2 (aq) --> H2O(l) + CO2
(g) + NaC2H3O2 (aq) (eq#7)
1NaHCO3 (aq) +1 HC2H3O2 (aq) --> 1H2O(l) +
1CO2 (g) + 1NaC2H3O2 (aq) (eq#7 again)
Essentially, 1 mole of sodium bicarbonate will react with 1
mole of acetic acid to yield 1 mole of water, 1 mole of carbon
dioxide gas and 1 mole of sodium acetate.
Vinegar can react with another carbonate, specifically calcium
carbonate found in egg shells. Bird eggshells are about 95%
calcium carbonate. When this reacts with acetic acid (found in
vinegar), a similar reaction to equation #7 occurs. You’ll
explore this first in part 1.
Procedure:
Part 1: Qualitative analysis of the reaction of Vinegar with
Calcium Carbonate in an eggshell
1. Find 2 identical cups that hold at least 500 mL. Put 1 egg in
each. Label them Cup 1 and Cup 2.
2. In Cup 1, put 5 mL of vinegar and 395 mL of water.
3. In Cup 2, put 400 mL of vinegar.
4. Let both cups sit at room temperature for at least 24 hours.
Stir occasionally (at least twice throughout the 24 hours but
more is better). Leaving the egg in for 2-3 days is
recommended.
5. Record observations every time you stir it.
Part 2: Quantitative analysis of the reaction of Baking Soda and
Vinegar
1. Place a small cup on the balance (don’t use the beaker yet)
and tare/zero it.
2. Measure about 5 grams of baking soda into the cup. Record
the precise mass of baking soda you used. (Note: “about 5
grams” means that it should round to 5 grams with 1 sig fig. So
you can use anywhere between 4.5 – 5.4 g. “Record the precise
mass you used” means to write down 4.8g or 5.2g or whatever
you used. Do not just write “5g”.)
3. Record the % of acetic acid in your vinegar, found on the
bottle (most are about 5%).
4. Measure the mass of an empty beaker.
5. Measure out 44.0 ml of vinegar using the graduated cylinder.
Pour the vinegar carefully into the beaker, and record the mass
of the vinegar and beaker together.
6. Calculate, by subtraction, the mass of the vinegar alone.
7. Remove the beaker from the balance and very slowly add the
baking soda to the vinegar in the beaker. You may want to
swirl the contents to mix the two reactants and allow the carbon
dioxide to escape. If you stir the mixture, make sure the object
you use does not remove liquid. You could even include it in
the mass of the beaker if you wish (i.e. “beaker + plastic
spoon”). It may take a while for the reaction to stop bubbling,
so let it set for 5-10 minutes. There should be very few bubbles
left and the remaining bubbles should be tiny.
8. Measure the mass of the beaker with final mixture.
9. Calculate the mass of the final mixture alone.
10. Complete the calculations on the Data Sheet to determine
theoretical yield*, actual yield**, and percent yield*** for
carbon dioxide produced. SHOW ALL WORK FOR ALL
CALCULATIONS on the data sheet. See Example Calculations
and definitions below.
11. Complete the rest of the questions and extension questions.
Example Calculations for a reaction of potassium bicarbonate
with a lysol-like cleaner (not the same reaction as your
chemical reaction but a similar acid-base reaction):
Reaction is KHCO3(aq) + HCl(aq) --> H2O(l) + CO2(g) +
KCl(aq)
Mass of potassium bicarbonate = 10.1 g from my balance
Molar mass of KHCO3 = (1 K)(39.1g/mol K) + (1 H)(1.008
g/mol H) + (1 C)(12.0g/mol C) + (3 O)(16.0g/mol O) = 100.108
g/mol = 100.1 g/mol KHCO3 using Add/Sub sig fig rule (tenths
place)
Moles KHCO3 = (10.1 g KHCO3)(1 mol/100.1g) = 0.10089 mol
KHCO3 = 0.101 mol KHCO3 using Mult/Div sig fig rule (3 sig
fig)
25%
HCl
Mass of lysol-like cleaner = 12.6 g from my balance
Mass of HCl acid = (12.6 g lysol-like)(0.25) = 3.15 g = 3.2 g
HCl using Mult/Div rule (2 sig fig from 25% HCl)
Moles HCl = (3.2g)(1mol/35.5g) = 0.090148 moles = 0.090
moles HCl using Mult/Div rule (2 sig fig)
The mole ratio of KHCO3 to HCl is 1:1 in balanced equation.
Since moles of HCl is less than moles KHCO3, the HCl is the
limiting reagent in this case.
* Theoretical yield is the amount of product you expect to make
in a chemical reaction if all the limiting reactant is used up and
nothing is lost. Use a balanced chemical equation to help you
convert from one chemical (limiting reactant grams you started
with) to another chemical (the product grams you should
theoretically make).
(3.2g HCl)(1mol HCl/36.5g HCl)(1mol CO2/1mol HCl)(44.0g
CO2/1mol CO2) = 3.85753 g CO2
= 3.9 g CO2 using Mult/Div sig fig rule (2 sig fig)
**Actual yield comes from the experimental measurements.
My total initial mixture = 22.7 g from balance
My final mass mixture = 19.5 g from balance
Difference due to lost CO2 = 3.2 g using Add/Sub rule (tenths
place)
***Percent yield is given by the relation: % yield = actual
yield/theoretical yield * 100
My % yield = 3.2g actual CO2/3.9g theo CO2 * 100 = 82.05128
% = 82% using Mult/Div rule (2 sig fig)
Data & Analysis Sheet
Name: Matthew Woods
Part 1: Vinegar reacting with calcium carbonate in eggshells
1. Describe what you saw each time you stirred the mixtures,
including final observations of each.
In Cup 1, I didn’t see much just a couple bubble here and there.
In Cup 2, over time I saw the egg get bigger and feels rubbery
and flexible with a lot more bubbles forming than Cup 1.
2. In words only, write the chemical reaction occurring when
vinegar and the eggshell react. It’s similar to Equation #7 in the
instructions (but just use words, not formulas). Here’s the
beginning: “Calcium carbonate plus acetic acid react to
yield….”
Calcium Carbonate (CaCO3) and acetic acid (CH3COO) reacts
in a double replacement reaction, giving you calcium acetate,
water, and carbon dioxide. Since calcium acetate is soluble it'll
dissolve. This leaves behind the egg's inner membrane, making
it flexible and rubbery.
3. What gas is in the bubbles produced? carbon dioxide gas
4. In Cup 1, what is the limiting reactant and what evidence do
you have to support your claim?
5. In Cup 2, what is the limiting reactant and what evidence do
you have to support your claim?
Part 2: Experimental Data for Baking Soda and vinegar reacting
Data
Mass baking soda (alone)
5.0 g
Mass of beaker (alone)
15.9 g
Vinegar %
5%
Mass vinegar + beaker
59.6 g
Mass vinegar (alone)
43.7 g
Mass mixture + beaker after reaction
63.0 g
Mass mixture (only) after reaction
47.1 g
Part 2: Table for Calculation Results (Show work below this
table and enter final results here)
Results
6. Molar mass of sodium bicarbonate
84.0 g/mol
7. Moles of sodium bicarbonate
8. Mass of acetic acid in vinegar
9. Molar mass of acetic acid
10. Moles of acetic acid
11. Total initial mass of reactants
12. Final mass of mixture
13. Difference in mass = initial mass – final mass = carbon
dioxide produced (actual yield)
14. Limiting Reactant
15. Theoretical yield carbon
dioxide
16. % yield carbon dioxide
Be careful of sig fig in your measurements and calculations.
Calculations (Show all work by each question below and then
enter the final results of each calculation into the table above.)
Please make your answers stand out by bolding or coloring
them.
6. Determine the molar mass of sodium bicarbonate.
Molar mass of NaHCO3 = 84.00661 g/mol
22.989770+1.00794+12.0107+15.9994*3
Sig figs = 84.0 g/mol
7. Calculate the number of moles of sodium bicarbonate using
the mass of baking soda.
8. Determine the mass of acetic acid used in the experiment.
You need to look on your bottle of vinegar to do this. If your
vinegar is 4 %, this means that every 100 g of vinegar contains
4 g of acetic acid. (If it is 5 %, then 100 g contains 5 g of acetic
acid). To calculate the mass of acetic acid, use the following
equation. For 5 %, replace 0.04 with 0.050. Record results in
table. You can assume the percent has 2 sig figs.
mass of acetic acid = mass of vinegar x 0.040
9. Determine the molar mass of acetic acid, HC2H3O2.
10. Determine the number of moles of acetic acid in each
sample of vinegar. Hint: you need to use the mass of acetic
acid, not the mass of vinegar.
11. Add the mass of baking soda and vinegar initially. This is
the total initial mass of reactants.
12. Record the final mass of mixture.
13. Determine the total mass gain or loss for the reaction by
comparing your initial mass to the final mass of mixture. This
is the mass of carbon dioxide lost which is your actual loss.
14. Compare the moles of sodium bicarbonate to moles of acetic
acid. Which one is the limiting reactant and why? Show
calculations to support this but also describe what you saw that
supports your statement.
15. Determine the number of grams of carbon dioxide that the
reaction should theoretically produce. This is where the pen
and paper stoichiometry comes in. In the calculation, use the
limiting reactant as your "known" and the carbon dioxide as
your unknown. You have already calculated the moles of
sodium bicarbonate and acetic acid used so Step I in the “three
steps process” used to go from grams known to grams unknown
is already done. See the Ch. 8 Lecture about Steps II and III,
remembering that one mole of acetic acid or sodium bicarbonate
should produce one mole of carbon dioxide (from Eq #7).
16. Calculate the “percent yield” for the carbon dioxide
produced. If the actual yield is a negative number, then the %
yield would be 0.
Be careful of sig figs in your calculations. Make sure you
showed work.
Questions
17. Look at the percent yield of carbon dioxide produced. Give
a possible cause (experimental error, not calculation or
measurement or instrumental error) for differences between
what you calculated should be produced (theoretical yield) and
what was actually produced. This should be something that you
probably couldn’t avoid very well. (So don’t say, “I measured
wrong” or “I calculated wrong” because this is easily avoidable
by redoing the lab or re-measuring).
18. In the calculation for #15, why couldn’t the moles of the
other reactant be used in the calculation?
19. True or False: After you figure out the moles of the
reactants in a reaction, the lower amount of moles is always the
limiting reactant. Please explain your answer thoroughly.
Providing an example would be very helpful.
Keep going on the next page
Extension with calcium carbonate:
Suppose we did the quantitative experiment part 2 with calcium
carbonate (found in egg shells and Tums) instead of baking
soda. So we reacted it with vinegar and took mass
measurements.
20. Write a balanced reaction for acetic acid reacting with
calcium carbonate. Be careful. It is no longer a 1:1 ratio. Hint:
you should’ve written this in words in #2 so now turn those
words into correct formulas and balance. Include phases.
21. Suppose we got the following data from doing the lab with
vinegar and calcium carbonate. Fill in the 2 missing boxes (with
the green stars **) using the given data.
Data Table
Run #1
Mass calcium carbonate (alone)
3.9 g
Mass beaker
30.0 g
Vinegar percent
5%
Mass vinegar + beaker
84.2 g
Mass vinegar (alone)
**
Mass mixture + beaker after reaction
87.4 g
Mass mixture (only) after reaction
**
Calculations (Show all work by each question below the table
and then enter the final results of each calculation into the
following table)
Results (show work below)
Run #1
22. Molar mass of calcium carbonate
23. Moles of calcium carbonate
24. Mass of acetic acid in vinegar
25. Molar mass of acetic acid
26. Moles of acetic acid
27. Total initial mass
28. Final mass mixture (measured in lab – copy from above
table)
29. Difference in mass = initial mass – final mass = carbon
dioxide produced (actual yield)
30. Limiting Reactant
31. Theoretical yield carbon
dioxide
32. % yield carbon dioxide
22. Determine the molar mass of calcium carbonate (using a
periodic table).
23. Calculate the number of moles of calcium carbonate using
the data above.
24. Determine the mass of acetic acid used in the experiment.
Assume vinegar is 5% on the bottle. (If it is 5 %, then 100 g
contains 5 g of acetic acid). Record results in table below. You
can assume the percent has 2 sig figs.
25. Determine the molar mass of acetic acid, HC2H3O2. No
need to show work here if you did above. Just put it in the table.
26. Determine the number of moles of acetic acid in the sample
of vinegar that was used. Hint: you need to use the mass of
acetic acid, not the mass of vinegar.
27. Add the mass of calcium carbonate and vinegar initially.
This is the total initial mass of mixture. Record results.
28. The final mass of the mixture is given in the table above.
Just report this number below (no work to show).
29. Determine the total mass gain or loss for the reaction by
comparing your initial mass to the final mass of mixture. This
is the mass of carbon dioxide lost which is your actual loss.
30. To determine the number of grams of carbon dioxide that
the reaction should theoretically be produced, we need to first
determine the limiting reactant. This is where the pen and paper
stoichiometry comes in. Compare the moles of calcium
carbonate to acetic acid. Which one is the limiting reactant and
why? ** Be very careful** This is not a 1:1 ratio like the first
part of the lab.
31. Determine the theoretical yield of carbon dioxide. To do
this, in the calculation, use the limiting reactant as your known
and the carbon dioxide as your unknown. You have already
calculated the moles of calcium carbonate and acetic acid used
so Step I in the “three steps process” used to go from grams
known to grams unknown is already done. See the Ch. 8
Lecture about Steps II and III, but remember that now we do not
have a 1:1 ratio.
32. Calculate the “percent yield” for the carbon dioxide
produced. If the actual yield is a negative number, then the %
yield would be 0.
Extra Credit Questions:
a) In this particular example, the change in mass during the
reaction provides evidence that a chemical reaction is taking
place. Explain this.
b) Is it necessary to have a change in mass in order to have a
chemical reaction? Why or why not?
c) Provide an example of a chemical reaction (not just a
physical change) where no mass change would be observed.

More Related Content

Similar to Stoichiometry Lab – The Chemistry Behind Carbonates reacting with .docx

TOPIC 5. RATE OF REACTION-LAB
TOPIC 5. RATE OF REACTION-LABTOPIC 5. RATE OF REACTION-LAB
TOPIC 5. RATE OF REACTION-LABprojecteciencies
 
Chapter #3 Lectures Part Ii
Chapter #3   Lectures Part IiChapter #3   Lectures Part Ii
Chapter #3 Lectures Part Iicmakanui
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointMel Anthony Pepito
 
Limiting Reactants.pptx
Limiting Reactants.pptxLimiting Reactants.pptx
Limiting Reactants.pptxLawrenceAkins
 
ASP Chemistry - Ch 4 Notes.pdf
ASP Chemistry - Ch 4 Notes.pdfASP Chemistry - Ch 4 Notes.pdf
ASP Chemistry - Ch 4 Notes.pdfShammaAhmed7
 
Ch 9 Stoichiometry
Ch 9 StoichiometryCh 9 Stoichiometry
Ch 9 Stoichiometrykermis
 
Basics of Chemistry: Chemical stoichiometry
Basics of Chemistry: Chemical stoichiometryBasics of Chemistry: Chemical stoichiometry
Basics of Chemistry: Chemical stoichiometryRAJEEVBAYAN1
 
Fermentation report sheet 1online.docx report sheet—lab topic 6
Fermentation report sheet 1online.docx report sheet—lab topic 6Fermentation report sheet 1online.docx report sheet—lab topic 6
Fermentation report sheet 1online.docx report sheet—lab topic 6oreo10
 
526128650-Limiting-Reactants-and-the-Product-Formed.pdf
526128650-Limiting-Reactants-and-the-Product-Formed.pdf526128650-Limiting-Reactants-and-the-Product-Formed.pdf
526128650-Limiting-Reactants-and-the-Product-Formed.pdfmarlynjusol697
 
526128650-Limiting-Reactants-and-the-Product-Formed.pdf
526128650-Limiting-Reactants-and-the-Product-Formed.pdf526128650-Limiting-Reactants-and-the-Product-Formed.pdf
526128650-Limiting-Reactants-and-the-Product-Formed.pdfmarlynjusol697
 
List out the chemical reactions you observe in your surroundings
List out the chemical reactions you observe in your surroundings List out the chemical reactions you observe in your surroundings
List out the chemical reactions you observe in your surroundings Rohitsatyaanand
 
Percent Yield and Limiting Reactants.ppt
Percent Yield and Limiting Reactants.pptPercent Yield and Limiting Reactants.ppt
Percent Yield and Limiting Reactants.pptCyriesheenebilocura1
 
13 thermal-decomp-of-na hco3 (1)
13 thermal-decomp-of-na hco3 (1)13 thermal-decomp-of-na hco3 (1)
13 thermal-decomp-of-na hco3 (1)Dr Robert Craig PhD
 
212labexp09 aldol condensation_r
212labexp09 aldol condensation_r212labexp09 aldol condensation_r
212labexp09 aldol condensation_rDr Robert Craig PhD
 

Similar to Stoichiometry Lab – The Chemistry Behind Carbonates reacting with .docx (20)

TOPIC 5. RATE OF REACTION-LAB
TOPIC 5. RATE OF REACTION-LABTOPIC 5. RATE OF REACTION-LAB
TOPIC 5. RATE OF REACTION-LAB
 
17 stoichiometry
17 stoichiometry17 stoichiometry
17 stoichiometry
 
Chemistry.
Chemistry.Chemistry.
Chemistry.
 
SI #7 Key
SI #7 KeySI #7 Key
SI #7 Key
 
Chapter #3 Lectures Part Ii
Chapter #3   Lectures Part IiChapter #3   Lectures Part Ii
Chapter #3 Lectures Part Ii
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPoint
 
Limiting Reactants.pptx
Limiting Reactants.pptxLimiting Reactants.pptx
Limiting Reactants.pptx
 
ASP Chemistry - Ch 4 Notes.pdf
ASP Chemistry - Ch 4 Notes.pdfASP Chemistry - Ch 4 Notes.pdf
ASP Chemistry - Ch 4 Notes.pdf
 
Stoichiometry
StoichiometryStoichiometry
Stoichiometry
 
Ch 9 Stoichiometry
Ch 9 StoichiometryCh 9 Stoichiometry
Ch 9 Stoichiometry
 
Basics of Chemistry: Chemical stoichiometry
Basics of Chemistry: Chemical stoichiometryBasics of Chemistry: Chemical stoichiometry
Basics of Chemistry: Chemical stoichiometry
 
Fermentation report sheet 1online.docx report sheet—lab topic 6
Fermentation report sheet 1online.docx report sheet—lab topic 6Fermentation report sheet 1online.docx report sheet—lab topic 6
Fermentation report sheet 1online.docx report sheet—lab topic 6
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
526128650-Limiting-Reactants-and-the-Product-Formed.pdf
526128650-Limiting-Reactants-and-the-Product-Formed.pdf526128650-Limiting-Reactants-and-the-Product-Formed.pdf
526128650-Limiting-Reactants-and-the-Product-Formed.pdf
 
526128650-Limiting-Reactants-and-the-Product-Formed.pdf
526128650-Limiting-Reactants-and-the-Product-Formed.pdf526128650-Limiting-Reactants-and-the-Product-Formed.pdf
526128650-Limiting-Reactants-and-the-Product-Formed.pdf
 
List out the chemical reactions you observe in your surroundings
List out the chemical reactions you observe in your surroundings List out the chemical reactions you observe in your surroundings
List out the chemical reactions you observe in your surroundings
 
4052399.ppt
4052399.ppt4052399.ppt
4052399.ppt
 
Percent Yield and Limiting Reactants.ppt
Percent Yield and Limiting Reactants.pptPercent Yield and Limiting Reactants.ppt
Percent Yield and Limiting Reactants.ppt
 
13 thermal-decomp-of-na hco3 (1)
13 thermal-decomp-of-na hco3 (1)13 thermal-decomp-of-na hco3 (1)
13 thermal-decomp-of-na hco3 (1)
 
212labexp09 aldol condensation_r
212labexp09 aldol condensation_r212labexp09 aldol condensation_r
212labexp09 aldol condensation_r
 

More from whitneyleman54422

In this unit, you will experience the powerful impact communication .docx
In this unit, you will experience the powerful impact communication .docxIn this unit, you will experience the powerful impact communication .docx
In this unit, you will experience the powerful impact communication .docxwhitneyleman54422
 
In this task, you will write an analysis (suggested length of 3–5 .docx
In this task, you will write an analysis (suggested length of 3–5 .docxIn this task, you will write an analysis (suggested length of 3–5 .docx
In this task, you will write an analysis (suggested length of 3–5 .docxwhitneyleman54422
 
In this SLP you will identify where the major transportation modes a.docx
In this SLP you will identify where the major transportation modes a.docxIn this SLP you will identify where the major transportation modes a.docx
In this SLP you will identify where the major transportation modes a.docxwhitneyleman54422
 
In this module the student will present writing which focuses attent.docx
In this module the student will present writing which focuses attent.docxIn this module the student will present writing which focuses attent.docx
In this module the student will present writing which focuses attent.docxwhitneyleman54422
 
In this module, we looked at a variety of styles in the Renaissa.docx
In this module, we looked at a variety of styles in the Renaissa.docxIn this module, we looked at a variety of styles in the Renaissa.docx
In this module, we looked at a variety of styles in the Renaissa.docxwhitneyleman54422
 
In this experiential learning experience, you will evaluate a health.docx
In this experiential learning experience, you will evaluate a health.docxIn this experiential learning experience, you will evaluate a health.docx
In this experiential learning experience, you will evaluate a health.docxwhitneyleman54422
 
In this essay you should combine your practice responding and analyz.docx
In this essay you should combine your practice responding and analyz.docxIn this essay you should combine your practice responding and analyz.docx
In this essay you should combine your practice responding and analyz.docxwhitneyleman54422
 
In this Discussion, pick one film to write about and answer ques.docx
In this Discussion, pick one film to write about and answer ques.docxIn this Discussion, pick one film to write about and answer ques.docx
In this Discussion, pick one film to write about and answer ques.docxwhitneyleman54422
 
In this assignment, you will identify and interview a family who.docx
In this assignment, you will identify and interview a family who.docxIn this assignment, you will identify and interview a family who.docx
In this assignment, you will identify and interview a family who.docxwhitneyleman54422
 
In this assignment, you will assess the impact of health legisla.docx
In this assignment, you will assess the impact of health legisla.docxIn this assignment, you will assess the impact of health legisla.docx
In this assignment, you will assess the impact of health legisla.docxwhitneyleman54422
 
In this assignment, you will create a presentation. Select a topic o.docx
In this assignment, you will create a presentation. Select a topic o.docxIn this assignment, you will create a presentation. Select a topic o.docx
In this assignment, you will create a presentation. Select a topic o.docxwhitneyleman54422
 
In this assignment, the student will understand the growth and devel.docx
In this assignment, the student will understand the growth and devel.docxIn this assignment, the student will understand the growth and devel.docx
In this assignment, the student will understand the growth and devel.docxwhitneyleman54422
 
In this assignment, I want you to locate two pieces of news detailin.docx
In this assignment, I want you to locate two pieces of news detailin.docxIn this assignment, I want you to locate two pieces of news detailin.docx
In this assignment, I want you to locate two pieces of news detailin.docxwhitneyleman54422
 
In this assignment worth 150 points, you will consider the present-d.docx
In this assignment worth 150 points, you will consider the present-d.docxIn this assignment worth 150 points, you will consider the present-d.docx
In this assignment worth 150 points, you will consider the present-d.docxwhitneyleman54422
 
In the readings thus far, the text identified many early American in.docx
In the readings thus far, the text identified many early American in.docxIn the readings thus far, the text identified many early American in.docx
In the readings thus far, the text identified many early American in.docxwhitneyleman54422
 
In the Roman Colony, leaders, or members of the court, were to be.docx
In the Roman Colony, leaders, or members of the court, were to be.docxIn the Roman Colony, leaders, or members of the court, were to be.docx
In the Roman Colony, leaders, or members of the court, were to be.docxwhitneyleman54422
 
In the provided scenario there are a few different crimes being .docx
In the provided scenario there are a few different crimes being .docxIn the provided scenario there are a few different crimes being .docx
In the provided scenario there are a few different crimes being .docxwhitneyleman54422
 
STOP THE MEETING MADNESS HOW TO FREE UP TIME FOR ME.docx
STOP  THE MEETING MADNESS HOW TO FREE UP TIME FOR ME.docxSTOP  THE MEETING MADNESS HOW TO FREE UP TIME FOR ME.docx
STOP THE MEETING MADNESS HOW TO FREE UP TIME FOR ME.docxwhitneyleman54422
 
Stock-Trak Portfolio Report Write-Up GuidelinesYou may want to.docx
Stock-Trak Portfolio Report Write-Up GuidelinesYou may want to.docxStock-Trak Portfolio Report Write-Up GuidelinesYou may want to.docx
Stock-Trak Portfolio Report Write-Up GuidelinesYou may want to.docxwhitneyleman54422
 
Stewart Guthrie, Faces in the Clouds Oxford UP, 1993.docx
Stewart Guthrie,  Faces in the Clouds  Oxford UP, 1993.docxStewart Guthrie,  Faces in the Clouds  Oxford UP, 1993.docx
Stewart Guthrie, Faces in the Clouds Oxford UP, 1993.docxwhitneyleman54422
 

More from whitneyleman54422 (20)

In this unit, you will experience the powerful impact communication .docx
In this unit, you will experience the powerful impact communication .docxIn this unit, you will experience the powerful impact communication .docx
In this unit, you will experience the powerful impact communication .docx
 
In this task, you will write an analysis (suggested length of 3–5 .docx
In this task, you will write an analysis (suggested length of 3–5 .docxIn this task, you will write an analysis (suggested length of 3–5 .docx
In this task, you will write an analysis (suggested length of 3–5 .docx
 
In this SLP you will identify where the major transportation modes a.docx
In this SLP you will identify where the major transportation modes a.docxIn this SLP you will identify where the major transportation modes a.docx
In this SLP you will identify where the major transportation modes a.docx
 
In this module the student will present writing which focuses attent.docx
In this module the student will present writing which focuses attent.docxIn this module the student will present writing which focuses attent.docx
In this module the student will present writing which focuses attent.docx
 
In this module, we looked at a variety of styles in the Renaissa.docx
In this module, we looked at a variety of styles in the Renaissa.docxIn this module, we looked at a variety of styles in the Renaissa.docx
In this module, we looked at a variety of styles in the Renaissa.docx
 
In this experiential learning experience, you will evaluate a health.docx
In this experiential learning experience, you will evaluate a health.docxIn this experiential learning experience, you will evaluate a health.docx
In this experiential learning experience, you will evaluate a health.docx
 
In this essay you should combine your practice responding and analyz.docx
In this essay you should combine your practice responding and analyz.docxIn this essay you should combine your practice responding and analyz.docx
In this essay you should combine your practice responding and analyz.docx
 
In this Discussion, pick one film to write about and answer ques.docx
In this Discussion, pick one film to write about and answer ques.docxIn this Discussion, pick one film to write about and answer ques.docx
In this Discussion, pick one film to write about and answer ques.docx
 
In this assignment, you will identify and interview a family who.docx
In this assignment, you will identify and interview a family who.docxIn this assignment, you will identify and interview a family who.docx
In this assignment, you will identify and interview a family who.docx
 
In this assignment, you will assess the impact of health legisla.docx
In this assignment, you will assess the impact of health legisla.docxIn this assignment, you will assess the impact of health legisla.docx
In this assignment, you will assess the impact of health legisla.docx
 
In this assignment, you will create a presentation. Select a topic o.docx
In this assignment, you will create a presentation. Select a topic o.docxIn this assignment, you will create a presentation. Select a topic o.docx
In this assignment, you will create a presentation. Select a topic o.docx
 
In this assignment, the student will understand the growth and devel.docx
In this assignment, the student will understand the growth and devel.docxIn this assignment, the student will understand the growth and devel.docx
In this assignment, the student will understand the growth and devel.docx
 
In this assignment, I want you to locate two pieces of news detailin.docx
In this assignment, I want you to locate two pieces of news detailin.docxIn this assignment, I want you to locate two pieces of news detailin.docx
In this assignment, I want you to locate two pieces of news detailin.docx
 
In this assignment worth 150 points, you will consider the present-d.docx
In this assignment worth 150 points, you will consider the present-d.docxIn this assignment worth 150 points, you will consider the present-d.docx
In this assignment worth 150 points, you will consider the present-d.docx
 
In the readings thus far, the text identified many early American in.docx
In the readings thus far, the text identified many early American in.docxIn the readings thus far, the text identified many early American in.docx
In the readings thus far, the text identified many early American in.docx
 
In the Roman Colony, leaders, or members of the court, were to be.docx
In the Roman Colony, leaders, or members of the court, were to be.docxIn the Roman Colony, leaders, or members of the court, were to be.docx
In the Roman Colony, leaders, or members of the court, were to be.docx
 
In the provided scenario there are a few different crimes being .docx
In the provided scenario there are a few different crimes being .docxIn the provided scenario there are a few different crimes being .docx
In the provided scenario there are a few different crimes being .docx
 
STOP THE MEETING MADNESS HOW TO FREE UP TIME FOR ME.docx
STOP  THE MEETING MADNESS HOW TO FREE UP TIME FOR ME.docxSTOP  THE MEETING MADNESS HOW TO FREE UP TIME FOR ME.docx
STOP THE MEETING MADNESS HOW TO FREE UP TIME FOR ME.docx
 
Stock-Trak Portfolio Report Write-Up GuidelinesYou may want to.docx
Stock-Trak Portfolio Report Write-Up GuidelinesYou may want to.docxStock-Trak Portfolio Report Write-Up GuidelinesYou may want to.docx
Stock-Trak Portfolio Report Write-Up GuidelinesYou may want to.docx
 
Stewart Guthrie, Faces in the Clouds Oxford UP, 1993.docx
Stewart Guthrie,  Faces in the Clouds  Oxford UP, 1993.docxStewart Guthrie,  Faces in the Clouds  Oxford UP, 1993.docx
Stewart Guthrie, Faces in the Clouds Oxford UP, 1993.docx
 

Recently uploaded

Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 

Stoichiometry Lab – The Chemistry Behind Carbonates reacting with .docx

  • 1. Stoichiometry Lab – The Chemistry Behind Carbonates reacting with Vinegar Objectives: To visually observe what a limiting reactant is. To measure the change in mass during a chemical reaction due to loss of a gas. To calculate CO2 loss and compare actual loss to expected CO2 loss predicted by the balanced chemical equation. Materials needed: Note: Plan ahead as you’ll need to let Part 1 sit for at least 24 hours. plastic beaker graduated cylinder electronic balance 2 eggs 1 plastic cup baking soda (5 g) dropper vinegar (500mL) 2 identical cups or glasses (at least 500 mL) Safety considerations: Safety goggles are highly recommended for this lab as baking soda and vinegar chemicals can be irritating to the eyes. If your skin becomes irritated from contact with these chemicals, rinse with cool water for 15 minutes. Introduction: The reaction between baking soda and vinegar is a fun activity for young people. Most children (and adults!) enjoy watching the foamy eruption that occurs upon mixing these two household substances. The reaction has often been used for erupting volcanoes in elementary science classes. The addition of food coloring makes it even more fun. The reaction involves an acid-base reaction that produces a gas (CO2). Acid-base reactions typically involve the transfer of a hydrogen ion (H+) from the acid (HA) to the base (B−): HA + B− --> A− + BH (eq #1) acid base
  • 2. The base often (although not always) carries a negative charge. The acid usually (although not always) becomes negatively charged through the course of the reaction because it lost an H+. An example of a typical acid base reaction is below: HCl(aq) + NaOH(aq) --> NaCl(aq) + H2O(l) (eq #2) The reaction is actually taking place between the hydrogen ion (H+) and the hydroxide ion (OH−). The chloride and sodium are spectator ions. To write the reaction in the same form as eq #1: HCl(aq) + OH- --> Cl- + H2O (l) (eq #3) Sodium bicarbonate (NaHCO3) will dissociate in water to form sodium ion (Na+) and bicarbonate ion (HCO3−). NaHCO3 --> Na+ + HCO3− (eq #4) Vinegar is usually a 5% solution of acetic acid in water. The bicarbonate anion (HCO3−) can act as a base, accepting a hydrogen ion from the acetic acid (HC2H3O2) in the vinegar. The Na+ is just a spectator ion and does nothing. HCO3− + HC2H3O2 --> H2CO3 + C2H3O2− (eq#5) Bicarbonate acetic acid carbonic acid acetate ion The carbonic acid that is formed (H2CO3) decomposes to form water and carbon dioxide: H2CO3 --> H2O(l) + CO2(g) (eq#6) carbonic acid water carbon dioxide The latter reaction (production of carbon dioxide) accounts for the bubbles and the foaming that is observed upon mixing vinegar and baking soda. So the overall molecular reaction is: 1NaHCO3 (aq) + HC2H3O2 (aq) --> H2O(l) + CO2
  • 3. (g) + NaC2H3O2 (aq) (eq#7) 1NaHCO3 (aq) +1 HC2H3O2 (aq) --> 1H2O(l) + 1CO2 (g) + 1NaC2H3O2 (aq) (eq#7 again) Essentially, 1 mole of sodium bicarbonate will react with 1 mole of acetic acid to yield 1 mole of water, 1 mole of carbon dioxide gas and 1 mole of sodium acetate. Vinegar can react with another carbonate, specifically calcium carbonate found in egg shells. Bird eggshells are about 95% calcium carbonate. When this reacts with acetic acid (found in vinegar), a similar reaction to equation #7 occurs. You’ll explore this first in part 1. Procedure: Part 1: Qualitative analysis of the reaction of Vinegar with Calcium Carbonate in an eggshell 1. Find 2 identical cups that hold at least 500 mL. Put 1 egg in each. Label them Cup 1 and Cup 2. 2. In Cup 1, put 5 mL of vinegar and 395 mL of water. 3. In Cup 2, put 400 mL of vinegar. 4. Let both cups sit at room temperature for at least 24 hours. Stir occasionally (at least twice throughout the 24 hours but more is better). Leaving the egg in for 2-3 days is recommended. 5. Record observations every time you stir it. Part 2: Quantitative analysis of the reaction of Baking Soda and Vinegar 1. Place a small cup on the balance (don’t use the beaker yet) and tare/zero it. 2. Measure about 5 grams of baking soda into the cup. Record the precise mass of baking soda you used. (Note: “about 5
  • 4. grams” means that it should round to 5 grams with 1 sig fig. So you can use anywhere between 4.5 – 5.4 g. “Record the precise mass you used” means to write down 4.8g or 5.2g or whatever you used. Do not just write “5g”.) 3. Record the % of acetic acid in your vinegar, found on the bottle (most are about 5%). 4. Measure the mass of an empty beaker. 5. Measure out 44.0 ml of vinegar using the graduated cylinder. Pour the vinegar carefully into the beaker, and record the mass of the vinegar and beaker together. 6. Calculate, by subtraction, the mass of the vinegar alone. 7. Remove the beaker from the balance and very slowly add the baking soda to the vinegar in the beaker. You may want to swirl the contents to mix the two reactants and allow the carbon dioxide to escape. If you stir the mixture, make sure the object you use does not remove liquid. You could even include it in the mass of the beaker if you wish (i.e. “beaker + plastic spoon”). It may take a while for the reaction to stop bubbling, so let it set for 5-10 minutes. There should be very few bubbles left and the remaining bubbles should be tiny. 8. Measure the mass of the beaker with final mixture. 9. Calculate the mass of the final mixture alone. 10. Complete the calculations on the Data Sheet to determine theoretical yield*, actual yield**, and percent yield*** for carbon dioxide produced. SHOW ALL WORK FOR ALL CALCULATIONS on the data sheet. See Example Calculations and definitions below.
  • 5. 11. Complete the rest of the questions and extension questions. Example Calculations for a reaction of potassium bicarbonate with a lysol-like cleaner (not the same reaction as your chemical reaction but a similar acid-base reaction): Reaction is KHCO3(aq) + HCl(aq) --> H2O(l) + CO2(g) + KCl(aq) Mass of potassium bicarbonate = 10.1 g from my balance Molar mass of KHCO3 = (1 K)(39.1g/mol K) + (1 H)(1.008 g/mol H) + (1 C)(12.0g/mol C) + (3 O)(16.0g/mol O) = 100.108 g/mol = 100.1 g/mol KHCO3 using Add/Sub sig fig rule (tenths place) Moles KHCO3 = (10.1 g KHCO3)(1 mol/100.1g) = 0.10089 mol KHCO3 = 0.101 mol KHCO3 using Mult/Div sig fig rule (3 sig fig) 25% HCl Mass of lysol-like cleaner = 12.6 g from my balance Mass of HCl acid = (12.6 g lysol-like)(0.25) = 3.15 g = 3.2 g HCl using Mult/Div rule (2 sig fig from 25% HCl) Moles HCl = (3.2g)(1mol/35.5g) = 0.090148 moles = 0.090 moles HCl using Mult/Div rule (2 sig fig) The mole ratio of KHCO3 to HCl is 1:1 in balanced equation. Since moles of HCl is less than moles KHCO3, the HCl is the limiting reagent in this case. * Theoretical yield is the amount of product you expect to make in a chemical reaction if all the limiting reactant is used up and nothing is lost. Use a balanced chemical equation to help you convert from one chemical (limiting reactant grams you started with) to another chemical (the product grams you should theoretically make). (3.2g HCl)(1mol HCl/36.5g HCl)(1mol CO2/1mol HCl)(44.0g CO2/1mol CO2) = 3.85753 g CO2 = 3.9 g CO2 using Mult/Div sig fig rule (2 sig fig) **Actual yield comes from the experimental measurements. My total initial mixture = 22.7 g from balance
  • 6. My final mass mixture = 19.5 g from balance Difference due to lost CO2 = 3.2 g using Add/Sub rule (tenths place) ***Percent yield is given by the relation: % yield = actual yield/theoretical yield * 100 My % yield = 3.2g actual CO2/3.9g theo CO2 * 100 = 82.05128 % = 82% using Mult/Div rule (2 sig fig) Data & Analysis Sheet Name: Matthew Woods Part 1: Vinegar reacting with calcium carbonate in eggshells 1. Describe what you saw each time you stirred the mixtures, including final observations of each. In Cup 1, I didn’t see much just a couple bubble here and there. In Cup 2, over time I saw the egg get bigger and feels rubbery and flexible with a lot more bubbles forming than Cup 1. 2. In words only, write the chemical reaction occurring when vinegar and the eggshell react. It’s similar to Equation #7 in the instructions (but just use words, not formulas). Here’s the beginning: “Calcium carbonate plus acetic acid react to yield….” Calcium Carbonate (CaCO3) and acetic acid (CH3COO) reacts in a double replacement reaction, giving you calcium acetate, water, and carbon dioxide. Since calcium acetate is soluble it'll dissolve. This leaves behind the egg's inner membrane, making it flexible and rubbery. 3. What gas is in the bubbles produced? carbon dioxide gas 4. In Cup 1, what is the limiting reactant and what evidence do you have to support your claim? 5. In Cup 2, what is the limiting reactant and what evidence do you have to support your claim?
  • 7. Part 2: Experimental Data for Baking Soda and vinegar reacting Data Mass baking soda (alone) 5.0 g Mass of beaker (alone) 15.9 g Vinegar % 5% Mass vinegar + beaker 59.6 g Mass vinegar (alone) 43.7 g Mass mixture + beaker after reaction 63.0 g Mass mixture (only) after reaction 47.1 g Part 2: Table for Calculation Results (Show work below this table and enter final results here) Results 6. Molar mass of sodium bicarbonate 84.0 g/mol 7. Moles of sodium bicarbonate 8. Mass of acetic acid in vinegar 9. Molar mass of acetic acid 10. Moles of acetic acid 11. Total initial mass of reactants
  • 8. 12. Final mass of mixture 13. Difference in mass = initial mass – final mass = carbon dioxide produced (actual yield) 14. Limiting Reactant 15. Theoretical yield carbon dioxide 16. % yield carbon dioxide Be careful of sig fig in your measurements and calculations. Calculations (Show all work by each question below and then enter the final results of each calculation into the table above.) Please make your answers stand out by bolding or coloring them. 6. Determine the molar mass of sodium bicarbonate. Molar mass of NaHCO3 = 84.00661 g/mol 22.989770+1.00794+12.0107+15.9994*3 Sig figs = 84.0 g/mol 7. Calculate the number of moles of sodium bicarbonate using the mass of baking soda. 8. Determine the mass of acetic acid used in the experiment. You need to look on your bottle of vinegar to do this. If your vinegar is 4 %, this means that every 100 g of vinegar contains 4 g of acetic acid. (If it is 5 %, then 100 g contains 5 g of acetic acid). To calculate the mass of acetic acid, use the following equation. For 5 %, replace 0.04 with 0.050. Record results in table. You can assume the percent has 2 sig figs. mass of acetic acid = mass of vinegar x 0.040
  • 9. 9. Determine the molar mass of acetic acid, HC2H3O2. 10. Determine the number of moles of acetic acid in each sample of vinegar. Hint: you need to use the mass of acetic acid, not the mass of vinegar. 11. Add the mass of baking soda and vinegar initially. This is the total initial mass of reactants. 12. Record the final mass of mixture. 13. Determine the total mass gain or loss for the reaction by comparing your initial mass to the final mass of mixture. This is the mass of carbon dioxide lost which is your actual loss. 14. Compare the moles of sodium bicarbonate to moles of acetic acid. Which one is the limiting reactant and why? Show calculations to support this but also describe what you saw that supports your statement. 15. Determine the number of grams of carbon dioxide that the reaction should theoretically produce. This is where the pen and paper stoichiometry comes in. In the calculation, use the limiting reactant as your "known" and the carbon dioxide as your unknown. You have already calculated the moles of sodium bicarbonate and acetic acid used so Step I in the “three steps process” used to go from grams known to grams unknown is already done. See the Ch. 8 Lecture about Steps II and III, remembering that one mole of acetic acid or sodium bicarbonate should produce one mole of carbon dioxide (from Eq #7). 16. Calculate the “percent yield” for the carbon dioxide produced. If the actual yield is a negative number, then the % yield would be 0. Be careful of sig figs in your calculations. Make sure you
  • 10. showed work. Questions 17. Look at the percent yield of carbon dioxide produced. Give a possible cause (experimental error, not calculation or measurement or instrumental error) for differences between what you calculated should be produced (theoretical yield) and what was actually produced. This should be something that you probably couldn’t avoid very well. (So don’t say, “I measured wrong” or “I calculated wrong” because this is easily avoidable by redoing the lab or re-measuring). 18. In the calculation for #15, why couldn’t the moles of the other reactant be used in the calculation? 19. True or False: After you figure out the moles of the reactants in a reaction, the lower amount of moles is always the limiting reactant. Please explain your answer thoroughly. Providing an example would be very helpful. Keep going on the next page Extension with calcium carbonate: Suppose we did the quantitative experiment part 2 with calcium carbonate (found in egg shells and Tums) instead of baking soda. So we reacted it with vinegar and took mass measurements. 20. Write a balanced reaction for acetic acid reacting with calcium carbonate. Be careful. It is no longer a 1:1 ratio. Hint: you should’ve written this in words in #2 so now turn those words into correct formulas and balance. Include phases. 21. Suppose we got the following data from doing the lab with vinegar and calcium carbonate. Fill in the 2 missing boxes (with the green stars **) using the given data.
  • 11. Data Table Run #1 Mass calcium carbonate (alone) 3.9 g Mass beaker 30.0 g Vinegar percent 5% Mass vinegar + beaker 84.2 g Mass vinegar (alone) ** Mass mixture + beaker after reaction 87.4 g Mass mixture (only) after reaction ** Calculations (Show all work by each question below the table and then enter the final results of each calculation into the following table) Results (show work below) Run #1 22. Molar mass of calcium carbonate 23. Moles of calcium carbonate 24. Mass of acetic acid in vinegar 25. Molar mass of acetic acid 26. Moles of acetic acid 27. Total initial mass
  • 12. 28. Final mass mixture (measured in lab – copy from above table) 29. Difference in mass = initial mass – final mass = carbon dioxide produced (actual yield) 30. Limiting Reactant 31. Theoretical yield carbon dioxide 32. % yield carbon dioxide 22. Determine the molar mass of calcium carbonate (using a periodic table). 23. Calculate the number of moles of calcium carbonate using the data above. 24. Determine the mass of acetic acid used in the experiment. Assume vinegar is 5% on the bottle. (If it is 5 %, then 100 g contains 5 g of acetic acid). Record results in table below. You can assume the percent has 2 sig figs. 25. Determine the molar mass of acetic acid, HC2H3O2. No need to show work here if you did above. Just put it in the table. 26. Determine the number of moles of acetic acid in the sample of vinegar that was used. Hint: you need to use the mass of acetic acid, not the mass of vinegar. 27. Add the mass of calcium carbonate and vinegar initially. This is the total initial mass of mixture. Record results. 28. The final mass of the mixture is given in the table above.
  • 13. Just report this number below (no work to show). 29. Determine the total mass gain or loss for the reaction by comparing your initial mass to the final mass of mixture. This is the mass of carbon dioxide lost which is your actual loss. 30. To determine the number of grams of carbon dioxide that the reaction should theoretically be produced, we need to first determine the limiting reactant. This is where the pen and paper stoichiometry comes in. Compare the moles of calcium carbonate to acetic acid. Which one is the limiting reactant and why? ** Be very careful** This is not a 1:1 ratio like the first part of the lab. 31. Determine the theoretical yield of carbon dioxide. To do this, in the calculation, use the limiting reactant as your known and the carbon dioxide as your unknown. You have already calculated the moles of calcium carbonate and acetic acid used so Step I in the “three steps process” used to go from grams known to grams unknown is already done. See the Ch. 8 Lecture about Steps II and III, but remember that now we do not have a 1:1 ratio. 32. Calculate the “percent yield” for the carbon dioxide produced. If the actual yield is a negative number, then the % yield would be 0. Extra Credit Questions: a) In this particular example, the change in mass during the reaction provides evidence that a chemical reaction is taking place. Explain this. b) Is it necessary to have a change in mass in order to have a chemical reaction? Why or why not?
  • 14. c) Provide an example of a chemical reaction (not just a physical change) where no mass change would be observed.