SlideShare a Scribd company logo
1 of 53
Download to read offline
Islamic University of Gaza  ‐Environmental Engineering Department
Water TreatmentWater Treatment
EENV 4331
Lecture 3: Coagulation and Flocculation
Dr.   Fahid Rabah
1
3.1 Definition of Coagulation and Flocculation
 Coagulation and flocculation are two consecutive process 
(i.e. occur one after the other) that are used to remove 
colloidal particles from watercolloidal particles from water.
 Colloids are very small particles (turbidity and color causing 
particles) that can not be removed neither byparticles) that can not be removed neither by 
sedimentation (due to their light weight) nor by filtration.  
 Examples of colloids: soil particles, bacteria, viruses and Examples of colloids: soil particles, bacteria, viruses and 
color causing materials. These colloids are stable in solution 
and theoretically will stay there for ever unless an action is 
done to destabilize them. Coagulation and flocculation are 
the two processes used for this destabilization.
2
3 2 Colloidal Stability
 Colloids are very Small particles (0.01 to 1 m)
3.2 Colloidal Stability
 Most naturally occurring particles in water are negatively charged.
Since like charges repel these small particles or colloids will remainSince like charges repel, these small particles, or colloids, will remain
suspended almost indefinitely.
 A fixed layer of positive ions (counterions) is attracted to the negatively
charged colloids by electrostatic attraction. This layer is called stern
layer or fixed layer. This layer is surrounded by a movable diffuse layer
of counterions but with a lower concentration than that in the fixedof counterions but with a lower concentration than that in the fixed
layer. The two layers form what is called the double layer theory.
3
4
Turbidity
Suspended Solids Colloidal
Light , electrically chargedLight , electrically charged
particlesSettleable
Heavy particles
Non‐settleable
Uncharged Light particles
Coagulation
Coagulation
Not affected
Coagulation
Converted to
Uncharged Light particles
Coagulation
Not affected
Flocculation
Not affected
Flocculation
Converted to
Heavy particles
Flocculation
Converted to
Heavy particles
Sedimentation
Around 60% Settle
Sedimentation
Around 60% Settle
Sedimentation
Around 60% Settle
Filtration
Around 35 % filtered
Filtration
Around 35 % filtered
Filtration
Around 35 % filtered
5
Turbidity removal flowchart from surface water
 The surface between the two layers is called the shear surface. When
the colloid moves the fixed layer moves with it.
 The positive charge attached to the colloid in the stern layer is not The positive charge attached to the colloid in the stern layer is not
enough to neutralize the negative charge of the colloid. So there is a
net electrical potential around the colloid as shown in the Figure 3.1.
 The Electrical potential at the shear surface is called the Zeta potential
which is a measure of the repulsive force of the colloid to other colloids
having the same charge.having the same charge.
6
Figure 3.1:
Double layer charges and
Zeta potential around a colloid
7
 There are two major forces acting on colloids: There are two major forces acting on colloids:
1) Electrostatic repulsion
negative colloids repel other negatively charged colloidsnegative colloids repel other negatively charged colloids
orcerepultionFticEloctrostaF
1
 orcerepultionFticEloctrosta
d
FES ,2

2) Intermolecular attraction, or van der Waals,.
Ftt tiW ldVF
1

For a stable colloid the net energy is repulsive.
ForceattractionWaalderVan
d
FVan ,6

For a stable colloid the net energy is repulsive.
Figures 3.2  and  3.3   Illustrates these two main forces. 
8
d
Figure 3.2:
Forces affecting colloids : Electrostatic repulsion and Van‐der Waal attraction
9
Figure 3.3:
Forces affecting colloids : Electrostatic repulsion and Van‐der Waal attraction
10
3.3 Colloidal Destabilization and agglomeration
1. Colloidal Destabilization or Coagulation:
 It was illustrated that colloids are stable due to the net repulsive force 
between them consequently they will stay stable in suspension unless this 
net repulsive force is neutralized .
 The process of neutralization of the repulsive force is called destabilization . 
 Destabilization is achieved by a process called coagulation. 
 Coagulation is the process of destabilization of colloids by adding chemicals 
(Coagulants) with a counter charge to neutralize the charge  carried by the 
colloids. This will reduce the repelling force and gives the opportunity for 
the attractive forces to prevail and allow the particles and make them readythe attractive forces to prevail and allow the particles and make them ready 
to agglomerate and form bigger particles.
11
3.3 Colloidal Destabilization and agglomeration
2. Agglomeration or Flocculation ( Forming Flocs):
 After destabilization (i.e. Coagulation), particles will be ready to a tract and 
agglomerate and form flocs. But this agglomeration is slow and they need 
help to accelerate this agglomeration. 
 This help is called Flocculation “which is the slow stirring or gentle agitation 
to aggregate the destabilized particles and form a rapid settling floc”. 
 This gentle mixing increases the collisions between the particles and help 
them to agglomerate. Notice that rapid mixing will destroy the flocs, that's 
why we need gentle mixing.
12
3.4 Coagulation
1. Coagulants:
 Coagulants are chemicals that are added to water to destabilize colloids. Coagulants are chemicals that are added to water to destabilize colloids. 
The most common coagulants are given in the table below:
Type of coagulant formula most common Nyp g
form
aluminum sulfate Al2 (SO4)3. 14-18 H2O lumps or powder acidic
Sodium aluminate NaAlO2 or Na2Al2O4 Powder alkaline
Poly-aluminiumchloride Al (OH) Cl Solution or powder acidicPoly-aluminiumchloride Aln(OH)mCl3n-m Solution or powder acidic
Ferric sulfate Fe2(SO4)3.9H2O Small crystals acidic
Ferris chloride FeCl3. 6H2O Lumps or solution acidic
13
Ferrous sulfate FeSO4. 7H2O Small crystals acidic
2. Coagulation chemistry:
If  Alum  is used the following reactions occur:
• Al2(SO4)314H2O  2Al3++ 3SO4
2‐+ 14H2O
• 2Al3+ + colloids  neutralize surface charge• 2Al3+ + colloids  neutralize surface charge
• 2Al3+ + 6HCO3
‐  2Al(OH)3(s) + 6CO2
• If insufficient bicarbonate is available:
Al2(SO4)314H2O  2Al(OH)3(s) + 3H2SO4 + 14H2O
• Optimum pH: 5.5 to 6.5
• Operating pH: 5 to 8
• Since the coagulation reaction results in the decrease of the pH so• Since the coagulation reaction results in the decrease of the pH, so
• It is a common practice to add lime (Ca(OH)2) together with the coagulant
to increase the pH consequently countering the effect of pH decrease.
14
3. Factors affecting Coagulation
The two main factors affecting the coagulation process are: 
‐ Coagulant dosage g g
‐ pH of the water
The optimum dosage and optimum pH are determined by p g p p y
laboratory test called the Jar Test. the Jar test consists of six 
beakers filled with the water to be treated and then each is 
mixed and flocculated uniformly. A test is often conducted by 
first dosing each jar with the same value of coagulant and 
varying the pH of each jar The test can then be repeated byvarying the pH of each jar. The test can then be repeated by 
holding the pH constant and varying the coagulant dosage.
Figure (3.4) illustrates the jar test.
Figure(3.5) illustrates the effect of dosage and pH on the coagulation process.
15
16
Figure (3.4) The Jar Test
17
Figure 3.5:
Effect of coagulant dosage and pH on the coagulation process
4. Design of Coagulation tank:
A. As illustrated previously, coagulation requires the addition of a chemical
called “ coagulant.  The coagulant should be very well mixed with water to 
produce homogeneous mixture of the influent water and the coagulant to 
achieve the best  coagulation efficiency.ac e e e bes coagu a o e c e cy
B This mixing is achieved in a tank called Rapid mixer Figures 3 6 and 3 7B. This mixing is achieved in a tank called Rapid mixer. Figures 3.6 and 3.7
illustrate the geometry of the rapid mixer. It usually has  a square or circular 
cross section to achieve best mixing efficiency.
C. The most common mixers used in the coagulation tank are mechanical 
mixers. The most common types are : turbine, propeller, and paddle mixers.
Fi 3 8 ill t t th tFigure 3.8 illustrates these types.  
18
Figure 3.6 : Rapid mixer
19
Figure 3.6 : Rapid mixer
Figure 3.7 : Rapid mixer
20
Figure 3.7 : Rapid mixer
Figure 3.8 : types mechanical rapid mixer
21
D. Sizing the coagulations Rapid mixer tank:
i Tank Volume:i. Tank Volume:
V = Q*t
WhWhere,
V =  tank volume , m3
Q = design flow , m3/S
t   = detention time in the tank, S
The detention time in the rapid mixer is in the range of 20‐60 seconds. p g
This short time is enough to achieve complete mixing of the coagulant 
and to complete the coagulation   process.  The water depth is usually 
taken as 1.5 times the width of the tank if it is square or the diametertaken as 1.5 times the width of the tank if it is square or the diameter
if it is a circular. 
22
ii Power Requirements:ii. Power Requirements:
P = µVG2
hWhere,
P =  power transmitted to the water by the mixer, N.m/s  (Watt)
V = tank volume, m3
G = velocity gradient, S‐1
µ =  dynamic viscosity of water, N.s/m2
The velocity gradient is defined as the relative velocity between
two colloidal particles in water divided by the  distance between them. 
For example if two particles are 1 cm apart and the relative velocityFor example, if two particles are 1 cm apart and the relative velocity 
between the is 10 m/s, then 
G = 10 (mps)/0 01m = 1000 mps/m = 1000 S‐1G = 10 (mps)/0.01m = 1000 mps/m = 1000 S 1
Typical values of G in coagulation rapid mixing are given in the following
Table. 
23
Detention time (Seconds) G mps/m, or S‐1
Typical design values of the G for coagulation
Detention time (Seconds) G mps/m, or S
20 1000
30 900
40 790
50  or more 700
Example:
A rapid mixer is to be used for coagulation of surface water with high turbidity.
If the flow is 720 m3/h find the volume and dimensions of the tank and the
power requirements. Assume that the detention time is 20 seconds and G=1000
S‐1, µ = 1.518 X 10‐3 N.m/s2 at 5 oC.
Solution:Solution:
Q = 720 m3/h = 0.20 m3/s
V = 30*0.2 = 6 m3
Assume the tank cross section is square ,then V = W*W*1.5W=1.5 W3q ,
6= 1.5W3 , W = 1.587 m, d= 1.5*1.587 = 2.38 m.
P=µVG2 = 1.518X10‐3X6X 10002 = 9522 Watt = 9.522 Kw
24
3.5 Flocculation
1. Configurations of Flocculation tanks:
 The most common types of Flocculator are paddle and walking beam Flocculator. 
Figures 3.9 through 3.16 illustrate these types.
 Another type of tanks combine between flocculation and sedimentation in one 
tank  and called  solid contact Flocculator Clarifier. See Figures 3.17 and 3.18.
 Figures 3.19 and 3.20 illustrate the layout of a water treatment plant
with coagulation, flocculation and sedimentation tanks . 
25
2. Design of Flocculation tanks:
i. Tank Volume:
V = Q*t
Where,
V =  tank volume , m3
Q = design flow , m3/SQ des g o , /S
t   = detention time in the tank, S
The detention time in the flocculation  tank is much higher than that  in 
the rapid mixer It is in the range of 20‐60 minutesthe rapid mixer. It  is in the range of 20‐60 minutes. 
ii. Power Requirements:
P = µVG2
Where,
P =  power transmitted to the water by the mixer, N.m/s  (Watt)
V = tank volume, m3
G = velocity gradient, S‐1
26
G  velocity gradient, S
µ =  dynamic viscosity of water, N.s/m2
‐ The value of G*t is an important factor in the Flocculator. It has a range 
Of 104 to 105.  typical values of G  1s 15  to 60  S‐1.
In paddle Flocculator we usually use three compartments in series and G is tapered‐In paddle Flocculator, we usually use three compartments in series and  G is tapered 
gradually from the first to the third compartment. For example G1 = 60  S‐1, G2 =60  S‐1, 
G3 =60  S‐1.The average of the three values should be in the Above mentioned 
rage for G Tapering is needed to prevent the destruction of the growing flocks
The power is also expressed  in terms of the paddle mixer properties
as the following:
3
AC
rage for G.  Tapering is needed to prevent the destruction of the growing flocks
Where,
C D ffi i f i f ddl bl d di i L/W ( h bl )
2
3
ppD vAC
P


CD =   Drag coefficient, function of paddle blades dimensions, L/W (see the table)
Ap =  Area of the paddle blades, m2
ρ =   Water density, kg/m3
v velocity of the paddle relative to the water m/s it is the tangential velocityvp = velocity of the paddle relative to the water, m/s. it is the tangential velocity
of the blade tip, it is perpendicular to the radius of the paddle. 
If more than one blade is used on the paddle the power is expressed as:
 
2
3
33
3
22
3
11 ppppppD vAvAvAC
P



27
Values of the drag coefficient for paddle‐Wheel Flocculator
CDLength to width ration (L/W)
1.205
1.5020
1.90∞
dv 
The blades velocity is related to the rotational speed of the paddles 
By the following relation: 
dvp 
Where,
D = the distance between  the center lines of the two corresponding bladesp g
on the paddle, m , (see figure 3.9, the distances D1 , D2,D3) 
ω =  rotational speed  of the paddle, rev/s. 
28
Figure 3.9: Baddel Flocculator, Horizontal Shaft
29
Figure 3.10 : Horizontal-Shaft Paddle Flocculator, Axial flow pattern
30
Figure 3.10 : Horizontal Shaft Paddle Flocculator, Axial flow pattern
Figure 3.11: Horizontal-Shaft Paddle Flocculator, Cross flow pattern
31
Figure 3.11: Horizontal Shaft Paddle Flocculator, Cross flow pattern
Figure 3.12: Horizontal-Shaft Paddle Flocculator, Cross flow pattern
32
Figure 3.13: Vertical Shaft Baddel Flocculator
33
Figure 3.14: Vertical-Shaft Paddle Flocculator
34
Figure 3.14: Vertical Shaft Paddle Flocculator
35
Figure 3.15: Walking Beam-Shaft addle Flocculator
36
Figure 3.16 : Walking Beam Flocculator
Figure 3.17a : Solids Contact Flocculator Clarifier
37
Figure 3.17 b: Solids Contact Flocculator Clarifier
38
Figure 3.18 : Solids Contact Flocculator Clarifier
39
Sedimentation Tank
Vertical shaft Paddle
Flocculation tank
Coagulation Rapid Mixe
40
igure 3.19 : Layout of Coagulation Rapid mixer, flocculation and sedimentation Tanks
Figure 3.20 :g
Layout of
Rapid mix,
flocculation
and
Clarification
Tanks
41
Example 1:
42
43
44
45
46
47
Example 2:
3.20
48
49
3.9
50
51
52
53

More Related Content

What's hot

L8- Sedimentation aided with coagulation.pptx
L8- Sedimentation aided with coagulation.pptxL8- Sedimentation aided with coagulation.pptx
L8- Sedimentation aided with coagulation.pptxPRACHI DESSAI
 
4. sedimentation
4. sedimentation4. sedimentation
4. sedimentationvvsasane
 
Water treatment process
Water treatment processWater treatment process
Water treatment processSonam Pandey
 
Coagulation & flocculation in wastewater treatment
Coagulation & flocculation in wastewater treatmentCoagulation & flocculation in wastewater treatment
Coagulation & flocculation in wastewater treatmentMD. JAMILUR Rahman
 
AERATION & WATER SOFTENING PROCESS
AERATION & WATER SOFTENING PROCESSAERATION & WATER SOFTENING PROCESS
AERATION & WATER SOFTENING PROCESSrama chandran
 
ADVANCED WATER TREATMENT PROCESS
ADVANCED WATER TREATMENT PROCESSADVANCED WATER TREATMENT PROCESS
ADVANCED WATER TREATMENT PROCESSsathyan s
 
Water treatment-lecture-6-eenv
Water treatment-lecture-6-eenvWater treatment-lecture-6-eenv
Water treatment-lecture-6-eenvusman1017
 
Sedimentation tanks in water treatment
Sedimentation tanks in water treatmentSedimentation tanks in water treatment
Sedimentation tanks in water treatmentRamodh Jayawardena
 
Types of sedimentation tank
Types of sedimentation tankTypes of sedimentation tank
Types of sedimentation tankSagar Vekariya
 
Filtration ppt By Mayank Oza
Filtration ppt By Mayank OzaFiltration ppt By Mayank Oza
Filtration ppt By Mayank OzaMayank Oza
 
areation and types of aeration in waste water treatment
areation and types of aeration in waste water treatmentareation and types of aeration in waste water treatment
areation and types of aeration in waste water treatmentAmi jasani
 
Mixing , coagulation
Mixing , coagulationMixing , coagulation
Mixing , coagulationAhmed Hasham
 
3. grit chamber
3. grit chamber3. grit chamber
3. grit chambervvsasane
 

What's hot (20)

L8- Sedimentation aided with coagulation.pptx
L8- Sedimentation aided with coagulation.pptxL8- Sedimentation aided with coagulation.pptx
L8- Sedimentation aided with coagulation.pptx
 
4. sedimentation
4. sedimentation4. sedimentation
4. sedimentation
 
Water treatment process
Water treatment processWater treatment process
Water treatment process
 
Coagulation & flocculation in wastewater treatment
Coagulation & flocculation in wastewater treatmentCoagulation & flocculation in wastewater treatment
Coagulation & flocculation in wastewater treatment
 
AERATION & WATER SOFTENING PROCESS
AERATION & WATER SOFTENING PROCESSAERATION & WATER SOFTENING PROCESS
AERATION & WATER SOFTENING PROCESS
 
ADVANCED WATER TREATMENT PROCESS
ADVANCED WATER TREATMENT PROCESSADVANCED WATER TREATMENT PROCESS
ADVANCED WATER TREATMENT PROCESS
 
drinking water treatment process
drinking water treatment processdrinking water treatment process
drinking water treatment process
 
Types of coagulants
Types of coagulantsTypes of coagulants
Types of coagulants
 
L 24 filtration
L 24 filtrationL 24 filtration
L 24 filtration
 
Water treatment-lecture-6-eenv
Water treatment-lecture-6-eenvWater treatment-lecture-6-eenv
Water treatment-lecture-6-eenv
 
GWHMODULE3.pptx
GWHMODULE3.pptxGWHMODULE3.pptx
GWHMODULE3.pptx
 
Water softening methods
Water softening methodsWater softening methods
Water softening methods
 
Sedimentation tanks in water treatment
Sedimentation tanks in water treatmentSedimentation tanks in water treatment
Sedimentation tanks in water treatment
 
Types of sedimentation tank
Types of sedimentation tankTypes of sedimentation tank
Types of sedimentation tank
 
Filtration ppt By Mayank Oza
Filtration ppt By Mayank OzaFiltration ppt By Mayank Oza
Filtration ppt By Mayank Oza
 
Ppt 1
Ppt 1Ppt 1
Ppt 1
 
areation and types of aeration in waste water treatment
areation and types of aeration in waste water treatmentareation and types of aeration in waste water treatment
areation and types of aeration in waste water treatment
 
Water treatment process
Water treatment processWater treatment process
Water treatment process
 
Mixing , coagulation
Mixing , coagulationMixing , coagulation
Mixing , coagulation
 
3. grit chamber
3. grit chamber3. grit chamber
3. grit chamber
 

Viewers also liked

Water treatment-lecture-1-eenv
Water treatment-lecture-1-eenvWater treatment-lecture-1-eenv
Water treatment-lecture-1-eenvusman1017
 
Water treatment-lecture-2-eenv
Water treatment-lecture-2-eenvWater treatment-lecture-2-eenv
Water treatment-lecture-2-eenvusman1017
 
Water treatment-lecture-5-eenv
Water treatment-lecture-5-eenvWater treatment-lecture-5-eenv
Water treatment-lecture-5-eenvusman1017
 
Water treatment-lecture-7-eenv
Water treatment-lecture-7-eenvWater treatment-lecture-7-eenv
Water treatment-lecture-7-eenvusman1017
 
water treatment slides
water treatment slideswater treatment slides
water treatment slidesAnand Keshri
 
Coagulation and flocculation in water treatment
Coagulation and flocculation in water treatmentCoagulation and flocculation in water treatment
Coagulation and flocculation in water treatmentMohamed Azeem Nijamdeen
 
Ppt coagulation and flocculation
Ppt coagulation and flocculationPpt coagulation and flocculation
Ppt coagulation and flocculationLokesh Saini
 
Removal of iron &; Manganese
Removal of iron &; ManganeseRemoval of iron &; Manganese
Removal of iron &; ManganeseGAURAV. H .TANDON
 
IWRM Evaluation Result_Malaysia
IWRM Evaluation Result_MalaysiaIWRM Evaluation Result_Malaysia
IWRM Evaluation Result_MalaysiaGWP SOUTHEAST ASIA
 
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...India Water Portal
 
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015India Water Portal
 
Iron and Manganese Removal
Iron and Manganese RemovalIron and Manganese Removal
Iron and Manganese RemovalPrateek Gupta
 
Water Quality Treatment - Produced Water & Flowback
Water Quality Treatment - Produced Water & FlowbackWater Quality Treatment - Produced Water & Flowback
Water Quality Treatment - Produced Water & FlowbackAshwin Dhanasekar
 
Aeration ppt by Sajal
Aeration ppt   by SajalAeration ppt   by Sajal
Aeration ppt by SajalSAJAL1428
 

Viewers also liked (20)

Water treatment-lecture-1-eenv
Water treatment-lecture-1-eenvWater treatment-lecture-1-eenv
Water treatment-lecture-1-eenv
 
Water treatment-lecture-2-eenv
Water treatment-lecture-2-eenvWater treatment-lecture-2-eenv
Water treatment-lecture-2-eenv
 
Water treatment-lecture-5-eenv
Water treatment-lecture-5-eenvWater treatment-lecture-5-eenv
Water treatment-lecture-5-eenv
 
Water treatment-lecture-7-eenv
Water treatment-lecture-7-eenvWater treatment-lecture-7-eenv
Water treatment-lecture-7-eenv
 
water treatment slides
water treatment slideswater treatment slides
water treatment slides
 
Coagulation and flocculation in water treatment
Coagulation and flocculation in water treatmentCoagulation and flocculation in water treatment
Coagulation and flocculation in water treatment
 
L 17 coagulation and flocculation
L 17 coagulation and flocculationL 17 coagulation and flocculation
L 17 coagulation and flocculation
 
Ppt coagulation and flocculation
Ppt coagulation and flocculationPpt coagulation and flocculation
Ppt coagulation and flocculation
 
Removal of iron &; Manganese
Removal of iron &; ManganeseRemoval of iron &; Manganese
Removal of iron &; Manganese
 
IWRM Evaluation Result_Malaysia
IWRM Evaluation Result_MalaysiaIWRM Evaluation Result_Malaysia
IWRM Evaluation Result_Malaysia
 
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...
Iron Removal Plant for Handpumps_Sre Senthil Engineering Company_ Indovation ...
 
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015
Phytorid_Ecologique Science Technik Pvt. Ltd._Indovation 2015_24 January 2015
 
Chp 9
Chp 9Chp 9
Chp 9
 
Iron and Manganese Removal
Iron and Manganese RemovalIron and Manganese Removal
Iron and Manganese Removal
 
Water Quality Treatment - Produced Water & Flowback
Water Quality Treatment - Produced Water & FlowbackWater Quality Treatment - Produced Water & Flowback
Water Quality Treatment - Produced Water & Flowback
 
Sand filter
Sand filterSand filter
Sand filter
 
Colloid
ColloidColloid
Colloid
 
Aeration ppt by Sajal
Aeration ppt   by SajalAeration ppt   by Sajal
Aeration ppt by Sajal
 
Ssf
SsfSsf
Ssf
 
Coagulation
CoagulationCoagulation
Coagulation
 

Similar to Water treatment-lecture-3-eenv

Similar to Water treatment-lecture-3-eenv (20)

chapter 5.pptx
chapter 5.pptxchapter 5.pptx
chapter 5.pptx
 
VAN LEEUWEN 2011 Coagulation and Flocculation(0).ppt
VAN LEEUWEN 2011 Coagulation and Flocculation(0).pptVAN LEEUWEN 2011 Coagulation and Flocculation(0).ppt
VAN LEEUWEN 2011 Coagulation and Flocculation(0).ppt
 
Colloids By Sitwat Rafi
Colloids By Sitwat RafiColloids By Sitwat Rafi
Colloids By Sitwat Rafi
 
Colloids
ColloidsColloids
Colloids
 
237015090-jar-test-lab-report-doc.doc
237015090-jar-test-lab-report-doc.doc237015090-jar-test-lab-report-doc.doc
237015090-jar-test-lab-report-doc.doc
 
convetational.pptx
convetational.pptxconvetational.pptx
convetational.pptx
 
convetational.pptx
convetational.pptxconvetational.pptx
convetational.pptx
 
2 colloidal system
2 colloidal system2 colloidal system
2 colloidal system
 
Colloidal Dispersion ppt.pptx
Colloidal Dispersion ppt.pptxColloidal Dispersion ppt.pptx
Colloidal Dispersion ppt.pptx
 
2_5190405601405960384.pdf
2_5190405601405960384.pdf2_5190405601405960384.pdf
2_5190405601405960384.pdf
 
Physiology Colloids
Physiology ColloidsPhysiology Colloids
Physiology Colloids
 
Colloid chemistry
Colloid chemistryColloid chemistry
Colloid chemistry
 
Zeta
ZetaZeta
Zeta
 
Unit 2
Unit 2Unit 2
Unit 2
 
The Formation of Two-Phase Periodic Structures-Crimson Publishers
The Formation of Two-Phase Periodic Structures-Crimson PublishersThe Formation of Two-Phase Periodic Structures-Crimson Publishers
The Formation of Two-Phase Periodic Structures-Crimson Publishers
 
Colloids
ColloidsColloids
Colloids
 
The colloidal state
The colloidal stateThe colloidal state
The colloidal state
 
Coagulation & Flocculation
Coagulation & FlocculationCoagulation & Flocculation
Coagulation & Flocculation
 
Coagulation
CoagulationCoagulation
Coagulation
 
Lecture 1-18-10-2014
Lecture 1-18-10-2014Lecture 1-18-10-2014
Lecture 1-18-10-2014
 

Recently uploaded

Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 

Recently uploaded (20)

young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 

Water treatment-lecture-3-eenv

  • 2. 3.1 Definition of Coagulation and Flocculation  Coagulation and flocculation are two consecutive process  (i.e. occur one after the other) that are used to remove  colloidal particles from watercolloidal particles from water.  Colloids are very small particles (turbidity and color causing  particles) that can not be removed neither byparticles) that can not be removed neither by  sedimentation (due to their light weight) nor by filtration.    Examples of colloids: soil particles, bacteria, viruses and Examples of colloids: soil particles, bacteria, viruses and  color causing materials. These colloids are stable in solution  and theoretically will stay there for ever unless an action is  done to destabilize them. Coagulation and flocculation are  the two processes used for this destabilization. 2
  • 3. 3 2 Colloidal Stability  Colloids are very Small particles (0.01 to 1 m) 3.2 Colloidal Stability  Most naturally occurring particles in water are negatively charged. Since like charges repel these small particles or colloids will remainSince like charges repel, these small particles, or colloids, will remain suspended almost indefinitely.  A fixed layer of positive ions (counterions) is attracted to the negatively charged colloids by electrostatic attraction. This layer is called stern layer or fixed layer. This layer is surrounded by a movable diffuse layer of counterions but with a lower concentration than that in the fixedof counterions but with a lower concentration than that in the fixed layer. The two layers form what is called the double layer theory. 3
  • 4. 4
  • 5. Turbidity Suspended Solids Colloidal Light , electrically chargedLight , electrically charged particlesSettleable Heavy particles Non‐settleable Uncharged Light particles Coagulation Coagulation Not affected Coagulation Converted to Uncharged Light particles Coagulation Not affected Flocculation Not affected Flocculation Converted to Heavy particles Flocculation Converted to Heavy particles Sedimentation Around 60% Settle Sedimentation Around 60% Settle Sedimentation Around 60% Settle Filtration Around 35 % filtered Filtration Around 35 % filtered Filtration Around 35 % filtered 5 Turbidity removal flowchart from surface water
  • 6.  The surface between the two layers is called the shear surface. When the colloid moves the fixed layer moves with it.  The positive charge attached to the colloid in the stern layer is not The positive charge attached to the colloid in the stern layer is not enough to neutralize the negative charge of the colloid. So there is a net electrical potential around the colloid as shown in the Figure 3.1.  The Electrical potential at the shear surface is called the Zeta potential which is a measure of the repulsive force of the colloid to other colloids having the same charge.having the same charge. 6
  • 7. Figure 3.1: Double layer charges and Zeta potential around a colloid 7
  • 8.  There are two major forces acting on colloids: There are two major forces acting on colloids: 1) Electrostatic repulsion negative colloids repel other negatively charged colloidsnegative colloids repel other negatively charged colloids orcerepultionFticEloctrostaF 1  orcerepultionFticEloctrosta d FES ,2  2) Intermolecular attraction, or van der Waals,. Ftt tiW ldVF 1  For a stable colloid the net energy is repulsive. ForceattractionWaalderVan d FVan ,6  For a stable colloid the net energy is repulsive. Figures 3.2  and  3.3   Illustrates these two main forces.  8
  • 9. d Figure 3.2: Forces affecting colloids : Electrostatic repulsion and Van‐der Waal attraction 9
  • 10. Figure 3.3: Forces affecting colloids : Electrostatic repulsion and Van‐der Waal attraction 10
  • 11. 3.3 Colloidal Destabilization and agglomeration 1. Colloidal Destabilization or Coagulation:  It was illustrated that colloids are stable due to the net repulsive force  between them consequently they will stay stable in suspension unless this  net repulsive force is neutralized .  The process of neutralization of the repulsive force is called destabilization .   Destabilization is achieved by a process called coagulation.   Coagulation is the process of destabilization of colloids by adding chemicals  (Coagulants) with a counter charge to neutralize the charge  carried by the  colloids. This will reduce the repelling force and gives the opportunity for  the attractive forces to prevail and allow the particles and make them readythe attractive forces to prevail and allow the particles and make them ready  to agglomerate and form bigger particles. 11
  • 12. 3.3 Colloidal Destabilization and agglomeration 2. Agglomeration or Flocculation ( Forming Flocs):  After destabilization (i.e. Coagulation), particles will be ready to a tract and  agglomerate and form flocs. But this agglomeration is slow and they need  help to accelerate this agglomeration.   This help is called Flocculation “which is the slow stirring or gentle agitation  to aggregate the destabilized particles and form a rapid settling floc”.   This gentle mixing increases the collisions between the particles and help  them to agglomerate. Notice that rapid mixing will destroy the flocs, that's  why we need gentle mixing. 12
  • 13. 3.4 Coagulation 1. Coagulants:  Coagulants are chemicals that are added to water to destabilize colloids. Coagulants are chemicals that are added to water to destabilize colloids.  The most common coagulants are given in the table below: Type of coagulant formula most common Nyp g form aluminum sulfate Al2 (SO4)3. 14-18 H2O lumps or powder acidic Sodium aluminate NaAlO2 or Na2Al2O4 Powder alkaline Poly-aluminiumchloride Al (OH) Cl Solution or powder acidicPoly-aluminiumchloride Aln(OH)mCl3n-m Solution or powder acidic Ferric sulfate Fe2(SO4)3.9H2O Small crystals acidic Ferris chloride FeCl3. 6H2O Lumps or solution acidic 13 Ferrous sulfate FeSO4. 7H2O Small crystals acidic
  • 14. 2. Coagulation chemistry: If  Alum  is used the following reactions occur: • Al2(SO4)314H2O  2Al3++ 3SO4 2‐+ 14H2O • 2Al3+ + colloids  neutralize surface charge• 2Al3+ + colloids  neutralize surface charge • 2Al3+ + 6HCO3 ‐  2Al(OH)3(s) + 6CO2 • If insufficient bicarbonate is available: Al2(SO4)314H2O  2Al(OH)3(s) + 3H2SO4 + 14H2O • Optimum pH: 5.5 to 6.5 • Operating pH: 5 to 8 • Since the coagulation reaction results in the decrease of the pH so• Since the coagulation reaction results in the decrease of the pH, so • It is a common practice to add lime (Ca(OH)2) together with the coagulant to increase the pH consequently countering the effect of pH decrease. 14
  • 15. 3. Factors affecting Coagulation The two main factors affecting the coagulation process are:  ‐ Coagulant dosage g g ‐ pH of the water The optimum dosage and optimum pH are determined by p g p p y laboratory test called the Jar Test. the Jar test consists of six  beakers filled with the water to be treated and then each is  mixed and flocculated uniformly. A test is often conducted by  first dosing each jar with the same value of coagulant and  varying the pH of each jar The test can then be repeated byvarying the pH of each jar. The test can then be repeated by  holding the pH constant and varying the coagulant dosage. Figure (3.4) illustrates the jar test. Figure(3.5) illustrates the effect of dosage and pH on the coagulation process. 15
  • 17. 17 Figure 3.5: Effect of coagulant dosage and pH on the coagulation process
  • 18. 4. Design of Coagulation tank: A. As illustrated previously, coagulation requires the addition of a chemical called “ coagulant.  The coagulant should be very well mixed with water to  produce homogeneous mixture of the influent water and the coagulant to  achieve the best  coagulation efficiency.ac e e e bes coagu a o e c e cy B This mixing is achieved in a tank called Rapid mixer Figures 3 6 and 3 7B. This mixing is achieved in a tank called Rapid mixer. Figures 3.6 and 3.7 illustrate the geometry of the rapid mixer. It usually has  a square or circular  cross section to achieve best mixing efficiency. C. The most common mixers used in the coagulation tank are mechanical  mixers. The most common types are : turbine, propeller, and paddle mixers. Fi 3 8 ill t t th tFigure 3.8 illustrates these types.   18
  • 19. Figure 3.6 : Rapid mixer 19 Figure 3.6 : Rapid mixer
  • 20. Figure 3.7 : Rapid mixer 20 Figure 3.7 : Rapid mixer
  • 21. Figure 3.8 : types mechanical rapid mixer 21
  • 22. D. Sizing the coagulations Rapid mixer tank: i Tank Volume:i. Tank Volume: V = Q*t WhWhere, V =  tank volume , m3 Q = design flow , m3/S t   = detention time in the tank, S The detention time in the rapid mixer is in the range of 20‐60 seconds. p g This short time is enough to achieve complete mixing of the coagulant  and to complete the coagulation   process.  The water depth is usually  taken as 1.5 times the width of the tank if it is square or the diametertaken as 1.5 times the width of the tank if it is square or the diameter if it is a circular.  22
  • 23. ii Power Requirements:ii. Power Requirements: P = µVG2 hWhere, P =  power transmitted to the water by the mixer, N.m/s  (Watt) V = tank volume, m3 G = velocity gradient, S‐1 µ =  dynamic viscosity of water, N.s/m2 The velocity gradient is defined as the relative velocity between two colloidal particles in water divided by the  distance between them.  For example if two particles are 1 cm apart and the relative velocityFor example, if two particles are 1 cm apart and the relative velocity  between the is 10 m/s, then  G = 10 (mps)/0 01m = 1000 mps/m = 1000 S‐1G = 10 (mps)/0.01m = 1000 mps/m = 1000 S 1 Typical values of G in coagulation rapid mixing are given in the following Table.  23
  • 24. Detention time (Seconds) G mps/m, or S‐1 Typical design values of the G for coagulation Detention time (Seconds) G mps/m, or S 20 1000 30 900 40 790 50  or more 700 Example: A rapid mixer is to be used for coagulation of surface water with high turbidity. If the flow is 720 m3/h find the volume and dimensions of the tank and the power requirements. Assume that the detention time is 20 seconds and G=1000 S‐1, µ = 1.518 X 10‐3 N.m/s2 at 5 oC. Solution:Solution: Q = 720 m3/h = 0.20 m3/s V = 30*0.2 = 6 m3 Assume the tank cross section is square ,then V = W*W*1.5W=1.5 W3q , 6= 1.5W3 , W = 1.587 m, d= 1.5*1.587 = 2.38 m. P=µVG2 = 1.518X10‐3X6X 10002 = 9522 Watt = 9.522 Kw 24
  • 25. 3.5 Flocculation 1. Configurations of Flocculation tanks:  The most common types of Flocculator are paddle and walking beam Flocculator.  Figures 3.9 through 3.16 illustrate these types.  Another type of tanks combine between flocculation and sedimentation in one  tank  and called  solid contact Flocculator Clarifier. See Figures 3.17 and 3.18.  Figures 3.19 and 3.20 illustrate the layout of a water treatment plant with coagulation, flocculation and sedimentation tanks .  25
  • 26. 2. Design of Flocculation tanks: i. Tank Volume: V = Q*t Where, V =  tank volume , m3 Q = design flow , m3/SQ des g o , /S t   = detention time in the tank, S The detention time in the flocculation  tank is much higher than that  in  the rapid mixer It is in the range of 20‐60 minutesthe rapid mixer. It  is in the range of 20‐60 minutes.  ii. Power Requirements: P = µVG2 Where, P =  power transmitted to the water by the mixer, N.m/s  (Watt) V = tank volume, m3 G = velocity gradient, S‐1 26 G  velocity gradient, S µ =  dynamic viscosity of water, N.s/m2
  • 27. ‐ The value of G*t is an important factor in the Flocculator. It has a range  Of 104 to 105.  typical values of G  1s 15  to 60  S‐1. In paddle Flocculator we usually use three compartments in series and G is tapered‐In paddle Flocculator, we usually use three compartments in series and  G is tapered  gradually from the first to the third compartment. For example G1 = 60  S‐1, G2 =60  S‐1,  G3 =60  S‐1.The average of the three values should be in the Above mentioned  rage for G Tapering is needed to prevent the destruction of the growing flocks The power is also expressed  in terms of the paddle mixer properties as the following: 3 AC rage for G.  Tapering is needed to prevent the destruction of the growing flocks Where, C D ffi i f i f ddl bl d di i L/W ( h bl ) 2 3 ppD vAC P   CD =   Drag coefficient, function of paddle blades dimensions, L/W (see the table) Ap =  Area of the paddle blades, m2 ρ =   Water density, kg/m3 v velocity of the paddle relative to the water m/s it is the tangential velocityvp = velocity of the paddle relative to the water, m/s. it is the tangential velocity of the blade tip, it is perpendicular to the radius of the paddle.  If more than one blade is used on the paddle the power is expressed as:   2 3 33 3 22 3 11 ppppppD vAvAvAC P    27
  • 28. Values of the drag coefficient for paddle‐Wheel Flocculator CDLength to width ration (L/W) 1.205 1.5020 1.90∞ dv  The blades velocity is related to the rotational speed of the paddles  By the following relation:  dvp  Where, D = the distance between  the center lines of the two corresponding bladesp g on the paddle, m , (see figure 3.9, the distances D1 , D2,D3)  ω =  rotational speed  of the paddle, rev/s.  28
  • 29. Figure 3.9: Baddel Flocculator, Horizontal Shaft 29
  • 30. Figure 3.10 : Horizontal-Shaft Paddle Flocculator, Axial flow pattern 30 Figure 3.10 : Horizontal Shaft Paddle Flocculator, Axial flow pattern
  • 31. Figure 3.11: Horizontal-Shaft Paddle Flocculator, Cross flow pattern 31 Figure 3.11: Horizontal Shaft Paddle Flocculator, Cross flow pattern
  • 32. Figure 3.12: Horizontal-Shaft Paddle Flocculator, Cross flow pattern 32
  • 33. Figure 3.13: Vertical Shaft Baddel Flocculator 33
  • 34. Figure 3.14: Vertical-Shaft Paddle Flocculator 34 Figure 3.14: Vertical Shaft Paddle Flocculator
  • 35. 35 Figure 3.15: Walking Beam-Shaft addle Flocculator
  • 36. 36 Figure 3.16 : Walking Beam Flocculator
  • 37. Figure 3.17a : Solids Contact Flocculator Clarifier 37
  • 38. Figure 3.17 b: Solids Contact Flocculator Clarifier 38
  • 39. Figure 3.18 : Solids Contact Flocculator Clarifier 39
  • 40. Sedimentation Tank Vertical shaft Paddle Flocculation tank Coagulation Rapid Mixe 40 igure 3.19 : Layout of Coagulation Rapid mixer, flocculation and sedimentation Tanks
  • 41. Figure 3.20 :g Layout of Rapid mix, flocculation and Clarification Tanks 41
  • 43. 43
  • 44. 44
  • 45. 45
  • 46. 46
  • 47. 47
  • 49. 49
  • 51. 51
  • 52. 52
  • 53. 53