SlideShare a Scribd company logo
1 of 470
Download to read offline
WCDMA W14 Radio Network
Functionality
STUDENT BOOK
LZT1381422 R1A
LZT1381422 R1A
WCDMA W14 Radio Network Functionality
- 2 - © Ericsson AB 2014 LZT1381422 R1A
DISCLAIMER
This book is a training document and contains simplifications.
Therefore, it must not be considered as a specification of the
system.
The contents of this document are subject to revision without
notice due to ongoing progress in methodology, design and
manufacturing.
Ericsson shall have no liability for any error or damage of any kind
resulting from the use of this document.
This document is not intended to replace the technical
documentation that was shipped with your system. Always refer to
that technical documentation during operation and maintenance.
© Ericsson AB 2014
This document was produced by Ericsson.
 The book is to be used for training purposes only and it is
strictly prohibited to copy, reproduce, disclose or distribute it in
any manner without the express written consent from Ericsson.
This Student Book, LZT1381422, R1A supports course number
LZU1089757.
Table of Contents
LZT1381422 R1A © Ericsson AB 2014 - 3 -
Table of Contents
1 WCDMA RADIO NETWORK FUNCTIONALITY
INTRODUCTION..........................................................................15
1.1 WCDMA RABS ............................................................................17
1.2 W14 FEATURE PACKS...............................................................19
1.2.1 MULTI STANDARD TRAFFIC MANAGEMENT.........................19
1.2.2 RAN SERVICES .......................................................................20
1.2.3 RADIO NETWORK EFFICIENCY..............................................21
1.2.4 HSPA PERFORMANCE............................................................22
1.2.5 IP TRANSMISSION...................................................................23
1 HSPA INTRODUCTION..................................................................24
1.1 SHORT TRANSMISSION TIME INTERVAL.................................25
1.2 ADAPTIVE MODULATION...........................................................26
1.3 MULTIPLE INPUT MULTIPLE OUTPUT (MIMO) .........................27
1.4 MULTI CODE TRANSMISSION...................................................28
1.4.1 HSDPA MULTI CODE TRANSMISSION...................................28
1.4.2 EUL MULTI CODE TRANSMISSION ........................................29
1.5 HYBRID ARQ WITH SOFT COMBINING.....................................30
1.6 ADAPTIVE CODING ....................................................................32
1.7 HSDPA SCHEDULING ................................................................34
1.8 HSDPA MULTI CARRIER ............................................................36
1.9 HSDPA EVOLUTION ...................................................................37
1.10 HSDPA UE CATEGORIES.........................................................39
1.10.1 EUL UE CATEGORIES...........................................................41
1.11 HSPA PHYSICAL CHANNELS ..................................................43
1.12 HSDPA CODE TREE USAGE....................................................55
WCDMA W14 Radio Network Functionality
- 4 - © Ericsson AB 2014 LZT1381422 R1A
1.13 HSDPA CALL SETUP................................................................57
1.14 HSPA SOURCE MATERIAL ......................................................64
2 WCDMA RAN FUNCTIONALITY AREAS .......................................65
2.1 WCDMA RAN IDLE MODE FUNCTIONALITY .............................65
2.2 WCDMA RAN RADIO CONNECTION SUPERVISION
FUNCTIONALITY.................................................................................67
2.3 WCDMA RAN POWER CONTROL FUNCTIONALITY.................69
2.4 WCDMA RAN CAPACITY MANAGEMENT FUNCTIONALITY.....71
2.5 WCDMA RAN MOBILITY FUNCTIONALITY................................73
2.6 WCDMA RAN CHANNEL SWITCHING FUNCTIONALITY ..........75
2.7 RADIO NETWORK PARAMETERS .............................................77
3 SUMMARY .....................................................................................78
2 WCDMA RAN IDLE MODE FUNCTIONALITY................................79
1 INTRODUCTION ............................................................................80
2 WCDMA SYSTEM INFORMATION.................................................82
2.1 SYSTEM INFORMATION UPDATE .............................................83
2.2 CHANGING OF SCHEDULING INFORMATION..........................86
2.3 WCDMA SIBS IN TEMS INVESTIGATION ..................................86
3 CELL SELECTION AND RESELECTION .......................................87
3.1 CELL SEARCH PROCEDURE.....................................................88
3.2 CELL SELECTION PROCEDURE ...............................................89
3.3 CELL RESELECTION PROCEDURE IN IDLE AND
CONNECTED MODE (CELL_FACH AND URA_PCH) .........................92
3.4 HIERARCHICAL CELL STRUCTURES .......................................93
3.5 LTE CELL RESELECTION ........................................................101
3.6 CELL RESELECTION TO LTE IN CELL_FACH.........................106
3.7 LTE CELL RESELECTION FOR ADVANCED LTE
DEPLOYMENTS ................................................................................108
Table of Contents
LZT1381422 R1A © Ericsson AB 2014 - 5 -
4 SUMMARY ...................................................................................110
3 WCDMA RAN RADIO CONNECTION SUPERVISION
FUNCTIONALITY ......................................................................111
1 INTRODUCTION ..........................................................................112
2 UE RADIO LINK FAILURE DETECTION ......................................113
3 RLC UNRECOVERABLE ERROR ................................................114
4 RADIO CONNECTION SUPERVISION IN CELL_FACH AND
URA_PCH ..........................................................................................117
5 RADIO CONNECTION SUPERVISION IN CELL_DCH.................119
5.1 RADIO LINK SET SUPERVISION..............................................120
5.2 RADIO CONNECTION SUPERVISION EVALUATION ..............122
6 CALL RE-ESTABLISHMENT ........................................................124
7 SUMMARY ...................................................................................125
4 WCDMA RAN POWER CONTROL FUNCTIONALITY..................127
1 INTRODUCTION ..........................................................................128
1.1 OPEN LOOP POWER CONTROL .............................................129
1.2 INNER LOOP POWER CONTROL ............................................130
1.3 OUTER LOOP POWER CONTROL...........................................132
2 SETTING COMMON CHANNEL POWERS ..................................135
3 OPEN LOOP POWER CONTROL ................................................137
3.1 UPLINK SIGNAL TO INTERFERENCE RATIO (SIR).................137
3.2 RACH PREAMBLE POWER SETTING......................................138
3.3 SETTING THE RACH MESSAGE POWER................................143
3.4 FACH POWER SETTING ..........................................................145
3.5 DOWNLINK SIGNAL TO INTERFERENCE RATIO (SIR) ..........145
3.6 INITIAL DOWNLINK DPDCH/DPCCH POWER .........................146
3.7 SETTING THE INITIAL DOWNLINK DPDCH POWER...............146
3.8 SETTING THE INITIAL DOWNLINK DPCCH POWER...............148
WCDMA W14 Radio Network Functionality
- 6 - © Ericsson AB 2014 LZT1381422 R1A
3.9 DOWNLINK POWER RAMPING................................................149
3.10 DOWNLINK DPDCH/DPCCH POWER SETTING AT SOFT
HANDOVER .......................................................................................150
3.11 INITIAL POWER SETTING AT INTER-FREQUENCY
HANDOVER AND CORE NETWORK HARD HANDOVER.................151
3.12 INITIAL UPLINK DPCCH/DPDCH POWER..............................153
3.13 SETTING THE INITIAL UPLINK DPDCH POWER...................153
4 INNER LOOP POWER CONTROL ...............................................156
4.1 UPLINK INNER LOOP POWER CONTROL...............................156
4.2 UPLINK POWER CONTROL IN COMPRESSED MODE ...........157
4.3 DOWNLINK INNER LOOP POWER CONTROL ........................161
4.4 DOWNLINK POWER BALANCING............................................163
4.5 DOWNLINK POWER CONTROL IN COMPRESSED MODE.....165
5 OUTER LOOP POWER CONTROL..............................................167
5.1 OUTER LOOP JUMP REGULATOR..........................................168
5.2 OUTER LOOP ANTI-WINDUP FEATURE..................................171
5.3 OUTER LOOP CONSTANT STEP REGULATOR......................172
6 HSDPA POWER CONTROL.........................................................173
6.1 HS-SCCH POWER CONTROL..................................................174
6.2 HS-DPCCH POWER CONTROL ...............................................175
6.3 HS-PDSCH POWER CONTROL................................................176
7 EUL POWER CONTROL ..............................................................177
7.1 E-DPDCH AND E-DPCCH POWER CONTROL.........................178
7.1.1 OUTER LOOP POWER CONTROL FOR E-DCH ...................179
7.2 E-AGCH AND E-RGCH POWER CONTROL.............................182
7.3 E-HICH POWER CONTROL......................................................183
8 SUMMARY ...................................................................................184
5 WCDMA RAN CAPACITY MANAGEMENT FUNCTIONALITY.....185
Table of Contents
LZT1381422 R1A © Ericsson AB 2014 - 7 -
1 INTRODUCTION ..........................................................................186
1.1 SYSTEM RESOURCE HANDLING............................................186
1.2 EARLY FILTER..........................................................................187
1.3 RADIO NETWORK ADMISSION CONTROL .............................188
1.4 RADIO NETWORK CONGESTION CONTROL..........................189
1.5 CONNECTION TO OTHER FUNCTIONS ..................................189
2 ADMISSION CONTROL................................................................190
2.1 RAB ATTRIBUTES ....................................................................191
2.2 ADMISSION CONTROL ATTRIBUTES......................................192
2.3 AMR SPEECH CODEC IN THE CAPACITY MANAGEMENT
SOLUTION.........................................................................................196
2.4 RADIO NETWORK SOFT CONGESTION .................................198
2.5 ADMISSION POLICIES..............................................................203
2.6 ADMISSION CONTROL INTERACTION WITH MONITORED
RESOURCES.....................................................................................206
2.7 AIR INTERFACE SPEECH EQUIVALENT.................................207
2.7.1 DOWNLINK ASE ADMISSION POLICY..................................209
2.7.2 UPLINK ASE ADMISSION POLICY ........................................210
2.8 DOWNLINK CHANNELIZATION CODE MONITOR ...................211
2.8.1 DOWNLINK CHANNELIZATION CODE ADMISSION
POLICY..............................................................................................212
2.9 DOWNLINK TRANSMIT CARRIER POWER .............................213
2.9.1 DOWNLINK TRANSMITTED CARRIER POWER
ADMISSION POLICY .........................................................................214
2.10 RL PER DL SF MONITOR .......................................................214
2.10.1 DOWNLINK SPREADING FACTOR ADMISSION POLICY...215
2.11 RL PER UL SF MONITOR .......................................................216
2.11.1 UPLINK SPREADING FACTOR ADMISSION POLICY.........216
2.12 RL IN CPM MONITOR .............................................................217
WCDMA W14 Radio Network Functionality
- 8 - © Ericsson AB 2014 LZT1381422 R1A
2.12.1 COMPRESSED MODE ADMISSION POLICY ......................217
2.13 HSDPA CONNECTIONS MONITOR........................................218
2.13.1 SERVING HS ADMISSION POLICY .....................................218
2.14 EUL CONNECTIONS MONITOR .............................................219
2.14.1 SERVING/NON-SERVING EUL ADMISSION POLICY .........220
2.15 UPLINK RECEIVED TOTAL WIDEBAND POWER MONITOR.221
2.16 RBS HARDWARE MONITOR ..................................................223
2.16.1 DOWNLINK RBS HARDWARE ADMISSION POLICY ..........225
2.16.2 UPLINK RBS HARDWARE ADMISSION POLICY ................226
2.17 EUL SCHEDULED RATE ADMISSION POLICY......................227
2.18 SRB ADMISSION CONTROL ..................................................228
2.19 SERVICE DIFFERENTIATED RRC ADMISSION.....................229
3 HSPA QOS MAPPING..................................................................232
3.1 INTERACTIVE/BACKGROUND REQUESTS.............................232
3.2 CONVERSATIONAL/STREAMING REQUESTS........................233
3.3 DEFAULT SPI MAPPING...........................................................234
3.4 FLEXIBLE QOS – SPI MAPPING ..............................................236
4 HSDPA SCHEDULER...................................................................238
4.1 RESOURCE SHARING..............................................................239
4.2 QUEUE SELECTION COEFFICIENT.........................................240
5 EUL SCHEDULER........................................................................244
5.1 EUL SCHEDULING WEIGHT.....................................................244
5.2 EUL SCHEDULER OPERATION ...............................................245
6 CONGESTION CONTROL............................................................247
6.1 UPLINK CELL CONGESTION DETECTION..............................248
6.2 EUL SCHEDULED RATE CONGESTION DETECTION.............249
6.3 DOWNLINK CELL CONGESTION DETECTION........................250
Table of Contents
LZT1381422 R1A © Ericsson AB 2014 - 9 -
6.4 HSDPA CELL CONGESTION DETECTION...............................251
6.5 DL CONGESTION RESOLVE HANDLING.................................254
6.6 EUL SCHEDULED RATE CONGESTION RESOLVE
HANDLING.........................................................................................255
6.7 CONGESTION CONTROL TRIGGERS .....................................256
7 SUMMARY ...................................................................................257
6 WCDMA RAN CHANNEL SWITCHING FUNCTIONALITY...........259
1 INTRODUCTION ..........................................................................260
2 SINGLE RAB STATE TRANSITIONS ...........................................260
2.1 CELL_DCH TO CELL_FACH.....................................................260
2.2 CELL_FACH TO CELL_DCH.....................................................262
2.3 CELL_FACH TO URA_PCH.......................................................264
2.4 URA_PCH TO CELL_FACH OR CELL_DCH.............................265
2.4.1 UL-TRIGGERED UPSWITCH .................................................265
2.4.2 DL-TRIGGERED UPSWITCH .................................................266
2.5 URA_PCH TO IDLE...................................................................267
2.6 CELL_DCH TO CELL_DCH.......................................................268
2.6.1 THROUGHPUT-TRIGGERED UPSWITCH.............................268
2.6.2 THROUGHPUT-TRIGGERED DOWNSWITCH.......................271
2.6.3 THROUGHPUT BASED DEDICATED TO DEDICATED
DOWNSWITCH EVALUATION...........................................................271
2.7 COVERAGE-TRIGGERED DOWNSWITCH ..............................272
3 CONNECTION HANDLING FOR PS RAB ....................................274
3.1 RAB CONNECTION CAPABILITIES..........................................276
4 CHANNEL SWITCHING................................................................277
5 UE STATES IN TRANSITIONS.....................................................278
5.1 FAST DORMANCY HANDLING.................................................280
WCDMA W14 Radio Network Functionality
- 10 - © Ericsson AB 2014 LZT1381422 R1A
5.2 FASTER ESTABLISHMENT, DIRECT UPSWITCH FROM
URA 281
6 MULTI-RAB STATE TRANSITIONS .............................................282
6.1 SPEECH + INTERACTIVE.........................................................282
6.2 2XINTERACTIVE AND 3XINTERACTIVE..................................283
6.3 SPEECH + 2XINTERACTIVE ....................................................283
6.4 UDI + INTERACTIVE .................................................................283
6.5 MULTI-RAB DOWNSWITCH EVALUATION ..............................284
6.6 MULTI-RAB UPSWITCH EVALUATION.....................................284
6.7 RAB TRANSITIONS...................................................................285
7 INACTIVITY TIMERS ON CELL LEVEL........................................286
8 SUMMARY ...................................................................................287
7 WCDMA RAN MOBILITY FUNCTIONALITY.................................289
1 INTRODUCTION ..........................................................................290
2 SOFT/SOFTER HANDOVER........................................................291
2.1 SOFT HANDOVER EVENTS .....................................................297
2.1.1 ADDITION OF A RADIO LINK, EVENT 1A..............................297
2.1.2 REMOVAL OF A RADIO LINK, EVENT 1B .............................297
2.1.3 REPLACEMENT OF RADIO LINKS, EVENT 1C.....................299
2.1.4 CHANGE OF BEST CELL, EVENT 1D....................................300
2.2 SOFT HANDOVER DROPPED CALL........................................301
2.3 ANR MOBILITY..........................................................................302
3 CONNECTION QUALITY MONITORING......................................307
3.1 DECISION ON HANDOVER TYPE ............................................307
3.2 EVENT 2D/2F QUALITY MONITORING ....................................308
3.3 UE TX POWER MONITORING (EVENT 6D/6B) ........................312
4 INTER-FREQUENCY HANDOVER...............................................314
Table of Contents
LZT1381422 R1A © Ericsson AB 2014 - 11 -
4.1 IFHO EVALUATION...................................................................314
4.2 IFHO EXECUTION.....................................................................316
5 INTER-RAT HANDOVER..............................................................319
5.1 WCDMA TO GSM......................................................................320
5.2 WCDMA TO GPRS/EDGE .........................................................322
5.3 IRATHO AND IRATCC FROM GSM AND GPRS TO WCDMA ..324
6 CORE NETWORK HARD HANDOVER ........................................328
6.1 MEASUREMENT HANDLING FOR CORE NETWORK HARD
HANDOVER .......................................................................................328
6.1.1 INTRA FREQUENCY HANDOVER.........................................329
6.1.2 INTER FREQUENCY HANDOVER.........................................329
6.2 CORE NETWORK HARD HANDOVER EVALUATION ..............330
6.2.1 INTRA FREQUENCY CORE NETWORK HARD
HANDOVER EVALUATION................................................................330
6.2.2 INTER FREQUENCY CORE NETWORK HARD
HANDOVER EVALUATION................................................................331
6.3 CORE NETWORK HARD HANDOVER EXECUTION................332
6.3.1 ACTIONS TAKEN BY CORE NETWORK HARD
HANDOVER .......................................................................................333
6.3.2 EXCEPTION HANDLING ........................................................334
7 SERVICE-BASED HANDOVER....................................................335
7.1 SERVICE BASED HANDOVER EXECUTION............................336
7.2 SERVICE BASED HANDOVER TO GSM PARAMETERS AND
COUNTERS .......................................................................................337
8 MOBILITY TO WIFI.......................................................................338
9 GAN MOBILITY ............................................................................343
9.1 HANDOVER TO GAN ................................................................345
9.2 GAN OVER IUR.........................................................................347
9.3 GAN INTERACTIVE WITH IFHO ...............................................347
WCDMA W14 Radio Network Functionality
- 12 - © Ericsson AB 2014 LZT1381422 R1A
9.4 GAN MOBILITY PARAMETERS ................................................347
10 HSDPA MOBILITY......................................................................349
10.1 MEASUREMENT HANDLING IN HSDPA ................................351
10.2 SERVING HS-DSCH CELL SELECTION.................................351
10.3 A-DCH SOFT AND SOFTER HANDOVER ..............................354
10.4 HS-DSCH MOBILITY ...............................................................354
10.5 SERVING HS-DSCH CELL CHANGE......................................355
10.5.1 SERVING HS-DSCH CELL CHANGE TRIGGERED BY
CHANGE OF "BEST CELL" WITHIN THE ACTIVE SET ....................355
10.5.2 SERVING HS-DSCH CELL CHANGE TRIGGERED BY
REMOVAL OF THE SERVING HS-DSCH CELL FROM THE
ACTIVE SET ......................................................................................359
10.6 COVERAGE TRIGGERED DOWN SWITCH TO DCH .............362
10.7 HS-DSCH CELL SELECTION (THROUGHPUT
TRIGGERED).....................................................................................363
10.7.1 THROUGHPUT-TRIGGERED UP SWITCH..........................363
10.8 THROUGHPUT-TRIGGERED DOWN SWITCH.......................365
10.9 HSDPA EXECUTION PART.....................................................366
10.10 SERVING HS-DSCH CELL CHANGE (INTER-RBS)
EXECUTION ......................................................................................369
11 EUL MOBILITY ...........................................................................371
11.1 E-DCH/HS-DSCH CELL SELECTION......................................372
11.2 E-DCH SOFT/SOFTER HANDOVER.......................................375
11.3 E-DCH/HS-DSCH CELL CHANGE...........................................376
11.4 MOBILITY FOR 2 MSEC TTI USER.........................................381
11.4.1 CELL SELECTION................................................................381
11.4.2 SOFT/SOFTER HANDOVER ................................................382
11.4.3 CELL CHANGE.....................................................................382
11.4.4 COVERAGE TRIGGERED DOWN SWITCH.........................382
Table of Contents
LZT1381422 R1A © Ericsson AB 2014 - 13 -
11.5 LEAVING EUL COVERAGE.....................................................382
12 IF/IRAT HANDOVER ON HS ......................................................384
12.1 IUR SUPPORT.........................................................................387
13 MULTI CARRIER MOBILITY.......................................................388
13.1 GSM CELL CHANGE, IFHO AND CNHHO..............................390
13.2 CELL SELECTION...................................................................390
13.3 DUAL-BAND HSDPA MULTI CARRIER...................................390
14 WCDMA/LTE INTEROPERABILITY............................................391
14.1 CS VOICE FALLBACK FROM LTE..........................................393
14.1.1 CS FALLBACK FROM LTE W13B ENHANCEMENT ............395
14.1.2 RIM SUPPORT FOR SYSTEM INFORMATION
TRANSFER TO LTE...........................................................................396
14.2 WCDMA IRAT HANDOVER AND SESSION CONTINUITY .....398
14.2.1 WCDMA IRAT HANDOVER..................................................399
14.2.2 WCDMA SESSION CONTINUITY.........................................403
14.3 RELEASE WITH REDIRECT TO LTE......................................404
14.3.1 RELEASE WITH REDIRECT W13B ENHANCEMENTS .......407
14.4 SUBSCRIBER BASED MOBILITY USING SPID......................408
14.5 LTE CELL RESELECTION DEDICATED PRIORITIES ............409
14.6 SINGLE RADIO VOICE CALL CONTINUITY FROM LTE ........412
14.6.1 SRVCC FOR VOICE AND DATA ..........................................413
15 LOAD BALANCING.....................................................................415
15.1 INTER-FREQUENCY LOAD SHARING ...................................416
15.2 DIRECTED RETRY TO GSM...................................................420
15.2.1 SERVICE-BASED HANDOVER VS. DIRECTED RETRY .....423
15.3 LOAD BASED HANDOVER TO GSM ......................................425
15.3.1 LOAD BASED HANDOVER TO GSM PARAMETERS AND
COUNTERS .......................................................................................426
WCDMA W14 Radio Network Functionality
- 14 - © Ericsson AB 2014 LZT1381422 R1A
15.4 LOAD BASED INTER-FREQUENCY HANDOVER ..................427
15.4.1 LOAD BASED INTER-FREQUENCY HANDOVER
PARAMETERS AND COUNTERS......................................................428
15.5 NON-HSPA INTER-FREQUENCY LOAD SHARING................429
15.5.1 NON-HSDPA INTER-FREQUENCY LOAD SHARING W12
ENHANCEMENTS .............................................................................431
15.6 HSDPA INTER-FREQUENCY LOAD SHARING......................434
15.6.1 HSDPA INTER-FREQUENCY LOAD SHARING W12
ENHANCEMENTS .............................................................................437
15.6.2 HSDPA INTER-FREQUENCY LOAD SHARING W13B
ENHANCEMENTS .............................................................................441
15.7 HSDPA IFLS CAPABILITY AND PRIORITY HANDLING .........443
15.8 INTER FREQUENCY LOAD SHARING AT DOWNSWITCH....445
15.9 ADMISSION BLOCK REDIRECTIONS ....................................447
15.10 IRAT OFFLOAD FROM LTE ..................................................449
15.10.1 IRAT OFFLOAD FROM LTE PARAMETERS......................450
16 SUMMARY..................................................................................452
8 ACRONYM AND ABBREVIATION ................................................453
9 INDEX ............................................................................................461
10 TABLE OF FIGURES...................................................................463
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 15 -
1 WCDMA Radio Network Functionality
Introduction
Objectives
After this chapter the participants will be able to:
1 Give an overview of the Ericsson WCDMA Functionality areas
1.1 Describe the techniques used to achieve broadband data rates
with HSPA
1.2 Explain the HSPA scheduling algorithms used by Ericsson
1.3 Use the Ericsson Customer Product Library to locate functionality
descriptions
Figure 1-1: Objectives of Chapter 1
WCDMA W14 Radio Network Functionality
- 16 - © Ericsson AB 2014 LZT1381422 R1A
1 WCDMA RAN Introduction
The WCDMA Radio Access Network (RAN) consists of Radio Base Stations
(RBS), Radio Network Controllers (RNC) and optionally Radio Access Network
Aggregators (RXI) as illustrated in Figure 1-2 below.
WCDMA RAN Overview
Radio Access
Network
Iub
Iu
Iur
Mub
Mur
Uu
Mut
MSC-S SGSN
RNC RNC
RXI
Iub
Iub
Uu
Uu
Iu
OSS-
RC
External
Management
System
Iub
RNC: Radio Network Controller
RBS: Radio Base Station
RXI: Radio Access Network Aggregator
OSS-RC: Operation Support System (Radio Core)
RBS
RBS RBS
RBS
UE
UE
UE
Mun
Core Network
Network
Management
System
Figure 1-2: WCDMA RAN Overview
Also illustrated in Figure 1-2 above are the Core Network (CN) containing the
Mobile Switching Centre Server (MSC-S) and Gateway GPRS Support Node
(SGSN) and the Network Management System (NMS) containing the Operations
Support System for Radio and Core (OSS-RC).
The RNC manages Radio Access Bearers (RABs) for user data, the radio network
and mobility while the RBS provides the required radio resources. These RABs
are either based on 3GPP release 99 (R99) or High Speed Packet Access (HSPA).
The RNC and RBS communicate using the Iub interface directly of via a RXI as
illustrated in Figure 1-2 above. The RNC communicates with the CN using the
Iu interface and to other RNCs using the Iur interface.
Operation and Maintenance is handled through the embedded management where
the RBS, RNC and RXI communicate with the OSS-RC using the Mub, Mur and
Mut interfaces respectively.
This course will concentrate on the functionality of the WCDMA RAN which is
controlled by a number of RNC and RBS parameters. This course will
concentrate on the most important of these parameters.
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 17 -
1.1 WCDMA RABs
The WCDMA RAN supports a wide range of RABs for a wide variety of
services. A UE can use single or multiple RABs depending on the requirement.
The term RAB describes the overall connection between the UE and the Core
Network. For user data, it maps down to a Radio Bearer from the UE to the
RNC, and an Iu transport bearer from the RNC to the CN as illustrated in Figure
1-3 below.
Radio Access Bearer (RAB)
Radio Access Bearer
Transport Bearer
Radio
Link (RL)
Radio Bearer
Traffic Channel
RRC Traffic Channel
Signalling Radio Bearer
Signalling Connection
RANAP RANAP
RNC
MSC-S SGSN
CN
R99
<384 kbps
HSPA
>384 kbps
Figure 1-3: Radio Access Bearer (RAB)
The Radio Bearer (RB) consists of a radio Link between the UE and the RBS,
and a user plane Transport Channel (TRCH) on the Iub as illustrated in Figure 1-
3 above. A RAB cannot exist without a Signaling Connection to carry Radio
Resource Control (RRC) signaling between the UE and RNC and ‘Non Access
Stratum’ (NAS) signaling between the UE and CN.
The NAS messages are carried between the UE and the RNC using the Radio
Resource Control (RRC) protocol on a Signaling Radio Bearer (SRB). They are
transmitted between the RNC and the Core Network using the Radio Access
Network Application Protocol (RANAP). The SRB carrying RRC messages
consists of a signaling Transport Channel (TRCH) and they are combined with
the user plane TRCH to create the Radio Link (RL) by the RBS.
RABs based on 3GPP release 1999 (R99) have a peak rate of 384 kbps. High
Speed Packet Access (HSPA) RABs offer Mobile Broadband (MBB) data rates
that exceed 384 kbps by using multiple Orthogonal codes, Higher Order
Modulation (HOM), Multiple Input Multiple Output (MIMO) and Multi-Carrier
(MC). This chapter will cover the basic principles of HSPA.
WCDMA W14 Radio Network Functionality
- 18 - © Ericsson AB 2014 LZT1381422 R1A
Each RAB or multi-RAB combination is given a unique User Equipment Radio
Connection (UeRc) number in the Ericsson WCDMA RAN. A complete list of
all supported UeRcs available in the W14B WCDMA RAN and the optional
features required to support them can be found in Table 12 in the ‘Connection
Handling’ WCDMA RAN CPI User Description as illustrated Figure 1-4 below.
Table 12 Default Values for Parameters blerQualityTarget UL/DL
UeRc id RAB Combination TrCH Default Value Capabilites Feature Number
1 SRB (13.6/13.6) SRB -20 ( 1% BLER)
fDpch support
due to
standalone SRB
on HS
N/A
. . . . . .
. . . . . .
. . . . . .
176
Conv. CS speech (5.9, 4.75)
+ Interact. PS (EUL/HS)
Conv/speech
Int EUL/HS
SRB
-20 (1% BLER)
-30 (0.1% BLER)
-20 ( 1% BLER)
2ms, EL2,
64QAM, MIMO,
64QAM+MIMO
FAJ 121 1517
Figure 1-4: Ericsson UeRcs
Only the first and last UeRc supported in W14B are shown in Figure 1-4 above.
UeRc id 1 is a 13.6 kbps signaling Radio Bearer (SRB) that is used by the UE
before it has established a user data RAB. There is no optional feature required
to support this UeRc. UeRc 176 is a multi-RAB combination containing a
Conversational Circuit Switched (CS) speech RAB that used Adaptive Multi-
Rate (AMR) 5.9 or 4.75 kbps and an Interactive Packet Switched RAB using
Enhanced Uplink (EUL) and High Speed Downlink Packet Access (HSDPA).
The ‘AMR multi-mode low rate and HSPA PS Interactive RAB combination’
(FAJ 121 1517) optional feature is required to support this UeRc. It should be
noted that not all UeRc values between 1 and 176 are used in the W14 WCDMA
RAN.
The ‘Default Value’ column shown in Figure 1-4 above gives the default value
for the ‘blerQualityTargetUl’ and ‘blerQualityTargetDl’ parameters for each
UeRc. These parameters set the uplink and downlink Outer Loop Power Control
Block Error Rate for each UeRc Transport Channel (UeRcTrCh).
More details on these UeRcs and the RABs that they use can be found in section
14 of the ‘Connection Handling’ WCDMA RAN CPI User Description.
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 19 -
1.2 W14 Feature Packs
The ‘Feature Pack’ concept was introduced in W14 to simplify the control of
Ericsson optional features allowing the Operator to order a particular group of
features for a particular function rather than picking individual features. The
‘Feature Packs’ available in W14 and the number of features in each is given in
Figure 1-5 below.
FAJ 121 3661
Multi Standard Traffic Management
Basic traffic steering
functionality WCDMA - GSM
4
FAJ 121 3662
RAN Services
Support for the majority of
RAB combinations
28
FAJ 121 3663
Radio Network Efficiency
Basic radio network
performance functionality
15
FAJ 121 3664
HSPA Performance
Features for a basic HSPA
performance
22
FAJ 121 3665
IP Transmission
Basic functionality for IP
Transport support
7
Figure 1-5: W14 Feature Packs
The features will only be available through the package to which they belong.
The included features in a package can be activated separately so there is no
impact on the network as such except that the license keys are delivered for all of
the features in a package.
1.2.1 Multi Standard Traffic Management
The ‘Multi Standard Traffic Management’ (FAJ 121 3661) Feature Pack provides
Traffic Management functionality between a WCDMA and a GSM access
network. Functionality included is GSM Handover & Cell Reselection, Directed
retry, Emergency Call re-direct to GSM and Service Based Handover to GSM.
The features that make up this Feature Pack are listed below:
 FAJ 121 154 GSM Handover & Cell Reselection
 FAJ 121 406 Directed Retry to GSM
 FAJ 121 748 Emergency call re-direct to GSM
 FAJ 121 799 Service Based Handover to GSM
WCDMA W14 Radio Network Functionality
- 20 - © Ericsson AB 2014 LZT1381422 R1A
1.2.2 RAN Services
The ‘RAN Services’ (FAJ 121 3662) Feature Pack provides support for the most
common Radio Access Bearer combinations needed to provide services for both
voice and data and also provides the possibility to increase the capacity and
coverage for the speech service. The features that make up this Feature Pack are
listed below:
 FAJ 121 845 Dynamic PS I/B RAB Establishment
 FAJ 121 146 Conversational RAB for AMR speech
 FAJ 121 147 Conversational RAB for 64 kbps multimedia
 FAJ 121 148 Interactive RAB for up to 384 kbps Packet Data
 FAJ 121 150 Speech and Packet Data RAB combination
 FAJ 121 413 Two times PS Interactive RAB Combination
 FAJ 121 553 Speech and two simultaneous interactive RABs for packet
data
 FAJ 121 754 Speech and 0 kbps Packet Data Rate
 FAJ 121 757 Conversational RAB for 64kbps CS Multimedia & 8kbps
packet data RAB combination
 FAJ 121 977 Flexible initial rate selection, PS Interactive
 FAJ 121 980 Interactive RAB for up to 128 kbps, Uplink
 FAJ 121 981 Interactive RAB for up to 384 kbps, Uplink
 FAJ 121 985 Conversational RAB for Multimode AMR speech
 FAJ 121 1012 Speech 12.2 kbps, Interactive RAB for up to 384 kbps
DL
 FAJ 121 1013 Speech 12.2 kbps, Interactive RAB for up to 128 kbps
UL
 FAJ 121 1069 Two times HSDPA PS Interactive RAB combination
 FAJ 121 1070 Multiple HSPA PS Interactive RAB Combination
 FAJ 121 1071 Three times PS Interactive RAB combination
 FAJ 121 1072 Three times HSDPA Interactive RAB combination
 FAJ 121 1075 Speech 12.2 kbps and two times HSDPA PS Interactive
RAB combination
 FAJ 121 1103 Speech 12.2 kbps and Multiple PS Interactive RAB
Combination
 FAJ 121 1158 Stand-alone SRB 3.4 kbps
 FAJ 121 988 Speech 12.2 kbps & HSDPA Interactive 64/HS RAB
combination
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 21 -
 FAJ 121 989 Speech 12.2 kbps & HSDPA Interactive 384/HS RAB
combination
 FAJ 121 1304 Speech 12.2 kbps and Multiple HSDPA PS Interactive
RAB Combination
1.2.3 Radio Network Efficiency
The ‘Radio Network Efficiency’ (FAJ 121 3663) Feature Pack provides
functionality to deploy an efficient WCDMA access network to be used as a base
for later additions of more advanced functionality. Functionality like UTRAN
Registration Area Handling, Traffic Handling Priority, Inter-frequency load
sharing (IFLS) and Multi Band Support is included. The features that make up
this Feature Pack are listed below:
 FAJ 121 405 Inter Frequency Handover and Cell Reselection
 FAJ 121 407 UTRAN Registration Area Handling
 FAJ 121 408 Active Queue Management
 FAJ 121 435 Inter-Frequency Load Sharing
 FAJ 121 902 Inter-Frequency Load distribution
 FAJ 121 928 Multi Band Support
 FAJ 121 1022 Domain Specific Access Barring
 FAJ 121 1093 Flexible QoS and Allocation/Retention handling
 FAJ 121 1094 Traffic Handling Priority
 FAJ 121 1128 Transmit Diversity
 FAJ 121 1332 Load-Triggered Access Class Barring
 FAJ 121 1402 Load Based Inter Frequency Handover
 FAJ 121 1468 Non-HSDPA Inter Frequency Load Sharing (IFLS)
 FAJ 121 1636 Flexible Intra Frequency-Measurement Initiation
 FAJ 121 425 Max Bit Rate Capability for QoS Profiling
WCDMA W14 Radio Network Functionality
- 22 - © Ericsson AB 2014 LZT1381422 R1A
1.2.4 HSPA Performance
The ‘HSPA Performance’ (FAJ 121 3664) Feature Pack provides high peak bit
rates, high system capacity and reduced round trip delay in a WCDMA access
network. Both downlink and uplink are addressed and the feature sets the
baseline for further enhancements and deployment of advanced HSPA
functionality. The features that make up this Feature Pack are listed below:
 FAJ 121 801 HSDPA Mobility
 FAJ 121 860 HSDPA Mobility Phase 2
 FAJ 121 903 HSDPA 16 QAM
 FAJ 121 904 HSDPA Proportional Fair Scheduler
 FAJ 121 905 HSDPA Interactive 384/HS RAB
 FAJ 121 967 HSDPA Dynamic Code Allocation
 FAJ121 968 HSDPA Flexible Scheduler
 FAJ 121 969 HSDPA Code Multiplex & HS-SCCH Power Control
 FAJ121 1004 HSDPA CQI Adjustment
 FAJ 1211033 HSDPA Introduction Package
 FAJ 1211058 HSDPA Incremental redundancy
 FAJ121 1091 HSPA Max bit rate for quality of service profiling
 FAJ1211114 HSDPA and EUL Service indicator
 FAJ 121 1115 HSDPA QoS Scheduler
 FAJ121 1328 Enhanced Layer2
 FAJ 1211358 Improved HSDPA Link Adaptation
 FAJ 1211002 Enhanced UL Mobility
 FAJ121 1023 Enhanced Uplink Introduction Package
 FAJ 121 1111 EUL QoS Scheduler
 FAJ 121 1333 Advanced Receivers, GRAKE in RBS
 FAJ121 1345 DL Power Control for Enhanced Uplink
 FAJ 121 1443 EUL single HARQ process scheduling
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 23 -
1.2.5 IP Transmission
The ‘IP Transmission’ (FAJ 121 3665) Feature Pack provides the required
functionality to generate and receive IP packages in Ethernet frames instead of
ATM cells on PDH or SDH frames. It supports all logical interfaces in WCDMA
RAN, i.e. Iub, Iur, IuCS and IuPS. The signaling is using SCTP and the user
plane is using UDP except for IuCS which is using RTP. This package also
include the Network Synchronization functionality required to provide frequency
reference to the base stations based on NTP with servers in RNC and clients in
the NodeB. In addition it also includes the aggregation of Ethernet flows
(Ethernet switching) using the ET-MFX board in the RBS 3000. The features
that make up this Feature Pack are listed below:
 FAJ 121 1118 Iub over IP/Ethernet in RNC
 FAJ 121 1132 Iub over IP/Ethernet in RBS
 FAJ 121 973 SS7 over Ethernet
 FAJ 121 1120 Iur user traffic over IP
 FAJ 121 976 IuPS user plane over IP
 FAJ 121 1109 Ethernet Aggregation Switching
 FAJ 121 1154 Network Synch Server for IP transport
 FAJ 121 1155 Network Synch Client for IP transport
It should also be noted that when upgrading RBS nodes to the W14A release
from an earlier release, warning messages can appear indicating that certain
features are no longer licensed. This concerns the features FAJ 121 963, FAJ121
1047, FAJ 121 1089, FAJ 121 244 and FAJ 121 966. The warning messages are a
consequence of a cleanup of the Key Files. License Keys not relevant for RBSs
(for example, only relevant for RNC) are no longer provided to the RBS nodes
with this release. Warning messages for these features can be ignored.
Full descriptions of all these features can be found in the WCDMA RAN CPI
Alex library.
WCDMA W14 Radio Network Functionality
- 24 - © Ericsson AB 2014 LZT1381422 R1A
1 HSPA INTRODUCTION
The basic principles that are used to achieve broadband data rates with HSPA
RABs are illustrated in Figure 1-6 below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-5
HSPA Basic Principles
Adaptive Modulation
(QPSK, 16 QAM, 64 QAM)
Hybrid ARQ with Soft Combining
2 ms
Short Transmission Time Interval (TTI) Adaptive Coding
Multi Code Transmission
Multiple Input Multiple Output
(MIMO)
Figure 1-6: HSPA Basic Principles
The basic principles illustrated in Figure 1-6 above are used in the downlink and
uplink by HSPA to achieve data rates that exceed the 384 kbps limit of R99
RABs. The term High Speed Downlink Packet Access (HSPA) is used to
describe HSPA downlink channels while the term Enhanced Uplink (EUL) is
used to describe HSPA uplink channels. Not all of these basic principles are
employed in HSDPA and EUL.
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 25 -
1.1 Short Transmission Time Interval
HSPA makes use of a 2 msec Transmission Time Interval (TTI) as opposed to the
relatively longer TTIs used for non-HSDPA channels as illustrated in Figure 1-7
below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-7
Non-HSDPA Chanels
10 ms
20 ms
40 ms
80 ms
HSDPA
EUL
OR
2 ms
10 ms
2 ms
• Fast Adaptive Modulation and Coding
• Fast ARQ => Shorter RTT => improved TCP performance
Short TTI (2 ms)
Figure 1-7: Short TTI (2 msec)
This shorter TTI allows the system to quickly adapt the modulation and coding
schemes to offer the best data rate as the radio environment changes. It also
supports a fast Automatic Retransmission Request (ARQ) system which reduces
the air interface delay and hence overall Round Trip Time (RTT). This shorter
RTT improves the end-user performance of Transmission Control Protocol (TCP)
based services. The type of ARQ used for HSPA is known as ‘Hybrid ARQ with
Soft Combining’.
Not all EUL capable UEs support the 2 msec TTI so 2 msec and 10 msec TTIs
are supported for EUL as illustrated in Figure 1-7 above. The support of 2 msec
TTI is one of the UE category characteristics.
WCDMA W14 Radio Network Functionality
- 26 - © Ericsson AB 2014 LZT1381422 R1A
1.2 Adaptive Modulation
The HSDPA channel supports three modulation schemes:
 Quadrature Phase Shift Keying (QPSK)
One modulation symbol represents 2 bits.
 16 Quadrature Amplitude Modulation (16QAM)
One modulation symbol represents 4 bits.
 64 Quadrature Amplitude Modulation (16QAM)
One modulation symbol represents 6 bits.
The choice of modulation scheme is based on the Channel Quality Indicator
(CQI) reported by the UE as illustrated in Figure 1-8 below.
Modulation Symbol
QPSK
(2 bits/symbol)
16 QAM
(4 bits/symbol)
64 QAM
(6 bits/symbol)
CQI CQI CQI
Adaptive Modulation
Figure 1-8: Adaptive Modulation
Since QPSK is the most robust of the modulation schemes it is best suited to a
poor radio environment as illustrated in Figure 1-8 above. In a good radio
environment the UE can benefit from the high data rate possible with 64QAM. It
should be noted that the choice of modulation scheme will also be based on
resources in the RBS. The term Higher Order Modulation (HOM) is sometimes
used to describe modulation schemes other higher than QPSK. HOM is not
implemented for Enhanced Uplink (EUL).
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 27 -
1.3 Multiple Input Multiple Output (MIMO)
In normal transmit diversity the same data is sent from both antennas increasing
the robustness of the signal. In good radio environments when robustness is not
an issue the RBS can send different data from each antenna effectively doubling
the data rate. In the illustration in Figure 1-9 below the UE in the poor radio
environment is sent the same data from each antenna represented by the
duplicated numbered squares.
User data bits
Low data rate/
TX Diversity
High data rate/
No TX Diversity
Ant A Ant B
Ant A
Ant B
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
Ant A
Ant B
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
CQI CQI
Multiple Input Multiple Output
Figure 1-9: Multiple Input Multiple Output
The UE in the good radio environment on the other hand, is sent different data
from each antenna represented by the 16 numbered squares. From this
illustration it can be seen that in a good radio environment the RBS can sacrifice
TX diversity for an increased user data rate. In this way the UE can benefit from
the high data rate possible with MIMO in a good radio environment. MIMO is
not used for EUL.
WCDMA W14 Radio Network Functionality
- 28 - © Ericsson AB 2014 LZT1381422 R1A
1.4 Multi Code Transmission
To achieve broadband speeds (>384 kbps) both HSDPA and EUL employ multi
code transmission.
1.4.1 HSDPA Multi Code Transmission
Orthogonal codes of Spreading Factor 16 are used for HSDPA, allowing a
theoretical maximum of 15 to be allocated to a single user or shared in the time
and/or code domain, leaving just enough codes for common Channels. The
maximum physical channel rate using all 15 codes will depend on which
modulation scheme is used. In the illustration in Figure 1-10 below the
maximum physical rates with all 15 codes are calculated for all modulation
schemes.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-10
15 x SF16 => 15(3.84X106/16) = 3.6X106 symbols/sec
QPSK (2bits/symbol) => 3.6X106 x 2 = 7.2 Mbps (14.4 with MIMO)
16QAM (4bits/symbol) => 3.6X106 x 4 = 14.4 Mbps (28.8 with MIMO)
64QAM (6bits/symbol) => 3.6X106 x 6 = 21.6 Mbps (43.2 with MIMO)
SF=16
SF=8
SF=4
SF=2
SF=1
Remaining codes used for signalling
HSDPA Multi Code Transmission
Figure 1-10: HSDPA Multi Code Transmission
The number of codes used will depend on the CQI reported by the UE and
availability in the RBS. It should be remembered that the data rate achieved at
the Application Layer will be lower than the physical rates illustrated in Figure 1-
10 above due to the overheads between the physical layer and application layer.
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 29 -
1.4.2 EUL Multi Code Transmission
Scrambling codes are used in the uplink to distinguish between different UEs.
This leaves the complete Orthogonal Code tree available to the UE. To achieve
broadband data rates a EUL capable UE can combine a number of Orthogonal
codes of SF 2 and 4 as illustrated Figure 1-11 below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-11
EUL Multi Code Transmission
Q
I
I
E-DPCCH
E-DPDCH #1
E-DPDCH #3
Q
DPCCH
Ch 256 Gd
Ch 2,1
Gd
Ch 2,1 Gd
Ch 256 Gd
HS-DPCCH
Ch 256 Gd
UE
Scrambling
Code
I+jQ
I/Q
Mod.
Filter
Filter

j

E-DPDCH #4
Ch 4,1 Gd
E-DPDCH #2
Ch 4,1 Gd
SF 2 => (3.84 Mcps)/2 = 1.92 Mbps X 2 = 3.84 Mbps
SF 4 => (3.84 Mcps)/4 = 0.96 Mbps X 2 = 1.92 Mbps
Theoretical maximum physical rate = 5.76 Mbps
Figure 1-11: EUL Multi Code Transmission
Since the I and Q branch of the modulator are orthogonal one UE can combine
two SF 4 and SF 2 codes to produce a maximum physical channel rate of 5.76
Mbps as illustrated in Figure 1-11 above.
The number of codes used will depend on the available resources in the RBS and
the amount of data in the UE buffer. It should be remembered that the data rate
achieved at the Application Layer will be lower than the physical rates illustrated
in Figure 1-11 above due to the overheads between the physical layer and
application layer.
WCDMA W14 Radio Network Functionality
- 30 - © Ericsson AB 2014 LZT1381422 R1A
1.5 Hybrid ARQ with Soft Combining
In a conventional (Automatic Retransmission ReQuest) ARQ scheme, like that
employed by AM RLC, a number of Protocol Data Units (PDUs) are transmitted
followed by a ‘polling indication’ bit. The receiver discards any errored PDUs
and responds to the ‘polling indication’ with a ‘status indication’ that informs the
transmitter which PDUs were correctly received. On reception of the status
indication the transmitter will re-send the errored PDUs. This ‘polling’ ARQ
system is illustrated in Figure 1-12 below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-12
Polling ARQ System
Receiver
Status Indication
(resend #2, 3 and 5)
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
Polling
bit
Transmitter
Figure 1-12: Polling ARQ System
For HSDPA a ‘Stop And Wait’ (SAW) ARQ algorithm is employed where the
transmitter waits for an Acknowledgement (ACK) before sending the next PDU
or retransmitting if a Negative Acknowledgment (NAK) is received. Rather than
discard the errored PDU, the HSDPA UE will store it and combine it with the
retransmitted one to improve error correction. This process is known as ‘soft
combining’. Since the Round Trip Time (RTT) for the HSDPA channel is
typically 12 msec it could take over six 2 msec frames for the UE to receive the
retransmission. To make it possible to send data to the same UE in consecutive
HSDPA frames, numerous ARQ processes are used to transfer data to the UE.
The principle of combining multiple ARQ processes is called ‘Hybrid ARQ’
(HARQ).
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 31 -
The principle of Hybrid ARQ with soft combining is illustrated in Figure 1-13
below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-13
Hybrid ARQ with Soft Combining
Frame
7 ARQ #1 ARQ #1
P1,2
ARQ #1 ARQ #1
1 P1,1 NACK (buffered)
2 ARQ #2 ARQ #2
P2,1 ACK
3 ARQ #3 ARQ #3
P3,1 ACK
4 ARQ #4 ARQ #4
P4,1 ACK
5 ARQ #5 ARQ #5
P5,1 ACK
6 ARQ #6 ARQ #6
P6,1 ACK
ACK
P1,1 and P1,2 Soft combined
Figure 1-13: Hybrid ARQ with Soft Combining
When the first transmission of the PDU from ARQ process number 1 (P1, 1) is
received incorrectly a NACK is sent and the data buffered. Since the RTT is
approximately 12 msec, it takes 6 frames for the retransmission (P1, 2) to arrive
at the UE. By which time ARQ processes 2-6 have sent their data. Soft
combining of the original transmission (P1, 1) and the retransmitted one (P1, 2) is
performed and an ACK is sent.
The data that is retransmitted depends on whether ‘Chase Combining’ or
‘Incremental Redundancy’ (IR) algorithms are used.
In case of Chase combining each retransmission is an identical copy of the
original transmission but in IR the retransmission will contain the error correction
bits that were initially punctured out.
To support soft combining, the UE must have sufficient buffer capacity to allow
the storage of at least 6 ARQ processes. An extra rate matching stage is
employed for HSDPA to ensure that the transmission does not exceed the UE
buffer size by puncturing the Turbo Coding parity bits to match the UE buffer
size. This first stage rate matching is followed by the second stage rate matching
which is the process of matching the data rate to the physical channel rate in the
same manner as non-HSPA channels.
HARQ is also used for EUL.
WCDMA W14 Radio Network Functionality
- 32 - © Ericsson AB 2014 LZT1381422 R1A
1.6 Adaptive Coding
For non-HSPA channels the power used for the physical channel is adapted in
line with the radio environment, that is, a poor environment will require more
power than a good one to maintain the same BLER or BER. A fixed amount of
Forward Error Correction (Turbo or Convolutional) bits are applied to the
channel to correct errors. In the case of HSDPA the amount of Forward Error
Correction (Turbo) bits is adapted to suit the radio environment based on the
Channel Quality Indicator (CQI) sent by the UE as illustrated in Figure 1-14
below.
Adaptive Coding
User data bit
Error correction bit
high data rate/
low protection
Low data rate/
high protection
CQI CQI
Figure 1-14: Adaptive Coding
In a good radio environment the UE can benefit from the high data rate possible
with a low Turbo coding rate. If the UE fails to decode the first transmission of
the HSDPA Transport Block it will send back a ‘Negative ACKnowledgement’
(NACK). On reception of the NACK the RBS will perform a retransmission
using either ‘Chase Combining’ or ‘Incremental Redundancy (IR)’ depending on
the setting of the ‘featureStateHsdpaIncrementalRedundancy’ parameter.
Adaptive coding is also used for EUL where the ‘eulHarqRv’ parameter controls
whether CC or IR is used. The default vale for this parameter is for IR
(INCR_REDUND).
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 33 -
The difference between ‘Chase Combining and ‘Incremental Redundancy (IR)’ is
illustrated in the example in Figure 1-15 below.
Incremental Redundancy (IR)
CRC
Generator
(+24 bits)
24
2404
2428 TURBO
Coder
(data x 3)
+
(4 tail bits)
2404
HS-DSCH
Transport
Block
3.84Mcps => 7680 chips 2msec, SF16 => 7680/16 = 480 symbols
With QPSK 1 symbol = 2 bits => 480X2 = 960 bits per frame
Using 5 Channelization codes 960X5= 4800 bits per frame
4800
2432 1184 1184
Initial Transmission => systematic bits and punctured parity bits
- Turbo Coding gain (2428/4800) 0.5
2432 1184 1184
‘featureStateHsdpaIncrementalRedundancy’=‘FALSE’
- Turbo Coding gain (2428/4800) 0.5 (energy gain only)
2400
‘featureStateHsdpaIncrementalRedundancy’=‘TRUE’
- Turbo Coding gain (2428/7296) 0.33
2400
Systematic bits
2432 2432 2432
Parity bits
7296
NACK
Figure 1-15: Incremental Redundancy (IR)
In the example in Figure 1-15 above, 5 HSDPA Channelization Codes using
QPSK modulation are used to transmit a 2404 bit HS-DSCH Transport Block
(TB). The 2404 bit TB has a 24 bit CRC added bringing it up to 2428 bits.
These 2428 bits are passed through a Turbo Coder which adds 4 tail bits
producing what is known as the ‘systematic bits’. The Turbo Coder also outputs
two parity bits for each input bit along with 4 tail bits for each block of parity
bits. The total resulting output is 2428 + 4 + 2428 + 4 + 2428 + 4 = 7296 bits.
In the initial transmission the parity bits from the Turbo Coder are punctured
from 2432 to 1184 so that the systematic bits and punctured parity bits make up
the 4800 bit physical channel. Due to this the Turbo Coding gain of (2428/7296)
0.33 is reduced to (2428/4800) 0.5. In this example we assume that this
transmission was not correctly decoded by the UE and it sent a NACK to the
RBS, requesting a retransmission.
With the ‘featureStateHsdpaIncrementalRedundancy’ set to ‘FALSE’ the
retransmission contains exactly the same bits as the initial transmission. When
the UE performs soft combining of the two transmissions there is only an energy
gain from the second transmission and the Turbo Coding gain is still 0.5.
With the ‘featureStateHsdpaIncrementalRedundancy’ set to ‘TRUE’ the
retransmission contains only parity bits. When the UE performs soft combining
of the two transmissions in this case, the full Turbo Coding gain of 0.33 is
achieved.
WCDMA W14 Radio Network Functionality
- 34 - © Ericsson AB 2014 LZT1381422 R1A
1.7 HSDPA Scheduling
The HSDPA channel is a shared channel that can be shared in time using its 2
msec Transmission Time Interval (TTI) and codes where the SF 16 codes
available for HSDPA can be shared between up to 4 users in one TTI. The
Ericsson WCDMA RAN supports a number of scheduling algorithms illustrated
in Figure 1-16 below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-16
HSDPA Scheduling
User #4
2 msec TTI
Scheduling Algorithm
• EQUAL_RATE [5]
• MAXIMUM_CQI [4]
• PROPORTIONAL_FAIR_HIGH [3]
• PROPORTIONAL_FAIR_LOW [2]
• PROPORTIONAL_FAIR_MEDUM [1]
• ROUND_ROBIN [0]
User #3
User #2
User #1
Figure 1-16: HSDPA Scheduling
The ‘EQUAL_RATE’ algorithm considers the air rate, priority and
retransmission priority factors. The result is an algorithm that gives each queue
equal air data rate.
The ‘MAX_CQI’ algorithm considers the CQI, priority and retransmission
priority factors. This algorithm is used to optimize the system throughput but due
to the unfair scheduling policy there is a risk that some users will starve.
The ‘PROPORTIONAL_FAIL_HIGH/MEDIUM/LOW’ algorithms considers a
subset of the priority factors; CQI, priority, average rate, retransmission, to
provide a trade-off between system throughput and user fairness. These
algorithms make it possible to benefit from the fact that different users
experience different radio conditions at a certain time. By prioritizing users
experiencing good channel quality, a higher throughput can be achieved,
compared to the round-robin algorithm in which the channel quality is not
considered. However, to avoid some users being allocated too small a share of the
common resource due to poor channel quality, some fairness in resource
allocation is provided by including the average rate factors in the scheduling
decision.
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 35 -
The ‘PROPORTIONAL_FAIR_LOW’ algorithm offers low fairness by scaling
up the CQI factor CQI whereas the ‘PROPORTIONAL_FAIR_HIGH’ algorithm
offers high fairness by scaling down the CQI factor.
The ‘ROUND_ROBIN’ algorithm which is the default, considers the delay,
priority and retransmission priority factors. Queues having a longer waiting time
will be given a higher priority than those with a shorter waiting time. The result is
an algorithm that gives each queue with buffered data equal opportunity to be
selected.
There is also a ‘MAXIMUM_DELAY’ algorithm that is used exclusively for
Guaranteed Bit Rate (GBR) services carried by HSDPA. This algorithm
prioritizes each queue based on its waiting time in the buffer where the oldest
data in the buffer is selected.
WCDMA W14 Radio Network Functionality
- 36 - © Ericsson AB 2014 LZT1381422 R1A
1.8 HSDPA Multi Carrier
The ‘Multi Carrier’ (FAJ 121 1441) optional feature corresponds to 3GPP release
8 ‘Dual-Cell HSDPA (DC-HSDPA) operation’. This enables one UE to
simultaneously use the HS-DSCHs of two cells.
One HS-DSCH using 64 QAM and 15 SF 16 codes supports a symbol rate of 15
X [(3.84 x 106
)/16) = 3.6 Msps. Since 64 QAM supports 6 bits per symbol this
represents a rate of 21.6 Mbps per HS-DSCH. The largest Transport Block (TB)
that can be carried with a physical layer rate of 21.6 Mbps is 42192 bits. Since
one TB is sent every 2 msec the peak physical layer rate possible using 15 codes
and 64 QAM is (42192/2X10-3
) 21.1 Mbps. When a UE in MC mode is using
two HS-DSCH it can achieve a peak physical layer rate of (21.1 X 2) = 42.2
Mbps. The RLC and application layer rates will be lower than this due to the
extra overheads.
The uplink E-DCH transmission from the UE in Multi Carrier (MC) mode will be
received by only one cell known as the ‘Serving HS-DSCH cell’. The second
cell is known as the ‘Secondary Serving HS-DSCH cell’. In the illustration in
Figure 1-17 below the Serving HS-DSCH cell is on frequency F1 with the
Secondary Serving HS-DSCH cell on frequency F2.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
#$%&'()*+,-
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
rstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
γδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-16
HSDPA Multi Carrier
F1
E-DCH
F2
Peak L1
Physical rate:
42.2 Mbps
F1
10 MHz RF
front end
combines
F1 and F2
adjacent carriers
Secondary Serving HS-DSCH cell
Serving HS-DSCH cell
Figure 1-17: HSDPA Multi Carrier
In the current release of the WCDMA RAN multi-carrier is not supported for
EUL meaning that there is only one E-DCH in the serving HS-DSCH cell as
illustrated in Figure 1-17 above.
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 37 -
1.9 HSDPA Evolution
The introduction of Higher Order Modulation (HOM) i.e. 16QAM and 64QAM
and Multiple Input Multiple Output (MIMO) represents a ‘Spectrum Efficiency
Gain’ whereby a higher date rate is possible with the same bandwidth. In P7
WCDMA RAN it was possible to offer a theoretical peak HSDPA rate of 28
Mbps using 15 codes with 16QAM and MIMO as illustrated in Figure 1-18
below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-17
HSDPA Evolution
14 Mbps
21 Mbps
28 Mbps
42 Mbps
56 Mbps
84 Mbps
15 Codes using 16QAM + MIMO
15 Codes using 16QAM
15 Codes using 64QAM
15 Codes using 64QAM + MIMO
or 2X15 Codes using 64QAM
2X15 Codes using 16QAM + MIMO
2X15 Codes using 64QAM + MIMO
Aggregation
Gain
Spectrum
Efficiency
Gain
Figure 1-18: HSDPA Evolution
The introduction of Multi Carrier (MC) in W10 meant that the Ericsson
WCDMA RAN was compliant with 3GPP Release 8 allowing a single user to use
2X15 codes giving an ‘Aggregation Gain’ by combining two 5MHz carriers.
A peak rate of 42 Mbps can be achieved by using 64 QAM and MIMO on a
single carrier or using just 64QAM with MC according to 3GPP Release 9. MC
and MIMO using 16QAM offers a theoretical peak HSDPA rate of 56 Mbps
while MC and MIMO using 64 QAM offers a theoretical peak HSDPA rate of 84
Mbps as illustrated in Figure 1-18 above.
3GPP Release 9 also specifies MC for EUL which is not supported in the
Ericsson WCDMA RAN.
WCDMA W14 Radio Network Functionality
- 38 - © Ericsson AB 2014 LZT1381422 R1A
The optional features that support HSDPA Evolution are illustrated in Figure 1-
19 below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-18
HSDPA Evolution Optional
Features
42 Mbps
56 Mbps
84 Mbps
15 Codes using 64QAM + MIMO
64QAM and MIMO Combination (FAJ 121 1483)
2X15 Codes using 64QAM
Dual Band HSDPA Multi Carrier (FAJ 121 1490)
2X15 Codes using 16QAM + MIMO
HSDPA Multi-Carrier with MIMO (FAJ 121 1492)
2X15 Codes using 64QAM + MIMO
64QAM and MIMO Combination (FAJ 121 1483) +
HSDPA Multi-Carrier with MIMO (FAJ 121 1492)
Figure 1-19: HSDPA Evolution Optional Features
The support of the various HSPA techniques will depend on the HSDPA and
EUL category of the UE. The 3GPP Technical Specification 25.306 V9.3.0
(2010-06) contains 28 HSDPA and 9 EUL categories. The UE HSPA categories
are signaled to the network by the UE at call setup and used by the network to
select a configuration that is supported by the UE.
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 39 -
1.10 HSDPA UE Categories
The UE HSDPA categories 1 to 16 are illustrated in Figure 1-20 below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-19
HSDPA Categories 1 to 16
25.306 V9.3.0
(2010-06)
Table 5.1a
MAC-ehs (EL2)
Figure 1-20: HSDPA Categories 1 to 16
The term ‘dual cell’ shown in Figure 1-20 above relates to the HSDPA Multi
Carrier (MC) feature supported in the Ericsson WCDMA RAN. It should be
noted that HS-DSCH categories 13 and above all support MAC-ehs which is an
enhanced Layer 2 feature that uses a flexible RLC PDU which is more efficient
for large packets of data. MAC-ehs is supported in the Ericsson WCDMA RAN
with the ‘Enhanced Layer 2 (EL2)’ optional feature.
WCDMA W14 Radio Network Functionality
- 40 - © Ericsson AB 2014 LZT1381422 R1A
The UE HSDPA categories 17 to 28 are illustrated in Figure 1-21 below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-20
HSDPA Categories 17 to 28
25.306 V9.3.0
(2010-06)
Table 5.1a
continued
Figure 1-21: HSDPA Categories 17 to 28
Basically, the physical layer UE capabilities are used to limit the requirements for
three different UE resources: the de-spreading resource, the soft buffer memory
used by the hybrid ARQ functionality, and the turbo decoding speed. The de-
spreading resource is limited in terms of the maximum number of HS-DSCH
codes the UE simultaneously needs to de-spread, 5, 10, or 15. The amount of soft
buffer memory has an upper limit in the range of 14400 to 518 400 soft bits.
Note that this is the total amount of buffer memory for all hybrid ARQ processes,
not the value per process. The memory is divided among the multiple processes.
The requirements on the turbo decoding resource are defined through two
parameters: the maximum number of transport channel bits received within an
HS-DSCH TTI, and the minimum inter-TTI interval. The decoding time in a
turbo decoder is roughly proportional to the number of information bits, which
provides a limit on the required processing speed.
In addition, for low-end UEs, continuous data transmission can be avoided by
specifying an inter-TTI interval larger than one.
UE categories 19 and 20 support the combination of 64QAM + MIMO.
UE categories 25 and 26 support the combination of MIMO + MC.
UE categories 27 and 28 support the combination of 64QAM + MIMO + MC.
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 41 -
1.10.1 EUL UE Categories
The UE EUL categories 1 to 9 are illustrated in Figure 1-22 below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-21
EUL Categories 1 to 9
E-DCH
category
Maximum
number of E-
DCH codes
transmittedp
er transport
block
Minimum
spreading
factor
Support for
10 and 2 ms
TTI EDCH
Maximum number of
bits of an E-DCH
transport block
transmitted within a 10
ms E-DCH TTI
Maximum number of
bits of an E-DCH
transport block
transmitted within a 2
ms E-DCH TTI
Category 1 1 SF4 10 ms TTI only 7110 -
Category 2 2 SF4 10 ms and
2 ms TTI
14484 2798
Category 3 2 SF4 10 ms TTI only 14484 -
Category 4 2 SF2 10 ms and
2 ms TTI
20000 5772
Category 5 2 SF2 10 ms TTI only 20000 -
Category 6 4 SF2 10 ms and
2 ms TTI
20000 11484
Category 7 4 SF2 10ms and 2
ms TTI
20000 22996
Category 8 4 SF2 2 ms TTI - 11484
Category 9 4 SF2 2 ms TTI - 22996
NOTE: When 4 codes are transmitted in parallel, two codes shall be
transmitted with SF2 and two with SF4
25.306 V9.3.0 (2010-06)
Table 5.1g
Figure 1-22: EUL UE Categories 1 to 9
UEs of Category 9 support QPSK and 16QAM in Dual Cell E-DCH operation.
This is not supported in the Ericsson WCDMA RAN making 11484 bit the
largest EUL Transport Block supported. 11484 bits in 2 msec gives maximum
transport channel bit rate of [(11484/2) X 1000)] = 5.742 Mbps.
WCDMA W14 Radio Network Functionality
- 42 - © Ericsson AB 2014 LZT1381422 R1A
The HS-DSCH and EUL categories are sent by the UE to the RNC in the RRC
Connection Setup message as shown in the TEMS Investigation L3 Presentation
window example in Figure 1-23 below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-22
HSPA Category Reported by UE
HS-DSCH category
WITHOUT EL2
HS-DSCH category
WITH EL2
EUL category
Figure 1-23: HSPA Category Reported by UE
All UEs supporting HS-DSCH should signal a category between 1 and 12 for the
‘hsdsch-physical-layer-category’ IE even if the UE physical capability category is
above 12. In the example in Figure 1-23 above we see that the ‘hsdsch-physical-
layer-category’ IE is 10. This is the category that would be used if EL2 was not
enabled.
RRC Connection Setup Complete messages from UEs with HS-DSCH categories
13 or greater will also contain the ‘hsdsch-physical-layer-category-ex’ IE which
indicates the HS-DSCH category used when EL2 is enabled. In the example in
Figure 1-23 above the ‘hsdsch-physical-layer-category-ex’ IE is 18 which means
that in cells where EL2 is enabled this UE will be treated as HS-DSCH category
18.
The EUL category is carried by the ‘edch-PhysicalLayerCategory’ IE which in
the example in Figure 1-23 above is 6.
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 43 -
1.11 HSPA Physical Channels
The HSDPA physical channels are illustrated in Figure 1-24 below.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-23
HSDPA Physical Channels
HS-PDSCH
HS-DPCCH
HS-SCCH
User #1
HS-DPCCH
HS-SCCH
User #2
HS-DPCCH
HS-SCCH
User #3
HS-DPCCH
HS-SCCH
User #4
A-DCHs
Non-Serving Cell
Serving
Cell
Figure 1-24: HSDPA Physical Channels
The High-Speed Physical Downlink Shared Channel (HS-PDSCH) is the physical
channel that carries the user data to the UE using a number of SF16 Orthogonal
codes. As illustrated in Figure 1-24 above this channel can send data to up to 4
users in one TTI by dividing the available Orthogonal Codes between them.
The High Speed Shared Control Channel (HS-SCCH) which uses SF 128 is used
to let the UE know which Orthogonal Codes have been allocated to it and which
modulation scheme (QPSK, 16QAM, 64QAM) these codes are using. Along
with this information the HS-SCCH also gives the UE the information required to
decode the Transport Block carried by the physical channel, that is whether it is
new data or a retransmitted data, the HARQ process number, the size of the
transport block and the Redundancy Version (RV) which lets the UE know if
Chase Combining or Incremental Redundancy is used in the retransmission case.
The HS-DPCCH in the uplink which uses SF256 carries the Channel Quality
Indicator (CQI) along with the ACK and NACK for the HARQ process. When
MIMO is used the HS-DPCCH can also carry the Precoder Control Information
(PCI) used to control the precoder to achieve the best performance from MIMO.
WCDMA W14 Radio Network Functionality
- 44 - © Ericsson AB 2014 LZT1381422 R1A
The TEMS Investigation ‘HSDPA UL HS-DPCCH Information’ Mode Report
shows what was contained in each HS-DPCCH sent by the UE. In the example
in Figure 1-25 below it can be seen that the UE sent a number of CQIs between
23 and 25 with some ACKs, NACKs and Discontinuous Transmissions (DTX)
where the UE was not scheduled.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-24
HS-DPCCH in TEMS
Investigation
Figure 1-25: HS-DPCCH in TEMS Investigation
Since MIMO was not used in this logfile shown in Figure 1-25 above the HS-
DPCCH does not contain the PCI field.
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 45 -
3GPP TS 25.214 contains a number of tables which match reported CQI with
Transport Block size, number of HS-PDSCH codes and modulation for each UE
category. The first part of Table 7A from 3GPP TS 25.214 V9.2.0 (2010-03)
showing the mapping of CQI 0 to 15 for UE categories 1-6 is given in Figure 1-
26 below
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
aracters for Embedded font:
%&'()*+,-
23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
vwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
δεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-25
CQI value
Transport
Block Size
Number of
HS-PDSCH
Modulation
Reference power
adjustment 
NIR Xrv
0 N/A Out of range
1 137 1 QPSK 0
2 173 1 QPSK 0
3 233 1 QPSK 0
4 317 1 QPSK 0
5 377 1 QPSK 0
6 461 1 QPSK 0
7 650 2 QPSK 0
8 792 2 QPSK 0
9 931 2 QPSK 0
10 1262 3 QPSK 0
11 1483 3 QPSK 0
12 1742 3 QPSK 0
13 2279 4 QPSK 0
14 2583 4 QPSK 0
15 3319 5 QPSK 0
9600 0
CQI 0 to 15 Mapping Cat 1-6
3GPP TS 25.214
V9.2.0 (2010-03)
Table 7A
Figure 1-26: CQI 0 to 15 Mapping for Cat 1-6 UE
The Reference Power Adjustment field in the CQI mapping tables in TS 25.214
specifies how much power should be allocated to the HS-DPDCH relative to the
Primary Common Pilot Channel (CPICH). The NIR field specifies the number of
soft channel bits available in the virtual IR buffer and the XRV field specifies the
Redundancy version that should be used. When MIMO is used the 30 CQI
values are split over both antennas.
WCDMA W14 Radio Network Functionality
- 46 - © Ericsson AB 2014 LZT1381422 R1A
The second part of Table 7A from 3GPP TS 25.214 V9.2.0 (2010-03) showing
the mapping of CQI 16 to 30 for UE categories 1-6 is given in Figure 1-27 below
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
aracters for Embedded font:
%&'()*+,-
23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
vwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
δεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-26
CQI 16 to 30 Mapping Cat 1-6
CQI value
Transport
Block Size
Number of
HS-PDSCH
Modulation
Reference power
adjustment 
NIR Xrv
16 3565 5 16-QAM 0
17 4189 5 16-QAM 0
18 4664 5 16-QAM 0
19 5287 5 16-QAM 0
20 5887 5 16-QAM 0
21 6554 5 16-QAM 0
22 7168 5 16-QAM 0
23 7168 5 16-QAM -1
24 7168 5 16-QAM -2
25 7168 5 16-QAM -3
26 7168 5 16-QAM -4
27 7168 5 16-QAM -5
28 7168 5 16-QAM -6
29 7168 5 16-QAM -7
30 7168 5 16-QAM -8
3GPP TS 25.214
V9.2.0 (2010-03)
Table 7A
Figure 1-27: CQI 16 to 30 Mapping for Cat 1-6 UE
The size of the Transport Block in relation to the number of physical bits carried
by the HS-DPDCH represents the level of coding used. Since each SF16
Orthogonal code carries 480 symbols in each TTI, 5 codes using 16 QAM
modulation can carry ( 5 X 4 X 480) = 9600 bits. Carrying a Transport Block of
7168 bits and the 24 bit CRC with this number of Orthogonal codes and
modulation represent a coding gain of (7168 + 24)/9600 = 0.75.
If the UE cannot decode the Transport Block it will send a NACK to the RBS
requesting a retransmission.
The RBS uses the CQI report from the UE as a guide to selecting the transport
block size, number of orthogonal codes and modulation scheme but can use any
of the HSDPA transport block sizes specified by 3GPP TS 25.321. This allows
the RBS to control the coding gain used for the transmission and hence the
number of retransmissions.
WCDMA Radio Network Functionality Introduction
LZT1381422 R1A © Ericsson AB 2014 - 47 -
Annex A in TS 3GPP TS 25.321 V9.3.0 (2010-06) contains two HS-DSCH
Transport Block Size Tables for FDD. The first table, illustrated in Figure 1-28
below starts at 137 and goes up to 27952 which equates to 68.5 kbps going up to
13.976 Mbps which is applicable for UEs with QPSK and 16 QAM capability
only.
Slide title
44 pt
Text and bullet level 1
minimum 24 pt
Bullets level 2-5
minimum 20 pt
Characters for Embedded font:
!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop
qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ
ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě
ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť
ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—
‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ
ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ
ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl
ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα
βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ
ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ
ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ
ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ
ẄẅỲỳ№
Do not add objects or
text in the footer area
© Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-27
HSDPA Transport Block Sizes
Index TB Size
1 137
2 149
3 161
4 173
5 185
6 197
7 209
8 221
9 233
10 245
11 257
12 269
13 281
14 293
15 305
Index TB Size
240 21754
241 22147
242 22548
243 22955
244 23370
245 23792
246 24222
247 24659
248 25105
249 25558
250 26020
251 26490
252 26969
253 27456
254 27952
3GPP TS 25.321 V9.3.0
(2010-06)
Annex A
Figure 1-28: HSDPA Transport Block Sizes
Only the first and last 15 HS-DSCH Transport Block Size Tables from the first
table in Annex A of TS 3GPP TS 25.321 V9.3.0 (2010-06) are shown in Figure
1-28 above.
The second HS-DSCH Transport Block Size Table for FDD in Annex A of TS
3GPP TS 25.321 V9.3.0 (2010-06) starts at 120 and goes up to 42192 which
equates to 60 kbps going up to 21.096 Mbps which is applicable for UEs with 64
QAM capability.
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf
Ericsson WCDMA W14 Radio Network Functionality.pdf

More Related Content

What's hot

422738668-LTE-Downlink-Throughput-Optimization-Based-on-Performance-Data [Rep...
422738668-LTE-Downlink-Throughput-Optimization-Based-on-Performance-Data [Rep...422738668-LTE-Downlink-Throughput-Optimization-Based-on-Performance-Data [Rep...
422738668-LTE-Downlink-Throughput-Optimization-Based-on-Performance-Data [Rep...SudheeraIndrajith
 
LTE Call Processing and Handover
LTE Call Processing and HandoverLTE Call Processing and Handover
LTE Call Processing and HandoverSitha Sok
 
Radio Measurements in LTE
Radio Measurements in LTERadio Measurements in LTE
Radio Measurements in LTESofian .
 
Huawei case analysis call drop
Huawei case analysis call dropHuawei case analysis call drop
Huawei case analysis call dropMuffat Itoro
 
3GPP SON Series: RACH Optimization
3GPP SON Series: RACH Optimization3GPP SON Series: RACH Optimization
3GPP SON Series: RACH Optimization3G4G
 
LTE Interference troubleshooting guide
LTE Interference troubleshooting guideLTE Interference troubleshooting guide
LTE Interference troubleshooting guideKlajdi Husi
 
Lte default and dedicated bearer / VoLTE
Lte default and dedicated bearer / VoLTELte default and dedicated bearer / VoLTE
Lte default and dedicated bearer / VoLTEmanish_sapra
 
Lte coverage optimization analysis
Lte coverage optimization analysisLte coverage optimization analysis
Lte coverage optimization analysisArnoldus Leo Karra
 
UMTS Drive Test Analysis and Examples
UMTS Drive Test Analysis and ExamplesUMTS Drive Test Analysis and Examples
UMTS Drive Test Analysis and ExamplesAssim Mubder
 
Lte radio network planning huawei
Lte radio network planning huaweiLte radio network planning huawei
Lte radio network planning huaweitharinduwije
 
Lte irat-troubleshooting-guide
Lte irat-troubleshooting-guideLte irat-troubleshooting-guide
Lte irat-troubleshooting-guideDenmark Wilson
 
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...anteneh amsalu
 
Lte capacity monitoring
Lte capacity monitoringLte capacity monitoring
Lte capacity monitoringKlajdi Husi
 
395317358-LTE-Resource-Usage-Optimization.pptx
395317358-LTE-Resource-Usage-Optimization.pptx395317358-LTE-Resource-Usage-Optimization.pptx
395317358-LTE-Resource-Usage-Optimization.pptxSudheeraIndrajith
 

What's hot (20)

Huawei 3 g_capacity_optimization
Huawei 3 g_capacity_optimizationHuawei 3 g_capacity_optimization
Huawei 3 g_capacity_optimization
 
Cs fallback feature
Cs fallback featureCs fallback feature
Cs fallback feature
 
422738668-LTE-Downlink-Throughput-Optimization-Based-on-Performance-Data [Rep...
422738668-LTE-Downlink-Throughput-Optimization-Based-on-Performance-Data [Rep...422738668-LTE-Downlink-Throughput-Optimization-Based-on-Performance-Data [Rep...
422738668-LTE-Downlink-Throughput-Optimization-Based-on-Performance-Data [Rep...
 
LTE Call Processing and Handover
LTE Call Processing and HandoverLTE Call Processing and Handover
LTE Call Processing and Handover
 
Radio Measurements in LTE
Radio Measurements in LTERadio Measurements in LTE
Radio Measurements in LTE
 
Part 3 optimization 3G
Part 3 optimization 3GPart 3 optimization 3G
Part 3 optimization 3G
 
Huawei case analysis call drop
Huawei case analysis call dropHuawei case analysis call drop
Huawei case analysis call drop
 
3GPP SON Series: RACH Optimization
3GPP SON Series: RACH Optimization3GPP SON Series: RACH Optimization
3GPP SON Series: RACH Optimization
 
UMTS/LTE/EPC Call Flows for CSFB
UMTS/LTE/EPC Call Flows for CSFBUMTS/LTE/EPC Call Flows for CSFB
UMTS/LTE/EPC Call Flows for CSFB
 
LTE Interference troubleshooting guide
LTE Interference troubleshooting guideLTE Interference troubleshooting guide
LTE Interference troubleshooting guide
 
Lte default and dedicated bearer / VoLTE
Lte default and dedicated bearer / VoLTELte default and dedicated bearer / VoLTE
Lte default and dedicated bearer / VoLTE
 
Lte coverage optimization analysis
Lte coverage optimization analysisLte coverage optimization analysis
Lte coverage optimization analysis
 
UMTS Drive Test Analysis and Examples
UMTS Drive Test Analysis and ExamplesUMTS Drive Test Analysis and Examples
UMTS Drive Test Analysis and Examples
 
Lte radio network planning huawei
Lte radio network planning huaweiLte radio network planning huawei
Lte radio network planning huawei
 
Lte irat-troubleshooting-guide
Lte irat-troubleshooting-guideLte irat-troubleshooting-guide
Lte irat-troubleshooting-guide
 
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...
 
Lte capacity monitoring
Lte capacity monitoringLte capacity monitoring
Lte capacity monitoring
 
395317358-LTE-Resource-Usage-Optimization.pptx
395317358-LTE-Resource-Usage-Optimization.pptx395317358-LTE-Resource-Usage-Optimization.pptx
395317358-LTE-Resource-Usage-Optimization.pptx
 
LTE Planning Basic
LTE Planning BasicLTE Planning Basic
LTE Planning Basic
 
wcdma-paging-problem-analysis
wcdma-paging-problem-analysiswcdma-paging-problem-analysis
wcdma-paging-problem-analysis
 

Similar to Ericsson WCDMA W14 Radio Network Functionality.pdf

Motorola solutions ap7131 access point installation guide wi ng 5.5 version...
Motorola solutions ap7131 access point installation guide   wi ng 5.5 version...Motorola solutions ap7131 access point installation guide   wi ng 5.5 version...
Motorola solutions ap7131 access point installation guide wi ng 5.5 version...Advantec Distribution
 
Atelier radio optimisation 3G avancé part 1.pdf
Atelier radio optimisation 3G avancé part 1.pdfAtelier radio optimisation 3G avancé part 1.pdf
Atelier radio optimisation 3G avancé part 1.pdfOusseini Barkiré MAHAMADOU
 
PLC: Manual de usuario de PLC Micrologix1500.pdf
PLC: Manual de usuario de PLC Micrologix1500.pdfPLC: Manual de usuario de PLC Micrologix1500.pdf
PLC: Manual de usuario de PLC Micrologix1500.pdfSantiagoPabloAlberto1
 
Motorola solutions ap7161 access point installation guide wi ng 5.5 version...
Motorola solutions ap7161 access point installation guide   wi ng 5.5 version...Motorola solutions ap7161 access point installation guide   wi ng 5.5 version...
Motorola solutions ap7161 access point installation guide wi ng 5.5 version...Advantec Distribution
 
136280714-LTE100-Motorola-LTE-Training.pdf
136280714-LTE100-Motorola-LTE-Training.pdf136280714-LTE100-Motorola-LTE-Training.pdf
136280714-LTE100-Motorola-LTE-Training.pdfMohamedShabana37
 
Berges acm-std
Berges acm-stdBerges acm-std
Berges acm-stdTan Ngoc
 
Omron PLC cqm1 opearation manual
Omron PLC cqm1 opearation manualOmron PLC cqm1 opearation manual
Omron PLC cqm1 opearation manualYan Zhang
 
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...Advantec Distribution
 
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...Advantec Distribution
 
Gfm3211econtrolloopstability1572623823828
Gfm3211econtrolloopstability1572623823828Gfm3211econtrolloopstability1572623823828
Gfm3211econtrolloopstability1572623823828Hoopeer Hoopeer
 
Emf2102 ib _lecom-a-b-li aif module__v2-0__en
Emf2102 ib _lecom-a-b-li aif module__v2-0__enEmf2102 ib _lecom-a-b-li aif module__v2-0__en
Emf2102 ib _lecom-a-b-li aif module__v2-0__enCharles Santos
 
Manual Hardware CLP Schneider - M258
Manual Hardware CLP Schneider - M258Manual Hardware CLP Schneider - M258
Manual Hardware CLP Schneider - M258Claudio Alves
 
Mobrey mcu900 series
Mobrey mcu900 seriesMobrey mcu900 series
Mobrey mcu900 seriesshahrule
 

Similar to Ericsson WCDMA W14 Radio Network Functionality.pdf (20)

Motorola solutions ap7131 access point installation guide wi ng 5.5 version...
Motorola solutions ap7131 access point installation guide   wi ng 5.5 version...Motorola solutions ap7131 access point installation guide   wi ng 5.5 version...
Motorola solutions ap7131 access point installation guide wi ng 5.5 version...
 
Atelier radio optimisation 3G avancé part 1.pdf
Atelier radio optimisation 3G avancé part 1.pdfAtelier radio optimisation 3G avancé part 1.pdf
Atelier radio optimisation 3G avancé part 1.pdf
 
LTE_Overview_MTS EMERSON EDUARDO RODRIGUES
LTE_Overview_MTS EMERSON EDUARDO RODRIGUESLTE_Overview_MTS EMERSON EDUARDO RODRIGUES
LTE_Overview_MTS EMERSON EDUARDO RODRIGUES
 
Manual de PLC Micrologix 1500
Manual de PLC Micrologix 1500 Manual de PLC Micrologix 1500
Manual de PLC Micrologix 1500
 
Dse8620 operators-manual
Dse8620 operators-manualDse8620 operators-manual
Dse8620 operators-manual
 
PLC: Manual de usuario de PLC Micrologix1500.pdf
PLC: Manual de usuario de PLC Micrologix1500.pdfPLC: Manual de usuario de PLC Micrologix1500.pdf
PLC: Manual de usuario de PLC Micrologix1500.pdf
 
Manual de PLC Micrologix 1500.pdf
Manual de PLC Micrologix 1500.pdfManual de PLC Micrologix 1500.pdf
Manual de PLC Micrologix 1500.pdf
 
Motorola solutions ap7161 access point installation guide wi ng 5.5 version...
Motorola solutions ap7161 access point installation guide   wi ng 5.5 version...Motorola solutions ap7161 access point installation guide   wi ng 5.5 version...
Motorola solutions ap7161 access point installation guide wi ng 5.5 version...
 
136280714-LTE100-Motorola-LTE-Training.pdf
136280714-LTE100-Motorola-LTE-Training.pdf136280714-LTE100-Motorola-LTE-Training.pdf
136280714-LTE100-Motorola-LTE-Training.pdf
 
Berges acm-std
Berges acm-stdBerges acm-std
Berges acm-std
 
Omron PLC cqm1 opearation manual
Omron PLC cqm1 opearation manualOmron PLC cqm1 opearation manual
Omron PLC cqm1 opearation manual
 
DVOR 432.pdf
DVOR 432.pdfDVOR 432.pdf
DVOR 432.pdf
 
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
 
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
 
Drives in001 -en-p
Drives in001 -en-pDrives in001 -en-p
Drives in001 -en-p
 
Manual CLP Omron CP1H
Manual CLP Omron CP1HManual CLP Omron CP1H
Manual CLP Omron CP1H
 
Gfm3211econtrolloopstability1572623823828
Gfm3211econtrolloopstability1572623823828Gfm3211econtrolloopstability1572623823828
Gfm3211econtrolloopstability1572623823828
 
Emf2102 ib _lecom-a-b-li aif module__v2-0__en
Emf2102 ib _lecom-a-b-li aif module__v2-0__enEmf2102 ib _lecom-a-b-li aif module__v2-0__en
Emf2102 ib _lecom-a-b-li aif module__v2-0__en
 
Manual Hardware CLP Schneider - M258
Manual Hardware CLP Schneider - M258Manual Hardware CLP Schneider - M258
Manual Hardware CLP Schneider - M258
 
Mobrey mcu900 series
Mobrey mcu900 seriesMobrey mcu900 series
Mobrey mcu900 series
 

Recently uploaded

My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetEnjoy Anytime
 
Next-generation AAM aircraft unveiled by Supernal, S-A2
Next-generation AAM aircraft unveiled by Supernal, S-A2Next-generation AAM aircraft unveiled by Supernal, S-A2
Next-generation AAM aircraft unveiled by Supernal, S-A2Hyundai Motor Group
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?XfilesPro
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 

Recently uploaded (20)

My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
 
Next-generation AAM aircraft unveiled by Supernal, S-A2
Next-generation AAM aircraft unveiled by Supernal, S-A2Next-generation AAM aircraft unveiled by Supernal, S-A2
Next-generation AAM aircraft unveiled by Supernal, S-A2
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 

Ericsson WCDMA W14 Radio Network Functionality.pdf

  • 1. WCDMA W14 Radio Network Functionality STUDENT BOOK LZT1381422 R1A LZT1381422 R1A
  • 2. WCDMA W14 Radio Network Functionality - 2 - © Ericsson AB 2014 LZT1381422 R1A DISCLAIMER This book is a training document and contains simplifications. Therefore, it must not be considered as a specification of the system. The contents of this document are subject to revision without notice due to ongoing progress in methodology, design and manufacturing. Ericsson shall have no liability for any error or damage of any kind resulting from the use of this document. This document is not intended to replace the technical documentation that was shipped with your system. Always refer to that technical documentation during operation and maintenance. © Ericsson AB 2014 This document was produced by Ericsson.  The book is to be used for training purposes only and it is strictly prohibited to copy, reproduce, disclose or distribute it in any manner without the express written consent from Ericsson. This Student Book, LZT1381422, R1A supports course number LZU1089757.
  • 3. Table of Contents LZT1381422 R1A © Ericsson AB 2014 - 3 - Table of Contents 1 WCDMA RADIO NETWORK FUNCTIONALITY INTRODUCTION..........................................................................15 1.1 WCDMA RABS ............................................................................17 1.2 W14 FEATURE PACKS...............................................................19 1.2.1 MULTI STANDARD TRAFFIC MANAGEMENT.........................19 1.2.2 RAN SERVICES .......................................................................20 1.2.3 RADIO NETWORK EFFICIENCY..............................................21 1.2.4 HSPA PERFORMANCE............................................................22 1.2.5 IP TRANSMISSION...................................................................23 1 HSPA INTRODUCTION..................................................................24 1.1 SHORT TRANSMISSION TIME INTERVAL.................................25 1.2 ADAPTIVE MODULATION...........................................................26 1.3 MULTIPLE INPUT MULTIPLE OUTPUT (MIMO) .........................27 1.4 MULTI CODE TRANSMISSION...................................................28 1.4.1 HSDPA MULTI CODE TRANSMISSION...................................28 1.4.2 EUL MULTI CODE TRANSMISSION ........................................29 1.5 HYBRID ARQ WITH SOFT COMBINING.....................................30 1.6 ADAPTIVE CODING ....................................................................32 1.7 HSDPA SCHEDULING ................................................................34 1.8 HSDPA MULTI CARRIER ............................................................36 1.9 HSDPA EVOLUTION ...................................................................37 1.10 HSDPA UE CATEGORIES.........................................................39 1.10.1 EUL UE CATEGORIES...........................................................41 1.11 HSPA PHYSICAL CHANNELS ..................................................43 1.12 HSDPA CODE TREE USAGE....................................................55
  • 4. WCDMA W14 Radio Network Functionality - 4 - © Ericsson AB 2014 LZT1381422 R1A 1.13 HSDPA CALL SETUP................................................................57 1.14 HSPA SOURCE MATERIAL ......................................................64 2 WCDMA RAN FUNCTIONALITY AREAS .......................................65 2.1 WCDMA RAN IDLE MODE FUNCTIONALITY .............................65 2.2 WCDMA RAN RADIO CONNECTION SUPERVISION FUNCTIONALITY.................................................................................67 2.3 WCDMA RAN POWER CONTROL FUNCTIONALITY.................69 2.4 WCDMA RAN CAPACITY MANAGEMENT FUNCTIONALITY.....71 2.5 WCDMA RAN MOBILITY FUNCTIONALITY................................73 2.6 WCDMA RAN CHANNEL SWITCHING FUNCTIONALITY ..........75 2.7 RADIO NETWORK PARAMETERS .............................................77 3 SUMMARY .....................................................................................78 2 WCDMA RAN IDLE MODE FUNCTIONALITY................................79 1 INTRODUCTION ............................................................................80 2 WCDMA SYSTEM INFORMATION.................................................82 2.1 SYSTEM INFORMATION UPDATE .............................................83 2.2 CHANGING OF SCHEDULING INFORMATION..........................86 2.3 WCDMA SIBS IN TEMS INVESTIGATION ..................................86 3 CELL SELECTION AND RESELECTION .......................................87 3.1 CELL SEARCH PROCEDURE.....................................................88 3.2 CELL SELECTION PROCEDURE ...............................................89 3.3 CELL RESELECTION PROCEDURE IN IDLE AND CONNECTED MODE (CELL_FACH AND URA_PCH) .........................92 3.4 HIERARCHICAL CELL STRUCTURES .......................................93 3.5 LTE CELL RESELECTION ........................................................101 3.6 CELL RESELECTION TO LTE IN CELL_FACH.........................106 3.7 LTE CELL RESELECTION FOR ADVANCED LTE DEPLOYMENTS ................................................................................108
  • 5. Table of Contents LZT1381422 R1A © Ericsson AB 2014 - 5 - 4 SUMMARY ...................................................................................110 3 WCDMA RAN RADIO CONNECTION SUPERVISION FUNCTIONALITY ......................................................................111 1 INTRODUCTION ..........................................................................112 2 UE RADIO LINK FAILURE DETECTION ......................................113 3 RLC UNRECOVERABLE ERROR ................................................114 4 RADIO CONNECTION SUPERVISION IN CELL_FACH AND URA_PCH ..........................................................................................117 5 RADIO CONNECTION SUPERVISION IN CELL_DCH.................119 5.1 RADIO LINK SET SUPERVISION..............................................120 5.2 RADIO CONNECTION SUPERVISION EVALUATION ..............122 6 CALL RE-ESTABLISHMENT ........................................................124 7 SUMMARY ...................................................................................125 4 WCDMA RAN POWER CONTROL FUNCTIONALITY..................127 1 INTRODUCTION ..........................................................................128 1.1 OPEN LOOP POWER CONTROL .............................................129 1.2 INNER LOOP POWER CONTROL ............................................130 1.3 OUTER LOOP POWER CONTROL...........................................132 2 SETTING COMMON CHANNEL POWERS ..................................135 3 OPEN LOOP POWER CONTROL ................................................137 3.1 UPLINK SIGNAL TO INTERFERENCE RATIO (SIR).................137 3.2 RACH PREAMBLE POWER SETTING......................................138 3.3 SETTING THE RACH MESSAGE POWER................................143 3.4 FACH POWER SETTING ..........................................................145 3.5 DOWNLINK SIGNAL TO INTERFERENCE RATIO (SIR) ..........145 3.6 INITIAL DOWNLINK DPDCH/DPCCH POWER .........................146 3.7 SETTING THE INITIAL DOWNLINK DPDCH POWER...............146 3.8 SETTING THE INITIAL DOWNLINK DPCCH POWER...............148
  • 6. WCDMA W14 Radio Network Functionality - 6 - © Ericsson AB 2014 LZT1381422 R1A 3.9 DOWNLINK POWER RAMPING................................................149 3.10 DOWNLINK DPDCH/DPCCH POWER SETTING AT SOFT HANDOVER .......................................................................................150 3.11 INITIAL POWER SETTING AT INTER-FREQUENCY HANDOVER AND CORE NETWORK HARD HANDOVER.................151 3.12 INITIAL UPLINK DPCCH/DPDCH POWER..............................153 3.13 SETTING THE INITIAL UPLINK DPDCH POWER...................153 4 INNER LOOP POWER CONTROL ...............................................156 4.1 UPLINK INNER LOOP POWER CONTROL...............................156 4.2 UPLINK POWER CONTROL IN COMPRESSED MODE ...........157 4.3 DOWNLINK INNER LOOP POWER CONTROL ........................161 4.4 DOWNLINK POWER BALANCING............................................163 4.5 DOWNLINK POWER CONTROL IN COMPRESSED MODE.....165 5 OUTER LOOP POWER CONTROL..............................................167 5.1 OUTER LOOP JUMP REGULATOR..........................................168 5.2 OUTER LOOP ANTI-WINDUP FEATURE..................................171 5.3 OUTER LOOP CONSTANT STEP REGULATOR......................172 6 HSDPA POWER CONTROL.........................................................173 6.1 HS-SCCH POWER CONTROL..................................................174 6.2 HS-DPCCH POWER CONTROL ...............................................175 6.3 HS-PDSCH POWER CONTROL................................................176 7 EUL POWER CONTROL ..............................................................177 7.1 E-DPDCH AND E-DPCCH POWER CONTROL.........................178 7.1.1 OUTER LOOP POWER CONTROL FOR E-DCH ...................179 7.2 E-AGCH AND E-RGCH POWER CONTROL.............................182 7.3 E-HICH POWER CONTROL......................................................183 8 SUMMARY ...................................................................................184 5 WCDMA RAN CAPACITY MANAGEMENT FUNCTIONALITY.....185
  • 7. Table of Contents LZT1381422 R1A © Ericsson AB 2014 - 7 - 1 INTRODUCTION ..........................................................................186 1.1 SYSTEM RESOURCE HANDLING............................................186 1.2 EARLY FILTER..........................................................................187 1.3 RADIO NETWORK ADMISSION CONTROL .............................188 1.4 RADIO NETWORK CONGESTION CONTROL..........................189 1.5 CONNECTION TO OTHER FUNCTIONS ..................................189 2 ADMISSION CONTROL................................................................190 2.1 RAB ATTRIBUTES ....................................................................191 2.2 ADMISSION CONTROL ATTRIBUTES......................................192 2.3 AMR SPEECH CODEC IN THE CAPACITY MANAGEMENT SOLUTION.........................................................................................196 2.4 RADIO NETWORK SOFT CONGESTION .................................198 2.5 ADMISSION POLICIES..............................................................203 2.6 ADMISSION CONTROL INTERACTION WITH MONITORED RESOURCES.....................................................................................206 2.7 AIR INTERFACE SPEECH EQUIVALENT.................................207 2.7.1 DOWNLINK ASE ADMISSION POLICY..................................209 2.7.2 UPLINK ASE ADMISSION POLICY ........................................210 2.8 DOWNLINK CHANNELIZATION CODE MONITOR ...................211 2.8.1 DOWNLINK CHANNELIZATION CODE ADMISSION POLICY..............................................................................................212 2.9 DOWNLINK TRANSMIT CARRIER POWER .............................213 2.9.1 DOWNLINK TRANSMITTED CARRIER POWER ADMISSION POLICY .........................................................................214 2.10 RL PER DL SF MONITOR .......................................................214 2.10.1 DOWNLINK SPREADING FACTOR ADMISSION POLICY...215 2.11 RL PER UL SF MONITOR .......................................................216 2.11.1 UPLINK SPREADING FACTOR ADMISSION POLICY.........216 2.12 RL IN CPM MONITOR .............................................................217
  • 8. WCDMA W14 Radio Network Functionality - 8 - © Ericsson AB 2014 LZT1381422 R1A 2.12.1 COMPRESSED MODE ADMISSION POLICY ......................217 2.13 HSDPA CONNECTIONS MONITOR........................................218 2.13.1 SERVING HS ADMISSION POLICY .....................................218 2.14 EUL CONNECTIONS MONITOR .............................................219 2.14.1 SERVING/NON-SERVING EUL ADMISSION POLICY .........220 2.15 UPLINK RECEIVED TOTAL WIDEBAND POWER MONITOR.221 2.16 RBS HARDWARE MONITOR ..................................................223 2.16.1 DOWNLINK RBS HARDWARE ADMISSION POLICY ..........225 2.16.2 UPLINK RBS HARDWARE ADMISSION POLICY ................226 2.17 EUL SCHEDULED RATE ADMISSION POLICY......................227 2.18 SRB ADMISSION CONTROL ..................................................228 2.19 SERVICE DIFFERENTIATED RRC ADMISSION.....................229 3 HSPA QOS MAPPING..................................................................232 3.1 INTERACTIVE/BACKGROUND REQUESTS.............................232 3.2 CONVERSATIONAL/STREAMING REQUESTS........................233 3.3 DEFAULT SPI MAPPING...........................................................234 3.4 FLEXIBLE QOS – SPI MAPPING ..............................................236 4 HSDPA SCHEDULER...................................................................238 4.1 RESOURCE SHARING..............................................................239 4.2 QUEUE SELECTION COEFFICIENT.........................................240 5 EUL SCHEDULER........................................................................244 5.1 EUL SCHEDULING WEIGHT.....................................................244 5.2 EUL SCHEDULER OPERATION ...............................................245 6 CONGESTION CONTROL............................................................247 6.1 UPLINK CELL CONGESTION DETECTION..............................248 6.2 EUL SCHEDULED RATE CONGESTION DETECTION.............249 6.3 DOWNLINK CELL CONGESTION DETECTION........................250
  • 9. Table of Contents LZT1381422 R1A © Ericsson AB 2014 - 9 - 6.4 HSDPA CELL CONGESTION DETECTION...............................251 6.5 DL CONGESTION RESOLVE HANDLING.................................254 6.6 EUL SCHEDULED RATE CONGESTION RESOLVE HANDLING.........................................................................................255 6.7 CONGESTION CONTROL TRIGGERS .....................................256 7 SUMMARY ...................................................................................257 6 WCDMA RAN CHANNEL SWITCHING FUNCTIONALITY...........259 1 INTRODUCTION ..........................................................................260 2 SINGLE RAB STATE TRANSITIONS ...........................................260 2.1 CELL_DCH TO CELL_FACH.....................................................260 2.2 CELL_FACH TO CELL_DCH.....................................................262 2.3 CELL_FACH TO URA_PCH.......................................................264 2.4 URA_PCH TO CELL_FACH OR CELL_DCH.............................265 2.4.1 UL-TRIGGERED UPSWITCH .................................................265 2.4.2 DL-TRIGGERED UPSWITCH .................................................266 2.5 URA_PCH TO IDLE...................................................................267 2.6 CELL_DCH TO CELL_DCH.......................................................268 2.6.1 THROUGHPUT-TRIGGERED UPSWITCH.............................268 2.6.2 THROUGHPUT-TRIGGERED DOWNSWITCH.......................271 2.6.3 THROUGHPUT BASED DEDICATED TO DEDICATED DOWNSWITCH EVALUATION...........................................................271 2.7 COVERAGE-TRIGGERED DOWNSWITCH ..............................272 3 CONNECTION HANDLING FOR PS RAB ....................................274 3.1 RAB CONNECTION CAPABILITIES..........................................276 4 CHANNEL SWITCHING................................................................277 5 UE STATES IN TRANSITIONS.....................................................278 5.1 FAST DORMANCY HANDLING.................................................280
  • 10. WCDMA W14 Radio Network Functionality - 10 - © Ericsson AB 2014 LZT1381422 R1A 5.2 FASTER ESTABLISHMENT, DIRECT UPSWITCH FROM URA 281 6 MULTI-RAB STATE TRANSITIONS .............................................282 6.1 SPEECH + INTERACTIVE.........................................................282 6.2 2XINTERACTIVE AND 3XINTERACTIVE..................................283 6.3 SPEECH + 2XINTERACTIVE ....................................................283 6.4 UDI + INTERACTIVE .................................................................283 6.5 MULTI-RAB DOWNSWITCH EVALUATION ..............................284 6.6 MULTI-RAB UPSWITCH EVALUATION.....................................284 6.7 RAB TRANSITIONS...................................................................285 7 INACTIVITY TIMERS ON CELL LEVEL........................................286 8 SUMMARY ...................................................................................287 7 WCDMA RAN MOBILITY FUNCTIONALITY.................................289 1 INTRODUCTION ..........................................................................290 2 SOFT/SOFTER HANDOVER........................................................291 2.1 SOFT HANDOVER EVENTS .....................................................297 2.1.1 ADDITION OF A RADIO LINK, EVENT 1A..............................297 2.1.2 REMOVAL OF A RADIO LINK, EVENT 1B .............................297 2.1.3 REPLACEMENT OF RADIO LINKS, EVENT 1C.....................299 2.1.4 CHANGE OF BEST CELL, EVENT 1D....................................300 2.2 SOFT HANDOVER DROPPED CALL........................................301 2.3 ANR MOBILITY..........................................................................302 3 CONNECTION QUALITY MONITORING......................................307 3.1 DECISION ON HANDOVER TYPE ............................................307 3.2 EVENT 2D/2F QUALITY MONITORING ....................................308 3.3 UE TX POWER MONITORING (EVENT 6D/6B) ........................312 4 INTER-FREQUENCY HANDOVER...............................................314
  • 11. Table of Contents LZT1381422 R1A © Ericsson AB 2014 - 11 - 4.1 IFHO EVALUATION...................................................................314 4.2 IFHO EXECUTION.....................................................................316 5 INTER-RAT HANDOVER..............................................................319 5.1 WCDMA TO GSM......................................................................320 5.2 WCDMA TO GPRS/EDGE .........................................................322 5.3 IRATHO AND IRATCC FROM GSM AND GPRS TO WCDMA ..324 6 CORE NETWORK HARD HANDOVER ........................................328 6.1 MEASUREMENT HANDLING FOR CORE NETWORK HARD HANDOVER .......................................................................................328 6.1.1 INTRA FREQUENCY HANDOVER.........................................329 6.1.2 INTER FREQUENCY HANDOVER.........................................329 6.2 CORE NETWORK HARD HANDOVER EVALUATION ..............330 6.2.1 INTRA FREQUENCY CORE NETWORK HARD HANDOVER EVALUATION................................................................330 6.2.2 INTER FREQUENCY CORE NETWORK HARD HANDOVER EVALUATION................................................................331 6.3 CORE NETWORK HARD HANDOVER EXECUTION................332 6.3.1 ACTIONS TAKEN BY CORE NETWORK HARD HANDOVER .......................................................................................333 6.3.2 EXCEPTION HANDLING ........................................................334 7 SERVICE-BASED HANDOVER....................................................335 7.1 SERVICE BASED HANDOVER EXECUTION............................336 7.2 SERVICE BASED HANDOVER TO GSM PARAMETERS AND COUNTERS .......................................................................................337 8 MOBILITY TO WIFI.......................................................................338 9 GAN MOBILITY ............................................................................343 9.1 HANDOVER TO GAN ................................................................345 9.2 GAN OVER IUR.........................................................................347 9.3 GAN INTERACTIVE WITH IFHO ...............................................347
  • 12. WCDMA W14 Radio Network Functionality - 12 - © Ericsson AB 2014 LZT1381422 R1A 9.4 GAN MOBILITY PARAMETERS ................................................347 10 HSDPA MOBILITY......................................................................349 10.1 MEASUREMENT HANDLING IN HSDPA ................................351 10.2 SERVING HS-DSCH CELL SELECTION.................................351 10.3 A-DCH SOFT AND SOFTER HANDOVER ..............................354 10.4 HS-DSCH MOBILITY ...............................................................354 10.5 SERVING HS-DSCH CELL CHANGE......................................355 10.5.1 SERVING HS-DSCH CELL CHANGE TRIGGERED BY CHANGE OF "BEST CELL" WITHIN THE ACTIVE SET ....................355 10.5.2 SERVING HS-DSCH CELL CHANGE TRIGGERED BY REMOVAL OF THE SERVING HS-DSCH CELL FROM THE ACTIVE SET ......................................................................................359 10.6 COVERAGE TRIGGERED DOWN SWITCH TO DCH .............362 10.7 HS-DSCH CELL SELECTION (THROUGHPUT TRIGGERED).....................................................................................363 10.7.1 THROUGHPUT-TRIGGERED UP SWITCH..........................363 10.8 THROUGHPUT-TRIGGERED DOWN SWITCH.......................365 10.9 HSDPA EXECUTION PART.....................................................366 10.10 SERVING HS-DSCH CELL CHANGE (INTER-RBS) EXECUTION ......................................................................................369 11 EUL MOBILITY ...........................................................................371 11.1 E-DCH/HS-DSCH CELL SELECTION......................................372 11.2 E-DCH SOFT/SOFTER HANDOVER.......................................375 11.3 E-DCH/HS-DSCH CELL CHANGE...........................................376 11.4 MOBILITY FOR 2 MSEC TTI USER.........................................381 11.4.1 CELL SELECTION................................................................381 11.4.2 SOFT/SOFTER HANDOVER ................................................382 11.4.3 CELL CHANGE.....................................................................382 11.4.4 COVERAGE TRIGGERED DOWN SWITCH.........................382
  • 13. Table of Contents LZT1381422 R1A © Ericsson AB 2014 - 13 - 11.5 LEAVING EUL COVERAGE.....................................................382 12 IF/IRAT HANDOVER ON HS ......................................................384 12.1 IUR SUPPORT.........................................................................387 13 MULTI CARRIER MOBILITY.......................................................388 13.1 GSM CELL CHANGE, IFHO AND CNHHO..............................390 13.2 CELL SELECTION...................................................................390 13.3 DUAL-BAND HSDPA MULTI CARRIER...................................390 14 WCDMA/LTE INTEROPERABILITY............................................391 14.1 CS VOICE FALLBACK FROM LTE..........................................393 14.1.1 CS FALLBACK FROM LTE W13B ENHANCEMENT ............395 14.1.2 RIM SUPPORT FOR SYSTEM INFORMATION TRANSFER TO LTE...........................................................................396 14.2 WCDMA IRAT HANDOVER AND SESSION CONTINUITY .....398 14.2.1 WCDMA IRAT HANDOVER..................................................399 14.2.2 WCDMA SESSION CONTINUITY.........................................403 14.3 RELEASE WITH REDIRECT TO LTE......................................404 14.3.1 RELEASE WITH REDIRECT W13B ENHANCEMENTS .......407 14.4 SUBSCRIBER BASED MOBILITY USING SPID......................408 14.5 LTE CELL RESELECTION DEDICATED PRIORITIES ............409 14.6 SINGLE RADIO VOICE CALL CONTINUITY FROM LTE ........412 14.6.1 SRVCC FOR VOICE AND DATA ..........................................413 15 LOAD BALANCING.....................................................................415 15.1 INTER-FREQUENCY LOAD SHARING ...................................416 15.2 DIRECTED RETRY TO GSM...................................................420 15.2.1 SERVICE-BASED HANDOVER VS. DIRECTED RETRY .....423 15.3 LOAD BASED HANDOVER TO GSM ......................................425 15.3.1 LOAD BASED HANDOVER TO GSM PARAMETERS AND COUNTERS .......................................................................................426
  • 14. WCDMA W14 Radio Network Functionality - 14 - © Ericsson AB 2014 LZT1381422 R1A 15.4 LOAD BASED INTER-FREQUENCY HANDOVER ..................427 15.4.1 LOAD BASED INTER-FREQUENCY HANDOVER PARAMETERS AND COUNTERS......................................................428 15.5 NON-HSPA INTER-FREQUENCY LOAD SHARING................429 15.5.1 NON-HSDPA INTER-FREQUENCY LOAD SHARING W12 ENHANCEMENTS .............................................................................431 15.6 HSDPA INTER-FREQUENCY LOAD SHARING......................434 15.6.1 HSDPA INTER-FREQUENCY LOAD SHARING W12 ENHANCEMENTS .............................................................................437 15.6.2 HSDPA INTER-FREQUENCY LOAD SHARING W13B ENHANCEMENTS .............................................................................441 15.7 HSDPA IFLS CAPABILITY AND PRIORITY HANDLING .........443 15.8 INTER FREQUENCY LOAD SHARING AT DOWNSWITCH....445 15.9 ADMISSION BLOCK REDIRECTIONS ....................................447 15.10 IRAT OFFLOAD FROM LTE ..................................................449 15.10.1 IRAT OFFLOAD FROM LTE PARAMETERS......................450 16 SUMMARY..................................................................................452 8 ACRONYM AND ABBREVIATION ................................................453 9 INDEX ............................................................................................461 10 TABLE OF FIGURES...................................................................463
  • 15. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 15 - 1 WCDMA Radio Network Functionality Introduction Objectives After this chapter the participants will be able to: 1 Give an overview of the Ericsson WCDMA Functionality areas 1.1 Describe the techniques used to achieve broadband data rates with HSPA 1.2 Explain the HSPA scheduling algorithms used by Ericsson 1.3 Use the Ericsson Customer Product Library to locate functionality descriptions Figure 1-1: Objectives of Chapter 1
  • 16. WCDMA W14 Radio Network Functionality - 16 - © Ericsson AB 2014 LZT1381422 R1A 1 WCDMA RAN Introduction The WCDMA Radio Access Network (RAN) consists of Radio Base Stations (RBS), Radio Network Controllers (RNC) and optionally Radio Access Network Aggregators (RXI) as illustrated in Figure 1-2 below. WCDMA RAN Overview Radio Access Network Iub Iu Iur Mub Mur Uu Mut MSC-S SGSN RNC RNC RXI Iub Iub Uu Uu Iu OSS- RC External Management System Iub RNC: Radio Network Controller RBS: Radio Base Station RXI: Radio Access Network Aggregator OSS-RC: Operation Support System (Radio Core) RBS RBS RBS RBS UE UE UE Mun Core Network Network Management System Figure 1-2: WCDMA RAN Overview Also illustrated in Figure 1-2 above are the Core Network (CN) containing the Mobile Switching Centre Server (MSC-S) and Gateway GPRS Support Node (SGSN) and the Network Management System (NMS) containing the Operations Support System for Radio and Core (OSS-RC). The RNC manages Radio Access Bearers (RABs) for user data, the radio network and mobility while the RBS provides the required radio resources. These RABs are either based on 3GPP release 99 (R99) or High Speed Packet Access (HSPA). The RNC and RBS communicate using the Iub interface directly of via a RXI as illustrated in Figure 1-2 above. The RNC communicates with the CN using the Iu interface and to other RNCs using the Iur interface. Operation and Maintenance is handled through the embedded management where the RBS, RNC and RXI communicate with the OSS-RC using the Mub, Mur and Mut interfaces respectively. This course will concentrate on the functionality of the WCDMA RAN which is controlled by a number of RNC and RBS parameters. This course will concentrate on the most important of these parameters.
  • 17. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 17 - 1.1 WCDMA RABs The WCDMA RAN supports a wide range of RABs for a wide variety of services. A UE can use single or multiple RABs depending on the requirement. The term RAB describes the overall connection between the UE and the Core Network. For user data, it maps down to a Radio Bearer from the UE to the RNC, and an Iu transport bearer from the RNC to the CN as illustrated in Figure 1-3 below. Radio Access Bearer (RAB) Radio Access Bearer Transport Bearer Radio Link (RL) Radio Bearer Traffic Channel RRC Traffic Channel Signalling Radio Bearer Signalling Connection RANAP RANAP RNC MSC-S SGSN CN R99 <384 kbps HSPA >384 kbps Figure 1-3: Radio Access Bearer (RAB) The Radio Bearer (RB) consists of a radio Link between the UE and the RBS, and a user plane Transport Channel (TRCH) on the Iub as illustrated in Figure 1- 3 above. A RAB cannot exist without a Signaling Connection to carry Radio Resource Control (RRC) signaling between the UE and RNC and ‘Non Access Stratum’ (NAS) signaling between the UE and CN. The NAS messages are carried between the UE and the RNC using the Radio Resource Control (RRC) protocol on a Signaling Radio Bearer (SRB). They are transmitted between the RNC and the Core Network using the Radio Access Network Application Protocol (RANAP). The SRB carrying RRC messages consists of a signaling Transport Channel (TRCH) and they are combined with the user plane TRCH to create the Radio Link (RL) by the RBS. RABs based on 3GPP release 1999 (R99) have a peak rate of 384 kbps. High Speed Packet Access (HSPA) RABs offer Mobile Broadband (MBB) data rates that exceed 384 kbps by using multiple Orthogonal codes, Higher Order Modulation (HOM), Multiple Input Multiple Output (MIMO) and Multi-Carrier (MC). This chapter will cover the basic principles of HSPA.
  • 18. WCDMA W14 Radio Network Functionality - 18 - © Ericsson AB 2014 LZT1381422 R1A Each RAB or multi-RAB combination is given a unique User Equipment Radio Connection (UeRc) number in the Ericsson WCDMA RAN. A complete list of all supported UeRcs available in the W14B WCDMA RAN and the optional features required to support them can be found in Table 12 in the ‘Connection Handling’ WCDMA RAN CPI User Description as illustrated Figure 1-4 below. Table 12 Default Values for Parameters blerQualityTarget UL/DL UeRc id RAB Combination TrCH Default Value Capabilites Feature Number 1 SRB (13.6/13.6) SRB -20 ( 1% BLER) fDpch support due to standalone SRB on HS N/A . . . . . . . . . . . . . . . . . . 176 Conv. CS speech (5.9, 4.75) + Interact. PS (EUL/HS) Conv/speech Int EUL/HS SRB -20 (1% BLER) -30 (0.1% BLER) -20 ( 1% BLER) 2ms, EL2, 64QAM, MIMO, 64QAM+MIMO FAJ 121 1517 Figure 1-4: Ericsson UeRcs Only the first and last UeRc supported in W14B are shown in Figure 1-4 above. UeRc id 1 is a 13.6 kbps signaling Radio Bearer (SRB) that is used by the UE before it has established a user data RAB. There is no optional feature required to support this UeRc. UeRc 176 is a multi-RAB combination containing a Conversational Circuit Switched (CS) speech RAB that used Adaptive Multi- Rate (AMR) 5.9 or 4.75 kbps and an Interactive Packet Switched RAB using Enhanced Uplink (EUL) and High Speed Downlink Packet Access (HSDPA). The ‘AMR multi-mode low rate and HSPA PS Interactive RAB combination’ (FAJ 121 1517) optional feature is required to support this UeRc. It should be noted that not all UeRc values between 1 and 176 are used in the W14 WCDMA RAN. The ‘Default Value’ column shown in Figure 1-4 above gives the default value for the ‘blerQualityTargetUl’ and ‘blerQualityTargetDl’ parameters for each UeRc. These parameters set the uplink and downlink Outer Loop Power Control Block Error Rate for each UeRc Transport Channel (UeRcTrCh). More details on these UeRcs and the RABs that they use can be found in section 14 of the ‘Connection Handling’ WCDMA RAN CPI User Description.
  • 19. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 19 - 1.2 W14 Feature Packs The ‘Feature Pack’ concept was introduced in W14 to simplify the control of Ericsson optional features allowing the Operator to order a particular group of features for a particular function rather than picking individual features. The ‘Feature Packs’ available in W14 and the number of features in each is given in Figure 1-5 below. FAJ 121 3661 Multi Standard Traffic Management Basic traffic steering functionality WCDMA - GSM 4 FAJ 121 3662 RAN Services Support for the majority of RAB combinations 28 FAJ 121 3663 Radio Network Efficiency Basic radio network performance functionality 15 FAJ 121 3664 HSPA Performance Features for a basic HSPA performance 22 FAJ 121 3665 IP Transmission Basic functionality for IP Transport support 7 Figure 1-5: W14 Feature Packs The features will only be available through the package to which they belong. The included features in a package can be activated separately so there is no impact on the network as such except that the license keys are delivered for all of the features in a package. 1.2.1 Multi Standard Traffic Management The ‘Multi Standard Traffic Management’ (FAJ 121 3661) Feature Pack provides Traffic Management functionality between a WCDMA and a GSM access network. Functionality included is GSM Handover & Cell Reselection, Directed retry, Emergency Call re-direct to GSM and Service Based Handover to GSM. The features that make up this Feature Pack are listed below:  FAJ 121 154 GSM Handover & Cell Reselection  FAJ 121 406 Directed Retry to GSM  FAJ 121 748 Emergency call re-direct to GSM  FAJ 121 799 Service Based Handover to GSM
  • 20. WCDMA W14 Radio Network Functionality - 20 - © Ericsson AB 2014 LZT1381422 R1A 1.2.2 RAN Services The ‘RAN Services’ (FAJ 121 3662) Feature Pack provides support for the most common Radio Access Bearer combinations needed to provide services for both voice and data and also provides the possibility to increase the capacity and coverage for the speech service. The features that make up this Feature Pack are listed below:  FAJ 121 845 Dynamic PS I/B RAB Establishment  FAJ 121 146 Conversational RAB for AMR speech  FAJ 121 147 Conversational RAB for 64 kbps multimedia  FAJ 121 148 Interactive RAB for up to 384 kbps Packet Data  FAJ 121 150 Speech and Packet Data RAB combination  FAJ 121 413 Two times PS Interactive RAB Combination  FAJ 121 553 Speech and two simultaneous interactive RABs for packet data  FAJ 121 754 Speech and 0 kbps Packet Data Rate  FAJ 121 757 Conversational RAB for 64kbps CS Multimedia & 8kbps packet data RAB combination  FAJ 121 977 Flexible initial rate selection, PS Interactive  FAJ 121 980 Interactive RAB for up to 128 kbps, Uplink  FAJ 121 981 Interactive RAB for up to 384 kbps, Uplink  FAJ 121 985 Conversational RAB for Multimode AMR speech  FAJ 121 1012 Speech 12.2 kbps, Interactive RAB for up to 384 kbps DL  FAJ 121 1013 Speech 12.2 kbps, Interactive RAB for up to 128 kbps UL  FAJ 121 1069 Two times HSDPA PS Interactive RAB combination  FAJ 121 1070 Multiple HSPA PS Interactive RAB Combination  FAJ 121 1071 Three times PS Interactive RAB combination  FAJ 121 1072 Three times HSDPA Interactive RAB combination  FAJ 121 1075 Speech 12.2 kbps and two times HSDPA PS Interactive RAB combination  FAJ 121 1103 Speech 12.2 kbps and Multiple PS Interactive RAB Combination  FAJ 121 1158 Stand-alone SRB 3.4 kbps  FAJ 121 988 Speech 12.2 kbps & HSDPA Interactive 64/HS RAB combination
  • 21. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 21 -  FAJ 121 989 Speech 12.2 kbps & HSDPA Interactive 384/HS RAB combination  FAJ 121 1304 Speech 12.2 kbps and Multiple HSDPA PS Interactive RAB Combination 1.2.3 Radio Network Efficiency The ‘Radio Network Efficiency’ (FAJ 121 3663) Feature Pack provides functionality to deploy an efficient WCDMA access network to be used as a base for later additions of more advanced functionality. Functionality like UTRAN Registration Area Handling, Traffic Handling Priority, Inter-frequency load sharing (IFLS) and Multi Band Support is included. The features that make up this Feature Pack are listed below:  FAJ 121 405 Inter Frequency Handover and Cell Reselection  FAJ 121 407 UTRAN Registration Area Handling  FAJ 121 408 Active Queue Management  FAJ 121 435 Inter-Frequency Load Sharing  FAJ 121 902 Inter-Frequency Load distribution  FAJ 121 928 Multi Band Support  FAJ 121 1022 Domain Specific Access Barring  FAJ 121 1093 Flexible QoS and Allocation/Retention handling  FAJ 121 1094 Traffic Handling Priority  FAJ 121 1128 Transmit Diversity  FAJ 121 1332 Load-Triggered Access Class Barring  FAJ 121 1402 Load Based Inter Frequency Handover  FAJ 121 1468 Non-HSDPA Inter Frequency Load Sharing (IFLS)  FAJ 121 1636 Flexible Intra Frequency-Measurement Initiation  FAJ 121 425 Max Bit Rate Capability for QoS Profiling
  • 22. WCDMA W14 Radio Network Functionality - 22 - © Ericsson AB 2014 LZT1381422 R1A 1.2.4 HSPA Performance The ‘HSPA Performance’ (FAJ 121 3664) Feature Pack provides high peak bit rates, high system capacity and reduced round trip delay in a WCDMA access network. Both downlink and uplink are addressed and the feature sets the baseline for further enhancements and deployment of advanced HSPA functionality. The features that make up this Feature Pack are listed below:  FAJ 121 801 HSDPA Mobility  FAJ 121 860 HSDPA Mobility Phase 2  FAJ 121 903 HSDPA 16 QAM  FAJ 121 904 HSDPA Proportional Fair Scheduler  FAJ 121 905 HSDPA Interactive 384/HS RAB  FAJ 121 967 HSDPA Dynamic Code Allocation  FAJ121 968 HSDPA Flexible Scheduler  FAJ 121 969 HSDPA Code Multiplex & HS-SCCH Power Control  FAJ121 1004 HSDPA CQI Adjustment  FAJ 1211033 HSDPA Introduction Package  FAJ 1211058 HSDPA Incremental redundancy  FAJ121 1091 HSPA Max bit rate for quality of service profiling  FAJ1211114 HSDPA and EUL Service indicator  FAJ 121 1115 HSDPA QoS Scheduler  FAJ121 1328 Enhanced Layer2  FAJ 1211358 Improved HSDPA Link Adaptation  FAJ 1211002 Enhanced UL Mobility  FAJ121 1023 Enhanced Uplink Introduction Package  FAJ 121 1111 EUL QoS Scheduler  FAJ 121 1333 Advanced Receivers, GRAKE in RBS  FAJ121 1345 DL Power Control for Enhanced Uplink  FAJ 121 1443 EUL single HARQ process scheduling
  • 23. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 23 - 1.2.5 IP Transmission The ‘IP Transmission’ (FAJ 121 3665) Feature Pack provides the required functionality to generate and receive IP packages in Ethernet frames instead of ATM cells on PDH or SDH frames. It supports all logical interfaces in WCDMA RAN, i.e. Iub, Iur, IuCS and IuPS. The signaling is using SCTP and the user plane is using UDP except for IuCS which is using RTP. This package also include the Network Synchronization functionality required to provide frequency reference to the base stations based on NTP with servers in RNC and clients in the NodeB. In addition it also includes the aggregation of Ethernet flows (Ethernet switching) using the ET-MFX board in the RBS 3000. The features that make up this Feature Pack are listed below:  FAJ 121 1118 Iub over IP/Ethernet in RNC  FAJ 121 1132 Iub over IP/Ethernet in RBS  FAJ 121 973 SS7 over Ethernet  FAJ 121 1120 Iur user traffic over IP  FAJ 121 976 IuPS user plane over IP  FAJ 121 1109 Ethernet Aggregation Switching  FAJ 121 1154 Network Synch Server for IP transport  FAJ 121 1155 Network Synch Client for IP transport It should also be noted that when upgrading RBS nodes to the W14A release from an earlier release, warning messages can appear indicating that certain features are no longer licensed. This concerns the features FAJ 121 963, FAJ121 1047, FAJ 121 1089, FAJ 121 244 and FAJ 121 966. The warning messages are a consequence of a cleanup of the Key Files. License Keys not relevant for RBSs (for example, only relevant for RNC) are no longer provided to the RBS nodes with this release. Warning messages for these features can be ignored. Full descriptions of all these features can be found in the WCDMA RAN CPI Alex library.
  • 24. WCDMA W14 Radio Network Functionality - 24 - © Ericsson AB 2014 LZT1381422 R1A 1 HSPA INTRODUCTION The basic principles that are used to achieve broadband data rates with HSPA RABs are illustrated in Figure 1-6 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-5 HSPA Basic Principles Adaptive Modulation (QPSK, 16 QAM, 64 QAM) Hybrid ARQ with Soft Combining 2 ms Short Transmission Time Interval (TTI) Adaptive Coding Multi Code Transmission Multiple Input Multiple Output (MIMO) Figure 1-6: HSPA Basic Principles The basic principles illustrated in Figure 1-6 above are used in the downlink and uplink by HSPA to achieve data rates that exceed the 384 kbps limit of R99 RABs. The term High Speed Downlink Packet Access (HSPA) is used to describe HSPA downlink channels while the term Enhanced Uplink (EUL) is used to describe HSPA uplink channels. Not all of these basic principles are employed in HSDPA and EUL.
  • 25. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 25 - 1.1 Short Transmission Time Interval HSPA makes use of a 2 msec Transmission Time Interval (TTI) as opposed to the relatively longer TTIs used for non-HSDPA channels as illustrated in Figure 1-7 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-7 Non-HSDPA Chanels 10 ms 20 ms 40 ms 80 ms HSDPA EUL OR 2 ms 10 ms 2 ms • Fast Adaptive Modulation and Coding • Fast ARQ => Shorter RTT => improved TCP performance Short TTI (2 ms) Figure 1-7: Short TTI (2 msec) This shorter TTI allows the system to quickly adapt the modulation and coding schemes to offer the best data rate as the radio environment changes. It also supports a fast Automatic Retransmission Request (ARQ) system which reduces the air interface delay and hence overall Round Trip Time (RTT). This shorter RTT improves the end-user performance of Transmission Control Protocol (TCP) based services. The type of ARQ used for HSPA is known as ‘Hybrid ARQ with Soft Combining’. Not all EUL capable UEs support the 2 msec TTI so 2 msec and 10 msec TTIs are supported for EUL as illustrated in Figure 1-7 above. The support of 2 msec TTI is one of the UE category characteristics.
  • 26. WCDMA W14 Radio Network Functionality - 26 - © Ericsson AB 2014 LZT1381422 R1A 1.2 Adaptive Modulation The HSDPA channel supports three modulation schemes:  Quadrature Phase Shift Keying (QPSK) One modulation symbol represents 2 bits.  16 Quadrature Amplitude Modulation (16QAM) One modulation symbol represents 4 bits.  64 Quadrature Amplitude Modulation (16QAM) One modulation symbol represents 6 bits. The choice of modulation scheme is based on the Channel Quality Indicator (CQI) reported by the UE as illustrated in Figure 1-8 below. Modulation Symbol QPSK (2 bits/symbol) 16 QAM (4 bits/symbol) 64 QAM (6 bits/symbol) CQI CQI CQI Adaptive Modulation Figure 1-8: Adaptive Modulation Since QPSK is the most robust of the modulation schemes it is best suited to a poor radio environment as illustrated in Figure 1-8 above. In a good radio environment the UE can benefit from the high data rate possible with 64QAM. It should be noted that the choice of modulation scheme will also be based on resources in the RBS. The term Higher Order Modulation (HOM) is sometimes used to describe modulation schemes other higher than QPSK. HOM is not implemented for Enhanced Uplink (EUL).
  • 27. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 27 - 1.3 Multiple Input Multiple Output (MIMO) In normal transmit diversity the same data is sent from both antennas increasing the robustness of the signal. In good radio environments when robustness is not an issue the RBS can send different data from each antenna effectively doubling the data rate. In the illustration in Figure 1-9 below the UE in the poor radio environment is sent the same data from each antenna represented by the duplicated numbered squares. User data bits Low data rate/ TX Diversity High data rate/ No TX Diversity Ant A Ant B Ant A Ant B 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Ant A Ant B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CQI CQI Multiple Input Multiple Output Figure 1-9: Multiple Input Multiple Output The UE in the good radio environment on the other hand, is sent different data from each antenna represented by the 16 numbered squares. From this illustration it can be seen that in a good radio environment the RBS can sacrifice TX diversity for an increased user data rate. In this way the UE can benefit from the high data rate possible with MIMO in a good radio environment. MIMO is not used for EUL.
  • 28. WCDMA W14 Radio Network Functionality - 28 - © Ericsson AB 2014 LZT1381422 R1A 1.4 Multi Code Transmission To achieve broadband speeds (>384 kbps) both HSDPA and EUL employ multi code transmission. 1.4.1 HSDPA Multi Code Transmission Orthogonal codes of Spreading Factor 16 are used for HSDPA, allowing a theoretical maximum of 15 to be allocated to a single user or shared in the time and/or code domain, leaving just enough codes for common Channels. The maximum physical channel rate using all 15 codes will depend on which modulation scheme is used. In the illustration in Figure 1-10 below the maximum physical rates with all 15 codes are calculated for all modulation schemes. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-10 15 x SF16 => 15(3.84X106/16) = 3.6X106 symbols/sec QPSK (2bits/symbol) => 3.6X106 x 2 = 7.2 Mbps (14.4 with MIMO) 16QAM (4bits/symbol) => 3.6X106 x 4 = 14.4 Mbps (28.8 with MIMO) 64QAM (6bits/symbol) => 3.6X106 x 6 = 21.6 Mbps (43.2 with MIMO) SF=16 SF=8 SF=4 SF=2 SF=1 Remaining codes used for signalling HSDPA Multi Code Transmission Figure 1-10: HSDPA Multi Code Transmission The number of codes used will depend on the CQI reported by the UE and availability in the RBS. It should be remembered that the data rate achieved at the Application Layer will be lower than the physical rates illustrated in Figure 1- 10 above due to the overheads between the physical layer and application layer.
  • 29. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 29 - 1.4.2 EUL Multi Code Transmission Scrambling codes are used in the uplink to distinguish between different UEs. This leaves the complete Orthogonal Code tree available to the UE. To achieve broadband data rates a EUL capable UE can combine a number of Orthogonal codes of SF 2 and 4 as illustrated Figure 1-11 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-11 EUL Multi Code Transmission Q I I E-DPCCH E-DPDCH #1 E-DPDCH #3 Q DPCCH Ch 256 Gd Ch 2,1 Gd Ch 2,1 Gd Ch 256 Gd HS-DPCCH Ch 256 Gd UE Scrambling Code I+jQ I/Q Mod. Filter Filter  j  E-DPDCH #4 Ch 4,1 Gd E-DPDCH #2 Ch 4,1 Gd SF 2 => (3.84 Mcps)/2 = 1.92 Mbps X 2 = 3.84 Mbps SF 4 => (3.84 Mcps)/4 = 0.96 Mbps X 2 = 1.92 Mbps Theoretical maximum physical rate = 5.76 Mbps Figure 1-11: EUL Multi Code Transmission Since the I and Q branch of the modulator are orthogonal one UE can combine two SF 4 and SF 2 codes to produce a maximum physical channel rate of 5.76 Mbps as illustrated in Figure 1-11 above. The number of codes used will depend on the available resources in the RBS and the amount of data in the UE buffer. It should be remembered that the data rate achieved at the Application Layer will be lower than the physical rates illustrated in Figure 1-11 above due to the overheads between the physical layer and application layer.
  • 30. WCDMA W14 Radio Network Functionality - 30 - © Ericsson AB 2014 LZT1381422 R1A 1.5 Hybrid ARQ with Soft Combining In a conventional (Automatic Retransmission ReQuest) ARQ scheme, like that employed by AM RLC, a number of Protocol Data Units (PDUs) are transmitted followed by a ‘polling indication’ bit. The receiver discards any errored PDUs and responds to the ‘polling indication’ with a ‘status indication’ that informs the transmitter which PDUs were correctly received. On reception of the status indication the transmitter will re-send the errored PDUs. This ‘polling’ ARQ system is illustrated in Figure 1-12 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-12 Polling ARQ System Receiver Status Indication (resend #2, 3 and 5) 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 Polling bit Transmitter Figure 1-12: Polling ARQ System For HSDPA a ‘Stop And Wait’ (SAW) ARQ algorithm is employed where the transmitter waits for an Acknowledgement (ACK) before sending the next PDU or retransmitting if a Negative Acknowledgment (NAK) is received. Rather than discard the errored PDU, the HSDPA UE will store it and combine it with the retransmitted one to improve error correction. This process is known as ‘soft combining’. Since the Round Trip Time (RTT) for the HSDPA channel is typically 12 msec it could take over six 2 msec frames for the UE to receive the retransmission. To make it possible to send data to the same UE in consecutive HSDPA frames, numerous ARQ processes are used to transfer data to the UE. The principle of combining multiple ARQ processes is called ‘Hybrid ARQ’ (HARQ).
  • 31. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 31 - The principle of Hybrid ARQ with soft combining is illustrated in Figure 1-13 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-13 Hybrid ARQ with Soft Combining Frame 7 ARQ #1 ARQ #1 P1,2 ARQ #1 ARQ #1 1 P1,1 NACK (buffered) 2 ARQ #2 ARQ #2 P2,1 ACK 3 ARQ #3 ARQ #3 P3,1 ACK 4 ARQ #4 ARQ #4 P4,1 ACK 5 ARQ #5 ARQ #5 P5,1 ACK 6 ARQ #6 ARQ #6 P6,1 ACK ACK P1,1 and P1,2 Soft combined Figure 1-13: Hybrid ARQ with Soft Combining When the first transmission of the PDU from ARQ process number 1 (P1, 1) is received incorrectly a NACK is sent and the data buffered. Since the RTT is approximately 12 msec, it takes 6 frames for the retransmission (P1, 2) to arrive at the UE. By which time ARQ processes 2-6 have sent their data. Soft combining of the original transmission (P1, 1) and the retransmitted one (P1, 2) is performed and an ACK is sent. The data that is retransmitted depends on whether ‘Chase Combining’ or ‘Incremental Redundancy’ (IR) algorithms are used. In case of Chase combining each retransmission is an identical copy of the original transmission but in IR the retransmission will contain the error correction bits that were initially punctured out. To support soft combining, the UE must have sufficient buffer capacity to allow the storage of at least 6 ARQ processes. An extra rate matching stage is employed for HSDPA to ensure that the transmission does not exceed the UE buffer size by puncturing the Turbo Coding parity bits to match the UE buffer size. This first stage rate matching is followed by the second stage rate matching which is the process of matching the data rate to the physical channel rate in the same manner as non-HSPA channels. HARQ is also used for EUL.
  • 32. WCDMA W14 Radio Network Functionality - 32 - © Ericsson AB 2014 LZT1381422 R1A 1.6 Adaptive Coding For non-HSPA channels the power used for the physical channel is adapted in line with the radio environment, that is, a poor environment will require more power than a good one to maintain the same BLER or BER. A fixed amount of Forward Error Correction (Turbo or Convolutional) bits are applied to the channel to correct errors. In the case of HSDPA the amount of Forward Error Correction (Turbo) bits is adapted to suit the radio environment based on the Channel Quality Indicator (CQI) sent by the UE as illustrated in Figure 1-14 below. Adaptive Coding User data bit Error correction bit high data rate/ low protection Low data rate/ high protection CQI CQI Figure 1-14: Adaptive Coding In a good radio environment the UE can benefit from the high data rate possible with a low Turbo coding rate. If the UE fails to decode the first transmission of the HSDPA Transport Block it will send back a ‘Negative ACKnowledgement’ (NACK). On reception of the NACK the RBS will perform a retransmission using either ‘Chase Combining’ or ‘Incremental Redundancy (IR)’ depending on the setting of the ‘featureStateHsdpaIncrementalRedundancy’ parameter. Adaptive coding is also used for EUL where the ‘eulHarqRv’ parameter controls whether CC or IR is used. The default vale for this parameter is for IR (INCR_REDUND).
  • 33. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 33 - The difference between ‘Chase Combining and ‘Incremental Redundancy (IR)’ is illustrated in the example in Figure 1-15 below. Incremental Redundancy (IR) CRC Generator (+24 bits) 24 2404 2428 TURBO Coder (data x 3) + (4 tail bits) 2404 HS-DSCH Transport Block 3.84Mcps => 7680 chips 2msec, SF16 => 7680/16 = 480 symbols With QPSK 1 symbol = 2 bits => 480X2 = 960 bits per frame Using 5 Channelization codes 960X5= 4800 bits per frame 4800 2432 1184 1184 Initial Transmission => systematic bits and punctured parity bits - Turbo Coding gain (2428/4800) 0.5 2432 1184 1184 ‘featureStateHsdpaIncrementalRedundancy’=‘FALSE’ - Turbo Coding gain (2428/4800) 0.5 (energy gain only) 2400 ‘featureStateHsdpaIncrementalRedundancy’=‘TRUE’ - Turbo Coding gain (2428/7296) 0.33 2400 Systematic bits 2432 2432 2432 Parity bits 7296 NACK Figure 1-15: Incremental Redundancy (IR) In the example in Figure 1-15 above, 5 HSDPA Channelization Codes using QPSK modulation are used to transmit a 2404 bit HS-DSCH Transport Block (TB). The 2404 bit TB has a 24 bit CRC added bringing it up to 2428 bits. These 2428 bits are passed through a Turbo Coder which adds 4 tail bits producing what is known as the ‘systematic bits’. The Turbo Coder also outputs two parity bits for each input bit along with 4 tail bits for each block of parity bits. The total resulting output is 2428 + 4 + 2428 + 4 + 2428 + 4 = 7296 bits. In the initial transmission the parity bits from the Turbo Coder are punctured from 2432 to 1184 so that the systematic bits and punctured parity bits make up the 4800 bit physical channel. Due to this the Turbo Coding gain of (2428/7296) 0.33 is reduced to (2428/4800) 0.5. In this example we assume that this transmission was not correctly decoded by the UE and it sent a NACK to the RBS, requesting a retransmission. With the ‘featureStateHsdpaIncrementalRedundancy’ set to ‘FALSE’ the retransmission contains exactly the same bits as the initial transmission. When the UE performs soft combining of the two transmissions there is only an energy gain from the second transmission and the Turbo Coding gain is still 0.5. With the ‘featureStateHsdpaIncrementalRedundancy’ set to ‘TRUE’ the retransmission contains only parity bits. When the UE performs soft combining of the two transmissions in this case, the full Turbo Coding gain of 0.33 is achieved.
  • 34. WCDMA W14 Radio Network Functionality - 34 - © Ericsson AB 2014 LZT1381422 R1A 1.7 HSDPA Scheduling The HSDPA channel is a shared channel that can be shared in time using its 2 msec Transmission Time Interval (TTI) and codes where the SF 16 codes available for HSDPA can be shared between up to 4 users in one TTI. The Ericsson WCDMA RAN supports a number of scheduling algorithms illustrated in Figure 1-16 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-16 HSDPA Scheduling User #4 2 msec TTI Scheduling Algorithm • EQUAL_RATE [5] • MAXIMUM_CQI [4] • PROPORTIONAL_FAIR_HIGH [3] • PROPORTIONAL_FAIR_LOW [2] • PROPORTIONAL_FAIR_MEDUM [1] • ROUND_ROBIN [0] User #3 User #2 User #1 Figure 1-16: HSDPA Scheduling The ‘EQUAL_RATE’ algorithm considers the air rate, priority and retransmission priority factors. The result is an algorithm that gives each queue equal air data rate. The ‘MAX_CQI’ algorithm considers the CQI, priority and retransmission priority factors. This algorithm is used to optimize the system throughput but due to the unfair scheduling policy there is a risk that some users will starve. The ‘PROPORTIONAL_FAIL_HIGH/MEDIUM/LOW’ algorithms considers a subset of the priority factors; CQI, priority, average rate, retransmission, to provide a trade-off between system throughput and user fairness. These algorithms make it possible to benefit from the fact that different users experience different radio conditions at a certain time. By prioritizing users experiencing good channel quality, a higher throughput can be achieved, compared to the round-robin algorithm in which the channel quality is not considered. However, to avoid some users being allocated too small a share of the common resource due to poor channel quality, some fairness in resource allocation is provided by including the average rate factors in the scheduling decision.
  • 35. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 35 - The ‘PROPORTIONAL_FAIR_LOW’ algorithm offers low fairness by scaling up the CQI factor CQI whereas the ‘PROPORTIONAL_FAIR_HIGH’ algorithm offers high fairness by scaling down the CQI factor. The ‘ROUND_ROBIN’ algorithm which is the default, considers the delay, priority and retransmission priority factors. Queues having a longer waiting time will be given a higher priority than those with a shorter waiting time. The result is an algorithm that gives each queue with buffered data equal opportunity to be selected. There is also a ‘MAXIMUM_DELAY’ algorithm that is used exclusively for Guaranteed Bit Rate (GBR) services carried by HSDPA. This algorithm prioritizes each queue based on its waiting time in the buffer where the oldest data in the buffer is selected.
  • 36. WCDMA W14 Radio Network Functionality - 36 - © Ericsson AB 2014 LZT1381422 R1A 1.8 HSDPA Multi Carrier The ‘Multi Carrier’ (FAJ 121 1441) optional feature corresponds to 3GPP release 8 ‘Dual-Cell HSDPA (DC-HSDPA) operation’. This enables one UE to simultaneously use the HS-DSCHs of two cells. One HS-DSCH using 64 QAM and 15 SF 16 codes supports a symbol rate of 15 X [(3.84 x 106 )/16) = 3.6 Msps. Since 64 QAM supports 6 bits per symbol this represents a rate of 21.6 Mbps per HS-DSCH. The largest Transport Block (TB) that can be carried with a physical layer rate of 21.6 Mbps is 42192 bits. Since one TB is sent every 2 msec the peak physical layer rate possible using 15 codes and 64 QAM is (42192/2X10-3 ) 21.1 Mbps. When a UE in MC mode is using two HS-DSCH it can achieve a peak physical layer rate of (21.1 X 2) = 42.2 Mbps. The RLC and application layer rates will be lower than this due to the extra overheads. The uplink E-DCH transmission from the UE in Multi Carrier (MC) mode will be received by only one cell known as the ‘Serving HS-DSCH cell’. The second cell is known as the ‘Secondary Serving HS-DSCH cell’. In the illustration in Figure 1-17 below the Serving HS-DSCH cell is on frequency F1 with the Secondary Serving HS-DSCH cell on frequency F2. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: #$%&'()*+,- 0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop rstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα γδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-16 HSDPA Multi Carrier F1 E-DCH F2 Peak L1 Physical rate: 42.2 Mbps F1 10 MHz RF front end combines F1 and F2 adjacent carriers Secondary Serving HS-DSCH cell Serving HS-DSCH cell Figure 1-17: HSDPA Multi Carrier In the current release of the WCDMA RAN multi-carrier is not supported for EUL meaning that there is only one E-DCH in the serving HS-DSCH cell as illustrated in Figure 1-17 above.
  • 37. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 37 - 1.9 HSDPA Evolution The introduction of Higher Order Modulation (HOM) i.e. 16QAM and 64QAM and Multiple Input Multiple Output (MIMO) represents a ‘Spectrum Efficiency Gain’ whereby a higher date rate is possible with the same bandwidth. In P7 WCDMA RAN it was possible to offer a theoretical peak HSDPA rate of 28 Mbps using 15 codes with 16QAM and MIMO as illustrated in Figure 1-18 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-17 HSDPA Evolution 14 Mbps 21 Mbps 28 Mbps 42 Mbps 56 Mbps 84 Mbps 15 Codes using 16QAM + MIMO 15 Codes using 16QAM 15 Codes using 64QAM 15 Codes using 64QAM + MIMO or 2X15 Codes using 64QAM 2X15 Codes using 16QAM + MIMO 2X15 Codes using 64QAM + MIMO Aggregation Gain Spectrum Efficiency Gain Figure 1-18: HSDPA Evolution The introduction of Multi Carrier (MC) in W10 meant that the Ericsson WCDMA RAN was compliant with 3GPP Release 8 allowing a single user to use 2X15 codes giving an ‘Aggregation Gain’ by combining two 5MHz carriers. A peak rate of 42 Mbps can be achieved by using 64 QAM and MIMO on a single carrier or using just 64QAM with MC according to 3GPP Release 9. MC and MIMO using 16QAM offers a theoretical peak HSDPA rate of 56 Mbps while MC and MIMO using 64 QAM offers a theoretical peak HSDPA rate of 84 Mbps as illustrated in Figure 1-18 above. 3GPP Release 9 also specifies MC for EUL which is not supported in the Ericsson WCDMA RAN.
  • 38. WCDMA W14 Radio Network Functionality - 38 - © Ericsson AB 2014 LZT1381422 R1A The optional features that support HSDPA Evolution are illustrated in Figure 1- 19 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-18 HSDPA Evolution Optional Features 42 Mbps 56 Mbps 84 Mbps 15 Codes using 64QAM + MIMO 64QAM and MIMO Combination (FAJ 121 1483) 2X15 Codes using 64QAM Dual Band HSDPA Multi Carrier (FAJ 121 1490) 2X15 Codes using 16QAM + MIMO HSDPA Multi-Carrier with MIMO (FAJ 121 1492) 2X15 Codes using 64QAM + MIMO 64QAM and MIMO Combination (FAJ 121 1483) + HSDPA Multi-Carrier with MIMO (FAJ 121 1492) Figure 1-19: HSDPA Evolution Optional Features The support of the various HSPA techniques will depend on the HSDPA and EUL category of the UE. The 3GPP Technical Specification 25.306 V9.3.0 (2010-06) contains 28 HSDPA and 9 EUL categories. The UE HSPA categories are signaled to the network by the UE at call setup and used by the network to select a configuration that is supported by the UE.
  • 39. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 39 - 1.10 HSDPA UE Categories The UE HSDPA categories 1 to 16 are illustrated in Figure 1-20 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-19 HSDPA Categories 1 to 16 25.306 V9.3.0 (2010-06) Table 5.1a MAC-ehs (EL2) Figure 1-20: HSDPA Categories 1 to 16 The term ‘dual cell’ shown in Figure 1-20 above relates to the HSDPA Multi Carrier (MC) feature supported in the Ericsson WCDMA RAN. It should be noted that HS-DSCH categories 13 and above all support MAC-ehs which is an enhanced Layer 2 feature that uses a flexible RLC PDU which is more efficient for large packets of data. MAC-ehs is supported in the Ericsson WCDMA RAN with the ‘Enhanced Layer 2 (EL2)’ optional feature.
  • 40. WCDMA W14 Radio Network Functionality - 40 - © Ericsson AB 2014 LZT1381422 R1A The UE HSDPA categories 17 to 28 are illustrated in Figure 1-21 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-20 HSDPA Categories 17 to 28 25.306 V9.3.0 (2010-06) Table 5.1a continued Figure 1-21: HSDPA Categories 17 to 28 Basically, the physical layer UE capabilities are used to limit the requirements for three different UE resources: the de-spreading resource, the soft buffer memory used by the hybrid ARQ functionality, and the turbo decoding speed. The de- spreading resource is limited in terms of the maximum number of HS-DSCH codes the UE simultaneously needs to de-spread, 5, 10, or 15. The amount of soft buffer memory has an upper limit in the range of 14400 to 518 400 soft bits. Note that this is the total amount of buffer memory for all hybrid ARQ processes, not the value per process. The memory is divided among the multiple processes. The requirements on the turbo decoding resource are defined through two parameters: the maximum number of transport channel bits received within an HS-DSCH TTI, and the minimum inter-TTI interval. The decoding time in a turbo decoder is roughly proportional to the number of information bits, which provides a limit on the required processing speed. In addition, for low-end UEs, continuous data transmission can be avoided by specifying an inter-TTI interval larger than one. UE categories 19 and 20 support the combination of 64QAM + MIMO. UE categories 25 and 26 support the combination of MIMO + MC. UE categories 27 and 28 support the combination of 64QAM + MIMO + MC.
  • 41. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 41 - 1.10.1 EUL UE Categories The UE EUL categories 1 to 9 are illustrated in Figure 1-22 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-21 EUL Categories 1 to 9 E-DCH category Maximum number of E- DCH codes transmittedp er transport block Minimum spreading factor Support for 10 and 2 ms TTI EDCH Maximum number of bits of an E-DCH transport block transmitted within a 10 ms E-DCH TTI Maximum number of bits of an E-DCH transport block transmitted within a 2 ms E-DCH TTI Category 1 1 SF4 10 ms TTI only 7110 - Category 2 2 SF4 10 ms and 2 ms TTI 14484 2798 Category 3 2 SF4 10 ms TTI only 14484 - Category 4 2 SF2 10 ms and 2 ms TTI 20000 5772 Category 5 2 SF2 10 ms TTI only 20000 - Category 6 4 SF2 10 ms and 2 ms TTI 20000 11484 Category 7 4 SF2 10ms and 2 ms TTI 20000 22996 Category 8 4 SF2 2 ms TTI - 11484 Category 9 4 SF2 2 ms TTI - 22996 NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4 25.306 V9.3.0 (2010-06) Table 5.1g Figure 1-22: EUL UE Categories 1 to 9 UEs of Category 9 support QPSK and 16QAM in Dual Cell E-DCH operation. This is not supported in the Ericsson WCDMA RAN making 11484 bit the largest EUL Transport Block supported. 11484 bits in 2 msec gives maximum transport channel bit rate of [(11484/2) X 1000)] = 5.742 Mbps.
  • 42. WCDMA W14 Radio Network Functionality - 42 - © Ericsson AB 2014 LZT1381422 R1A The HS-DSCH and EUL categories are sent by the UE to the RNC in the RRC Connection Setup message as shown in the TEMS Investigation L3 Presentation window example in Figure 1-23 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-22 HSPA Category Reported by UE HS-DSCH category WITHOUT EL2 HS-DSCH category WITH EL2 EUL category Figure 1-23: HSPA Category Reported by UE All UEs supporting HS-DSCH should signal a category between 1 and 12 for the ‘hsdsch-physical-layer-category’ IE even if the UE physical capability category is above 12. In the example in Figure 1-23 above we see that the ‘hsdsch-physical- layer-category’ IE is 10. This is the category that would be used if EL2 was not enabled. RRC Connection Setup Complete messages from UEs with HS-DSCH categories 13 or greater will also contain the ‘hsdsch-physical-layer-category-ex’ IE which indicates the HS-DSCH category used when EL2 is enabled. In the example in Figure 1-23 above the ‘hsdsch-physical-layer-category-ex’ IE is 18 which means that in cells where EL2 is enabled this UE will be treated as HS-DSCH category 18. The EUL category is carried by the ‘edch-PhysicalLayerCategory’ IE which in the example in Figure 1-23 above is 6.
  • 43. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 43 - 1.11 HSPA Physical Channels The HSDPA physical channels are illustrated in Figure 1-24 below. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-23 HSDPA Physical Channels HS-PDSCH HS-DPCCH HS-SCCH User #1 HS-DPCCH HS-SCCH User #2 HS-DPCCH HS-SCCH User #3 HS-DPCCH HS-SCCH User #4 A-DCHs Non-Serving Cell Serving Cell Figure 1-24: HSDPA Physical Channels The High-Speed Physical Downlink Shared Channel (HS-PDSCH) is the physical channel that carries the user data to the UE using a number of SF16 Orthogonal codes. As illustrated in Figure 1-24 above this channel can send data to up to 4 users in one TTI by dividing the available Orthogonal Codes between them. The High Speed Shared Control Channel (HS-SCCH) which uses SF 128 is used to let the UE know which Orthogonal Codes have been allocated to it and which modulation scheme (QPSK, 16QAM, 64QAM) these codes are using. Along with this information the HS-SCCH also gives the UE the information required to decode the Transport Block carried by the physical channel, that is whether it is new data or a retransmitted data, the HARQ process number, the size of the transport block and the Redundancy Version (RV) which lets the UE know if Chase Combining or Incremental Redundancy is used in the retransmission case. The HS-DPCCH in the uplink which uses SF256 carries the Channel Quality Indicator (CQI) along with the ACK and NACK for the HARQ process. When MIMO is used the HS-DPCCH can also carry the Precoder Control Information (PCI) used to control the precoder to achieve the best performance from MIMO.
  • 44. WCDMA W14 Radio Network Functionality - 44 - © Ericsson AB 2014 LZT1381422 R1A The TEMS Investigation ‘HSDPA UL HS-DPCCH Information’ Mode Report shows what was contained in each HS-DPCCH sent by the UE. In the example in Figure 1-25 below it can be seen that the UE sent a number of CQIs between 23 and 25 with some ACKs, NACKs and Discontinuous Transmissions (DTX) where the UE was not scheduled. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-24 HS-DPCCH in TEMS Investigation Figure 1-25: HS-DPCCH in TEMS Investigation Since MIMO was not used in this logfile shown in Figure 1-25 above the HS- DPCCH does not contain the PCI field.
  • 45. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 45 - 3GPP TS 25.214 contains a number of tables which match reported CQI with Transport Block size, number of HS-PDSCH codes and modulation for each UE category. The first part of Table 7A from 3GPP TS 25.214 V9.2.0 (2010-03) showing the mapping of CQI 0 to 15 for UE categories 1-6 is given in Figure 1- 26 below Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt aracters for Embedded font: %&'()*+,- 23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop vwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— „†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα δεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-25 CQI value Transport Block Size Number of HS-PDSCH Modulation Reference power adjustment  NIR Xrv 0 N/A Out of range 1 137 1 QPSK 0 2 173 1 QPSK 0 3 233 1 QPSK 0 4 317 1 QPSK 0 5 377 1 QPSK 0 6 461 1 QPSK 0 7 650 2 QPSK 0 8 792 2 QPSK 0 9 931 2 QPSK 0 10 1262 3 QPSK 0 11 1483 3 QPSK 0 12 1742 3 QPSK 0 13 2279 4 QPSK 0 14 2583 4 QPSK 0 15 3319 5 QPSK 0 9600 0 CQI 0 to 15 Mapping Cat 1-6 3GPP TS 25.214 V9.2.0 (2010-03) Table 7A Figure 1-26: CQI 0 to 15 Mapping for Cat 1-6 UE The Reference Power Adjustment field in the CQI mapping tables in TS 25.214 specifies how much power should be allocated to the HS-DPDCH relative to the Primary Common Pilot Channel (CPICH). The NIR field specifies the number of soft channel bits available in the virtual IR buffer and the XRV field specifies the Redundancy version that should be used. When MIMO is used the 30 CQI values are split over both antennas.
  • 46. WCDMA W14 Radio Network Functionality - 46 - © Ericsson AB 2014 LZT1381422 R1A The second part of Table 7A from 3GPP TS 25.214 V9.2.0 (2010-03) showing the mapping of CQI 16 to 30 for UE categories 1-6 is given in Figure 1-27 below Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt aracters for Embedded font: %&'()*+,- 23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop vwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— „†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα δεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-26 CQI 16 to 30 Mapping Cat 1-6 CQI value Transport Block Size Number of HS-PDSCH Modulation Reference power adjustment  NIR Xrv 16 3565 5 16-QAM 0 17 4189 5 16-QAM 0 18 4664 5 16-QAM 0 19 5287 5 16-QAM 0 20 5887 5 16-QAM 0 21 6554 5 16-QAM 0 22 7168 5 16-QAM 0 23 7168 5 16-QAM -1 24 7168 5 16-QAM -2 25 7168 5 16-QAM -3 26 7168 5 16-QAM -4 27 7168 5 16-QAM -5 28 7168 5 16-QAM -6 29 7168 5 16-QAM -7 30 7168 5 16-QAM -8 3GPP TS 25.214 V9.2.0 (2010-03) Table 7A Figure 1-27: CQI 16 to 30 Mapping for Cat 1-6 UE The size of the Transport Block in relation to the number of physical bits carried by the HS-DPDCH represents the level of coding used. Since each SF16 Orthogonal code carries 480 symbols in each TTI, 5 codes using 16 QAM modulation can carry ( 5 X 4 X 480) = 9600 bits. Carrying a Transport Block of 7168 bits and the 24 bit CRC with this number of Orthogonal codes and modulation represent a coding gain of (7168 + 24)/9600 = 0.75. If the UE cannot decode the Transport Block it will send a NACK to the RBS requesting a retransmission. The RBS uses the CQI report from the UE as a guide to selecting the transport block size, number of orthogonal codes and modulation scheme but can use any of the HSDPA transport block sizes specified by 3GPP TS 25.321. This allows the RBS to control the coding gain used for the transmission and hence the number of retransmissions.
  • 47. WCDMA Radio Network Functionality Introduction LZT1381422 R1A © Ericsson AB 2014 - 47 - Annex A in TS 3GPP TS 25.321 V9.3.0 (2010-06) contains two HS-DSCH Transport Block Size Tables for FDD. The first table, illustrated in Figure 1-28 below starts at 137 and goes up to 27952 which equates to 68.5 kbps going up to 13.976 Mbps which is applicable for UEs with QPSK and 16 QAM capability only. Slide title 44 pt Text and bullet level 1 minimum 24 pt Bullets level 2-5 minimum 20 pt Characters for Embedded font: !"#$%&'()*+,- ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnop qrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚ ÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚě ĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤť ŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–— ‘’‚“”„†‡•…‰‹›⁄€™ĀĀĂĂĄĄĆĆĊĊČČĎĎĐĐĒĒĖĖĘĘĚĚĞĞĠĠ ĢĢĪĪĮĮİĶĶĹĹĻĻĽĽŃŃŅŅŇŇŌŌŐŐŔŔŖŖŘŘŚŚŞŞŢŢŤŤŪ ŪŮŮŰŰŲŲŴŴŶŶŹŹŻŻȘș−≤≥fifl ΆΈΉΊΌΎΏΐΑΒΓΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΪΫΆΈΉΊΰα βγδεζηθικλνξορςΣΤΥΦΧΨΩΪΫΌΎΏ ЁЂЃЄЅІЇЈЉЊЋЌЎЏАБВГДЕЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШ ЩЪЫЬЭЮЯЁЂЃЄЅІЇЈЉЊЋЌЎЏѢѢѲѲѴѴҐҐәǽẀẁẂẃ ẄẅỲỳ№ Do not add objects or text in the footer area © Ericsson AB 2014 | WCDMA Radio Functionality Introduction | LZU1089757 R1A | Figure 1-27 HSDPA Transport Block Sizes Index TB Size 1 137 2 149 3 161 4 173 5 185 6 197 7 209 8 221 9 233 10 245 11 257 12 269 13 281 14 293 15 305 Index TB Size 240 21754 241 22147 242 22548 243 22955 244 23370 245 23792 246 24222 247 24659 248 25105 249 25558 250 26020 251 26490 252 26969 253 27456 254 27952 3GPP TS 25.321 V9.3.0 (2010-06) Annex A Figure 1-28: HSDPA Transport Block Sizes Only the first and last 15 HS-DSCH Transport Block Size Tables from the first table in Annex A of TS 3GPP TS 25.321 V9.3.0 (2010-06) are shown in Figure 1-28 above. The second HS-DSCH Transport Block Size Table for FDD in Annex A of TS 3GPP TS 25.321 V9.3.0 (2010-06) starts at 120 and goes up to 42192 which equates to 60 kbps going up to 21.096 Mbps which is applicable for UEs with 64 QAM capability.