SlideShare a Scribd company logo
1 of 29
Download to read offline
Silberschatz and Galvin19999.1Operating System Concepts Silberschatz and Galvin19995.1Operating System Concepts Silberschatz and Galvin 19994.1
1 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
O P E R A T I N G S Y S T E M S
Chapter 9 : Virtual Memory
• Basic Concepts
• Scheduling Criteria
• Scheduling Algorithms
• Multiple-Processor Scheduling
• Real-Time Scheduling
• Algorithm Evaluation
Operating System Concepts
Silberschatz and Galvin19999.2Operating System Concepts Silberschatz and Galvin19995.2Operating System Concepts Silberschatz and Galvin 19994.2
2 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Chapter 9: Virtual Memory
• Background
• Demand Paging
• Performance of Demand Paging
• Page Replacement
• Page-Replacement Algorithms
• Allocation of Frames
• Thrashing
• Other Considerations
• Demand Segmenation
Operating System Concepts
Silberschatz and Galvin19999.3Operating System Concepts Silberschatz and Galvin19995.3Operating System Concepts Silberschatz and Galvin 19994.3
3 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Background
• Virtual memory – separation of user logical memory from
physical memory.
– Only part of the program needs to be in memory for
execution.
– Logical address space can therefore be much larger than
physical address space.
– Need to allow pages to be swapped in and out.
• Virtual memory can be implemented via:
– Demand paging
– Demand segmentation
Operating System Concepts
Silberschatz and Galvin19999.4Operating System Concepts Silberschatz and Galvin19995.4Operating System Concepts Silberschatz and Galvin 19994.4
4 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Demand Paging
• Bring a page into memory only when it is needed.
– Less I/O needed
– Less memory needed
– Faster response
– More users
• Page is needed  reference to it
– invalid reference  abort
– not-in-memory  bring to memory
Operating System Concepts
Silberschatz and Galvin19999.5Operating System Concepts Silberschatz and Galvin19995.5Operating System Concepts Silberschatz and Galvin 19994.5
5 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated
(1  in-memory, 0  not-in-memory)
• Initially valid–invalid but is set to 0 on all entries.
• Example of a page table snapshot.
• During address translation, if valid–invalid bit in page table entry is 0 
page fault.
1
1
1
1
0
0
0

Frame # valid-invalid bit
page table
Operating System Concepts
Silberschatz and Galvin19999.6Operating System Concepts Silberschatz and Galvin19995.6Operating System Concepts Silberschatz and Galvin 19994.6
6 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Page Fault
• If there is ever a reference to a page, first reference will trap to
OS  page fault
• OS looks at another table to decide:
– Invalid reference  abort.
– Just not in memory.
• Get empty frame.
• Swap page into frame.
• Reset tables, validation bit = 1.
• Restart instruction: Least Recently Used
– block move
– auto increment/decrement locationOperating System Concepts
Silberschatz and Galvin19999.7Operating System Concepts Silberschatz and Galvin19995.7Operating System Concepts Silberschatz and Galvin 19994.7
7 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
What happens if there is no free frame?
• Page replacement – find some page in memory, but not really in
use, swap it out.
– algorithm
– performance – want an algorithm which will result in
minimum number of page faults.
• Same page may be brought into memory several times.
Operating System Concepts
Silberschatz and Galvin19999.8Operating System Concepts Silberschatz and Galvin19995.8Operating System Concepts Silberschatz and Galvin 19994.8
8 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Performance of Demand Paging
• Page Fault Rate 0  p  1.0
– if p = 0 no page faults
– if p = 1, every reference is a fault
• Effective Access Time (EAT)
EAT = (1 – p) x memory access
+ p (page fault overhead
+ [swap page out ]
+ swap page in
+ restart overhead)
Operating System Concepts
Silberschatz and Galvin19999.9Operating System Concepts Silberschatz and Galvin19995.9Operating System Concepts Silberschatz and Galvin 19994.9
9 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Demand Paging Example
• Memory access time = 1 microsecond
• 50% of the time the page that is being replaced has been
modified and therefore needs to be swapped out.
• Swap Page Time = 10 msec = 10,000 msec
EAT = (1 – p) x 1 + p (15000)
1 + 15000P (in msec)
Operating System Concepts
Silberschatz and Galvin19999.10Operating System Concepts Silberschatz and Galvin19995.10Operating System Concepts Silberschatz and Galvin 19994.10
10 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Page Replacement
• Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement.
• Use modify (dirty) bit to reduce overhead of page transfers – only
modified pages are written to disk.
• Page replacement completes separation between logical memory
and physical memory – large virtual memory can be provided on
a smaller physical memory.
Operating System Concepts
Silberschatz and Galvin19999.11Operating System Concepts Silberschatz and Galvin19995.11Operating System Concepts Silberschatz and Galvin 19994.11
11 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Page-Replacement Algorithms
• Want lowest page-fault rate.
• Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page
faults on that string.
• In all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
Operating System Concepts
Silberschatz and Galvin19999.12Operating System Concepts Silberschatz and Galvin19995.12Operating System Concepts Silberschatz and Galvin 19994.12
12 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
First-In-First-Out (FIFO) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages can be in memory at a time per process)
• 4 frames
• FIFO Replacement – Belady’s Anomaly
– more frames  less page faults
1
2
3
1
2
3
4
1
2
5
3
4
9 page faults
1
2
3
1
2
3
5
1
2
4
5 10 page faults
44 3
Operating System Concepts
Silberschatz and Galvin19999.13Operating System Concepts Silberschatz and Galvin19995.13Operating System Concepts Silberschatz and Galvin 19994.13
13 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Optimal Algorithm
• Replace page that will not be used for longest period of time.
• 4 frames example
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• How do you know this?
• Used for measuring how well your algorithm performs.
1
2
3
4
6 page faults
4 5
Operating System Concepts
Silberschatz and Galvin19999.14Operating System Concepts Silberschatz and Galvin19995.14Operating System Concepts Silberschatz and Galvin 19994.14
14 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Least Recently Used (LRU) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Counter implementation
– Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the
counter.
– When a page needs to be changed, look at the counters to
determine which are to change.
1
2
3
5
4
4 3
5
Operating System Concepts
Silberschatz and Galvin19999.15Operating System Concepts Silberschatz and Galvin19995.15Operating System Concepts Silberschatz and Galvin 19994.15
15 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
LRU Algorithm (Cont.)
• Stack implementation – keep a stack of page numbers in a
double link form:
– Page referenced:
 move it to the top
 requires 6 pointers to be changed
– No search for replacement
Operating System Concepts
Silberschatz and Galvin19999.16Operating System Concepts Silberschatz and Galvin19995.16Operating System Concepts Silberschatz and Galvin 19994.16
16 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
LRU Approximation Algorithms
• Reference bit
– With each page associate a bit, initially -= 0
– When page is referenced bit set to 1.
– Replace the one which is 0 (if one exists). We do not know
the order, however.
• Second chance
– Need reference bit.
– Clock replacement.
– If page to be replaced (in clock order) has reference bit = 1.
then:
 set reference bit 0.
 leave page in memory.
 replace next page (in clock order), subject to same
rules.
Operating System Concepts
Silberschatz and Galvin19999.17Operating System Concepts Silberschatz and Galvin19995.17Operating System Concepts Silberschatz and Galvin 19994.17
17 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Counting Algorithms
• Keep a counter of the number of references that have been
made to each page.
• LFU Algorithm: replaces page with smallest count.
• MFU Algorithm: based on the argument that the page with the
smallest count was probably just brought in and has yet to be
used.
Operating System Concepts
Silberschatz and Galvin19999.18Operating System Concepts Silberschatz and Galvin19995.18Operating System Concepts Silberschatz and Galvin 19994.18
18 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Allocation of Frames
• Each process needs minimum number of pages.
• Example: IBM 370 – 6 pages to handle SS MOVE instruction:
– instruction is 6 bytes, might span 2 pages.
– 2 pages to handle from.
– 2 pages to handle to.
• Two major allocation schemes.
– fixed allocation
– priority allocation
Operating System Concepts
Silberschatz and Galvin19999.19Operating System Concepts Silberschatz and Galvin19995.19Operating System Concepts Silberschatz and Galvin 19994.19
19 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Fixed Allocation
• Equal allocation – e.g., if 100 frames and 5 processes, give each
20 pages.
• Proportional allocation – Allocate according to the size of
process.
m
S
s
pa
m
sS
ps
i
ii
i
ii
forallocation
framesofnumbertotal
processofsize
5964
137
127
564
137
10
127
10
64
2
1
2
a
a
s
s
m
i
Operating System Concepts
Silberschatz and Galvin19999.20Operating System Concepts Silberschatz and Galvin19995.20Operating System Concepts Silberschatz and Galvin 19994.20
20 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Priority Allocation
• Use a proportional allocation scheme using priorities rather than
size.
• If process Pi generates a page fault,
– select for replacement one of its frames.
– select for replacement a frame from a process with lower
priority number.
Operating System Concepts
Silberschatz and Galvin19999.21Operating System Concepts Silberschatz and Galvin19995.21Operating System Concepts Silberschatz and Galvin 19994.21
21 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Global vs. Local Allocation
• Global replacement – process selects a replacement frame from
the set of all frames; one process can take a frame from another.
• Local replacement – each process selects from only its own set
of allocated frames.
Operating System Concepts
Silberschatz and Galvin19999.22Operating System Concepts Silberschatz and Galvin19995.22Operating System Concepts Silberschatz and Galvin 19994.22
22 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Thrashing
• If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:
– low CPU utilization.
– operating system thinks that it needs to increase the degree
of multiprogramming.
– another process added to the system.
• Thrashing  a process is busy swapping pages in and out.
Operating System Concepts
Silberschatz and Galvin19999.23Operating System Concepts Silberschatz and Galvin19995.23Operating System Concepts Silberschatz and Galvin 19994.23
23 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Thrashing Diagram
• Why does paging work?
Locality model
– Process migrates from one locality to another.
– Localities may overlap.
• Why does thrashing occur?
 size of locality > total memory size
Operating System Concepts
Silberschatz and Galvin19999.24Operating System Concepts Silberschatz and Galvin19995.24Operating System Concepts Silberschatz and Galvin 19994.24
24 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Working-Set Model
  working-set window  a fixed number of page references
Example: 10,000 instruction
• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in
time)
– if  too small will not encompass entire locality.
– if  too large will encompass several localities.
– if  =   will encompass entire program.
• D =  WSSi  total demand frames
• if D > m  Thrashing
• Policy if D > m, then suspend one of the processes.
Operating System Concepts
Silberschatz and Galvin19999.25Operating System Concepts Silberschatz and Galvin19995.25Operating System Concepts Silberschatz and Galvin 19994.25
25 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Keeping Track of the Working Set
• Approximate with interval timer + a reference bit
• Example:  = 10,000
– Timer interrupts after every 5000 time units.
– Keep in memory 2 bits for each page.
– Whenever a timer interrupts copy and sets the values of all
reference bits to 0.
– If one of the bits in memory = 1  page in working set.
• Why is this not completely accurate?
• Improvement = 10 bits and interrupt every 1000 time units.
Operating System Concepts
Silberschatz and Galvin19999.26Operating System Concepts Silberschatz and Galvin19995.26Operating System Concepts Silberschatz and Galvin 19994.26
26 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Page-Fault Frequency Scheme
• Establish “acceptable” page-fault rate.
– If actual rate too low, process loses frame.
– If actual rate too high, process gains frame.
Operating System Concepts
Silberschatz and Galvin19999.27Operating System Concepts Silberschatz and Galvin19995.27Operating System Concepts Silberschatz and Galvin 19994.27
27 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Other Considerations
• Preparing
• Page size selection
– fragmentation
– table size
– I/O overhead
– locality
Operating System Concepts
Silberschatz and Galvin19999.28Operating System Concepts Silberschatz and Galvin19995.28Operating System Concepts Silberschatz and Galvin 19994.28
28 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Other Consideration (Cont.)
• Program structure
– Array A[1024, 1024] of integer
– Each row is stored in one page
– One frame
– Program 1 for j := 1 to 1024 do
for i := 1 to 1024 do
A[i,j] := 0;
1024 x 1024 page faults
– Program 2 for i := 1 to 1024 do
for j := 1 to 1024 do
A[i,j] := 0;
1024 page faults
• I/O interlock and addressing
Operating System Concepts
Silberschatz and Galvin19999.29Operating System Concepts Silberschatz and Galvin19995.29Operating System Concepts Silberschatz and Galvin 19994.29
29 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29
Demand Segmentation
• Used when insufficient hardware to implement demand paging.
• OS/2 allocates memory in segments, which it keeps track of
through segment descriptors
• Segment descriptor contains a valid bit to indicate whether the
segment is currently in memory.
– If segment is in main memory, access continues,
– If not in memory, segment fault.
Operating System Concepts

More Related Content

What's hot

Operating System-Ch4.processes
Operating System-Ch4.processesOperating System-Ch4.processes
Operating System-Ch4.processesSyaiful Ahdan
 
Operating System : Ch12 io systems
Operating System : Ch12 io systemsOperating System : Ch12 io systems
Operating System : Ch12 io systemsSyaiful Ahdan
 
Operating System : Ch19 protection
Operating System :  Ch19 protectionOperating System :  Ch19 protection
Operating System : Ch19 protectionSyaiful Ahdan
 
Operating System : Ch4 b threads
Operating System : Ch4 b threadsOperating System : Ch4 b threads
Operating System : Ch4 b threadsSyaiful Ahdan
 

What's hot (6)

Ch3.processes
Ch3.processesCh3.processes
Ch3.processes
 
Operating System-Ch4.processes
Operating System-Ch4.processesOperating System-Ch4.processes
Operating System-Ch4.processes
 
Operating System : Ch12 io systems
Operating System : Ch12 io systemsOperating System : Ch12 io systems
Operating System : Ch12 io systems
 
Ch13 io systems
Ch13 io systemsCh13 io systems
Ch13 io systems
 
Operating System : Ch19 protection
Operating System :  Ch19 protectionOperating System :  Ch19 protection
Operating System : Ch19 protection
 
Operating System : Ch4 b threads
Operating System : Ch4 b threadsOperating System : Ch4 b threads
Operating System : Ch4 b threads
 

Similar to Ch9 virtual memory

Operating System-Ch8 memory management
Operating System-Ch8 memory managementOperating System-Ch8 memory management
Operating System-Ch8 memory managementSyaiful Ahdan
 
Ch12 file system implementation
Ch12 file system implementationCh12 file system implementation
Ch12 file system implementationSyaiful Ahdan
 
Operating System : Ch15 network structures
Operating System : Ch15 network structuresOperating System : Ch15 network structures
Operating System : Ch15 network structuresSyaiful Ahdan
 
Operating System : Ch14.tertiary storage structure
Operating System : Ch14.tertiary storage structureOperating System : Ch14.tertiary storage structure
Operating System : Ch14.tertiary storage structureSyaiful Ahdan
 
Ch5 process synchronization
Ch5 process synchronizationCh5 process synchronization
Ch5 process synchronizationSyaiful Ahdan
 
Ch11 file system interface
Ch11 file system interfaceCh11 file system interface
Ch11 file system interfaceSyaiful Ahdan
 
Operating System-Ch6 process synchronization
Operating System-Ch6 process synchronizationOperating System-Ch6 process synchronization
Operating System-Ch6 process synchronizationSyaiful Ahdan
 
Operating System : Ch17 distributed file systems
Operating System : Ch17 distributed file systemsOperating System : Ch17 distributed file systems
Operating System : Ch17 distributed file systemsSyaiful Ahdan
 
Operating System : Ch18 distributed coordination
Operating System : Ch18 distributed coordinationOperating System : Ch18 distributed coordination
Operating System : Ch18 distributed coordinationSyaiful Ahdan
 
Operating System : Ch10 file system interface
Operating System : Ch10 file system interfaceOperating System : Ch10 file system interface
Operating System : Ch10 file system interfaceSyaiful Ahdan
 
Operating System-Ch5 cpu scheduling
Operating System-Ch5 cpu schedulingOperating System-Ch5 cpu scheduling
Operating System-Ch5 cpu schedulingSyaiful Ahdan
 

Similar to Ch9 virtual memory (20)

Operating System-Ch8 memory management
Operating System-Ch8 memory managementOperating System-Ch8 memory management
Operating System-Ch8 memory management
 
Materi8mainmemory
Materi8mainmemoryMateri8mainmemory
Materi8mainmemory
 
Ch12 file system implementation
Ch12 file system implementationCh12 file system implementation
Ch12 file system implementation
 
Operating System : Ch15 network structures
Operating System : Ch15 network structuresOperating System : Ch15 network structures
Operating System : Ch15 network structures
 
Operating System : Ch14.tertiary storage structure
Operating System : Ch14.tertiary storage structureOperating System : Ch14.tertiary storage structure
Operating System : Ch14.tertiary storage structure
 
Ch5 process synchronization
Ch5 process synchronizationCh5 process synchronization
Ch5 process synchronization
 
운영체제론 Ch10
운영체제론 Ch10운영체제론 Ch10
운영체제론 Ch10
 
Ch11 file system interface
Ch11 file system interfaceCh11 file system interface
Ch11 file system interface
 
Operating System-Ch6 process synchronization
Operating System-Ch6 process synchronizationOperating System-Ch6 process synchronization
Operating System-Ch6 process synchronization
 
Ch14 protection
Ch14 protectionCh14 protection
Ch14 protection
 
Operating System : Ch17 distributed file systems
Operating System : Ch17 distributed file systemsOperating System : Ch17 distributed file systems
Operating System : Ch17 distributed file systems
 
Operating System : Ch18 distributed coordination
Operating System : Ch18 distributed coordinationOperating System : Ch18 distributed coordination
Operating System : Ch18 distributed coordination
 
Operating System : Ch10 file system interface
Operating System : Ch10 file system interfaceOperating System : Ch10 file system interface
Operating System : Ch10 file system interface
 
Ch4 threads
Ch4  threadsCh4  threads
Ch4 threads
 
Ch5 cpu scheduling
Ch5 cpu schedulingCh5 cpu scheduling
Ch5 cpu scheduling
 
Operating System-Ch5 cpu scheduling
Operating System-Ch5 cpu schedulingOperating System-Ch5 cpu scheduling
Operating System-Ch5 cpu scheduling
 
Virtual memory
Virtual memoryVirtual memory
Virtual memory
 
ch9.ppt
ch9.pptch9.ppt
ch9.ppt
 
Ch9 Virtual Memory
Ch9 Virtual MemoryCh9 Virtual Memory
Ch9 Virtual Memory
 
Ch8
Ch8Ch8
Ch8
 

More from Syaiful Ahdan

Sertifikat EC00202128391
 Sertifikat EC00202128391 Sertifikat EC00202128391
Sertifikat EC00202128391Syaiful Ahdan
 
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...Syaiful Ahdan
 
Sertifikat ec00202059774
Sertifikat ec00202059774Sertifikat ec00202059774
Sertifikat ec00202059774Syaiful Ahdan
 
Sertifikat ec00202059775
Sertifikat ec00202059775Sertifikat ec00202059775
Sertifikat ec00202059775Syaiful Ahdan
 
Sertifikat EC00202045078
Sertifikat EC00202045078Sertifikat EC00202045078
Sertifikat EC00202045078Syaiful Ahdan
 
Sertifikat EC00202044723
 Sertifikat EC00202044723 Sertifikat EC00202044723
Sertifikat EC00202044723Syaiful Ahdan
 
Sertifikat EC00202023523
Sertifikat EC00202023523Sertifikat EC00202023523
Sertifikat EC00202023523Syaiful Ahdan
 
Sertifikat EC00201826309
Sertifikat EC00201826309Sertifikat EC00201826309
Sertifikat EC00201826309Syaiful Ahdan
 
Sertifikat EC00202023149
Sertifikat EC00202023149Sertifikat EC00202023149
Sertifikat EC00202023149Syaiful Ahdan
 
Sertifikat EC00202022868
Sertifikat EC00202022868Sertifikat EC00202022868
Sertifikat EC00202022868Syaiful Ahdan
 
Sertifikat EC00202021343
Sertifikat EC00202021343Sertifikat EC00202021343
Sertifikat EC00202021343Syaiful Ahdan
 
Sertifikat EC00202022755
Sertifikat EC00202022755Sertifikat EC00202022755
Sertifikat EC00202022755Syaiful Ahdan
 
Sertifikat EC00201987196
Sertifikat EC00201987196Sertifikat EC00201987196
Sertifikat EC00201987196Syaiful Ahdan
 
Sertifikat EC00201856484
Sertifikat EC00201856484Sertifikat EC00201856484
Sertifikat EC00201856484Syaiful Ahdan
 
Sertifikat EC00201856352
Sertifikat EC00201856352Sertifikat EC00201856352
Sertifikat EC00201856352Syaiful Ahdan
 
Sertifikat EC00201856994
Sertifikat EC00201856994Sertifikat EC00201856994
Sertifikat EC00201856994Syaiful Ahdan
 
Sertifikat EC00201856895
Sertifikat EC00201856895Sertifikat EC00201856895
Sertifikat EC00201856895Syaiful Ahdan
 
Meeting 2 introdcution network administrator
Meeting 2   introdcution network administratorMeeting 2   introdcution network administrator
Meeting 2 introdcution network administratorSyaiful Ahdan
 

More from Syaiful Ahdan (20)

Sertifikat EC00202128391
 Sertifikat EC00202128391 Sertifikat EC00202128391
Sertifikat EC00202128391
 
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
 
Sertifikat ec00202059774
Sertifikat ec00202059774Sertifikat ec00202059774
Sertifikat ec00202059774
 
Sertifikat ec00202059775
Sertifikat ec00202059775Sertifikat ec00202059775
Sertifikat ec00202059775
 
Sertifikat EC00202045078
Sertifikat EC00202045078Sertifikat EC00202045078
Sertifikat EC00202045078
 
Sertifikat EC00202044723
 Sertifikat EC00202044723 Sertifikat EC00202044723
Sertifikat EC00202044723
 
Sertifikat EC00202023523
Sertifikat EC00202023523Sertifikat EC00202023523
Sertifikat EC00202023523
 
Sertifikat EC00201826309
Sertifikat EC00201826309Sertifikat EC00201826309
Sertifikat EC00201826309
 
Sertifikat EC00202023149
Sertifikat EC00202023149Sertifikat EC00202023149
Sertifikat EC00202023149
 
Sertifikat EC00202022868
Sertifikat EC00202022868Sertifikat EC00202022868
Sertifikat EC00202022868
 
Sertifikat EC00202021343
Sertifikat EC00202021343Sertifikat EC00202021343
Sertifikat EC00202021343
 
Sertifikat EC00202022755
Sertifikat EC00202022755Sertifikat EC00202022755
Sertifikat EC00202022755
 
Sertifikat EC00201987196
Sertifikat EC00201987196Sertifikat EC00201987196
Sertifikat EC00201987196
 
Sertifikat EC00201856484
Sertifikat EC00201856484Sertifikat EC00201856484
Sertifikat EC00201856484
 
Sertifikat EC00201856352
Sertifikat EC00201856352Sertifikat EC00201856352
Sertifikat EC00201856352
 
Sertifikat EC00201856994
Sertifikat EC00201856994Sertifikat EC00201856994
Sertifikat EC00201856994
 
Sertifikat EC00201856895
Sertifikat EC00201856895Sertifikat EC00201856895
Sertifikat EC00201856895
 
Meeting 2 introdcution network administrator
Meeting 2   introdcution network administratorMeeting 2   introdcution network administrator
Meeting 2 introdcution network administrator
 
Pertemuan 5
Pertemuan 5Pertemuan 5
Pertemuan 5
 
Pertemuan 4
Pertemuan 4Pertemuan 4
Pertemuan 4
 

Recently uploaded

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 

Recently uploaded (20)

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 

Ch9 virtual memory

  • 1. Silberschatz and Galvin19999.1Operating System Concepts Silberschatz and Galvin19995.1Operating System Concepts Silberschatz and Galvin 19994.1 1 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 O P E R A T I N G S Y S T E M S Chapter 9 : Virtual Memory • Basic Concepts • Scheduling Criteria • Scheduling Algorithms • Multiple-Processor Scheduling • Real-Time Scheduling • Algorithm Evaluation Operating System Concepts
  • 2. Silberschatz and Galvin19999.2Operating System Concepts Silberschatz and Galvin19995.2Operating System Concepts Silberschatz and Galvin 19994.2 2 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Chapter 9: Virtual Memory • Background • Demand Paging • Performance of Demand Paging • Page Replacement • Page-Replacement Algorithms • Allocation of Frames • Thrashing • Other Considerations • Demand Segmenation Operating System Concepts
  • 3. Silberschatz and Galvin19999.3Operating System Concepts Silberschatz and Galvin19995.3Operating System Concepts Silberschatz and Galvin 19994.3 3 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Background • Virtual memory – separation of user logical memory from physical memory. – Only part of the program needs to be in memory for execution. – Logical address space can therefore be much larger than physical address space. – Need to allow pages to be swapped in and out. • Virtual memory can be implemented via: – Demand paging – Demand segmentation Operating System Concepts
  • 4. Silberschatz and Galvin19999.4Operating System Concepts Silberschatz and Galvin19995.4Operating System Concepts Silberschatz and Galvin 19994.4 4 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Demand Paging • Bring a page into memory only when it is needed. – Less I/O needed – Less memory needed – Faster response – More users • Page is needed  reference to it – invalid reference  abort – not-in-memory  bring to memory Operating System Concepts
  • 5. Silberschatz and Galvin19999.5Operating System Concepts Silberschatz and Galvin19995.5Operating System Concepts Silberschatz and Galvin 19994.5 5 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Valid-Invalid Bit • With each page table entry a valid–invalid bit is associated (1  in-memory, 0  not-in-memory) • Initially valid–invalid but is set to 0 on all entries. • Example of a page table snapshot. • During address translation, if valid–invalid bit in page table entry is 0  page fault. 1 1 1 1 0 0 0  Frame # valid-invalid bit page table Operating System Concepts
  • 6. Silberschatz and Galvin19999.6Operating System Concepts Silberschatz and Galvin19995.6Operating System Concepts Silberschatz and Galvin 19994.6 6 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Page Fault • If there is ever a reference to a page, first reference will trap to OS  page fault • OS looks at another table to decide: – Invalid reference  abort. – Just not in memory. • Get empty frame. • Swap page into frame. • Reset tables, validation bit = 1. • Restart instruction: Least Recently Used – block move – auto increment/decrement locationOperating System Concepts
  • 7. Silberschatz and Galvin19999.7Operating System Concepts Silberschatz and Galvin19995.7Operating System Concepts Silberschatz and Galvin 19994.7 7 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 What happens if there is no free frame? • Page replacement – find some page in memory, but not really in use, swap it out. – algorithm – performance – want an algorithm which will result in minimum number of page faults. • Same page may be brought into memory several times. Operating System Concepts
  • 8. Silberschatz and Galvin19999.8Operating System Concepts Silberschatz and Galvin19995.8Operating System Concepts Silberschatz and Galvin 19994.8 8 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Performance of Demand Paging • Page Fault Rate 0  p  1.0 – if p = 0 no page faults – if p = 1, every reference is a fault • Effective Access Time (EAT) EAT = (1 – p) x memory access + p (page fault overhead + [swap page out ] + swap page in + restart overhead) Operating System Concepts
  • 9. Silberschatz and Galvin19999.9Operating System Concepts Silberschatz and Galvin19995.9Operating System Concepts Silberschatz and Galvin 19994.9 9 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Demand Paging Example • Memory access time = 1 microsecond • 50% of the time the page that is being replaced has been modified and therefore needs to be swapped out. • Swap Page Time = 10 msec = 10,000 msec EAT = (1 – p) x 1 + p (15000) 1 + 15000P (in msec) Operating System Concepts
  • 10. Silberschatz and Galvin19999.10Operating System Concepts Silberschatz and Galvin19995.10Operating System Concepts Silberschatz and Galvin 19994.10 10 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Page Replacement • Prevent over-allocation of memory by modifying page-fault service routine to include page replacement. • Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written to disk. • Page replacement completes separation between logical memory and physical memory – large virtual memory can be provided on a smaller physical memory. Operating System Concepts
  • 11. Silberschatz and Galvin19999.11Operating System Concepts Silberschatz and Galvin19995.11Operating System Concepts Silberschatz and Galvin 19994.11 11 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Page-Replacement Algorithms • Want lowest page-fault rate. • Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string. • In all our examples, the reference string is 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5. Operating System Concepts
  • 12. Silberschatz and Galvin19999.12Operating System Concepts Silberschatz and Galvin19995.12Operating System Concepts Silberschatz and Galvin 19994.12 12 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 First-In-First-Out (FIFO) Algorithm • Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 • 3 frames (3 pages can be in memory at a time per process) • 4 frames • FIFO Replacement – Belady’s Anomaly – more frames  less page faults 1 2 3 1 2 3 4 1 2 5 3 4 9 page faults 1 2 3 1 2 3 5 1 2 4 5 10 page faults 44 3 Operating System Concepts
  • 13. Silberschatz and Galvin19999.13Operating System Concepts Silberschatz and Galvin19995.13Operating System Concepts Silberschatz and Galvin 19994.13 13 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Optimal Algorithm • Replace page that will not be used for longest period of time. • 4 frames example 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 • How do you know this? • Used for measuring how well your algorithm performs. 1 2 3 4 6 page faults 4 5 Operating System Concepts
  • 14. Silberschatz and Galvin19999.14Operating System Concepts Silberschatz and Galvin19995.14Operating System Concepts Silberschatz and Galvin 19994.14 14 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Least Recently Used (LRU) Algorithm • Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 • Counter implementation – Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter. – When a page needs to be changed, look at the counters to determine which are to change. 1 2 3 5 4 4 3 5 Operating System Concepts
  • 15. Silberschatz and Galvin19999.15Operating System Concepts Silberschatz and Galvin19995.15Operating System Concepts Silberschatz and Galvin 19994.15 15 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 LRU Algorithm (Cont.) • Stack implementation – keep a stack of page numbers in a double link form: – Page referenced:  move it to the top  requires 6 pointers to be changed – No search for replacement Operating System Concepts
  • 16. Silberschatz and Galvin19999.16Operating System Concepts Silberschatz and Galvin19995.16Operating System Concepts Silberschatz and Galvin 19994.16 16 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 LRU Approximation Algorithms • Reference bit – With each page associate a bit, initially -= 0 – When page is referenced bit set to 1. – Replace the one which is 0 (if one exists). We do not know the order, however. • Second chance – Need reference bit. – Clock replacement. – If page to be replaced (in clock order) has reference bit = 1. then:  set reference bit 0.  leave page in memory.  replace next page (in clock order), subject to same rules. Operating System Concepts
  • 17. Silberschatz and Galvin19999.17Operating System Concepts Silberschatz and Galvin19995.17Operating System Concepts Silberschatz and Galvin 19994.17 17 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Counting Algorithms • Keep a counter of the number of references that have been made to each page. • LFU Algorithm: replaces page with smallest count. • MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used. Operating System Concepts
  • 18. Silberschatz and Galvin19999.18Operating System Concepts Silberschatz and Galvin19995.18Operating System Concepts Silberschatz and Galvin 19994.18 18 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Allocation of Frames • Each process needs minimum number of pages. • Example: IBM 370 – 6 pages to handle SS MOVE instruction: – instruction is 6 bytes, might span 2 pages. – 2 pages to handle from. – 2 pages to handle to. • Two major allocation schemes. – fixed allocation – priority allocation Operating System Concepts
  • 19. Silberschatz and Galvin19999.19Operating System Concepts Silberschatz and Galvin19995.19Operating System Concepts Silberschatz and Galvin 19994.19 19 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Fixed Allocation • Equal allocation – e.g., if 100 frames and 5 processes, give each 20 pages. • Proportional allocation – Allocate according to the size of process. m S s pa m sS ps i ii i ii forallocation framesofnumbertotal processofsize 5964 137 127 564 137 10 127 10 64 2 1 2 a a s s m i Operating System Concepts
  • 20. Silberschatz and Galvin19999.20Operating System Concepts Silberschatz and Galvin19995.20Operating System Concepts Silberschatz and Galvin 19994.20 20 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Priority Allocation • Use a proportional allocation scheme using priorities rather than size. • If process Pi generates a page fault, – select for replacement one of its frames. – select for replacement a frame from a process with lower priority number. Operating System Concepts
  • 21. Silberschatz and Galvin19999.21Operating System Concepts Silberschatz and Galvin19995.21Operating System Concepts Silberschatz and Galvin 19994.21 21 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Global vs. Local Allocation • Global replacement – process selects a replacement frame from the set of all frames; one process can take a frame from another. • Local replacement – each process selects from only its own set of allocated frames. Operating System Concepts
  • 22. Silberschatz and Galvin19999.22Operating System Concepts Silberschatz and Galvin19995.22Operating System Concepts Silberschatz and Galvin 19994.22 22 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Thrashing • If a process does not have “enough” pages, the page-fault rate is very high. This leads to: – low CPU utilization. – operating system thinks that it needs to increase the degree of multiprogramming. – another process added to the system. • Thrashing  a process is busy swapping pages in and out. Operating System Concepts
  • 23. Silberschatz and Galvin19999.23Operating System Concepts Silberschatz and Galvin19995.23Operating System Concepts Silberschatz and Galvin 19994.23 23 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Thrashing Diagram • Why does paging work? Locality model – Process migrates from one locality to another. – Localities may overlap. • Why does thrashing occur?  size of locality > total memory size Operating System Concepts
  • 24. Silberschatz and Galvin19999.24Operating System Concepts Silberschatz and Galvin19995.24Operating System Concepts Silberschatz and Galvin 19994.24 24 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Working-Set Model   working-set window  a fixed number of page references Example: 10,000 instruction • WSSi (working set of Process Pi) = total number of pages referenced in the most recent  (varies in time) – if  too small will not encompass entire locality. – if  too large will encompass several localities. – if  =   will encompass entire program. • D =  WSSi  total demand frames • if D > m  Thrashing • Policy if D > m, then suspend one of the processes. Operating System Concepts
  • 25. Silberschatz and Galvin19999.25Operating System Concepts Silberschatz and Galvin19995.25Operating System Concepts Silberschatz and Galvin 19994.25 25 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Keeping Track of the Working Set • Approximate with interval timer + a reference bit • Example:  = 10,000 – Timer interrupts after every 5000 time units. – Keep in memory 2 bits for each page. – Whenever a timer interrupts copy and sets the values of all reference bits to 0. – If one of the bits in memory = 1  page in working set. • Why is this not completely accurate? • Improvement = 10 bits and interrupt every 1000 time units. Operating System Concepts
  • 26. Silberschatz and Galvin19999.26Operating System Concepts Silberschatz and Galvin19995.26Operating System Concepts Silberschatz and Galvin 19994.26 26 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Page-Fault Frequency Scheme • Establish “acceptable” page-fault rate. – If actual rate too low, process loses frame. – If actual rate too high, process gains frame. Operating System Concepts
  • 27. Silberschatz and Galvin19999.27Operating System Concepts Silberschatz and Galvin19995.27Operating System Concepts Silberschatz and Galvin 19994.27 27 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Other Considerations • Preparing • Page size selection – fragmentation – table size – I/O overhead – locality Operating System Concepts
  • 28. Silberschatz and Galvin19999.28Operating System Concepts Silberschatz and Galvin19995.28Operating System Concepts Silberschatz and Galvin 19994.28 28 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Other Consideration (Cont.) • Program structure – Array A[1024, 1024] of integer – Each row is stored in one page – One frame – Program 1 for j := 1 to 1024 do for i := 1 to 1024 do A[i,j] := 0; 1024 x 1024 page faults – Program 2 for i := 1 to 1024 do for j := 1 to 1024 do A[i,j] := 0; 1024 page faults • I/O interlock and addressing Operating System Concepts
  • 29. Silberschatz and Galvin19999.29Operating System Concepts Silberschatz and Galvin19995.29Operating System Concepts Silberschatz and Galvin 19994.29 29 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 29 Demand Segmentation • Used when insufficient hardware to implement demand paging. • OS/2 allocates memory in segments, which it keeps track of through segment descriptors • Segment descriptor contains a valid bit to indicate whether the segment is currently in memory. – If segment is in main memory, access continues, – If not in memory, segment fault. Operating System Concepts