SlideShare a Scribd company logo
1 of 51
Download to read offline
Silberschatz and Galvin19996.1
Operating System Concepts Silberschatz and Galvin19995.1Operating System Concepts Silberschatz and Galvin 19994.1
1 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
O P E R A T I N G S Y S T E M S
Chapter 5 : Process Synchronization
 Background
 The Critical-Section Problem
 Synchronization Hardware
 Semaphores
 Classical Problems of Synchronization
 Critical Regions
 Monitors
 Synchronization in Solaris 2
 Atomic Transactions
Operating System Concepts
Silberschatz and Galvin19996.2
Operating System Concepts Silberschatz and Galvin19995.2Operating System Concepts Silberschatz and Galvin 19994.2
2 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Chapter 5: Process Synchronization
• Background
• The Critical-Section Problem
• Synchronization Hardware
• Semaphores
• Classical Problems of Synchronization
• Critical Regions
• Monitors
• Synchronization in Solaris 2
• Atomic Transactions
Operating System Concepts
Silberschatz and Galvin19996.3
Operating System Concepts Silberschatz and Galvin19995.3Operating System Concepts Silberschatz and Galvin 19994.3
3 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Background
• Concurrent access to shared data may result in data inconsistency.
• Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes.
• Shared-memory solution to bounded-butter problem (Chapter 4) allows
at most n – 1 items in buffer at the same time. A solution, where all N
buffers are used is not simple.
– Suppose that we modify the producer-consumer code by adding a
variable counter, initialized to 0 and incremented each time a new
item is added to the buffer
Operating System Concepts
Silberschatz and Galvin19996.4
Operating System Concepts Silberschatz and Galvin19995.4Operating System Concepts Silberschatz and Galvin 19994.4
4 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded-Buffer
• Shared data type item = … ;
var buffer array [0..n-1] of item;
in, out: 0..n-1;
counter: 0..n;
in, out, counter := 0;
• Producer process
repeat
…
produce an item in nextp
…
while counter = n do no-op;
buffer [in] := nextp;
in := in + 1 mod n;
counter := counter +1;
until false;
Operating System Concepts
Silberschatz and Galvin19996.5
Operating System Concepts Silberschatz and Galvin19995.5Operating System Concepts Silberschatz and Galvin 19994.5
5 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded-Buffer (Cont.)
• Consumer process
repeat
while counter = 0 do no-op;
nextc := buffer [out];
out := out + 1 mod n;
counter := counter – 1;
…
consume the item in nextc
…
until false;
• The statements:
– counter := counter + 1;
– counter := counter - 1;
must be executed atomically.
Operating System Concepts
Silberschatz and Galvin19996.6
Operating System Concepts Silberschatz and Galvin19995.6Operating System Concepts Silberschatz and Galvin 19994.6
6 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
The Critical-Section Problem
• n processes all competing to use some shared data
• Each process has a code segment, called critical section, in
which the shared data is accessed.
• Problem – ensure that when one process is executing in its
critical section, no other process is allowed to execute in its
critical section.
• Structure of process Pi
repeat
entry section
critical section
exit section
reminder section
until false;
Operating System Concepts
Silberschatz and Galvin19996.7
Operating System Concepts Silberschatz and Galvin19995.7Operating System Concepts Silberschatz and Galvin 19994.7
7 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Solution to Critical-Section Problem
1. Mutual Exclusion. If process Pi is executing in its critical
section, then no other processes can be executing in their critical
sections.
2. Progress. If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely.
3. Bounded Waiting. A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section
and before that request is granted.
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n
processes.
Operating System Concepts
Silberschatz and Galvin19996.8
Operating System Concepts Silberschatz and Galvin19995.8Operating System Concepts Silberschatz and Galvin 19994.8
8 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Initial Attempts to Solve Problem
• Only 2 processes, P0 and P1
• General structure of process Pi (other process Pj)
repeat
entry section
critical section
exit section
reminder section
until false;
• Processes may share some common variables to synchronize
their actions.
Operating System Concepts
Silberschatz and Galvin19996.9
Operating System Concepts Silberschatz and Galvin19995.9Operating System Concepts Silberschatz and Galvin 19994.9
9 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Algorithm 1
• Shared variables:
– var turn: (0..1);
initially turn = 0
– turn - i  Pi can enter its critical section
• Process Pi
repeat
while turn  i do no-op;
critical section
turn := j;
reminder section
until false;
• Satisfies mutual exclusion, but not progress
Operating System Concepts
Silberschatz and Galvin19996.10
Operating System Concepts Silberschatz and Galvin19995.10Operating System Concepts Silberschatz and Galvin 19994.10
10 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Algorithm 2
• Shared variables
– var flag: array [0..1] of boolean;
initially flag [0] = flag [1] = false.
– flag [i] = true  Pi ready to enter its critical section
• Process Pi
repeat
flag[i] := true;
while flag[j] do no-op;
critical section
flag [i] := false;
remainder section
until false;
• Satisfies mutual exclusion, but not progress requirement.
Operating System Concepts
Silberschatz and Galvin19996.11
Operating System Concepts Silberschatz and Galvin19995.11Operating System Concepts Silberschatz and Galvin 19994.11
11 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Algorithm 3
• Combined shared variables of algorithms 1 and 2.
• Process Pi
repeat
flag [i] := true;
turn := j;
while (flag [j] and turn = j) do no-op;
critical section
flag [i] := false;
remainder section
until false;
• Meets all three requirements; solves the critical-section problem
for two processes.
Operating System Concepts
Silberschatz and Galvin19996.12
Operating System Concepts Silberschatz and Galvin19995.12Operating System Concepts Silberschatz and Galvin 19994.12
12 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bakery Algorithm
• Before entering its critical section, process receives a number.
Holder of the smallest number enters the critical section.
• If processes Pi and Pj receive the same number, if i < j, then Pi is
served first; else Pj is served first.
• The numbering scheme always generates numbers in increasing
order of enumeration; i.e., 1,2,3,3,3,3,4,5...
Critical section for n processes
Operating System Concepts
Silberschatz and Galvin19996.13
Operating System Concepts Silberschatz and Galvin19995.13Operating System Concepts Silberschatz and Galvin 19994.13
13 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bakery Algorithm (Cont.)
• Notation < lexicographical order (ticket #, process id #)
– (a,b) < c,d) if a < c or if a = c and b < d
– max (a0,…, an-1) is a number, k, such that k  ai for i - 0,
…, n – 1
• Shared data
var choosing: array [0..n – 1] of boolean;
number: array [0..n – 1] of integer,
Data structures are initialized to false and 0 respectively
Operating System Concepts
Silberschatz and Galvin19996.14
Operating System Concepts Silberschatz and Galvin19995.14Operating System Concepts Silberschatz and Galvin 19994.14
14 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bakery Algorithm (Cont.)
repeat
choosing[i] := true;
number[i] := max(number[0], number[1], …, number [n – 1])+1;
choosing[i] := false;
for j := 0 to n – 1
do begin
while choosing[j] do no-op;
while number[j]  0
and (number[j],j) < (number[i], i) do no-op;
end;
critical section
number[i] := 0;
remainder section
until false;
Operating System Concepts
Silberschatz and Galvin19996.15
Operating System Concepts Silberschatz and Galvin19995.15Operating System Concepts Silberschatz and Galvin 19994.15
15 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Synchronization Hardware
• Test and modify the content of a word atomically.
function Test-and-Set (var target: boolean): boolean;
begin
Test-and-Set := target;
target := true;
end;
Operating System Concepts
Silberschatz and Galvin19996.16
Operating System Concepts Silberschatz and Galvin19995.16Operating System Concepts Silberschatz and Galvin 19994.16
16 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Mutual Exclusion with Test-and-Set
• Shared data: var lock: boolean (initially false)
• Process Pi
repeat
while Test-and-Set (lock) do no-op;
critical section
lock := false;
remainder section
until false;
Operating System Concepts
Silberschatz and Galvin19996.17
Operating System Concepts Silberschatz and Galvin19995.17Operating System Concepts Silberschatz and Galvin 19994.17
17 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Semaphore
• Synchronization tool that does not require busy waiting.
• Semaphore S – integer variable
• can only be accessed via two indivisible (atomic) operations
wait (S): while S 0 do no-op;
S := S – 1;
signal (S): S := S + 1;
Operating System Concepts
Silberschatz and Galvin19996.18
Operating System Concepts Silberschatz and Galvin19995.18Operating System Concepts Silberschatz and Galvin 19994.18
18 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Example: Critical Section of n Processes
• Shared variables
– var mutex : semaphore
– initially mutex = 1
• Process Pi
repeat
wait(mutex);
critical section
signal(mutex);
remainder section
until false;
Operating System Concepts
Silberschatz and Galvin19996.19
Operating System Concepts Silberschatz and Galvin19995.19Operating System Concepts Silberschatz and Galvin 19994.19
19 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Semaphore Implementation
• Define a semaphore as a record
type semaphore = record
value: integer
L: list of process;
end;
• Assume two simple operations:
– block suspends the process that invokes it.
– wakeup(P) resumes the execution of a blocked process P.
Operating System Concepts
Silberschatz and Galvin19996.20
Operating System Concepts Silberschatz and Galvin19995.20Operating System Concepts Silberschatz and Galvin 19994.20
20 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Implementation (Cont.)
• Semaphore operations now defined as
wait(S): S.value := S.value – 1;
if S.value < 0
then begin
add this process to S.L;
block;
end;
signal(S): S.value := S.value = 1;
if S.value  0
then begin
remove a process P from S.L;
wakeup(P);
end;
Operating System Concepts
Silberschatz and Galvin19996.21
Operating System Concepts Silberschatz and Galvin19995.21Operating System Concepts Silberschatz and Galvin 19994.21
21 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Semaphore as General Synchronization Tool
• Execute B in Pj only after A executed in Pi
• Use semaphore flag initialized to 0
• Code:
Pi Pj
 
A wait(flag)
signal(flag) B
Operating System Concepts
Silberschatz and Galvin19996.22
Operating System Concepts Silberschatz and Galvin19995.22Operating System Concepts Silberschatz and Galvin 19994.22
22 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes.
• Let S and Q be two semaphores initialized to 1
P0 P1
wait(S); wait(Q);
wait(Q); wait(S);
 
signal(S); signal(Q);
signal(Q) signal(S);
• Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.
Operating System Concepts
Silberschatz and Galvin19996.23
Operating System Concepts Silberschatz and Galvin19995.23Operating System Concepts Silberschatz and Galvin 19994.23
23 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Two Types of Semaphores
• Counting semaphore – integer value can range over an
unrestricted domain.
• Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement.
• Can implement a counting semaphore S as a binary
semaphore.
Operating System Concepts
Silberschatz and Galvin19996.24
Operating System Concepts Silberschatz and Galvin19995.24Operating System Concepts Silberschatz and Galvin 19994.24
24 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Implementing S as a Binary Semaphore
• Data structures:
var S1: binary-semaphore;
S2: binary-semaphore;
S3: binary-semaphore;
C: integer;
• Initialization:
S1 = S3 = 1
S2 = 0
C = initial value of semaphore S
Operating System Concepts
Silberschatz and Galvin19996.25
Operating System Concepts Silberschatz and Galvin19995.25Operating System Concepts Silberschatz and Galvin 19994.25
25 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Implementing S (Cont.)
• wait operation
wait(S3);
wait(S1);
C := C – 1;
if C < 0
then begin
signal(S1);
wait(S2);
end
else signal(S1);
signal(S3);
• signal operation
wait(S1);
C := C + 1;
if C  0 then signal(S2);
signal(S)1;
Operating System Concepts
Silberschatz and Galvin19996.26
Operating System Concepts Silberschatz and Galvin19995.26Operating System Concepts Silberschatz and Galvin 19994.26
26 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Classical Problems of Synchronization
• Bounded-Buffer Problem
• Readers and Writers Problem
• Dining-Philosophers Problem
Operating System Concepts
Silberschatz and Galvin19996.27
Operating System Concepts Silberschatz and Galvin19995.27Operating System Concepts Silberschatz and Galvin 19994.27
27 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded-Buffer Problem
• Shared data
type item = …
var buffer = …
full, empty, mutex: semaphore;
nextp, nextc: item;
full :=0; empty := n; mutex :=1;
Operating System Concepts
Silberschatz and Galvin19996.28
Operating System Concepts Silberschatz and Galvin19995.28Operating System Concepts Silberschatz and Galvin 19994.28
28 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded-Buffer Problem (Cont.)
• Producer process
repeat
…
produce an item in nextp
…
wait(empty);
wait(mutex);
…
signal(mutex);
signal(full);
until false;
Operating System Concepts
Silberschatz and Galvin19996.29
Operating System Concepts Silberschatz and Galvin19995.29Operating System Concepts Silberschatz and Galvin 19994.29
29 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded-Buffer Problem (Cont.)
• Consumer process
repeat
wait(full)
wait(mutex);
…
remove an item from buffer to nextc
…
signal(mutex);
signal(empty);
…
consume the item in nextc
…
until false;
Operating System Concepts
Silberschatz and Galvin19996.30
Operating System Concepts Silberschatz and Galvin19995.30Operating System Concepts Silberschatz and Galvin 19994.30
30 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Readers-Writers Problem
• Shared data
var mutex, wrt: semaphore (=1);
readcount : integer (=0);
• Writer process
wait(wrt);
…
writing is performed
…
signal(wrt);
Operating System Concepts
Silberschatz and Galvin19996.31
Operating System Concepts Silberschatz and Galvin19995.31Operating System Concepts Silberschatz and Galvin 19994.31
31 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Readers-Writers Problem (Cont.)
• Reader process
wait(mutex);
readcount := readcount +1;
if readcount = 1 then wait(wrt);
signal(mutex);
…
reading is performed
…
wait(mutex);
readcount := readcount – 1;
if readcount = 0 then signal(wrt);
signal(mutex):
Operating System Concepts
Silberschatz and Galvin19996.32
Operating System Concepts Silberschatz and Galvin19995.32Operating System Concepts Silberschatz and Galvin 19994.32
32 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Dining-Philosophers Problem
• Shared data
var chopstick: array [0..4] of semaphore;
(=1 initially)
Operating System Concepts
Silberschatz and Galvin19996.33
Operating System Concepts Silberschatz and Galvin19995.33Operating System Concepts Silberschatz and Galvin 19994.33
33 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Dining-Philosophers Problem (Cont.)
• Philosopher i:
repeat
wait(chopstick[i])
wait(chopstick[i+1 mod 5])
…
eat
…
signal(chopstick[i]);
signal(chopstick[i+1 mod 5]);
…
think
…
until false;
Operating System Concepts
Silberschatz and Galvin19996.34
Operating System Concepts Silberschatz and Galvin19995.34Operating System Concepts Silberschatz and Galvin 19994.34
34 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Critical Regions
• High-level synchronization construct
• A shared variable v of type T, is declared as:
var v: shared T
• Variable v accessed only inside statement
region v when B do S
where B is a Boolean expression.
While statement S is being executed, no other process can
access variable v.
Operating System Concepts
Silberschatz and Galvin19996.35
Operating System Concepts Silberschatz and Galvin19995.35Operating System Concepts Silberschatz and Galvin 19994.35
35 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Critical Regions (Cont.)
• Regions referring to the same shared variable exclude each
other in time.
• When a process tries to execute the region statement, the
Boolean expression B is evaluated. If B is true, statement S is
executed. If it is false, the process is delayed until B becomes
true and no other process is in the region associated with v.
Operating System Concepts
Silberschatz and Galvin19996.36
Operating System Concepts Silberschatz and Galvin19995.36Operating System Concepts Silberschatz and Galvin 19994.36
36 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Example – Bounded Buffer
• Shared variables:
var buffer: shared record
pool: array [0..n–1] of item;
count,in,out: integer
end;
• Producer process inserts nextp into the shared buffer
region buffer when count < n
do begin
pool[in] := nextp;
in:= in+1 mod n;
count := count + 1;
end;
Operating System Concepts
Silberschatz and Galvin19996.37
Operating System Concepts Silberschatz and Galvin19995.37Operating System Concepts Silberschatz and Galvin 19994.37
37 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Bounded Buffer Example (Cont.)
• Consumer process removes an item from the shared buffer and
puts it in nextc
region buffer when count > 0
do begin
nextc := pool[out];
out := out+1 mod n;
count := count – 1;
end;
Operating System Concepts
Silberschatz and Galvin19996.38
Operating System Concepts Silberschatz and Galvin19995.38Operating System Concepts Silberschatz and Galvin 19994.38
38 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Implementation: region x when B do S
• Associate with the shared variable x, the following variables:
var mutex, first-delay, second-delay: semaphore;
first-count, second-count: integer,
• Mutually exclusive access to the critical section is provided by
mutex.
• If a process cannot enter the critical section because the Boolean
expression B is false, it initially waits on the first-delay
semaphore; moved to the second-delay semaphore before it is
allowed to reevaluate B.
Operating System Concepts
Silberschatz and Galvin19996.39
Operating System Concepts Silberschatz and Galvin19995.39Operating System Concepts Silberschatz and Galvin 19994.39
39 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Implementation (Cont.)
• Keep track of the number of processes waiting on first-delay and
second-delay, with first-count and second-count respectively.
• The algorithm assumes a FIFO ordering in the queuing of
processes for a semaphore.
• For an arbitrary queuing discipline, a more complicated
implementation is required.
Operating System Concepts
Silberschatz and Galvin19996.40
Operating System Concepts Silberschatz and Galvin19995.40Operating System Concepts Silberschatz and Galvin 19994.40
40 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
wait(mutex);
while not B
do begin first-count := first-count + 1;
if second-count > 0
then signal(second-delay)
else signal(mutex);
wait(first-delay):
first-count := first-count – 1;
if first-count > 0 then signal(first-delay)
else signal(second-delay);
wait(second-delay);
second-count := second-count – 1;
end;
S;
if first-count >0
then signal(first-delay);
else if second-count >0
then signal(second-delay);
else signal(mutex);
Operating System Concepts
Silberschatz and Galvin19996.41
Operating System Concepts Silberschatz and Galvin19995.41Operating System Concepts Silberschatz and Galvin 19994.41
41 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitors
• High-level synchronization construct that allows the safe sharing
of an abstract data type among concurrent processes.
type monitor-name = monitor
variable declarations
procedure entry P1 :(…);
begin … end;
procedure entry P2(…);
begin … end;

procedure entry Pn (…);
begin…end;
begin
initialization code
end
Operating System Concepts
Silberschatz and Galvin19996.42
Operating System Concepts Silberschatz and Galvin19995.42Operating System Concepts Silberschatz and Galvin 19994.42
42 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitors (Cont.)
• To allow a process to wait within the monitor, a condition
variable must be declared, as
var x, y: condition
• Condition variable can only be used with the operations wait
and signal.
– The operation
x.wait;
means that the process invoking this opeation is
suspended until another process invokes
x.signal;
– The x.signal operation resumes exactly one suspended
process. If no process is suspended, then the signal
operation has no effect.
Operating System Concepts
Silberschatz and Galvin19996.43
Operating System Concepts Silberschatz and Galvin19995.43Operating System Concepts Silberschatz and Galvin 19994.43
43 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Schematic view of a monitor
Operating System Concepts
Silberschatz and Galvin19996.44
Operating System Concepts Silberschatz and Galvin19995.44Operating System Concepts Silberschatz and Galvin 19994.44
44 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitor with condition variables
Operating System Concepts
Silberschatz and Galvin19996.45
Operating System Concepts Silberschatz and Galvin19995.45Operating System Concepts Silberschatz and Galvin 19994.45
45 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Dining Philosophers Example
type dining-philosophers = monitor
var state : array [0..4] of :(thinking, hungry, eating);
var self : array [0..4] of condition;
procedure entry pickup (i: 0..4);
begin
state[i] := hungry,
test (i);
if state[i]  eating then self[i], wait,
end;
procedure entry putdown (i: 0..4);
begin
state[i] := thinking;
test (i+4 mod 5);
test (i+1 mod 5);
end;
Operating System Concepts
Silberschatz and Galvin19996.46
Operating System Concepts Silberschatz and Galvin19995.46Operating System Concepts Silberschatz and Galvin 19994.46
46 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Dining Philosophers (Cont.)
procedure test(k: 0..4);
begin
if state[k+4 mod 5]  eating
and state[k] = hungry
and state[k+1 mod 5] ]  eating
then begin
state[k] := eating;
self[k].signal;
end;
end;
begin
for i := 0 to 4
do state[i] := thinking;
end.
Operating System Concepts
Silberschatz and Galvin19996.47
Operating System Concepts Silberschatz and Galvin19995.47Operating System Concepts Silberschatz and Galvin 19994.47
47 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitor Implementation Using Semaphores
• Variables
var mutex: semaphore (init = 1)
next: semaphore (init = 0)
next-count: integer (init = 0)
• Each external procedure F will be replaced by
wait(mutex);
…
body of F;
…
if next-count > 0
then signal(next)
else signal(mutex);
• Mutual exclusion within a monitor is ensured.
Operating System Concepts
Silberschatz and Galvin19996.48
Operating System Concepts Silberschatz and Galvin19995.48Operating System Concepts Silberschatz and Galvin 19994.48
48 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitor Implementation (Cont.)
• For each condition variable x, we have:
var x-sem: semaphore (init = 0)
x-count: integer (init = 0)
• The operation x.wait can be implemented as:
x-count := x-count + 1;
if next-count >0
then signal(next)
else signal(mutex);
wait(x-sem);
x-count := x-count – 1;
Operating System Concepts
Silberschatz and Galvin19996.49
Operating System Concepts Silberschatz and Galvin19995.49Operating System Concepts Silberschatz and Galvin 19994.49
49 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitor Implementation (Cont.)
• The operation x.signal can be implemented as:
if x-count > 0
then begin
next-count := next-count + 1;
signal(x-sem);
wait(next);
next-count := next-count – 1;
end;
Operating System Concepts
Silberschatz and Galvin19996.50
Operating System Concepts Silberschatz and Galvin19995.50Operating System Concepts Silberschatz and Galvin 19994.50
50 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Monitor Implementation (Cont.)
• Conditional-wait construct: x.wait(c);
– c – integer expression evaluated when the wait opertion is
executed.
– value of c (priority number) stored with the name of the
process that is suspended.
– when x.signal is executed, process with smallest associated
priority number is resumed next.
• Check tow conditions to establish correctness of system:
– User processes must always make their calls on the monitor
in a correct sequence.
– Must ensure that an uncooperative process does not ignore
the mutual-exclusion gateway provided by the monitor, and
try to access the shared resource directly, without using the
access protocols.
Operating System Concepts
Silberschatz and Galvin19996.51
Operating System Concepts Silberschatz and Galvin19995.51Operating System Concepts Silberschatz and Galvin 19994.51
51 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51
Solaris 2 Operating System
• Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and multiprocessing.
• Uses adaptive mutexes for efficiency when protecting data from
short code segments.
• Uses condition variables and readers-writers locks when longer
sections of code need access to data.
Operating System Concepts

More Related Content

What's hot

Galvin-operating System(Ch6)
Galvin-operating System(Ch6)Galvin-operating System(Ch6)
Galvin-operating System(Ch6)
dsuyal1
 
Galvin-operating System(Ch4)
Galvin-operating System(Ch4)Galvin-operating System(Ch4)
Galvin-operating System(Ch4)
dsuyal1
 
Lec11 semaphores
Lec11 semaphoresLec11 semaphores
Lec11 semaphores
anandammca
 
Galvin-operating System(Ch8)
Galvin-operating System(Ch8)Galvin-operating System(Ch8)
Galvin-operating System(Ch8)
dsuyal1
 
Galvin-operating System(Ch10)
Galvin-operating System(Ch10)Galvin-operating System(Ch10)
Galvin-operating System(Ch10)
dsuyal1
 
B5_Flame_Safety_Complete
B5_Flame_Safety_CompleteB5_Flame_Safety_Complete
B5_Flame_Safety_Complete
Jerome Cain
 

What's hot (20)

Galvin-operating System(Ch6)
Galvin-operating System(Ch6)Galvin-operating System(Ch6)
Galvin-operating System(Ch6)
 
Galvin-operating System(Ch4)
Galvin-operating System(Ch4)Galvin-operating System(Ch4)
Galvin-operating System(Ch4)
 
Lec11 semaphores
Lec11 semaphoresLec11 semaphores
Lec11 semaphores
 
Galvin-operating System(Ch8)
Galvin-operating System(Ch8)Galvin-operating System(Ch8)
Galvin-operating System(Ch8)
 
Operating system 24 mutex locks and semaphores
Operating system 24 mutex locks and semaphoresOperating system 24 mutex locks and semaphores
Operating system 24 mutex locks and semaphores
 
Process synchonization : operating system ( Btech cse )
Process synchonization : operating system ( Btech cse )Process synchonization : operating system ( Btech cse )
Process synchonization : operating system ( Btech cse )
 
Deadlock : operating system ( BTECH CSE )
Deadlock : operating system ( BTECH CSE )Deadlock : operating system ( BTECH CSE )
Deadlock : operating system ( BTECH CSE )
 
Lecture#5
Lecture#5Lecture#5
Lecture#5
 
Lecture 5 process synchronization
Lecture 5 process synchronizationLecture 5 process synchronization
Lecture 5 process synchronization
 
Operating System : Ch18 distributed coordination
Operating System : Ch18 distributed coordinationOperating System : Ch18 distributed coordination
Operating System : Ch18 distributed coordination
 
Semaphores and Monitors
 Semaphores and Monitors Semaphores and Monitors
Semaphores and Monitors
 
Memory : operating system ( Btech cse )
Memory : operating system ( Btech cse )Memory : operating system ( Btech cse )
Memory : operating system ( Btech cse )
 
Ch5 process synchronization
Ch5   process synchronizationCh5   process synchronization
Ch5 process synchronization
 
Galvin-operating System(Ch10)
Galvin-operating System(Ch10)Galvin-operating System(Ch10)
Galvin-operating System(Ch10)
 
Semaphore
SemaphoreSemaphore
Semaphore
 
Ch4 threads
Ch4 threadsCh4 threads
Ch4 threads
 
Introduction to Raft algorithm
Introduction to Raft algorithmIntroduction to Raft algorithm
Introduction to Raft algorithm
 
Semophores and it's types
Semophores and it's typesSemophores and it's types
Semophores and it's types
 
B5_Flame_Safety_Complete
B5_Flame_Safety_CompleteB5_Flame_Safety_Complete
B5_Flame_Safety_Complete
 
Kernel Recipes 2018 - Live (Kernel) Patching: status quo and status futurus -...
Kernel Recipes 2018 - Live (Kernel) Patching: status quo and status futurus -...Kernel Recipes 2018 - Live (Kernel) Patching: status quo and status futurus -...
Kernel Recipes 2018 - Live (Kernel) Patching: status quo and status futurus -...
 

Similar to Ch5 process synchronization

Ch7 OS
Ch7 OSCh7 OS
Ch7 OS
C.U
 

Similar to Ch5 process synchronization (20)

Operating System-Ch6 process synchronization
Operating System-Ch6 process synchronizationOperating System-Ch6 process synchronization
Operating System-Ch6 process synchronization
 
Ch3.processes
Ch3.processesCh3.processes
Ch3.processes
 
Operating System-Ch4.processes
Operating System-Ch4.processesOperating System-Ch4.processes
Operating System-Ch4.processes
 
Operating System-Ch7 deadlocks
Operating System-Ch7 deadlocksOperating System-Ch7 deadlocks
Operating System-Ch7 deadlocks
 
Ch5 cpu scheduling
Ch5 cpu schedulingCh5 cpu scheduling
Ch5 cpu scheduling
 
Ch7 deadlocks
Ch7 deadlocksCh7 deadlocks
Ch7 deadlocks
 
Operating System-Ch5 cpu scheduling
Operating System-Ch5 cpu schedulingOperating System-Ch5 cpu scheduling
Operating System-Ch5 cpu scheduling
 
Operating System-Ch8 memory management
Operating System-Ch8 memory managementOperating System-Ch8 memory management
Operating System-Ch8 memory management
 
Materi8mainmemory
Materi8mainmemoryMateri8mainmemory
Materi8mainmemory
 
Ch8 main memory
Ch8 main memoryCh8 main memory
Ch8 main memory
 
Ch14 protection
Ch14 protectionCh14 protection
Ch14 protection
 
ch6_EN_BK_syn1.pdf
ch6_EN_BK_syn1.pdfch6_EN_BK_syn1.pdf
ch6_EN_BK_syn1.pdf
 
Operating System : Ch9 virtual memory
Operating System : Ch9 virtual memoryOperating System : Ch9 virtual memory
Operating System : Ch9 virtual memory
 
os4-2_cop.ppt
os4-2_cop.pptos4-2_cop.ppt
os4-2_cop.ppt
 
Operating System : Ch16.distributed system structures
Operating System : Ch16.distributed system structuresOperating System : Ch16.distributed system structures
Operating System : Ch16.distributed system structures
 
Ch9 virtual memory
Ch9 virtual memoryCh9 virtual memory
Ch9 virtual memory
 
Os3
Os3Os3
Os3
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Ch7 OS
Ch7 OSCh7 OS
Ch7 OS
 
OS Process Synchronization, semaphore and Monitors
OS Process Synchronization, semaphore and MonitorsOS Process Synchronization, semaphore and Monitors
OS Process Synchronization, semaphore and Monitors
 

More from Syaiful Ahdan

More from Syaiful Ahdan (20)

Sertifikat EC00202128391
 Sertifikat EC00202128391 Sertifikat EC00202128391
Sertifikat EC00202128391
 
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
SP2JPB - Aplikasi Sistem Pelayanan Pemesanan Jasa Perbaikan Pada Bengkel Alam...
 
Sertifikat ec00202059774
Sertifikat ec00202059774Sertifikat ec00202059774
Sertifikat ec00202059774
 
Sertifikat ec00202059775
Sertifikat ec00202059775Sertifikat ec00202059775
Sertifikat ec00202059775
 
Sertifikat EC00202045078
Sertifikat EC00202045078Sertifikat EC00202045078
Sertifikat EC00202045078
 
Sertifikat EC00202044723
 Sertifikat EC00202044723 Sertifikat EC00202044723
Sertifikat EC00202044723
 
Sertifikat EC00202023523
Sertifikat EC00202023523Sertifikat EC00202023523
Sertifikat EC00202023523
 
Sertifikat EC00201826309
Sertifikat EC00201826309Sertifikat EC00201826309
Sertifikat EC00201826309
 
Sertifikat EC00202023149
Sertifikat EC00202023149Sertifikat EC00202023149
Sertifikat EC00202023149
 
Sertifikat EC00202022868
Sertifikat EC00202022868Sertifikat EC00202022868
Sertifikat EC00202022868
 
Sertifikat EC00202021343
Sertifikat EC00202021343Sertifikat EC00202021343
Sertifikat EC00202021343
 
Sertifikat EC00202022755
Sertifikat EC00202022755Sertifikat EC00202022755
Sertifikat EC00202022755
 
Sertifikat EC00201987196
Sertifikat EC00201987196Sertifikat EC00201987196
Sertifikat EC00201987196
 
Sertifikat EC00201856484
Sertifikat EC00201856484Sertifikat EC00201856484
Sertifikat EC00201856484
 
Sertifikat EC00201856352
Sertifikat EC00201856352Sertifikat EC00201856352
Sertifikat EC00201856352
 
Sertifikat EC00201856994
Sertifikat EC00201856994Sertifikat EC00201856994
Sertifikat EC00201856994
 
Sertifikat EC00201856895
Sertifikat EC00201856895Sertifikat EC00201856895
Sertifikat EC00201856895
 
Meeting 2 introdcution network administrator
Meeting 2   introdcution network administratorMeeting 2   introdcution network administrator
Meeting 2 introdcution network administrator
 
Pertemuan 5
Pertemuan 5Pertemuan 5
Pertemuan 5
 
Pertemuan 4
Pertemuan 4Pertemuan 4
Pertemuan 4
 

Recently uploaded

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Recently uploaded (20)

TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 

Ch5 process synchronization

  • 1. Silberschatz and Galvin19996.1 Operating System Concepts Silberschatz and Galvin19995.1Operating System Concepts Silberschatz and Galvin 19994.1 1 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 O P E R A T I N G S Y S T E M S Chapter 5 : Process Synchronization  Background  The Critical-Section Problem  Synchronization Hardware  Semaphores  Classical Problems of Synchronization  Critical Regions  Monitors  Synchronization in Solaris 2  Atomic Transactions Operating System Concepts
  • 2. Silberschatz and Galvin19996.2 Operating System Concepts Silberschatz and Galvin19995.2Operating System Concepts Silberschatz and Galvin 19994.2 2 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Chapter 5: Process Synchronization • Background • The Critical-Section Problem • Synchronization Hardware • Semaphores • Classical Problems of Synchronization • Critical Regions • Monitors • Synchronization in Solaris 2 • Atomic Transactions Operating System Concepts
  • 3. Silberschatz and Galvin19996.3 Operating System Concepts Silberschatz and Galvin19995.3Operating System Concepts Silberschatz and Galvin 19994.3 3 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Background • Concurrent access to shared data may result in data inconsistency. • Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes. • Shared-memory solution to bounded-butter problem (Chapter 4) allows at most n – 1 items in buffer at the same time. A solution, where all N buffers are used is not simple. – Suppose that we modify the producer-consumer code by adding a variable counter, initialized to 0 and incremented each time a new item is added to the buffer Operating System Concepts
  • 4. Silberschatz and Galvin19996.4 Operating System Concepts Silberschatz and Galvin19995.4Operating System Concepts Silberschatz and Galvin 19994.4 4 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded-Buffer • Shared data type item = … ; var buffer array [0..n-1] of item; in, out: 0..n-1; counter: 0..n; in, out, counter := 0; • Producer process repeat … produce an item in nextp … while counter = n do no-op; buffer [in] := nextp; in := in + 1 mod n; counter := counter +1; until false; Operating System Concepts
  • 5. Silberschatz and Galvin19996.5 Operating System Concepts Silberschatz and Galvin19995.5Operating System Concepts Silberschatz and Galvin 19994.5 5 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded-Buffer (Cont.) • Consumer process repeat while counter = 0 do no-op; nextc := buffer [out]; out := out + 1 mod n; counter := counter – 1; … consume the item in nextc … until false; • The statements: – counter := counter + 1; – counter := counter - 1; must be executed atomically. Operating System Concepts
  • 6. Silberschatz and Galvin19996.6 Operating System Concepts Silberschatz and Galvin19995.6Operating System Concepts Silberschatz and Galvin 19994.6 6 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 The Critical-Section Problem • n processes all competing to use some shared data • Each process has a code segment, called critical section, in which the shared data is accessed. • Problem – ensure that when one process is executing in its critical section, no other process is allowed to execute in its critical section. • Structure of process Pi repeat entry section critical section exit section reminder section until false; Operating System Concepts
  • 7. Silberschatz and Galvin19996.7 Operating System Concepts Silberschatz and Galvin19995.7Operating System Concepts Silberschatz and Galvin 19994.7 7 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Solution to Critical-Section Problem 1. Mutual Exclusion. If process Pi is executing in its critical section, then no other processes can be executing in their critical sections. 2. Progress. If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely. 3. Bounded Waiting. A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted.  Assume that each process executes at a nonzero speed  No assumption concerning relative speed of the n processes. Operating System Concepts
  • 8. Silberschatz and Galvin19996.8 Operating System Concepts Silberschatz and Galvin19995.8Operating System Concepts Silberschatz and Galvin 19994.8 8 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Initial Attempts to Solve Problem • Only 2 processes, P0 and P1 • General structure of process Pi (other process Pj) repeat entry section critical section exit section reminder section until false; • Processes may share some common variables to synchronize their actions. Operating System Concepts
  • 9. Silberschatz and Galvin19996.9 Operating System Concepts Silberschatz and Galvin19995.9Operating System Concepts Silberschatz and Galvin 19994.9 9 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Algorithm 1 • Shared variables: – var turn: (0..1); initially turn = 0 – turn - i  Pi can enter its critical section • Process Pi repeat while turn  i do no-op; critical section turn := j; reminder section until false; • Satisfies mutual exclusion, but not progress Operating System Concepts
  • 10. Silberschatz and Galvin19996.10 Operating System Concepts Silberschatz and Galvin19995.10Operating System Concepts Silberschatz and Galvin 19994.10 10 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Algorithm 2 • Shared variables – var flag: array [0..1] of boolean; initially flag [0] = flag [1] = false. – flag [i] = true  Pi ready to enter its critical section • Process Pi repeat flag[i] := true; while flag[j] do no-op; critical section flag [i] := false; remainder section until false; • Satisfies mutual exclusion, but not progress requirement. Operating System Concepts
  • 11. Silberschatz and Galvin19996.11 Operating System Concepts Silberschatz and Galvin19995.11Operating System Concepts Silberschatz and Galvin 19994.11 11 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Algorithm 3 • Combined shared variables of algorithms 1 and 2. • Process Pi repeat flag [i] := true; turn := j; while (flag [j] and turn = j) do no-op; critical section flag [i] := false; remainder section until false; • Meets all three requirements; solves the critical-section problem for two processes. Operating System Concepts
  • 12. Silberschatz and Galvin19996.12 Operating System Concepts Silberschatz and Galvin19995.12Operating System Concepts Silberschatz and Galvin 19994.12 12 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bakery Algorithm • Before entering its critical section, process receives a number. Holder of the smallest number enters the critical section. • If processes Pi and Pj receive the same number, if i < j, then Pi is served first; else Pj is served first. • The numbering scheme always generates numbers in increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5... Critical section for n processes Operating System Concepts
  • 13. Silberschatz and Galvin19996.13 Operating System Concepts Silberschatz and Galvin19995.13Operating System Concepts Silberschatz and Galvin 19994.13 13 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bakery Algorithm (Cont.) • Notation < lexicographical order (ticket #, process id #) – (a,b) < c,d) if a < c or if a = c and b < d – max (a0,…, an-1) is a number, k, such that k  ai for i - 0, …, n – 1 • Shared data var choosing: array [0..n – 1] of boolean; number: array [0..n – 1] of integer, Data structures are initialized to false and 0 respectively Operating System Concepts
  • 14. Silberschatz and Galvin19996.14 Operating System Concepts Silberschatz and Galvin19995.14Operating System Concepts Silberschatz and Galvin 19994.14 14 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bakery Algorithm (Cont.) repeat choosing[i] := true; number[i] := max(number[0], number[1], …, number [n – 1])+1; choosing[i] := false; for j := 0 to n – 1 do begin while choosing[j] do no-op; while number[j]  0 and (number[j],j) < (number[i], i) do no-op; end; critical section number[i] := 0; remainder section until false; Operating System Concepts
  • 15. Silberschatz and Galvin19996.15 Operating System Concepts Silberschatz and Galvin19995.15Operating System Concepts Silberschatz and Galvin 19994.15 15 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Synchronization Hardware • Test and modify the content of a word atomically. function Test-and-Set (var target: boolean): boolean; begin Test-and-Set := target; target := true; end; Operating System Concepts
  • 16. Silberschatz and Galvin19996.16 Operating System Concepts Silberschatz and Galvin19995.16Operating System Concepts Silberschatz and Galvin 19994.16 16 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Mutual Exclusion with Test-and-Set • Shared data: var lock: boolean (initially false) • Process Pi repeat while Test-and-Set (lock) do no-op; critical section lock := false; remainder section until false; Operating System Concepts
  • 17. Silberschatz and Galvin19996.17 Operating System Concepts Silberschatz and Galvin19995.17Operating System Concepts Silberschatz and Galvin 19994.17 17 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Semaphore • Synchronization tool that does not require busy waiting. • Semaphore S – integer variable • can only be accessed via two indivisible (atomic) operations wait (S): while S 0 do no-op; S := S – 1; signal (S): S := S + 1; Operating System Concepts
  • 18. Silberschatz and Galvin19996.18 Operating System Concepts Silberschatz and Galvin19995.18Operating System Concepts Silberschatz and Galvin 19994.18 18 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Example: Critical Section of n Processes • Shared variables – var mutex : semaphore – initially mutex = 1 • Process Pi repeat wait(mutex); critical section signal(mutex); remainder section until false; Operating System Concepts
  • 19. Silberschatz and Galvin19996.19 Operating System Concepts Silberschatz and Galvin19995.19Operating System Concepts Silberschatz and Galvin 19994.19 19 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Semaphore Implementation • Define a semaphore as a record type semaphore = record value: integer L: list of process; end; • Assume two simple operations: – block suspends the process that invokes it. – wakeup(P) resumes the execution of a blocked process P. Operating System Concepts
  • 20. Silberschatz and Galvin19996.20 Operating System Concepts Silberschatz and Galvin19995.20Operating System Concepts Silberschatz and Galvin 19994.20 20 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Implementation (Cont.) • Semaphore operations now defined as wait(S): S.value := S.value – 1; if S.value < 0 then begin add this process to S.L; block; end; signal(S): S.value := S.value = 1; if S.value  0 then begin remove a process P from S.L; wakeup(P); end; Operating System Concepts
  • 21. Silberschatz and Galvin19996.21 Operating System Concepts Silberschatz and Galvin19995.21Operating System Concepts Silberschatz and Galvin 19994.21 21 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Semaphore as General Synchronization Tool • Execute B in Pj only after A executed in Pi • Use semaphore flag initialized to 0 • Code: Pi Pj   A wait(flag) signal(flag) B Operating System Concepts
  • 22. Silberschatz and Galvin19996.22 Operating System Concepts Silberschatz and Galvin19995.22Operating System Concepts Silberschatz and Galvin 19994.22 22 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Deadlock and Starvation • Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes. • Let S and Q be two semaphores initialized to 1 P0 P1 wait(S); wait(Q); wait(Q); wait(S);   signal(S); signal(Q); signal(Q) signal(S); • Starvation – indefinite blocking. A process may never be removed from the semaphore queue in which it is suspended. Operating System Concepts
  • 23. Silberschatz and Galvin19996.23 Operating System Concepts Silberschatz and Galvin19995.23Operating System Concepts Silberschatz and Galvin 19994.23 23 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Two Types of Semaphores • Counting semaphore – integer value can range over an unrestricted domain. • Binary semaphore – integer value can range only between 0 and 1; can be simpler to implement. • Can implement a counting semaphore S as a binary semaphore. Operating System Concepts
  • 24. Silberschatz and Galvin19996.24 Operating System Concepts Silberschatz and Galvin19995.24Operating System Concepts Silberschatz and Galvin 19994.24 24 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Implementing S as a Binary Semaphore • Data structures: var S1: binary-semaphore; S2: binary-semaphore; S3: binary-semaphore; C: integer; • Initialization: S1 = S3 = 1 S2 = 0 C = initial value of semaphore S Operating System Concepts
  • 25. Silberschatz and Galvin19996.25 Operating System Concepts Silberschatz and Galvin19995.25Operating System Concepts Silberschatz and Galvin 19994.25 25 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Implementing S (Cont.) • wait operation wait(S3); wait(S1); C := C – 1; if C < 0 then begin signal(S1); wait(S2); end else signal(S1); signal(S3); • signal operation wait(S1); C := C + 1; if C  0 then signal(S2); signal(S)1; Operating System Concepts
  • 26. Silberschatz and Galvin19996.26 Operating System Concepts Silberschatz and Galvin19995.26Operating System Concepts Silberschatz and Galvin 19994.26 26 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Classical Problems of Synchronization • Bounded-Buffer Problem • Readers and Writers Problem • Dining-Philosophers Problem Operating System Concepts
  • 27. Silberschatz and Galvin19996.27 Operating System Concepts Silberschatz and Galvin19995.27Operating System Concepts Silberschatz and Galvin 19994.27 27 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded-Buffer Problem • Shared data type item = … var buffer = … full, empty, mutex: semaphore; nextp, nextc: item; full :=0; empty := n; mutex :=1; Operating System Concepts
  • 28. Silberschatz and Galvin19996.28 Operating System Concepts Silberschatz and Galvin19995.28Operating System Concepts Silberschatz and Galvin 19994.28 28 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded-Buffer Problem (Cont.) • Producer process repeat … produce an item in nextp … wait(empty); wait(mutex); … signal(mutex); signal(full); until false; Operating System Concepts
  • 29. Silberschatz and Galvin19996.29 Operating System Concepts Silberschatz and Galvin19995.29Operating System Concepts Silberschatz and Galvin 19994.29 29 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded-Buffer Problem (Cont.) • Consumer process repeat wait(full) wait(mutex); … remove an item from buffer to nextc … signal(mutex); signal(empty); … consume the item in nextc … until false; Operating System Concepts
  • 30. Silberschatz and Galvin19996.30 Operating System Concepts Silberschatz and Galvin19995.30Operating System Concepts Silberschatz and Galvin 19994.30 30 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Readers-Writers Problem • Shared data var mutex, wrt: semaphore (=1); readcount : integer (=0); • Writer process wait(wrt); … writing is performed … signal(wrt); Operating System Concepts
  • 31. Silberschatz and Galvin19996.31 Operating System Concepts Silberschatz and Galvin19995.31Operating System Concepts Silberschatz and Galvin 19994.31 31 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Readers-Writers Problem (Cont.) • Reader process wait(mutex); readcount := readcount +1; if readcount = 1 then wait(wrt); signal(mutex); … reading is performed … wait(mutex); readcount := readcount – 1; if readcount = 0 then signal(wrt); signal(mutex): Operating System Concepts
  • 32. Silberschatz and Galvin19996.32 Operating System Concepts Silberschatz and Galvin19995.32Operating System Concepts Silberschatz and Galvin 19994.32 32 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Dining-Philosophers Problem • Shared data var chopstick: array [0..4] of semaphore; (=1 initially) Operating System Concepts
  • 33. Silberschatz and Galvin19996.33 Operating System Concepts Silberschatz and Galvin19995.33Operating System Concepts Silberschatz and Galvin 19994.33 33 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Dining-Philosophers Problem (Cont.) • Philosopher i: repeat wait(chopstick[i]) wait(chopstick[i+1 mod 5]) … eat … signal(chopstick[i]); signal(chopstick[i+1 mod 5]); … think … until false; Operating System Concepts
  • 34. Silberschatz and Galvin19996.34 Operating System Concepts Silberschatz and Galvin19995.34Operating System Concepts Silberschatz and Galvin 19994.34 34 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Critical Regions • High-level synchronization construct • A shared variable v of type T, is declared as: var v: shared T • Variable v accessed only inside statement region v when B do S where B is a Boolean expression. While statement S is being executed, no other process can access variable v. Operating System Concepts
  • 35. Silberschatz and Galvin19996.35 Operating System Concepts Silberschatz and Galvin19995.35Operating System Concepts Silberschatz and Galvin 19994.35 35 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Critical Regions (Cont.) • Regions referring to the same shared variable exclude each other in time. • When a process tries to execute the region statement, the Boolean expression B is evaluated. If B is true, statement S is executed. If it is false, the process is delayed until B becomes true and no other process is in the region associated with v. Operating System Concepts
  • 36. Silberschatz and Galvin19996.36 Operating System Concepts Silberschatz and Galvin19995.36Operating System Concepts Silberschatz and Galvin 19994.36 36 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Example – Bounded Buffer • Shared variables: var buffer: shared record pool: array [0..n–1] of item; count,in,out: integer end; • Producer process inserts nextp into the shared buffer region buffer when count < n do begin pool[in] := nextp; in:= in+1 mod n; count := count + 1; end; Operating System Concepts
  • 37. Silberschatz and Galvin19996.37 Operating System Concepts Silberschatz and Galvin19995.37Operating System Concepts Silberschatz and Galvin 19994.37 37 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Bounded Buffer Example (Cont.) • Consumer process removes an item from the shared buffer and puts it in nextc region buffer when count > 0 do begin nextc := pool[out]; out := out+1 mod n; count := count – 1; end; Operating System Concepts
  • 38. Silberschatz and Galvin19996.38 Operating System Concepts Silberschatz and Galvin19995.38Operating System Concepts Silberschatz and Galvin 19994.38 38 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Implementation: region x when B do S • Associate with the shared variable x, the following variables: var mutex, first-delay, second-delay: semaphore; first-count, second-count: integer, • Mutually exclusive access to the critical section is provided by mutex. • If a process cannot enter the critical section because the Boolean expression B is false, it initially waits on the first-delay semaphore; moved to the second-delay semaphore before it is allowed to reevaluate B. Operating System Concepts
  • 39. Silberschatz and Galvin19996.39 Operating System Concepts Silberschatz and Galvin19995.39Operating System Concepts Silberschatz and Galvin 19994.39 39 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Implementation (Cont.) • Keep track of the number of processes waiting on first-delay and second-delay, with first-count and second-count respectively. • The algorithm assumes a FIFO ordering in the queuing of processes for a semaphore. • For an arbitrary queuing discipline, a more complicated implementation is required. Operating System Concepts
  • 40. Silberschatz and Galvin19996.40 Operating System Concepts Silberschatz and Galvin19995.40Operating System Concepts Silberschatz and Galvin 19994.40 40 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 wait(mutex); while not B do begin first-count := first-count + 1; if second-count > 0 then signal(second-delay) else signal(mutex); wait(first-delay): first-count := first-count – 1; if first-count > 0 then signal(first-delay) else signal(second-delay); wait(second-delay); second-count := second-count – 1; end; S; if first-count >0 then signal(first-delay); else if second-count >0 then signal(second-delay); else signal(mutex); Operating System Concepts
  • 41. Silberschatz and Galvin19996.41 Operating System Concepts Silberschatz and Galvin19995.41Operating System Concepts Silberschatz and Galvin 19994.41 41 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitors • High-level synchronization construct that allows the safe sharing of an abstract data type among concurrent processes. type monitor-name = monitor variable declarations procedure entry P1 :(…); begin … end; procedure entry P2(…); begin … end;  procedure entry Pn (…); begin…end; begin initialization code end Operating System Concepts
  • 42. Silberschatz and Galvin19996.42 Operating System Concepts Silberschatz and Galvin19995.42Operating System Concepts Silberschatz and Galvin 19994.42 42 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitors (Cont.) • To allow a process to wait within the monitor, a condition variable must be declared, as var x, y: condition • Condition variable can only be used with the operations wait and signal. – The operation x.wait; means that the process invoking this opeation is suspended until another process invokes x.signal; – The x.signal operation resumes exactly one suspended process. If no process is suspended, then the signal operation has no effect. Operating System Concepts
  • 43. Silberschatz and Galvin19996.43 Operating System Concepts Silberschatz and Galvin19995.43Operating System Concepts Silberschatz and Galvin 19994.43 43 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Schematic view of a monitor Operating System Concepts
  • 44. Silberschatz and Galvin19996.44 Operating System Concepts Silberschatz and Galvin19995.44Operating System Concepts Silberschatz and Galvin 19994.44 44 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitor with condition variables Operating System Concepts
  • 45. Silberschatz and Galvin19996.45 Operating System Concepts Silberschatz and Galvin19995.45Operating System Concepts Silberschatz and Galvin 19994.45 45 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Dining Philosophers Example type dining-philosophers = monitor var state : array [0..4] of :(thinking, hungry, eating); var self : array [0..4] of condition; procedure entry pickup (i: 0..4); begin state[i] := hungry, test (i); if state[i]  eating then self[i], wait, end; procedure entry putdown (i: 0..4); begin state[i] := thinking; test (i+4 mod 5); test (i+1 mod 5); end; Operating System Concepts
  • 46. Silberschatz and Galvin19996.46 Operating System Concepts Silberschatz and Galvin19995.46Operating System Concepts Silberschatz and Galvin 19994.46 46 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Dining Philosophers (Cont.) procedure test(k: 0..4); begin if state[k+4 mod 5]  eating and state[k] = hungry and state[k+1 mod 5] ]  eating then begin state[k] := eating; self[k].signal; end; end; begin for i := 0 to 4 do state[i] := thinking; end. Operating System Concepts
  • 47. Silberschatz and Galvin19996.47 Operating System Concepts Silberschatz and Galvin19995.47Operating System Concepts Silberschatz and Galvin 19994.47 47 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitor Implementation Using Semaphores • Variables var mutex: semaphore (init = 1) next: semaphore (init = 0) next-count: integer (init = 0) • Each external procedure F will be replaced by wait(mutex); … body of F; … if next-count > 0 then signal(next) else signal(mutex); • Mutual exclusion within a monitor is ensured. Operating System Concepts
  • 48. Silberschatz and Galvin19996.48 Operating System Concepts Silberschatz and Galvin19995.48Operating System Concepts Silberschatz and Galvin 19994.48 48 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitor Implementation (Cont.) • For each condition variable x, we have: var x-sem: semaphore (init = 0) x-count: integer (init = 0) • The operation x.wait can be implemented as: x-count := x-count + 1; if next-count >0 then signal(next) else signal(mutex); wait(x-sem); x-count := x-count – 1; Operating System Concepts
  • 49. Silberschatz and Galvin19996.49 Operating System Concepts Silberschatz and Galvin19995.49Operating System Concepts Silberschatz and Galvin 19994.49 49 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitor Implementation (Cont.) • The operation x.signal can be implemented as: if x-count > 0 then begin next-count := next-count + 1; signal(x-sem); wait(next); next-count := next-count – 1; end; Operating System Concepts
  • 50. Silberschatz and Galvin19996.50 Operating System Concepts Silberschatz and Galvin19995.50Operating System Concepts Silberschatz and Galvin 19994.50 50 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Monitor Implementation (Cont.) • Conditional-wait construct: x.wait(c); – c – integer expression evaluated when the wait opertion is executed. – value of c (priority number) stored with the name of the process that is suspended. – when x.signal is executed, process with smallest associated priority number is resumed next. • Check tow conditions to establish correctness of system: – User processes must always make their calls on the monitor in a correct sequence. – Must ensure that an uncooperative process does not ignore the mutual-exclusion gateway provided by the monitor, and try to access the shared resource directly, without using the access protocols. Operating System Concepts
  • 51. Silberschatz and Galvin19996.51 Operating System Concepts Silberschatz and Galvin19995.51Operating System Concepts Silberschatz and Galvin 19994.51 51 toOperating System Concepts | Silberschatz and Galvin 1999https://github.com/syaifulahdan/ 51 Solaris 2 Operating System • Implements a variety of locks to support multitasking, multithreading (including real-time threads), and multiprocessing. • Uses adaptive mutexes for efficiency when protecting data from short code segments. • Uses condition variables and readers-writers locks when longer sections of code need access to data. Operating System Concepts