SlideShare a Scribd company logo
1 of 79
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Introduction
Definition
Addition and Subtraction of Matrix
Multiplication of Matrix
Solved problems on Matrix Multiplication
Matrix: A matrix is a rectangular array of elements or numbers arranged in rows
and columns. Matrix is denoted by first or third parentheses(bracket).
A matrix consists of m horizontal rows and n vertical columns is called 𝑚 × 𝑛
matrix, denoted by
𝐴 =
𝑎11 𝑎12 . . . . . . . 𝑎1𝑛
𝑎21 𝑎22 . . . . . . . 𝑎2𝑛
⋮ ⋮
𝑎𝑚1 𝑎𝑚2 . . . . . . . 𝑎𝑚𝑛
= (𝑎𝑖𝑗)𝑚𝑛
For the entry 𝑎𝑖𝑗, the row number is denoted by 𝑖 and the column number is
denoted by 𝑗. The numbers in a matrix are called its elements.
Example: 𝐴 =
1 5 3
2 4 1
4 3 5
is a 3 × 3 matrix.
The size or order of a matrix is described by its number of rows and the
number of columns.
If a matrix 𝑨 has 𝒎 rows and 𝒏 columns then the order of 𝑨 is 𝒎 × 𝒏.
Example: If 𝐴 =
2 1 1
3 4 7
then the order of A is 2 × 3.
 Row Matrix: A matrix having only a single row is called a row matrix.
Example: 2 3 4
 Column Matrix: A matrix having only a single column is called a row matrix.
Example:
5
2
1
 Square Matrix: A matrix having equal number of rows and columns is called
a square matrix.
Example:
2 0 −1
5 3 2
1 7 3
 Rectangular Matrix: A matrix having equal number of rows and columns is
called a square matrix.
Example:
2 0 −1
1 7 3
 Null Matrix: If all elements of a matrix is zero the matrix is called null or zero
matrix and it is shown by 𝟎.
Example:
0 0 0
0 0 0
0 0 0
 Diagonal Matrix: A square matrix in which all the elements except the main
diagonal are zero is called diagonal matrix.
Example:
2 0 0
0 3 0
0 0 5
 Scalar Matrix: In a diagonal matrix if all elements are equal the matrix is
called a scalar matrix.
Example:
3 0 0
0 3 0
0 0 3
 Unit/Identity Matrix: A diagonal matrix whose all elements on the main
diagonal are equal to one is called identity or unit matrix. A unit matrix is
usually shown by letter I .
Example: 𝐼 = 𝐼3 =
1 0 0
0 1 0
0 0 1
Transpose Matrix: If the rows and columns of a matrix A are interchanged then
the resulting matrix is called transpose of A matrix. It is denoted by 𝐴′/𝐴𝑇.
Example: 𝐴 =
3 2 6
1 5 0
4 3 2
; 𝐴′
= 𝐴𝑇
=
3 2 6
1 5 0
4 3 2
Symmetric Matrix: A matrix A is called symmetric if 𝐴𝑇 = 𝐴.
Example:
1 2
2 4
is a symmetric matrix.
Skew Symmetric Matrix: A matrix A is called skew symmetric if 𝐴 = −𝐴𝑇.
Example:
0 −1
1 0
is a skew symmetric matrix
Conditions for Addition and Subtraction of Matrix:
 Matrices must have same dimension.
 Add/subtract matrices element-by-element
Example: If 𝐴 =
1 3 2
4 2 3
1 5 4
and 𝐵 =
5 2 1
3 1 2
4 3 2
then
𝐴 + 𝐵 =
1 + 5 3 + 2 2 + 1
4 + 3 2 + 1 3 + 2
1 + 4 5 + 3 4 + 2
=
6 5 3
7 3 5
5 8 6
And 𝐴 − 𝐵 =
1 − 5 3 − 2 2 − 1
4 − 3 2 − 1 3 − 2
1 − 4 5 − 3 4 − 2
=
−4 1 1
1 1 1
−3 2 2
Multiplication by scalar: If 𝐴 is a matrix and 𝑘 is any scalar then
𝑘. 𝐴 = 𝑘. (𝑎𝑖𝑗)
𝑚𝑛
This means that all elements of the matrix are multiplied by the scalar 𝑘.
Example: 3
2 3
−1 1
=
6 9
−3 3
 Multiplication of two matrices 𝑨 and 𝑩, in the form of 𝑨 × 𝑩 or 𝑨𝑩, is
possible if the number of columns in 𝑨 is equal to the number of rows in 𝑩
.
 The result of this multiplication is another matrix 𝑪 where the number of
its rows is equal to the number of rows in 𝑨 and number of its columns is
equal to the number of columns in 𝑩; that is:
𝑨𝒎×𝒏 × 𝑩𝒏×𝒑 = 𝑪𝒎×𝒑
For example, if 𝐴 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
and 𝑋 =
𝑥
𝑦
𝑧
then the multiplication of
A and X will be
AX =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
𝑥
𝑦
𝑧
=
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧
𝑑𝑥 + 𝑒𝑦 + 𝑓𝑧
𝑔𝑥 + ℎ𝑦 + 𝑖𝑧
Example: If 𝐴 =
2 3
1 2
and 𝐵 =
1 2
4 1
then find 𝐴𝐵 and 𝐵𝐴.
Solution:
𝐴𝐵 =
2 3
1 2
1 2
4 1
=
2 × 1 + 3 × 4 2 × 2 + 3 × 1
1 × 1 + 2 × 4 1 × 2 + 2 × 1
=
2 + 12 4 + 3
1 + 8 2 + 2
=
14 7
9 4
Again, 𝐵𝐴 =
1 2
4 1
2 3
1 2
=
2 + 2 3 + 4
8 + 1 12 + 2
=
4 7
9 14
Problem: If 𝐴 =
1 −1
0 2
, 𝐵 =
1 3 0
2 0 1
and 𝐶 =
2
3
1
then show that
(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶).
Solution:
Here 𝐴𝐵 =
1 −1
0 2
1 3 0
2 0 1
=
1 − 2 3 + 0 0 − 1
0 + 4 0 + 0 0 + 2
=
−1 3 −1
4 0 2
Now 𝐴𝐵 𝐶 =
−1 3 −1
4 0 2
2
3
1
=
−2 + 9 − 1
8 + 0 + 2
=
−2 + 9 − 1
8 + 0 + 2
=
6
10
Again, 𝐵𝐶 =
1 3 0
2 0 1
2
3
1
=
2 + 9 + 0
4 + 0 + 1
=
11
5
Now, 𝐴 𝐵𝐶 =
1 −1
0 2
11
5
=
11 − 5
0 + 10
=
6
10
Hence 𝐴𝐵 𝐶 = 𝐴(𝐵𝐶).
Problem: If 𝐴 =
1 2 2
2 1 2
2 2 1
then show that 𝐴2
− 4𝐴 − 5𝐼 = 0.
Solution: Here, 𝐴2
= 𝐴. 𝐴
=
1 2 2
2 1 2
2 2 1
1 2 2
2 1 2
2 2 1
=
1 + 4 + 4 2 + 2 + 4 2 + 4 + 2
2 + 2 + 4 4 + 1 + 4 4 + 2 + 2
2 + 4 + 2 4 + 2 + 2 4 + 4 + 1
=
9 8 8
8 9 8
8 8 9
Now, 𝐴2
− 4𝐴 − 5𝐼 =
9 8 8
8 9 8
8 8 9
− 4
1 2 2
2 1 2
2 2 1
− 5
1 0 0
0 1 0
0 0 1
=
9 8 8
8 9 8
8 8 9
−
4 8 8
8 4 8
8 8 4
−
5 0 0
0 5 0
0 0 5
=
9 − 4 − 5 8 − 8 − 0 8 − 8 − 0
8 − 8 − 0 9 − 4 − 5 8 − 8 − 0
8 − 8 − 0 8 − 8 − 0 9 − 4 − 5
=
0 0 0
0 0 0
0 0 0
= 0
Hence 𝐴2 − 4𝐴 − 5𝐼 = 0.
 Idempotent Matrix: A matrix 𝐴 is called idempotent if 𝐴2
= 𝐴.
Example:
2 −3 −5
−1 4 5
1 −3 −4
 Nilpotent Matrix: A matrix 𝐴 is called nilpotent if 𝐴𝑝
= 0 where 𝑝 ∈ 𝑁.
Example:
1 −1
1 −1
 Orthogonal Matrix: A matrix 𝐴 is called orthogonal if 𝐴𝐴𝑇 = 𝐼.
Example:
1
3
2 −2 1
1 2 2
2 1 −2
 Involutory Matrix: A matrix 𝐴 is called involutary matrix if 𝐴2 = 𝐼.
Example:
4 3 3
−1 0 −1
−4 −4 −3
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Determinant of Matrix
Adjoint of Matrix
Inverse of Matrix
Rank of Matrix
The determinant of a matrix 𝐴2×2 =
𝑎 𝑏
𝑐 𝑑
denoted by det 𝐴 / 𝐴 is defined as
𝐴 =
𝑎 𝑏
𝑐 𝑑
= 𝑎𝑑 − 𝑏𝑐
 For 𝐴3×3 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
𝐴 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
= 𝑎 𝑒𝑖 − ℎ𝑓 − 𝑏 𝑑𝑖 − 𝑔𝑓 + 𝑐(𝑔ℎ − 𝑔𝑒)
 Example: If A=
3 1 2
2 1 4
3 2 1
then
𝐴 =
3 1 2
2 1 4
3 2 1
= 3 1 − 8 − 1 2 − 12 + 2 4 − 3
= −21 + 10 + 2 = −9
 The transposed matrix 𝐴 formed by the cofactors of the elements of 𝐴 is
called the adjoint of 𝐴. It is denoted by 𝐴𝑑𝑗 𝐴.
 Example: If A=
2 1 0
3 2 1
1 2 0
then the co-factors of 𝐴 are
𝐶11 = +
2 1
2 0
= 0 − 2 = −2; 𝐶12 = −
3 1
1 0
= −(0 − 1) = 1
𝐶13 = +
3 2
1 2
= 6 − 2 = 4; 𝐶21 = −
1 0
2 0
= −(0 − 0) = 0
𝐶22 = +
2 0
1 0
= 0 − 0 = 0; 𝐶23 = −
2 1
1 2
= −(4 − 1) = −3
𝐶31 = +
1 0
2 1
= 1 − 0 = 1; 𝐶32 = −
2 0
3 1
= −(2 − 0) = −2
𝐶33 = +
2 1
3 2
= 4 − 3 = 1
𝐴𝑑𝑗 𝐴 =
−2 1 4
0 0 −3
1 −2 1
𝑇
=
−2 0 1
1 0 −2
4 −3 1
 Singular and Non-singular Matrix: A matrix 𝐴 is called singular if 𝐴 = 0
and non-singular if |𝐴| ≠ 0.
Example:
1 2
1 2
is singular and
3 2
4 1
is non-singular Matrix.
 Inverse Matrix: A matrix 𝐵 is called inverse of a matrix 𝐴 if 𝐴𝐵 = 𝐵𝐴 = 𝐼. It
is denoted by 𝐴−1
.
𝐴−1
=
1
𝐴
𝐴𝑑𝑗 𝐴
Example: Find 𝐴−1 where 𝐴 =
0 1 1
1 2 0
3 −1 4
.
Solution: Here,
𝐴 =
0 1 1
1 2 0
3 −1 4
= 0 − 1 4 − 0 + 1 −1 − 6
= −11 ≠ 0
So, 𝐴 is non-singular. Hence 𝐴 is inversible.
 A matrix is inversible only if the matrix is non-singular.
Now we will find the co-factors of 𝐴.
𝐶11 = +
2 0
−1 4
= 8 − 0 = 8; 𝐶12 = −
1 0
3 4
= − 4 − 0 = −4
𝐶13 = +
1 2
3 −1
= −1 − 6 = −7; 𝐶21 = −
1 1
−1 4
= − 4 + 1 = −5
𝐶22 = +
0 1
3 4
= 0 − 3 = −3; 𝐶23 = −
0 1
3 −1
= −(0 − 3) = 3
𝐶31 = +
1 1
2 0
= 0 − 2 = −2; 𝐶32 = −
0 1
1 0
= −(0 − 1) = 1
𝐶33 = +
0 1
1 2
= 0 − 1 = −1
𝐴𝑑𝑗 𝐴 =
8 −4 −7
−5 −3 3
−2 1 −1
𝑇
=
8 −5 −2
−4 −3 1
−7 3 −1
Hence, 𝐴−1 =
1
𝐴
𝐴𝑑𝑗 𝐴
=
1
−11
8 −5 −2
−4 −3 1
−7 3 −1
 The number of linearly independent rows of a matrix is called the rank of a
matrix. It is denoted by 𝝆.
Example: Find the rank of the matrix 𝐴 =
6 2 0 4
−2 −1 3 4
−1 −1 6 10
.
Solution:
6 2 0 4
−2 −1 3 4
−1 −1 6 10
~
−1 −1 6 10
−2 −1 3 4
6 2 0 4
𝑹𝟏 ⟷ 𝑹𝟑
~
1 1 −6 −10
−2 −1 3 4
6 2 0 4
𝑹𝟏
′
= (−𝟏) × 𝑹𝟏
 The number of non zero rows in echelon form will be the rank of the
matrix.
 Echelon form−
𝟏 𝒂 𝒃
𝟎 𝟏 𝒄
𝟎 𝟎 𝟏
~
1 1 −6 −10
0 1 −9 −16
0 4 −36 −64
𝑹𝟐
′
= −𝟐 × 𝑹𝟏 + 𝑹𝟐
𝑹𝟑
′
= −𝟔 × 𝑹𝟏 − 𝑹𝟑
~
1 1 −6 −10
0 1 −9 −16
0 0 0 0
𝑹𝟑
′
= 𝟒 × 𝑹𝟐 − 𝑹𝟑
The matrix is in echelon form having 2 non-zero rows.
So, Rank of 𝐴, 𝜌 𝐴 = 2.
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Solved Problem on Inverse Matrix
Cramer’s Rule
 If 𝑨 =
𝟏 −𝟏 𝟏
𝟑 𝟏 𝟒
−𝟐 𝟑 𝟓
then show that 𝑨−𝟏
𝑨 = 𝑰.
Solution: Here,
𝐴 =
1 −1 1
3 1 4
−2 3 5
= 1 5 − 12 − −1 15 + 8 + 1 9 + 2
= 27 ≠ 0
So, 𝐴 is non-singular. Hence 𝐴 is inversible.
Now we will find the co-factors of 𝐴.
𝐶11 = +
1 4
3 5
= 5 − 12 = −7; 𝐶12 = −
3 4
−2 5
= − 15 − −8 = −23
𝐶13 = +
3 1
−2 3
= 9 − −2 = 11; 𝐶21 = −
−1 1
3 5
= − −5 − 3 = 8
𝐶22 = +
1 1
−2 5
= 5 − −2 = 7; 𝐶23 = −
1 −1
−2 3
= − 3 − 2 = −1
𝐶31 = +
−1 1
1 4
= −4 − 1 = −5; 𝐶32 = −
1 1
3 4
= − 4 − 3 = −1
𝐶33 = +
1 −1
3 1
= 1 − (−3) = 4
𝐴𝑑𝑗 𝐴 =
−7 −23 11
8 7 −1
−5 −1 4
𝑇
=
−7 8 −5
−23 7 −1
11 −1 4
Hence, 𝐴−1
=
1
𝐴
𝐴𝑑𝑗 𝐴
=
1
27
−7 8 −5
−23 7 −1
11 −1 4
Now, 𝐴−1
𝐴 =
1
27
−7 8 −5
−23 7 −1
11 −1 4
1 −1 1
3 1 4
−2 3 5
=
1
27
−7 + 24 + 10 7 + 8 − 15 −7 + 32 − 25
−23 + 21 + 2 23 + 7 − 3 −23 + 28 − 5
11 − 3 − 8 −11 − 1 + 12 11 − 4 + 20
=
1
27
27 0 0
0 27 0
0 0 27
=
1 0 0
0 1 0
0 0 1
= 𝑰
Hence, 𝑨−𝟏
𝑨 = 𝑰.
 Solve the following system of equation by Cramer’s rule.
𝑥 + 𝑦 + 𝑧 = 3
𝑥 + 2𝑦 + 3𝑧 = 4
𝑥 + 4𝑦 + 9𝑧 = 6
Solution:
𝐷 =
1 1 1
1 2 3
1 4 9
= 1 18 − 12 − 1 9 − 3 + 1 4 − 2 = 2
𝐷𝑥 =
𝟑 1 1
𝟒 2 3
𝟔 4 9
= 3 18 − 12 − 1 36 − 18 + 1 16 − 12 = 4
𝐷𝑦 =
1 𝟑 1
1 𝟒 3
1 𝟔 9
= 1 36 − 18 − 3 9 − 3 + 1 6 − 4 = 2
𝐷𝑧 =
1 1 𝟑
1 2 𝟒
1 4 𝟔
= 1 12 − 16 − 1 6 − 4 + 3 4 − 2 = 0
∴ 𝒙 =
𝑫𝒙
𝑫
=
4
2
= 2
𝒚 =
𝑫𝒚
𝑫
=
2
2
= 1
𝐳 =
𝑫𝒛
𝑫
=
0
2
= 0
∴ 𝒙, 𝒚, 𝒛 = (𝟐, 𝟏, 𝟎)
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Solution of System of Equations by Inverse Matrix
Characteristic Vector and Root
 Solve the following system of equation by Inverse method
𝒙 − 𝟑𝒚 + 𝟐𝒛 = 𝟑
𝟑𝒙 + 𝟐𝒚 − 𝒛 = 𝟐
𝟐𝒙 − 𝒚 + 𝒛 = 𝟒
Solution: The given system of equation can be written in Matrix-form as
𝟏 −𝟑 𝟐
𝟑 𝟐 −𝟏
𝟐 −𝟏 𝟏
𝒙
𝒚
𝒛
=
𝟑
𝟐
𝟒
Let,
𝐴 =
1 −3 2
3 2 −1
2 −1 1
, B =
3
2
4
and X =
𝑥
𝑦
𝑧
Then the equation reduces to
𝑨𝑿 = 𝑩
Now we have to find 𝐴−1
.
Here,
𝐴 =
1 −3 2
3 2 −1
2 −1 1
= 1 2 − 1 − −3 3 + 2 + 2 −3 − 4
= 2 ≠ 0
So, 𝐴 is non-singular. Hence 𝐴−1
exists.
Now we will find the co-factors of 𝐴.
𝐶11 = +
2 −1
−1 1
= 2 − 1 = 1; 𝐶12 = −
3 −1
2 1
= − 3 − −2 = −5
𝐶13 = +
3 2
2 −1
= −3 − 4 = −7; 𝐶21 = −
−3 2
−1 1
= − −3 − (−2 = 1
∴ 𝑿 = 𝑨−𝟏
𝑩
𝐶22 = +
1 2
2 1
= 1 − 4 = −3; 𝐶23 = −
1 −3
2 −1
= − −1 − −6 = −5
𝐶31 = +
−3 2
2 −1
= 3 − 4 = −1; 𝐶32 = −
1 2
3 −1
= − −1 − 6 = 7
𝐶33 = +
1 −3
3 2
= 2 − (−9) = 11
𝑨𝒅𝒋 𝑨 =
1 −5 −7
1 −3 −5
−1 7 11
𝑇
=
1 1 −1
−5 −3 7
−7 −5 11
Hence, 𝑨−𝟏
=
𝟏
𝑨
𝑨𝒅𝒋 𝑨
=
1
2
1 1 −1
−5 −3 7
−7 −5 11
Now, 𝑿 = 𝑨−𝟏
𝑩
⇒
𝑥
𝑦
𝑧
=
1
2
1 1 −1
−5 −3 7
−7 −5 11
3
2
4
=
1
2
3 + 2 − 4
−15 − 6 + 28
−21 − 10 + 44
=
1
2
1
7
13
=
1
2
7
2
13
2
Hence, 𝒙 =
𝟏
𝟐
𝒚 =
𝟕
𝟐
𝒛 =
𝟏𝟑
𝟐
 A non-zero vector 𝑿 is defined as characteristic vector or Eigen vector of a
matrix 𝐴 if there exists a number 𝝀 such that 𝑨𝑿 = 𝝀𝑿 where 𝝀 is defined as
characteristic root or eigen value corresponding to the characteristic vector 𝑿.
 The matrix 𝑨 − 𝝀𝑰 is called the characteristic matrix of 𝐴.
 The determinant 𝑨 − 𝝀𝑰 is called the characteristic polynomial of 𝐴.
 The equation 𝑨 − 𝝀𝑰 = 𝟎 is called the characteristic equation of 𝐴.
Example: If 𝐴 =
1 3 2
4 2 3
1 5 4
then
𝟏 − 𝝀 3 2
4 𝟐 − 𝝀 3
1 5 𝟒 − 𝝀
= 0 is characteristic
equation of 𝐴.
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Characteristic Root / Eigen value
 Find the Characteristic Root or Eigen value of the matrix 𝐴 =
2 2 1
1 3 1
1 2 2
.
Solution: We know, the characteristic equation is,
𝑨 − 𝝀𝑰 = 𝟎
⇒
2 2 1
1 3 1
1 2 2
− 𝜆
1 0 0
0 1 0
0 0 1
= 0
⇒
2 2 1
1 3 1
1 2 2
−
𝜆 0 0
0 𝜆 0
0 0 𝜆
= 0
⇒
2 − 𝜆 2 1
1 3 − 𝜆 1
1 2 2 − 𝜆
= 0
⇒ 2 − 𝜆 3 − 𝜆 2 − 𝜆 − 2 − 2 1. 2 − 𝜆 − 1 + 1 2 − 3 − 𝜆 . 1 = 0
⇒ 2 − 𝜆 6 − 3𝜆 − 2𝜆 + 𝜆2
− 2 − 2 2 − 𝜆 − 1 + 2 − 3 + 𝜆 = 0
⇒ 2 − 𝜆 𝜆2
− 5𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0
⇒ 2 − 𝜆 𝜆2
− 4𝜆 − 𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0
⇒ 2 − 𝜆 𝜆 𝜆 − 4 − 1 𝜆 − 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0
⇒ 2 − 𝜆 𝜆 − 4 𝜆 − 1 − 2 1 − 𝜆 + 𝜆 − 1 = 0
⇒ 2 − 𝜆 𝜆 − 4 𝜆 − 1 + 2 𝜆 − 1 + 𝜆 − 1 = 0
⇒ 𝜆 − 1 2 − 𝜆 𝜆 − 4 + 2 + 1 = 0
⇒ 𝜆 − 1 2𝜆 − 8 − 𝜆2 + 4𝜆 + 3 = 0
⇒ 𝜆 − 1 −𝜆2
+ 6𝜆 − 5 = 0
⇒ 𝜆 − 1 − 𝜆2
− 6𝜆 + 5 = 0
⇒ 𝜆 − 1 𝜆2 − 6𝜆 + 5 = 0
⇒ 𝜆 − 1 𝜆2 − 5𝜆 − 𝜆 + 5 = 0
⇒ 𝜆 − 1 𝜆 𝜆 − 5 − 1 𝜆 − 5 = 0
⇒ 𝜆 − 1 𝜆 − 5 𝜆 − 1 = 0
∴ 𝜆 − 1 = 0 𝜆 − 5 = 0 𝜆 − 1 = 0
⇒ 𝜆 = 1 ⇒ 𝜆 = 5 ⇒ 𝜆 = 1
∴ The characteristic root or eigen values are, 𝝀 = 𝟏, 𝟏, 𝟓.
 Find the Characteristic Root or Eigen value of the matrix 𝐴 =
1 1 3
1 5 1
3 1 1
.
Solution: We know, the characteristic equation is,
𝑨 − 𝝀𝑰 = 𝟎
⇒
1 1 3
1 5 1
3 1 1
− 𝜆
1 0 0
0 1 0
0 0 1
= 0
⇒
1 1 3
1 5 1
3 1 1
−
𝜆 0 0
0 𝜆 0
0 0 𝜆
= 0
⇒
1 − 𝜆 1 3
1 5 − 𝜆 1
3 1 1 − 𝜆
= 0
⇒ 1 − 𝜆 5 − 𝜆 1 − 𝜆 − 1 − 1 1. 1 − 𝜆 − 3 + 3 1 − 3. 5 − 𝜆 = 0
⇒ 1 − 𝜆 5 − 5𝜆 − 𝜆 + 𝜆2 − 1 − 1 − 𝜆 − 3 + 3 1 − 15 + 3𝜆 = 0
⇒ 1 − 𝜆 𝜆2
− 6𝜆 + 4 − −𝜆 − 2 + 3 3𝜆 − 14 = 0
⇒ 𝜆2
− 6𝜆 + 4 − 𝜆3
+ 6𝜆2
− 4𝜆 + 𝜆 + 2 + 9𝜆 − 42 = 0
⇒ −𝜆3
+ 7𝜆2
− 36 = 0
⇒ 𝜆3
− 7𝜆2
+ 36 = 0
Now,
𝑓 𝜆 = 𝜆3 − 7𝜆2 + 36
𝒇 −𝟐 = −2 3
− 7. −2 2
+ 36
= 0
Hence,
𝜆3 − 7𝜆2 + 36 = 0
⇒ 𝜆3
+ 2𝜆2
− 9𝜆2
− 18𝜆 + 18𝜆 + 36 = 0
⇒ 𝜆2 𝜆 + 2 − 9𝜆 𝜆 + 2 + 18 𝜆 + 2 = 0
⇒ 𝜆 + 2 𝜆2
− 9𝜆 + 18 = 0
⇒ (𝜆 + 2)(𝜆2
− 6𝜆 − 3𝜆 + 18) = 0
⇒ 𝜆 + 2 𝜆 𝜆 − 6 − 3 𝜆 − 6 = 0
⇒ 𝜆 + 2 𝜆 − 6 𝜆 − 3 = 0
∴ 𝜆 + 2 = 0 𝜆 − 6 = 0 𝜆 − 3 = 0
⇒ 𝜆 = −2 ⇒ 𝜆 = 6 ⇒ 𝜆 = 3
∴ The characteristic root or eigen values are, 𝝀 = −𝟐, 𝟑, 𝟔.
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Cayley-Hamilton Theorem
Application of Cayley-Hamilton Theorem
 Cayley-Hamilton Theorem: Every square matrix satisfies it’s own
characteristic equation.
 Explanation: If 𝑨 is an 𝑚 × 𝑛 matrix (where 𝑚 = 𝑛) and 𝑰 is the identity
matrix then the characteristic polynomial of 𝑨 is defined as
If we replace 𝝀 with the matrix 𝑨 then the polynomial will be zero matrix.
 Example: Verify Cayley-Hamilton theorem for 𝑨 =
𝟐 𝟐 𝟏
𝟏 𝟑 𝟏
𝟏 𝟐 𝟐
.
Solution: The characteristic polynomial of 𝐴 is,
𝒑 𝝀 = 𝑨 − 𝝀𝑰
𝒑 𝑨 = 𝟎
𝒑 𝝀 = 𝑨 − 𝝀𝑰
=
2 2 1
1 3 1
1 2 2
− 𝜆
1 0 0
0 1 0
0 0 1
=
2 2 1
1 3 1
1 2 2
−
𝜆 0 0
0 𝜆 0
0 0 𝜆
=
2 − 𝜆 2 1
1 3 − 𝜆 1
1 2 2 − 𝜆
= 2 − 𝜆 3 − 𝜆 2 − 𝜆 − 2 − 2 1. 2 − 𝜆 − 1 + 1 2 − 3 − 𝜆 . 1
= 2 − 𝜆 6 − 3𝜆 − 2𝜆 + 𝜆2 − 2 − 2 2 − 𝜆 − 1 + 2 − 3 + 𝜆
= 2 − 𝜆 𝜆2
− 5𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1
= 2𝜆2
− 10𝜆 + 8 − 𝜆3
+ 5𝜆2
− 4𝜆 − 2 + 2𝜆 + 𝜆 − 1
= −𝜆3
+ 7𝜆2
− 11𝜆 + 5
∴ The characteristic polynomial of 𝐴 is
𝒑 𝝀 = −𝝀𝟑 + 𝟕𝝀𝟐 − 𝟏𝟏𝝀 + 𝟓
Now, replacing 𝜆 with 𝐴, we get,
𝒑 𝑨 = −𝑨𝟑 + 𝟕𝑨𝟐 − 𝟏𝟏𝑨 + 𝟓𝑰
Now, 𝑨𝟐
=
𝟐 𝟐 𝟏
𝟏 𝟑 𝟏
𝟏 𝟐 𝟐
.
𝟐 𝟐 𝟏
𝟏 𝟑 𝟏
𝟏 𝟐 𝟐
=
4 + 2 + 1 4 + 6 + 2 2 + 2 + 2
2 + 3 + 1 2 + 9 + 2 1 + 3 + 2
2 + 2 + 2 2 + 6 + 4 1 + 2 + 4
=
7 12 6
6 13 6
6 12 7
And 𝑨𝟑 = 𝑨𝟐. 𝑨
=
7 12 6
6 13 6
6 12 7
.
2 2 1
1 3 1
1 2 2
=
14 + 12 + 6 14 + 36 + 12 7 + 12 + 12
12 + 13 + 6 12 + 39 + 12 6 + 13 + 12
12 + 12 + 7 12 + 36 + 14 6 + 12 + 14
=
32 62 31
31 63 31
31 62 32
∴ 𝒑 𝑨 = −𝑨𝟑
+ 𝟕𝑨𝟐
− 𝟏𝟏𝑨 + 𝟓𝑰
= −
32 62 31
31 63 31
31 62 32
+ 7
7 12 6
6 13 6
6 12 7
− 11
2 2 1
1 3 1
1 2 2
+ 5
1 0 0
0 1 0
0 0 1
=
−32 −62 −31
−31 −63 −31
−31 −62 −32
+
49 84 42
42 91 42
42 84 49
−
22 22 11
11 33 11
11 22 22
+
5 0 0
0 5 0
0 0 5
=
−32 + 49 − 22 + 5 −62 + 84 − 22 + 0 −31 + 42 − 11 + 0
−31 + 42 − 11 + 0 −63 + 91 − 33 + 5 −31 + 42 − 11 + 0
−31 + 42 − 11 + 0 −62 + 84 − 22 + 0 −32 + 49 − 22 + 5
=
0 0 0
0 0 0
0 0 0
= 0
∴ 𝒑 𝑨 = 𝟎
Hence the Cayley-Hamilton theorem is verified.
 Find 𝑨−𝟏
by using Cayley-Hamilton theorem where 𝑨 =
𝟕 𝟐 −𝟐
−𝟔 −𝟏 𝟐
𝟔 𝟐 −𝟏
.
Solution: The characteristic polynomial of 𝐴 is,
𝒑 𝝀 = 𝑨 − 𝝀𝑰
=
7 2 −2
−6 −1 2
6 2 −1
− 𝜆
1 0 0
0 1 0
0 0 1
=
7 2 −2
−6 −1 2
6 2 −1
−
𝜆 0 0
0 𝜆 0
0 0 𝜆
=
7 − 𝜆 2 −2
−6 −1 − 𝜆 2
6 2 −1 − 𝜆
= 7 − 𝜆 −1 − 𝜆 −1 − 𝜆 − 4 − 2 −6. −1 − 𝜆 − 12 − 2 −12 −
Now, 𝑨𝟐
=
𝟕 𝟐 −𝟐
−𝟔 −𝟏 𝟐
𝟔 𝟐 −𝟏
.
𝟕 𝟐 −𝟐
−𝟔 −𝟏 𝟐
𝟔 𝟐 −𝟏
=
49 − 12 − 12 14 − 2 − 4 −14 + 4 + 2
−42 + 6 + 12 −12 + 1 + 4 12 − 2 − 2
42 − 12 − 6 12 − 2 − 2 −12 + 4 + 1
=
25 8 −8
−24 −7 8
24 8 −7
And 𝑨𝟑 = 𝑨𝟐. 𝑨
=
25 8 −8
−24 −7 8
24 8 −7
.
7 2 −2
−6 −1 2
6 2 −1
=
175 − 48 − 48 56 − 14 − 16 −56 + 16 + 14
−150 + 24 + 48 −48 + 7 + 16 48 − 8 − 14
150 − 48 − 24 48 − 14 − 8 −48 + 16 + 7
=
79 26 −26
−78 −25 26
78 26 −25
∴ 𝒑 𝑨 = −𝑨𝟑 + 𝟓𝑨𝟐 − 𝟕𝑨 + 𝟑𝑰
= −
79 26 −26
−78 −25 26
78 26 −25
+ 5
25 8 −8
−24 −7 8
24 8 −7
− 7
7 2 −2
−6 −1 2
6 2 −1
+ 3
1 0 0
0 1 0
0 0 1
=
−79 −26 26
78 25 −26
−78 −26 25
+
125 40 −40
−120 −35 40
120 40 −35
−
49 14 −14
−42 −7 14
42 14 −7
+
3 0 0
0 3 0
0 0 3
=
−79 + 125 − 49 + 3 −26 + 40 − 14 + 0 26 − 40 + 14 + 0
78 − 120 + 42 + 0 25 − 35 + 7 + 3 −26 + 40 − 14 + 0
−78 + 120 − 42 + 0 −26 + 40 − 14 + 0 25 − 35 + 7 + 3
=
0 0 0
0 0 0
0 0 0
= 0
∴ 𝒑 𝑨 = 𝟎
∴ −𝑨𝟑
+ 𝟓𝑨𝟐
− 𝟕𝑨 + 𝟑𝑰 = 𝟎 … … … … … . . 𝒊
Hence the Cayley-Hamilton theorem is verified.
Now multiplying 𝑨−𝟏
with both sides of (𝒊), we get
−𝐴−1𝐴3 + 5𝐴−1𝐴2 − 7𝐴−1𝐴 + 3𝐴−1𝐼 = 0
⇒ −𝐴2 +5𝐴 − 7𝐼 + 3𝐴−1 = 0
⇒ 3𝐴−1
= 𝐴2
− 5𝐴 + 7𝐼
⇒ 𝐴−1
=
1
3
𝐴2
− 5𝐴 + 7𝐼
⇒ 𝐴−1
=
1
3
25 8 −8
−24 −7 8
24 8 −7
− 5
7 2 −2
−6 −1 2
6 2 −1
+ 7
1 0 0
0 1 0
0 0 1
⇒ 𝐴−1
=
1
3
25 8 −8
−24 −7 8
24 8 −7
−
35 10 −10
−30 −5 10
30 10 −5
+
7 0 0
0 7 0
0 0 7
⇒ 𝐴−1 =
1
3
25 − 35 + 7 8 − 10 + 0 −8 + 10 + 0
−24 + 30 + 0 −7 + 5 + 7 8 − 10 + 0
24 − 30 + 0 8 − 10 + 0 −7 + 5 + 7
∴ 𝑨−𝟏
=
𝟏
𝟑
−𝟑 −𝟐 𝟐
𝟔 𝟓 −𝟐
−𝟔 −𝟐 𝟓
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮
Prepared By
Omar Faruk
Lecturer in Mathematics
Department of Basic Science
World University of Bangladesh
Email: omar.faruk@science.wub.edu.bd
Special Types of Matrices
Involutory Matrix
Idempotent Matrix
Nilpotent Matrix
Orthogonal Matrix
Involutary Matrix: A matrix 𝑨 is called involutary matrix if 𝑨𝟐
= 𝑰.
Example:
4 3
−5 −4
is an involutary matrix.
 Show that A =
4 3 3
−1 0 −1
−4 −4 −3
is an involutary matrix.
Solution: Here,
𝐴2
= 𝐴. 𝐴
=
4 3 3
−1 0 −1
−4 −4 −3
.
4 3 3
−1 0 −1
−4 −4 −3
=
16 − 3 − 12 12 + 0 − 12 12 − 3 − 9
−4 + 0 + 4 −3 + 0 + 4 −3 + 0 + 3
−16 + 4 + 12 −12 + 0 + 12 −12 + 4 + 9
=
1 0 0
0 1 0
0 0 1
= 𝑰
Since 𝑨𝟐 = 𝑰, so 𝑨 is an involutary matrix.
 Idempotent Matrix: A matrix 𝑨 is called idempotent if 𝑨𝟐
= 𝑨.
Example:
2 −2 −4
−1 3 4
1 −2 −3
is an idempotent matrix.
 Show that 𝑨 =
𝟐 −𝟑 −𝟓
−𝟏 𝟒 𝟓
𝟏 −𝟑 −𝟒
is an idempotent matrix.
Solution: Here,
𝐴2
= 𝐴. 𝐴
=
2 −3 −5
−1 4 5
1 −3 −4
.
2 −3 −5
−1 4 5
1 −3 −4
=
4 + 3 − 5 −6 − 12 + 15 −10 − 15 + 20
−2 − 4 + 5 3 + 16 − 15 5 + 20 − 20
2 + 3 − 4 −3 − 12 + 12 −5 − 15 + 16
=
2 −3 −5
−1 4 5
1 −3 −4
= 𝑨
Since 𝑨𝟐
= 𝑨, so 𝐴 is an idempotent matrix.
 Nilpotent Matrix: A matrix 𝐴 is called nilpotent if 𝑨𝒑 = 𝟎 where 𝒑 ∈ 𝑵.
Example:
1 −1
1 −1
is a nilpotent matrix.
 Show that 𝑨 =
𝟏 −𝟑 −𝟒
−𝟏 𝟑 𝟒
𝟏 −𝟑 −𝟒
is a nilpotent matrix.
Solution: Here,
𝐴2
= 𝐴. 𝐴
=
𝟏 −𝟑 −𝟒
−𝟏 𝟑 𝟒
𝟏 −𝟑 −𝟒
.
𝟏 −𝟑 −𝟒
−𝟏 𝟑 𝟒
𝟏 −𝟑 −𝟒
=
𝟏 + 𝟑 − 𝟒 −𝟑 − 𝟗 + 𝟏𝟐 −𝟒 − 𝟏𝟐 + 𝟏𝟔
−𝟏 − 𝟑 + 𝟒 𝟑 + 𝟗 − 𝟏𝟐 𝟒 + 𝟏𝟐 − 𝟏𝟔
𝟏 + 𝟑 − 𝟒 −𝟑 − 𝟗 + 𝟏𝟐 −𝟒 − 𝟏𝟐 + 𝟏𝟔
=
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
= 0
Since 𝑨𝟐
= 𝟎, so 𝐴 is a nilpotent matrix.
 Orthogonal Matrix: A matrix 𝑨 is called orthogonal if 𝑨𝑨𝑻 = 𝑰.
Example:
1
3
−1 2 2
2 −1 2
2 2 −1
is an orthogonal matrix.
 Show that 𝑨 =
𝟏
𝟑
−𝟏 𝟐 𝟐
𝟐 −𝟏 𝟐
𝟐 𝟐 −𝟏
is an orthogonal matrix.
Solution: Here,
𝐴𝑇
=
1
3
−1 2 2
2 −1 2
2 2 −1
∴ 𝐴. 𝐴𝑇 =
1
3
−1 2 2
2 −1 2
2 2 −1
.
1
3
−1 2 2
2 −1 2
2 2 −1
=
1
9
1 + 4 + 4 −2 − 2 + 4 −2 + 4 − 2
−2 − 2 + 4 4 + 1 + 4 4 − 2 − 2
−2 + 4 − 2 4 − 2 − 2 4 + 4 + 1
=
1
9
9 0 0
0 9 0
0 0 9
=
1 0 0
0 1 0
0 0 1
= 𝑰
Since 𝑨𝑨𝑻 = 𝑰, so 𝐴 is an orthogonal matrix.
 If 𝐴 =
1 2 3
−2 5 −1
2 3 4
and 𝐵 =
−1 5 3
7 −2 1
2 0 −3
then show that 𝑨𝑩 𝑻 = 𝑩𝑻𝑨𝑻.
Solution: Here,
𝐴𝐵 =
1 2 3
−2 5 −1
2 3 4
−1 5 3
7 −2 1
2 0 −3
=
−1 + 14 + 6 5 − 4 + 0 3 + 2 − 9
2 + 35 − 2 −10 − 10 + 0 −6 + 5 + 3
−2 + 21 + 8 10 − 6 + 0 6 + 3 − 12
=
19 1 −4
35 −20 2
27 4 −3
∴ 𝐴𝐵 𝑇
=
19 1 −4
35 −20 2
27 4 −3
𝑇
=
19 35 27
1 −20 4
−4 2 −3
Now, 𝐴𝑇
=
1 2 3
−2 5 −1
2 3 4
𝑇
=
1 −2 2
2 5 3
3 −1 4
𝐵𝑇
=
−1 5 3
7 −2 1
2 0 −3
𝑇
=
−1 7 2
5 −2 0
3 1 −3
∴ 𝐵𝑇
𝐴𝑇
=
−1 7 2
5 −2 0
3 1 −3
1 −2 2
2 5 3
3 −1 4
=
−1 + 14 + 6 2 + 35 − 2 −2 + 21 + 8
5 − 4 + 0 −10 − 10 + 0 10 − 6 + 0
3 + 2 − 9 −6 + 5 + 3 6 + 3 − 12
=
19 35 27
1 −20 4
−4 2 −3
= 𝑨𝑩 𝑻
∴ 𝑨𝑩 𝑻= 𝑩𝑻𝑨𝑻.
𝐓𝐡𝐚𝐧𝐤 𝐲𝐨𝐮

More Related Content

What's hot

Lesson 3 - matrix multiplication
Lesson 3 - matrix multiplicationLesson 3 - matrix multiplication
Lesson 3 - matrix multiplicationJonathan Templin
 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operationsJessica Garcia
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and DeterminantsAarjavPinara
 
Matrix of linear transformation
Matrix of linear transformationMatrix of linear transformation
Matrix of linear transformationbeenishbeenish
 
Matrix Operations
Matrix OperationsMatrix Operations
Matrix OperationsRon Eick
 
5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functionshisema01
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinantsKum Visal
 
Presentation on inverse matrix
Presentation on inverse matrixPresentation on inverse matrix
Presentation on inverse matrixSyed Ahmed Zaki
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptDrazzer_Dhruv
 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessKhan Tanjeel Ahmed
 
Cramers rule
Cramers ruleCramers rule
Cramers rulemstf mstf
 
MATRICES AND ITS TYPE
MATRICES AND ITS TYPEMATRICES AND ITS TYPE
MATRICES AND ITS TYPEHimanshu Negi
 
Factorising quadratic expressions 1
Factorising quadratic expressions 1Factorising quadratic expressions 1
Factorising quadratic expressions 1estelav
 
Introduction to Logarithm
Introduction to LogarithmIntroduction to Logarithm
Introduction to LogarithmFellowBuddy.com
 
Simultaneous Equations
Simultaneous EquationsSimultaneous Equations
Simultaneous EquationsLois Lindemann
 
Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)NirnayMukharjee
 

What's hot (20)

Lesson 3 - matrix multiplication
Lesson 3 - matrix multiplicationLesson 3 - matrix multiplication
Lesson 3 - matrix multiplication
 
Matrix.
Matrix.Matrix.
Matrix.
 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operations
 
Index laws ppt
Index laws pptIndex laws ppt
Index laws ppt
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
 
Matrix of linear transformation
Matrix of linear transformationMatrix of linear transformation
Matrix of linear transformation
 
Matrix Operations
Matrix OperationsMatrix Operations
Matrix Operations
 
Cube root of unity
Cube root of unityCube root of unity
Cube root of unity
 
5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Presentation on inverse matrix
Presentation on inverse matrixPresentation on inverse matrix
Presentation on inverse matrix
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for Business
 
Cramers rule
Cramers ruleCramers rule
Cramers rule
 
MATRICES AND ITS TYPE
MATRICES AND ITS TYPEMATRICES AND ITS TYPE
MATRICES AND ITS TYPE
 
Factorising quadratic expressions 1
Factorising quadratic expressions 1Factorising quadratic expressions 1
Factorising quadratic expressions 1
 
Introduction to Logarithm
Introduction to LogarithmIntroduction to Logarithm
Introduction to Logarithm
 
Simultaneous Equations
Simultaneous EquationsSimultaneous Equations
Simultaneous Equations
 
Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)
 
Complementary Probability
Complementary ProbabilityComplementary Probability
Complementary Probability
 

Similar to MATRIX FUNDAMENTALS

BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSRai University
 
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSRai University
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Vladimir Godovalov
 
Semana 31 matrices álgebra uni ccesa007
Semana 31 matrices  álgebra uni ccesa007Semana 31 matrices  álgebra uni ccesa007
Semana 31 matrices álgebra uni ccesa007Demetrio Ccesa Rayme
 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxfroilandoblon1
 
1.6 Other Types of Equations
1.6 Other Types of Equations1.6 Other Types of Equations
1.6 Other Types of Equationssmiller5
 
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdfEigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdfAugustoMiguel Ramos
 
Дараалал ба цуваа
Дараалал ба цуваа Дараалал ба цуваа
Дараалал ба цуваа Март
 
University of duhok
University of duhokUniversity of duhok
University of duhokRwan Kamal
 
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Abdullaا Hajy
 
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Rwan Kamal
 
Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matricesholmsted
 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxjyotidighole2
 

Similar to MATRIX FUNDAMENTALS (20)

BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
 
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
 
Matrices
MatricesMatrices
Matrices
 
MATRICES-MATHED204.pptx
MATRICES-MATHED204.pptxMATRICES-MATHED204.pptx
MATRICES-MATHED204.pptx
 
Lesson 5 a matrix inverse
Lesson 5 a   matrix inverseLesson 5 a   matrix inverse
Lesson 5 a matrix inverse
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
 
Semana 31 matrices álgebra uni ccesa007
Semana 31 matrices  álgebra uni ccesa007Semana 31 matrices  álgebra uni ccesa007
Semana 31 matrices álgebra uni ccesa007
 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptx
 
lec15.ppt
lec15.pptlec15.ppt
lec15.ppt
 
1.6 Other Types of Equations
1.6 Other Types of Equations1.6 Other Types of Equations
1.6 Other Types of Equations
 
Matrix.pptx
Matrix.pptxMatrix.pptx
Matrix.pptx
 
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdfEigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
 
Дараалал ба цуваа
Дараалал ба цуваа Дараалал ба цуваа
Дараалал ба цуваа
 
4.1 matrices
4.1 matrices4.1 matrices
4.1 matrices
 
University of duhok
University of duhokUniversity of duhok
University of duhok
 
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
 
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
 
Matrix algebra
Matrix algebraMatrix algebra
Matrix algebra
 
Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matrices
 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptx
 

Recently uploaded

Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 

Recently uploaded (20)

ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 

MATRIX FUNDAMENTALS

  • 1. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 2. Introduction Definition Addition and Subtraction of Matrix Multiplication of Matrix Solved problems on Matrix Multiplication
  • 3. Matrix: A matrix is a rectangular array of elements or numbers arranged in rows and columns. Matrix is denoted by first or third parentheses(bracket). A matrix consists of m horizontal rows and n vertical columns is called 𝑚 × 𝑛 matrix, denoted by 𝐴 = 𝑎11 𝑎12 . . . . . . . 𝑎1𝑛 𝑎21 𝑎22 . . . . . . . 𝑎2𝑛 ⋮ ⋮ 𝑎𝑚1 𝑎𝑚2 . . . . . . . 𝑎𝑚𝑛 = (𝑎𝑖𝑗)𝑚𝑛 For the entry 𝑎𝑖𝑗, the row number is denoted by 𝑖 and the column number is denoted by 𝑗. The numbers in a matrix are called its elements. Example: 𝐴 = 1 5 3 2 4 1 4 3 5 is a 3 × 3 matrix.
  • 4. The size or order of a matrix is described by its number of rows and the number of columns. If a matrix 𝑨 has 𝒎 rows and 𝒏 columns then the order of 𝑨 is 𝒎 × 𝒏. Example: If 𝐴 = 2 1 1 3 4 7 then the order of A is 2 × 3.
  • 5.  Row Matrix: A matrix having only a single row is called a row matrix. Example: 2 3 4  Column Matrix: A matrix having only a single column is called a row matrix. Example: 5 2 1  Square Matrix: A matrix having equal number of rows and columns is called a square matrix. Example: 2 0 −1 5 3 2 1 7 3  Rectangular Matrix: A matrix having equal number of rows and columns is called a square matrix. Example: 2 0 −1 1 7 3  Null Matrix: If all elements of a matrix is zero the matrix is called null or zero matrix and it is shown by 𝟎.
  • 6. Example: 0 0 0 0 0 0 0 0 0  Diagonal Matrix: A square matrix in which all the elements except the main diagonal are zero is called diagonal matrix. Example: 2 0 0 0 3 0 0 0 5  Scalar Matrix: In a diagonal matrix if all elements are equal the matrix is called a scalar matrix. Example: 3 0 0 0 3 0 0 0 3  Unit/Identity Matrix: A diagonal matrix whose all elements on the main diagonal are equal to one is called identity or unit matrix. A unit matrix is usually shown by letter I . Example: 𝐼 = 𝐼3 = 1 0 0 0 1 0 0 0 1
  • 7. Transpose Matrix: If the rows and columns of a matrix A are interchanged then the resulting matrix is called transpose of A matrix. It is denoted by 𝐴′/𝐴𝑇. Example: 𝐴 = 3 2 6 1 5 0 4 3 2 ; 𝐴′ = 𝐴𝑇 = 3 2 6 1 5 0 4 3 2 Symmetric Matrix: A matrix A is called symmetric if 𝐴𝑇 = 𝐴. Example: 1 2 2 4 is a symmetric matrix. Skew Symmetric Matrix: A matrix A is called skew symmetric if 𝐴 = −𝐴𝑇. Example: 0 −1 1 0 is a skew symmetric matrix
  • 8. Conditions for Addition and Subtraction of Matrix:  Matrices must have same dimension.  Add/subtract matrices element-by-element Example: If 𝐴 = 1 3 2 4 2 3 1 5 4 and 𝐵 = 5 2 1 3 1 2 4 3 2 then 𝐴 + 𝐵 = 1 + 5 3 + 2 2 + 1 4 + 3 2 + 1 3 + 2 1 + 4 5 + 3 4 + 2 = 6 5 3 7 3 5 5 8 6 And 𝐴 − 𝐵 = 1 − 5 3 − 2 2 − 1 4 − 3 2 − 1 3 − 2 1 − 4 5 − 3 4 − 2 = −4 1 1 1 1 1 −3 2 2 Multiplication by scalar: If 𝐴 is a matrix and 𝑘 is any scalar then 𝑘. 𝐴 = 𝑘. (𝑎𝑖𝑗) 𝑚𝑛 This means that all elements of the matrix are multiplied by the scalar 𝑘. Example: 3 2 3 −1 1 = 6 9 −3 3
  • 9.  Multiplication of two matrices 𝑨 and 𝑩, in the form of 𝑨 × 𝑩 or 𝑨𝑩, is possible if the number of columns in 𝑨 is equal to the number of rows in 𝑩 .  The result of this multiplication is another matrix 𝑪 where the number of its rows is equal to the number of rows in 𝑨 and number of its columns is equal to the number of columns in 𝑩; that is: 𝑨𝒎×𝒏 × 𝑩𝒏×𝒑 = 𝑪𝒎×𝒑 For example, if 𝐴 = 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 and 𝑋 = 𝑥 𝑦 𝑧 then the multiplication of A and X will be AX = 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝑥 𝑦 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 𝑑𝑥 + 𝑒𝑦 + 𝑓𝑧 𝑔𝑥 + ℎ𝑦 + 𝑖𝑧
  • 10. Example: If 𝐴 = 2 3 1 2 and 𝐵 = 1 2 4 1 then find 𝐴𝐵 and 𝐵𝐴. Solution: 𝐴𝐵 = 2 3 1 2 1 2 4 1 = 2 × 1 + 3 × 4 2 × 2 + 3 × 1 1 × 1 + 2 × 4 1 × 2 + 2 × 1 = 2 + 12 4 + 3 1 + 8 2 + 2 = 14 7 9 4 Again, 𝐵𝐴 = 1 2 4 1 2 3 1 2 = 2 + 2 3 + 4 8 + 1 12 + 2 = 4 7 9 14
  • 11. Problem: If 𝐴 = 1 −1 0 2 , 𝐵 = 1 3 0 2 0 1 and 𝐶 = 2 3 1 then show that (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶). Solution: Here 𝐴𝐵 = 1 −1 0 2 1 3 0 2 0 1 = 1 − 2 3 + 0 0 − 1 0 + 4 0 + 0 0 + 2 = −1 3 −1 4 0 2 Now 𝐴𝐵 𝐶 = −1 3 −1 4 0 2 2 3 1 = −2 + 9 − 1 8 + 0 + 2 = −2 + 9 − 1 8 + 0 + 2 = 6 10
  • 12. Again, 𝐵𝐶 = 1 3 0 2 0 1 2 3 1 = 2 + 9 + 0 4 + 0 + 1 = 11 5 Now, 𝐴 𝐵𝐶 = 1 −1 0 2 11 5 = 11 − 5 0 + 10 = 6 10 Hence 𝐴𝐵 𝐶 = 𝐴(𝐵𝐶).
  • 13. Problem: If 𝐴 = 1 2 2 2 1 2 2 2 1 then show that 𝐴2 − 4𝐴 − 5𝐼 = 0. Solution: Here, 𝐴2 = 𝐴. 𝐴 = 1 2 2 2 1 2 2 2 1 1 2 2 2 1 2 2 2 1 = 1 + 4 + 4 2 + 2 + 4 2 + 4 + 2 2 + 2 + 4 4 + 1 + 4 4 + 2 + 2 2 + 4 + 2 4 + 2 + 2 4 + 4 + 1 = 9 8 8 8 9 8 8 8 9 Now, 𝐴2 − 4𝐴 − 5𝐼 = 9 8 8 8 9 8 8 8 9 − 4 1 2 2 2 1 2 2 2 1 − 5 1 0 0 0 1 0 0 0 1 = 9 8 8 8 9 8 8 8 9 − 4 8 8 8 4 8 8 8 4 − 5 0 0 0 5 0 0 0 5
  • 14. = 9 − 4 − 5 8 − 8 − 0 8 − 8 − 0 8 − 8 − 0 9 − 4 − 5 8 − 8 − 0 8 − 8 − 0 8 − 8 − 0 9 − 4 − 5 = 0 0 0 0 0 0 0 0 0 = 0 Hence 𝐴2 − 4𝐴 − 5𝐼 = 0.
  • 15.  Idempotent Matrix: A matrix 𝐴 is called idempotent if 𝐴2 = 𝐴. Example: 2 −3 −5 −1 4 5 1 −3 −4  Nilpotent Matrix: A matrix 𝐴 is called nilpotent if 𝐴𝑝 = 0 where 𝑝 ∈ 𝑁. Example: 1 −1 1 −1  Orthogonal Matrix: A matrix 𝐴 is called orthogonal if 𝐴𝐴𝑇 = 𝐼. Example: 1 3 2 −2 1 1 2 2 2 1 −2  Involutory Matrix: A matrix 𝐴 is called involutary matrix if 𝐴2 = 𝐼. Example: 4 3 3 −1 0 −1 −4 −4 −3
  • 17. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 18. Determinant of Matrix Adjoint of Matrix Inverse of Matrix Rank of Matrix
  • 19. The determinant of a matrix 𝐴2×2 = 𝑎 𝑏 𝑐 𝑑 denoted by det 𝐴 / 𝐴 is defined as 𝐴 = 𝑎 𝑏 𝑐 𝑑 = 𝑎𝑑 − 𝑏𝑐  For 𝐴3×3 = 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝐴 = 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 = 𝑎 𝑒𝑖 − ℎ𝑓 − 𝑏 𝑑𝑖 − 𝑔𝑓 + 𝑐(𝑔ℎ − 𝑔𝑒)  Example: If A= 3 1 2 2 1 4 3 2 1 then 𝐴 = 3 1 2 2 1 4 3 2 1 = 3 1 − 8 − 1 2 − 12 + 2 4 − 3 = −21 + 10 + 2 = −9
  • 20.  The transposed matrix 𝐴 formed by the cofactors of the elements of 𝐴 is called the adjoint of 𝐴. It is denoted by 𝐴𝑑𝑗 𝐴.  Example: If A= 2 1 0 3 2 1 1 2 0 then the co-factors of 𝐴 are 𝐶11 = + 2 1 2 0 = 0 − 2 = −2; 𝐶12 = − 3 1 1 0 = −(0 − 1) = 1 𝐶13 = + 3 2 1 2 = 6 − 2 = 4; 𝐶21 = − 1 0 2 0 = −(0 − 0) = 0 𝐶22 = + 2 0 1 0 = 0 − 0 = 0; 𝐶23 = − 2 1 1 2 = −(4 − 1) = −3 𝐶31 = + 1 0 2 1 = 1 − 0 = 1; 𝐶32 = − 2 0 3 1 = −(2 − 0) = −2 𝐶33 = + 2 1 3 2 = 4 − 3 = 1 𝐴𝑑𝑗 𝐴 = −2 1 4 0 0 −3 1 −2 1 𝑇 = −2 0 1 1 0 −2 4 −3 1
  • 21.  Singular and Non-singular Matrix: A matrix 𝐴 is called singular if 𝐴 = 0 and non-singular if |𝐴| ≠ 0. Example: 1 2 1 2 is singular and 3 2 4 1 is non-singular Matrix.  Inverse Matrix: A matrix 𝐵 is called inverse of a matrix 𝐴 if 𝐴𝐵 = 𝐵𝐴 = 𝐼. It is denoted by 𝐴−1 . 𝐴−1 = 1 𝐴 𝐴𝑑𝑗 𝐴 Example: Find 𝐴−1 where 𝐴 = 0 1 1 1 2 0 3 −1 4 . Solution: Here, 𝐴 = 0 1 1 1 2 0 3 −1 4 = 0 − 1 4 − 0 + 1 −1 − 6 = −11 ≠ 0 So, 𝐴 is non-singular. Hence 𝐴 is inversible.  A matrix is inversible only if the matrix is non-singular.
  • 22. Now we will find the co-factors of 𝐴. 𝐶11 = + 2 0 −1 4 = 8 − 0 = 8; 𝐶12 = − 1 0 3 4 = − 4 − 0 = −4 𝐶13 = + 1 2 3 −1 = −1 − 6 = −7; 𝐶21 = − 1 1 −1 4 = − 4 + 1 = −5 𝐶22 = + 0 1 3 4 = 0 − 3 = −3; 𝐶23 = − 0 1 3 −1 = −(0 − 3) = 3 𝐶31 = + 1 1 2 0 = 0 − 2 = −2; 𝐶32 = − 0 1 1 0 = −(0 − 1) = 1 𝐶33 = + 0 1 1 2 = 0 − 1 = −1 𝐴𝑑𝑗 𝐴 = 8 −4 −7 −5 −3 3 −2 1 −1 𝑇 = 8 −5 −2 −4 −3 1 −7 3 −1
  • 23. Hence, 𝐴−1 = 1 𝐴 𝐴𝑑𝑗 𝐴 = 1 −11 8 −5 −2 −4 −3 1 −7 3 −1
  • 24.  The number of linearly independent rows of a matrix is called the rank of a matrix. It is denoted by 𝝆. Example: Find the rank of the matrix 𝐴 = 6 2 0 4 −2 −1 3 4 −1 −1 6 10 . Solution: 6 2 0 4 −2 −1 3 4 −1 −1 6 10 ~ −1 −1 6 10 −2 −1 3 4 6 2 0 4 𝑹𝟏 ⟷ 𝑹𝟑 ~ 1 1 −6 −10 −2 −1 3 4 6 2 0 4 𝑹𝟏 ′ = (−𝟏) × 𝑹𝟏  The number of non zero rows in echelon form will be the rank of the matrix.  Echelon form− 𝟏 𝒂 𝒃 𝟎 𝟏 𝒄 𝟎 𝟎 𝟏
  • 25. ~ 1 1 −6 −10 0 1 −9 −16 0 4 −36 −64 𝑹𝟐 ′ = −𝟐 × 𝑹𝟏 + 𝑹𝟐 𝑹𝟑 ′ = −𝟔 × 𝑹𝟏 − 𝑹𝟑 ~ 1 1 −6 −10 0 1 −9 −16 0 0 0 0 𝑹𝟑 ′ = 𝟒 × 𝑹𝟐 − 𝑹𝟑 The matrix is in echelon form having 2 non-zero rows. So, Rank of 𝐴, 𝜌 𝐴 = 2.
  • 27. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 28. Solved Problem on Inverse Matrix Cramer’s Rule
  • 29.  If 𝑨 = 𝟏 −𝟏 𝟏 𝟑 𝟏 𝟒 −𝟐 𝟑 𝟓 then show that 𝑨−𝟏 𝑨 = 𝑰. Solution: Here, 𝐴 = 1 −1 1 3 1 4 −2 3 5 = 1 5 − 12 − −1 15 + 8 + 1 9 + 2 = 27 ≠ 0 So, 𝐴 is non-singular. Hence 𝐴 is inversible. Now we will find the co-factors of 𝐴. 𝐶11 = + 1 4 3 5 = 5 − 12 = −7; 𝐶12 = − 3 4 −2 5 = − 15 − −8 = −23 𝐶13 = + 3 1 −2 3 = 9 − −2 = 11; 𝐶21 = − −1 1 3 5 = − −5 − 3 = 8
  • 30. 𝐶22 = + 1 1 −2 5 = 5 − −2 = 7; 𝐶23 = − 1 −1 −2 3 = − 3 − 2 = −1 𝐶31 = + −1 1 1 4 = −4 − 1 = −5; 𝐶32 = − 1 1 3 4 = − 4 − 3 = −1 𝐶33 = + 1 −1 3 1 = 1 − (−3) = 4 𝐴𝑑𝑗 𝐴 = −7 −23 11 8 7 −1 −5 −1 4 𝑇 = −7 8 −5 −23 7 −1 11 −1 4
  • 31. Hence, 𝐴−1 = 1 𝐴 𝐴𝑑𝑗 𝐴 = 1 27 −7 8 −5 −23 7 −1 11 −1 4 Now, 𝐴−1 𝐴 = 1 27 −7 8 −5 −23 7 −1 11 −1 4 1 −1 1 3 1 4 −2 3 5 = 1 27 −7 + 24 + 10 7 + 8 − 15 −7 + 32 − 25 −23 + 21 + 2 23 + 7 − 3 −23 + 28 − 5 11 − 3 − 8 −11 − 1 + 12 11 − 4 + 20
  • 32. = 1 27 27 0 0 0 27 0 0 0 27 = 1 0 0 0 1 0 0 0 1 = 𝑰 Hence, 𝑨−𝟏 𝑨 = 𝑰.
  • 33.  Solve the following system of equation by Cramer’s rule. 𝑥 + 𝑦 + 𝑧 = 3 𝑥 + 2𝑦 + 3𝑧 = 4 𝑥 + 4𝑦 + 9𝑧 = 6 Solution: 𝐷 = 1 1 1 1 2 3 1 4 9 = 1 18 − 12 − 1 9 − 3 + 1 4 − 2 = 2 𝐷𝑥 = 𝟑 1 1 𝟒 2 3 𝟔 4 9 = 3 18 − 12 − 1 36 − 18 + 1 16 − 12 = 4 𝐷𝑦 = 1 𝟑 1 1 𝟒 3 1 𝟔 9 = 1 36 − 18 − 3 9 − 3 + 1 6 − 4 = 2
  • 34. 𝐷𝑧 = 1 1 𝟑 1 2 𝟒 1 4 𝟔 = 1 12 − 16 − 1 6 − 4 + 3 4 − 2 = 0 ∴ 𝒙 = 𝑫𝒙 𝑫 = 4 2 = 2 𝒚 = 𝑫𝒚 𝑫 = 2 2 = 1 𝐳 = 𝑫𝒛 𝑫 = 0 2 = 0 ∴ 𝒙, 𝒚, 𝒛 = (𝟐, 𝟏, 𝟎)
  • 36. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 37. Solution of System of Equations by Inverse Matrix Characteristic Vector and Root
  • 38.  Solve the following system of equation by Inverse method 𝒙 − 𝟑𝒚 + 𝟐𝒛 = 𝟑 𝟑𝒙 + 𝟐𝒚 − 𝒛 = 𝟐 𝟐𝒙 − 𝒚 + 𝒛 = 𝟒 Solution: The given system of equation can be written in Matrix-form as 𝟏 −𝟑 𝟐 𝟑 𝟐 −𝟏 𝟐 −𝟏 𝟏 𝒙 𝒚 𝒛 = 𝟑 𝟐 𝟒 Let, 𝐴 = 1 −3 2 3 2 −1 2 −1 1 , B = 3 2 4 and X = 𝑥 𝑦 𝑧 Then the equation reduces to 𝑨𝑿 = 𝑩
  • 39. Now we have to find 𝐴−1 . Here, 𝐴 = 1 −3 2 3 2 −1 2 −1 1 = 1 2 − 1 − −3 3 + 2 + 2 −3 − 4 = 2 ≠ 0 So, 𝐴 is non-singular. Hence 𝐴−1 exists. Now we will find the co-factors of 𝐴. 𝐶11 = + 2 −1 −1 1 = 2 − 1 = 1; 𝐶12 = − 3 −1 2 1 = − 3 − −2 = −5 𝐶13 = + 3 2 2 −1 = −3 − 4 = −7; 𝐶21 = − −3 2 −1 1 = − −3 − (−2 = 1 ∴ 𝑿 = 𝑨−𝟏 𝑩
  • 40. 𝐶22 = + 1 2 2 1 = 1 − 4 = −3; 𝐶23 = − 1 −3 2 −1 = − −1 − −6 = −5 𝐶31 = + −3 2 2 −1 = 3 − 4 = −1; 𝐶32 = − 1 2 3 −1 = − −1 − 6 = 7 𝐶33 = + 1 −3 3 2 = 2 − (−9) = 11 𝑨𝒅𝒋 𝑨 = 1 −5 −7 1 −3 −5 −1 7 11 𝑇 = 1 1 −1 −5 −3 7 −7 −5 11
  • 41. Hence, 𝑨−𝟏 = 𝟏 𝑨 𝑨𝒅𝒋 𝑨 = 1 2 1 1 −1 −5 −3 7 −7 −5 11 Now, 𝑿 = 𝑨−𝟏 𝑩 ⇒ 𝑥 𝑦 𝑧 = 1 2 1 1 −1 −5 −3 7 −7 −5 11 3 2 4 = 1 2 3 + 2 − 4 −15 − 6 + 28 −21 − 10 + 44
  • 43.  A non-zero vector 𝑿 is defined as characteristic vector or Eigen vector of a matrix 𝐴 if there exists a number 𝝀 such that 𝑨𝑿 = 𝝀𝑿 where 𝝀 is defined as characteristic root or eigen value corresponding to the characteristic vector 𝑿.  The matrix 𝑨 − 𝝀𝑰 is called the characteristic matrix of 𝐴.  The determinant 𝑨 − 𝝀𝑰 is called the characteristic polynomial of 𝐴.  The equation 𝑨 − 𝝀𝑰 = 𝟎 is called the characteristic equation of 𝐴. Example: If 𝐴 = 1 3 2 4 2 3 1 5 4 then 𝟏 − 𝝀 3 2 4 𝟐 − 𝝀 3 1 5 𝟒 − 𝝀 = 0 is characteristic equation of 𝐴.
  • 45. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 46. Characteristic Root / Eigen value
  • 47.  Find the Characteristic Root or Eigen value of the matrix 𝐴 = 2 2 1 1 3 1 1 2 2 . Solution: We know, the characteristic equation is, 𝑨 − 𝝀𝑰 = 𝟎 ⇒ 2 2 1 1 3 1 1 2 2 − 𝜆 1 0 0 0 1 0 0 0 1 = 0 ⇒ 2 2 1 1 3 1 1 2 2 − 𝜆 0 0 0 𝜆 0 0 0 𝜆 = 0 ⇒ 2 − 𝜆 2 1 1 3 − 𝜆 1 1 2 2 − 𝜆 = 0
  • 48. ⇒ 2 − 𝜆 3 − 𝜆 2 − 𝜆 − 2 − 2 1. 2 − 𝜆 − 1 + 1 2 − 3 − 𝜆 . 1 = 0 ⇒ 2 − 𝜆 6 − 3𝜆 − 2𝜆 + 𝜆2 − 2 − 2 2 − 𝜆 − 1 + 2 − 3 + 𝜆 = 0 ⇒ 2 − 𝜆 𝜆2 − 5𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0 ⇒ 2 − 𝜆 𝜆2 − 4𝜆 − 𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0 ⇒ 2 − 𝜆 𝜆 𝜆 − 4 − 1 𝜆 − 4 − 2 1 − 𝜆 + 𝜆 − 1 = 0 ⇒ 2 − 𝜆 𝜆 − 4 𝜆 − 1 − 2 1 − 𝜆 + 𝜆 − 1 = 0 ⇒ 2 − 𝜆 𝜆 − 4 𝜆 − 1 + 2 𝜆 − 1 + 𝜆 − 1 = 0 ⇒ 𝜆 − 1 2 − 𝜆 𝜆 − 4 + 2 + 1 = 0 ⇒ 𝜆 − 1 2𝜆 − 8 − 𝜆2 + 4𝜆 + 3 = 0
  • 49. ⇒ 𝜆 − 1 −𝜆2 + 6𝜆 − 5 = 0 ⇒ 𝜆 − 1 − 𝜆2 − 6𝜆 + 5 = 0 ⇒ 𝜆 − 1 𝜆2 − 6𝜆 + 5 = 0 ⇒ 𝜆 − 1 𝜆2 − 5𝜆 − 𝜆 + 5 = 0 ⇒ 𝜆 − 1 𝜆 𝜆 − 5 − 1 𝜆 − 5 = 0 ⇒ 𝜆 − 1 𝜆 − 5 𝜆 − 1 = 0 ∴ 𝜆 − 1 = 0 𝜆 − 5 = 0 𝜆 − 1 = 0 ⇒ 𝜆 = 1 ⇒ 𝜆 = 5 ⇒ 𝜆 = 1 ∴ The characteristic root or eigen values are, 𝝀 = 𝟏, 𝟏, 𝟓.
  • 50.  Find the Characteristic Root or Eigen value of the matrix 𝐴 = 1 1 3 1 5 1 3 1 1 . Solution: We know, the characteristic equation is, 𝑨 − 𝝀𝑰 = 𝟎 ⇒ 1 1 3 1 5 1 3 1 1 − 𝜆 1 0 0 0 1 0 0 0 1 = 0 ⇒ 1 1 3 1 5 1 3 1 1 − 𝜆 0 0 0 𝜆 0 0 0 𝜆 = 0 ⇒ 1 − 𝜆 1 3 1 5 − 𝜆 1 3 1 1 − 𝜆 = 0
  • 51. ⇒ 1 − 𝜆 5 − 𝜆 1 − 𝜆 − 1 − 1 1. 1 − 𝜆 − 3 + 3 1 − 3. 5 − 𝜆 = 0 ⇒ 1 − 𝜆 5 − 5𝜆 − 𝜆 + 𝜆2 − 1 − 1 − 𝜆 − 3 + 3 1 − 15 + 3𝜆 = 0 ⇒ 1 − 𝜆 𝜆2 − 6𝜆 + 4 − −𝜆 − 2 + 3 3𝜆 − 14 = 0 ⇒ 𝜆2 − 6𝜆 + 4 − 𝜆3 + 6𝜆2 − 4𝜆 + 𝜆 + 2 + 9𝜆 − 42 = 0 ⇒ −𝜆3 + 7𝜆2 − 36 = 0 ⇒ 𝜆3 − 7𝜆2 + 36 = 0 Now, 𝑓 𝜆 = 𝜆3 − 7𝜆2 + 36 𝒇 −𝟐 = −2 3 − 7. −2 2 + 36 = 0
  • 52. Hence, 𝜆3 − 7𝜆2 + 36 = 0 ⇒ 𝜆3 + 2𝜆2 − 9𝜆2 − 18𝜆 + 18𝜆 + 36 = 0 ⇒ 𝜆2 𝜆 + 2 − 9𝜆 𝜆 + 2 + 18 𝜆 + 2 = 0 ⇒ 𝜆 + 2 𝜆2 − 9𝜆 + 18 = 0 ⇒ (𝜆 + 2)(𝜆2 − 6𝜆 − 3𝜆 + 18) = 0 ⇒ 𝜆 + 2 𝜆 𝜆 − 6 − 3 𝜆 − 6 = 0 ⇒ 𝜆 + 2 𝜆 − 6 𝜆 − 3 = 0 ∴ 𝜆 + 2 = 0 𝜆 − 6 = 0 𝜆 − 3 = 0 ⇒ 𝜆 = −2 ⇒ 𝜆 = 6 ⇒ 𝜆 = 3 ∴ The characteristic root or eigen values are, 𝝀 = −𝟐, 𝟑, 𝟔.
  • 54. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 55. Cayley-Hamilton Theorem Application of Cayley-Hamilton Theorem
  • 56.  Cayley-Hamilton Theorem: Every square matrix satisfies it’s own characteristic equation.  Explanation: If 𝑨 is an 𝑚 × 𝑛 matrix (where 𝑚 = 𝑛) and 𝑰 is the identity matrix then the characteristic polynomial of 𝑨 is defined as If we replace 𝝀 with the matrix 𝑨 then the polynomial will be zero matrix.  Example: Verify Cayley-Hamilton theorem for 𝑨 = 𝟐 𝟐 𝟏 𝟏 𝟑 𝟏 𝟏 𝟐 𝟐 . Solution: The characteristic polynomial of 𝐴 is, 𝒑 𝝀 = 𝑨 − 𝝀𝑰 𝒑 𝑨 = 𝟎 𝒑 𝝀 = 𝑨 − 𝝀𝑰
  • 57. = 2 2 1 1 3 1 1 2 2 − 𝜆 1 0 0 0 1 0 0 0 1 = 2 2 1 1 3 1 1 2 2 − 𝜆 0 0 0 𝜆 0 0 0 𝜆 = 2 − 𝜆 2 1 1 3 − 𝜆 1 1 2 2 − 𝜆 = 2 − 𝜆 3 − 𝜆 2 − 𝜆 − 2 − 2 1. 2 − 𝜆 − 1 + 1 2 − 3 − 𝜆 . 1 = 2 − 𝜆 6 − 3𝜆 − 2𝜆 + 𝜆2 − 2 − 2 2 − 𝜆 − 1 + 2 − 3 + 𝜆 = 2 − 𝜆 𝜆2 − 5𝜆 + 4 − 2 1 − 𝜆 + 𝜆 − 1 = 2𝜆2 − 10𝜆 + 8 − 𝜆3 + 5𝜆2 − 4𝜆 − 2 + 2𝜆 + 𝜆 − 1
  • 58. = −𝜆3 + 7𝜆2 − 11𝜆 + 5 ∴ The characteristic polynomial of 𝐴 is 𝒑 𝝀 = −𝝀𝟑 + 𝟕𝝀𝟐 − 𝟏𝟏𝝀 + 𝟓 Now, replacing 𝜆 with 𝐴, we get, 𝒑 𝑨 = −𝑨𝟑 + 𝟕𝑨𝟐 − 𝟏𝟏𝑨 + 𝟓𝑰 Now, 𝑨𝟐 = 𝟐 𝟐 𝟏 𝟏 𝟑 𝟏 𝟏 𝟐 𝟐 . 𝟐 𝟐 𝟏 𝟏 𝟑 𝟏 𝟏 𝟐 𝟐 = 4 + 2 + 1 4 + 6 + 2 2 + 2 + 2 2 + 3 + 1 2 + 9 + 2 1 + 3 + 2 2 + 2 + 2 2 + 6 + 4 1 + 2 + 4
  • 59. = 7 12 6 6 13 6 6 12 7 And 𝑨𝟑 = 𝑨𝟐. 𝑨 = 7 12 6 6 13 6 6 12 7 . 2 2 1 1 3 1 1 2 2 = 14 + 12 + 6 14 + 36 + 12 7 + 12 + 12 12 + 13 + 6 12 + 39 + 12 6 + 13 + 12 12 + 12 + 7 12 + 36 + 14 6 + 12 + 14 = 32 62 31 31 63 31 31 62 32
  • 60. ∴ 𝒑 𝑨 = −𝑨𝟑 + 𝟕𝑨𝟐 − 𝟏𝟏𝑨 + 𝟓𝑰 = − 32 62 31 31 63 31 31 62 32 + 7 7 12 6 6 13 6 6 12 7 − 11 2 2 1 1 3 1 1 2 2 + 5 1 0 0 0 1 0 0 0 1 = −32 −62 −31 −31 −63 −31 −31 −62 −32 + 49 84 42 42 91 42 42 84 49 − 22 22 11 11 33 11 11 22 22 + 5 0 0 0 5 0 0 0 5 = −32 + 49 − 22 + 5 −62 + 84 − 22 + 0 −31 + 42 − 11 + 0 −31 + 42 − 11 + 0 −63 + 91 − 33 + 5 −31 + 42 − 11 + 0 −31 + 42 − 11 + 0 −62 + 84 − 22 + 0 −32 + 49 − 22 + 5 = 0 0 0 0 0 0 0 0 0 = 0 ∴ 𝒑 𝑨 = 𝟎 Hence the Cayley-Hamilton theorem is verified.
  • 61.  Find 𝑨−𝟏 by using Cayley-Hamilton theorem where 𝑨 = 𝟕 𝟐 −𝟐 −𝟔 −𝟏 𝟐 𝟔 𝟐 −𝟏 . Solution: The characteristic polynomial of 𝐴 is, 𝒑 𝝀 = 𝑨 − 𝝀𝑰 = 7 2 −2 −6 −1 2 6 2 −1 − 𝜆 1 0 0 0 1 0 0 0 1 = 7 2 −2 −6 −1 2 6 2 −1 − 𝜆 0 0 0 𝜆 0 0 0 𝜆 = 7 − 𝜆 2 −2 −6 −1 − 𝜆 2 6 2 −1 − 𝜆
  • 62. = 7 − 𝜆 −1 − 𝜆 −1 − 𝜆 − 4 − 2 −6. −1 − 𝜆 − 12 − 2 −12 −
  • 63. Now, 𝑨𝟐 = 𝟕 𝟐 −𝟐 −𝟔 −𝟏 𝟐 𝟔 𝟐 −𝟏 . 𝟕 𝟐 −𝟐 −𝟔 −𝟏 𝟐 𝟔 𝟐 −𝟏 = 49 − 12 − 12 14 − 2 − 4 −14 + 4 + 2 −42 + 6 + 12 −12 + 1 + 4 12 − 2 − 2 42 − 12 − 6 12 − 2 − 2 −12 + 4 + 1 = 25 8 −8 −24 −7 8 24 8 −7 And 𝑨𝟑 = 𝑨𝟐. 𝑨 = 25 8 −8 −24 −7 8 24 8 −7 . 7 2 −2 −6 −1 2 6 2 −1
  • 64. = 175 − 48 − 48 56 − 14 − 16 −56 + 16 + 14 −150 + 24 + 48 −48 + 7 + 16 48 − 8 − 14 150 − 48 − 24 48 − 14 − 8 −48 + 16 + 7 = 79 26 −26 −78 −25 26 78 26 −25 ∴ 𝒑 𝑨 = −𝑨𝟑 + 𝟓𝑨𝟐 − 𝟕𝑨 + 𝟑𝑰 = − 79 26 −26 −78 −25 26 78 26 −25 + 5 25 8 −8 −24 −7 8 24 8 −7 − 7 7 2 −2 −6 −1 2 6 2 −1 + 3 1 0 0 0 1 0 0 0 1 = −79 −26 26 78 25 −26 −78 −26 25 + 125 40 −40 −120 −35 40 120 40 −35 − 49 14 −14 −42 −7 14 42 14 −7 + 3 0 0 0 3 0 0 0 3
  • 65. = −79 + 125 − 49 + 3 −26 + 40 − 14 + 0 26 − 40 + 14 + 0 78 − 120 + 42 + 0 25 − 35 + 7 + 3 −26 + 40 − 14 + 0 −78 + 120 − 42 + 0 −26 + 40 − 14 + 0 25 − 35 + 7 + 3 = 0 0 0 0 0 0 0 0 0 = 0 ∴ 𝒑 𝑨 = 𝟎 ∴ −𝑨𝟑 + 𝟓𝑨𝟐 − 𝟕𝑨 + 𝟑𝑰 = 𝟎 … … … … … . . 𝒊 Hence the Cayley-Hamilton theorem is verified. Now multiplying 𝑨−𝟏 with both sides of (𝒊), we get −𝐴−1𝐴3 + 5𝐴−1𝐴2 − 7𝐴−1𝐴 + 3𝐴−1𝐼 = 0 ⇒ −𝐴2 +5𝐴 − 7𝐼 + 3𝐴−1 = 0 ⇒ 3𝐴−1 = 𝐴2 − 5𝐴 + 7𝐼
  • 66. ⇒ 𝐴−1 = 1 3 𝐴2 − 5𝐴 + 7𝐼 ⇒ 𝐴−1 = 1 3 25 8 −8 −24 −7 8 24 8 −7 − 5 7 2 −2 −6 −1 2 6 2 −1 + 7 1 0 0 0 1 0 0 0 1 ⇒ 𝐴−1 = 1 3 25 8 −8 −24 −7 8 24 8 −7 − 35 10 −10 −30 −5 10 30 10 −5 + 7 0 0 0 7 0 0 0 7 ⇒ 𝐴−1 = 1 3 25 − 35 + 7 8 − 10 + 0 −8 + 10 + 0 −24 + 30 + 0 −7 + 5 + 7 8 − 10 + 0 24 − 30 + 0 8 − 10 + 0 −7 + 5 + 7 ∴ 𝑨−𝟏 = 𝟏 𝟑 −𝟑 −𝟐 𝟐 𝟔 𝟓 −𝟐 −𝟔 −𝟐 𝟓
  • 68. Prepared By Omar Faruk Lecturer in Mathematics Department of Basic Science World University of Bangladesh Email: omar.faruk@science.wub.edu.bd
  • 69. Special Types of Matrices Involutory Matrix Idempotent Matrix Nilpotent Matrix Orthogonal Matrix
  • 70. Involutary Matrix: A matrix 𝑨 is called involutary matrix if 𝑨𝟐 = 𝑰. Example: 4 3 −5 −4 is an involutary matrix.  Show that A = 4 3 3 −1 0 −1 −4 −4 −3 is an involutary matrix. Solution: Here, 𝐴2 = 𝐴. 𝐴 = 4 3 3 −1 0 −1 −4 −4 −3 . 4 3 3 −1 0 −1 −4 −4 −3 = 16 − 3 − 12 12 + 0 − 12 12 − 3 − 9 −4 + 0 + 4 −3 + 0 + 4 −3 + 0 + 3 −16 + 4 + 12 −12 + 0 + 12 −12 + 4 + 9
  • 71. = 1 0 0 0 1 0 0 0 1 = 𝑰 Since 𝑨𝟐 = 𝑰, so 𝑨 is an involutary matrix.  Idempotent Matrix: A matrix 𝑨 is called idempotent if 𝑨𝟐 = 𝑨. Example: 2 −2 −4 −1 3 4 1 −2 −3 is an idempotent matrix.  Show that 𝑨 = 𝟐 −𝟑 −𝟓 −𝟏 𝟒 𝟓 𝟏 −𝟑 −𝟒 is an idempotent matrix. Solution: Here, 𝐴2 = 𝐴. 𝐴
  • 72. = 2 −3 −5 −1 4 5 1 −3 −4 . 2 −3 −5 −1 4 5 1 −3 −4 = 4 + 3 − 5 −6 − 12 + 15 −10 − 15 + 20 −2 − 4 + 5 3 + 16 − 15 5 + 20 − 20 2 + 3 − 4 −3 − 12 + 12 −5 − 15 + 16 = 2 −3 −5 −1 4 5 1 −3 −4 = 𝑨 Since 𝑨𝟐 = 𝑨, so 𝐴 is an idempotent matrix.  Nilpotent Matrix: A matrix 𝐴 is called nilpotent if 𝑨𝒑 = 𝟎 where 𝒑 ∈ 𝑵. Example: 1 −1 1 −1 is a nilpotent matrix.
  • 73.  Show that 𝑨 = 𝟏 −𝟑 −𝟒 −𝟏 𝟑 𝟒 𝟏 −𝟑 −𝟒 is a nilpotent matrix. Solution: Here, 𝐴2 = 𝐴. 𝐴 = 𝟏 −𝟑 −𝟒 −𝟏 𝟑 𝟒 𝟏 −𝟑 −𝟒 . 𝟏 −𝟑 −𝟒 −𝟏 𝟑 𝟒 𝟏 −𝟑 −𝟒 = 𝟏 + 𝟑 − 𝟒 −𝟑 − 𝟗 + 𝟏𝟐 −𝟒 − 𝟏𝟐 + 𝟏𝟔 −𝟏 − 𝟑 + 𝟒 𝟑 + 𝟗 − 𝟏𝟐 𝟒 + 𝟏𝟐 − 𝟏𝟔 𝟏 + 𝟑 − 𝟒 −𝟑 − 𝟗 + 𝟏𝟐 −𝟒 − 𝟏𝟐 + 𝟏𝟔 = 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 = 0 Since 𝑨𝟐 = 𝟎, so 𝐴 is a nilpotent matrix.
  • 74.  Orthogonal Matrix: A matrix 𝑨 is called orthogonal if 𝑨𝑨𝑻 = 𝑰. Example: 1 3 −1 2 2 2 −1 2 2 2 −1 is an orthogonal matrix.  Show that 𝑨 = 𝟏 𝟑 −𝟏 𝟐 𝟐 𝟐 −𝟏 𝟐 𝟐 𝟐 −𝟏 is an orthogonal matrix. Solution: Here, 𝐴𝑇 = 1 3 −1 2 2 2 −1 2 2 2 −1 ∴ 𝐴. 𝐴𝑇 = 1 3 −1 2 2 2 −1 2 2 2 −1 . 1 3 −1 2 2 2 −1 2 2 2 −1
  • 75. = 1 9 1 + 4 + 4 −2 − 2 + 4 −2 + 4 − 2 −2 − 2 + 4 4 + 1 + 4 4 − 2 − 2 −2 + 4 − 2 4 − 2 − 2 4 + 4 + 1 = 1 9 9 0 0 0 9 0 0 0 9 = 1 0 0 0 1 0 0 0 1 = 𝑰 Since 𝑨𝑨𝑻 = 𝑰, so 𝐴 is an orthogonal matrix.
  • 76.  If 𝐴 = 1 2 3 −2 5 −1 2 3 4 and 𝐵 = −1 5 3 7 −2 1 2 0 −3 then show that 𝑨𝑩 𝑻 = 𝑩𝑻𝑨𝑻. Solution: Here, 𝐴𝐵 = 1 2 3 −2 5 −1 2 3 4 −1 5 3 7 −2 1 2 0 −3 = −1 + 14 + 6 5 − 4 + 0 3 + 2 − 9 2 + 35 − 2 −10 − 10 + 0 −6 + 5 + 3 −2 + 21 + 8 10 − 6 + 0 6 + 3 − 12 = 19 1 −4 35 −20 2 27 4 −3
  • 77. ∴ 𝐴𝐵 𝑇 = 19 1 −4 35 −20 2 27 4 −3 𝑇 = 19 35 27 1 −20 4 −4 2 −3 Now, 𝐴𝑇 = 1 2 3 −2 5 −1 2 3 4 𝑇 = 1 −2 2 2 5 3 3 −1 4 𝐵𝑇 = −1 5 3 7 −2 1 2 0 −3 𝑇 = −1 7 2 5 −2 0 3 1 −3 ∴ 𝐵𝑇 𝐴𝑇 = −1 7 2 5 −2 0 3 1 −3 1 −2 2 2 5 3 3 −1 4
  • 78. = −1 + 14 + 6 2 + 35 − 2 −2 + 21 + 8 5 − 4 + 0 −10 − 10 + 0 10 − 6 + 0 3 + 2 − 9 −6 + 5 + 3 6 + 3 − 12 = 19 35 27 1 −20 4 −4 2 −3 = 𝑨𝑩 𝑻 ∴ 𝑨𝑩 𝑻= 𝑩𝑻𝑨𝑻.