Geometric Series and
Geometric Sequences
Lesson 6
Prepared by:
JERREY G. LUNGAY
Essential Question: What is a sequence
and how do I find its terms and sums?
How do I find the sum & terms of
geometric sequences and series?
Geometric Sequences
Geometric Sequence– a sequence whose
consecutive terms have a common ratio.
A sequence is geometric if the ratios of
consecutive terms are the same.
Geometric Sequence
3
2 4
1 2 3
.....
a
a a
r
a a a
   
The number r is the common ratio.
2, 4, 8, 16, …, formula?, …
Ex. 1
12, 36, 108, 324, …, formula?, …
1, 4, 9, 16, …, formula? , …
Are these geometric?
1 1 1 1
, , , ,..., ?,...
3 9 27 61
formula
 
Yes 2n
Yes
4(3)n
No n2
No
(-1)n /3
Finding the nth term of a Geometric
Sequence
an = a1rn – 1
r
a
a
 2
1
Ex. 2b
Write the first five terms of the
geometric sequence whose first
term is a1 = 9 and r = (1/3).
9 3 1
1
3
1
9
, , , ,
Ex. 3
Find the 15th term of the geometric
sequence whose first term is 20 and
whose common ratio is 1.05
an = a1rn – 1
a15 = (20)(1.05)15 – 1
a15 = 39.599
Ex. 4 Find a formula for the nth term.
What is the 9th term?
5, 15, 45, …
an = 5(3)n – 1
an = 5(3)n – 1
a9 = 5(3)8
a9 = 32805
an = a1rn – 1
s
a r
r
n
n



1 1
1
( )
sum of a finite geometric series
Ex. 6 Find the sum of the first 12 terms of the
series 4(0.3)n
= 4(0.3)1 + 4(0.3)2 + 4(0.3)3 + … + 4(0.3)12
r
r
a
a
S
n
n



1
1
1
3
.
0
1
)
3
.
0
(
2
.
1
2
.
1 12
12



S = 1.714
Ex. 7 Find the sum of the first 5 terms of the
series 5/3 + 5 + 15 + …
r = 5/(5/3) = 3
r
r
a
a
S
n
n



1
1
1
3
1
)
3
(
3
5
3
5 5
5



S
= 605/3
1, 4, 7, 10, 13, …. Infinite Arithmetic No Sum
3, 7, 11, …, 51 Finite Arithmetic  
n 1 n
n
S a a
2
 
1, 2, 4, …, 64 Finite Geometric
 
n
1
n
a r 1
S
r 1



1, 2, 4, 8, … Infinite Geometric
r > 1
r < -1
No Sum
1 1 1
3,1, , , ...
3 9 27
Infinite Geometric
-1 < r < 1
1
a
S
1 r


Find the sum, if possible:
1 1 1
1 ...
2 4 8
   
1 1
1
2 4
r
1
1 2
2
   1 r 1 Yes
    
1
a 1
S 2
1
1 r
1
2
  


Find the sum, if possible:
2 1 1 1
...
3 3 6 12
   
1 1
1
3 6
r
2 1 2
3 3
   1 r 1 Yes
    
1
2
a 4
3
S
1
1 r 3
1
2
  


Find the sum, if possible:
2 4 8
...
7 7 7
  
4 8
7 7
r 2
2 4
7 7
   1 r 1 No
    
NO SUM
Find the sum, if possible:
5
10 5 ...
2
  
5
5 1
2
r
10 5 2
   1 r 1 Yes
    
1
a 10
S 20
1
1 r
1
2
  


Thank You for Listening


Week-7-SLM-Geometric-Series-and-Sequences.ppt

  • 1.
    Geometric Series and GeometricSequences Lesson 6 Prepared by: JERREY G. LUNGAY
  • 2.
    Essential Question: Whatis a sequence and how do I find its terms and sums? How do I find the sum & terms of geometric sequences and series?
  • 3.
    Geometric Sequences Geometric Sequence–a sequence whose consecutive terms have a common ratio.
  • 4.
    A sequence isgeometric if the ratios of consecutive terms are the same. Geometric Sequence 3 2 4 1 2 3 ..... a a a r a a a     The number r is the common ratio.
  • 5.
    2, 4, 8,16, …, formula?, … Ex. 1 12, 36, 108, 324, …, formula?, … 1, 4, 9, 16, …, formula? , … Are these geometric? 1 1 1 1 , , , ,..., ?,... 3 9 27 61 formula   Yes 2n Yes 4(3)n No n2 No (-1)n /3
  • 6.
    Finding the nthterm of a Geometric Sequence an = a1rn – 1 r a a  2 1
  • 7.
    Ex. 2b Write thefirst five terms of the geometric sequence whose first term is a1 = 9 and r = (1/3). 9 3 1 1 3 1 9 , , , ,
  • 8.
    Ex. 3 Find the15th term of the geometric sequence whose first term is 20 and whose common ratio is 1.05 an = a1rn – 1 a15 = (20)(1.05)15 – 1 a15 = 39.599
  • 9.
    Ex. 4 Finda formula for the nth term. What is the 9th term? 5, 15, 45, … an = 5(3)n – 1 an = 5(3)n – 1 a9 = 5(3)8 a9 = 32805 an = a1rn – 1
  • 10.
    s a r r n n    1 1 1 () sum of a finite geometric series
  • 11.
    Ex. 6 Findthe sum of the first 12 terms of the series 4(0.3)n = 4(0.3)1 + 4(0.3)2 + 4(0.3)3 + … + 4(0.3)12 r r a a S n n    1 1 1 3 . 0 1 ) 3 . 0 ( 2 . 1 2 . 1 12 12    S = 1.714
  • 12.
    Ex. 7 Findthe sum of the first 5 terms of the series 5/3 + 5 + 15 + … r = 5/(5/3) = 3 r r a a S n n    1 1 1 3 1 ) 3 ( 3 5 3 5 5 5    S = 605/3
  • 13.
    1, 4, 7,10, 13, …. Infinite Arithmetic No Sum 3, 7, 11, …, 51 Finite Arithmetic   n 1 n n S a a 2   1, 2, 4, …, 64 Finite Geometric   n 1 n a r 1 S r 1    1, 2, 4, 8, … Infinite Geometric r > 1 r < -1 No Sum 1 1 1 3,1, , , ... 3 9 27 Infinite Geometric -1 < r < 1 1 a S 1 r  
  • 14.
    Find the sum,if possible: 1 1 1 1 ... 2 4 8     1 1 1 2 4 r 1 1 2 2    1 r 1 Yes      1 a 1 S 2 1 1 r 1 2     
  • 15.
    Find the sum,if possible: 2 1 1 1 ... 3 3 6 12     1 1 1 3 6 r 2 1 2 3 3    1 r 1 Yes      1 2 a 4 3 S 1 1 r 3 1 2     
  • 16.
    Find the sum,if possible: 2 4 8 ... 7 7 7    4 8 7 7 r 2 2 4 7 7    1 r 1 No      NO SUM
  • 17.
    Find the sum,if possible: 5 10 5 ... 2    5 5 1 2 r 10 5 2    1 r 1 Yes      1 a 10 S 20 1 1 r 1 2     
  • 18.
    Thank You forListening 