SlideShare a Scribd company logo
Linked	
  (Open)	
  Data	
  
VU	
  Web	
  Engineering	
  /	
  TU	
  Wien	
  
May	
  27th	
  2013	
  
	
  
-­‐	
  Bernhard	
  Haslhofer	
  -­‐	
  	
  
About	
  me	
  
•  Since	
  03/2013	
  Postdoc	
  @	
  University	
  of	
  Vienna	
  
•  Previously	
  
–  Lecturer	
  &	
  Postdoc	
  @	
  Cornell	
  University,	
  NY,	
  USA	
  
–  Univ.	
  Ass	
  @	
  University	
  of	
  Vienna	
  
–  …	
  
–  WINF	
  TU	
  Wien	
  2003,	
  INF	
  TU	
  Wien	
  2006	
  
2
About	
  me	
  
•  Research	
  Interests	
  
– Web	
  informaZon	
  systems	
  
– Globally	
  connected,	
  Web-­‐based	
  data	
  networks	
  
•  Structured	
  Web	
  Data	
  (Linked	
  Data,	
  schema.org,	
  
(FB)	
  Open	
  Graph	
  Protocol,	
  etc.)	
  
•  Knowledge	
  Graphs	
  (e.g.,	
  DBpedia,	
  Freebase)	
  
•  AnnotaZons	
  /	
  SemanZc	
  Tagging	
  
•  Quality	
  in	
  Open	
  Data	
  Networks	
  
•  ….	
  
3
My	
  teaching	
  philosophy	
  
•  A	
  course	
  is	
  a	
  collaboraZve	
  
experience	
  
•  Instructor	
  provides	
  
–  Structure	
  
–  FoundaZon	
  for	
  learning	
  
•  Students	
  
–  Engage,	
  contribute,	
  
challenge	
  
–  Ask	
  quesZons!	
  
–  Think	
  criZcally!	
  
–  Disagree	
  if	
  appropriate!	
  
4	

Aren’t we beyond that?
My	
  plan	
  for	
  today…	
  
•  Linked	
  (Open)	
  Data	
  ???	
  
	
  
•  Linked	
  Data	
  –	
  Intro	
  &	
  Overview	
  
	
  
•  Linked	
  Data	
  -­‐	
  Technologies	
  
•  Recent	
  Trends	
  and	
  Developments	
  
•  QuesZons	
  /	
  Discussion	
  
5
Open	
  Data	
  
	
  
“Open	
  data	
  is	
  data	
  that	
  can	
  
be	
  freely	
  used,	
  reused	
  and	
  
redistributed	
  by	
  anyone	
  -­‐	
  
subject	
  only,	
  at	
  most,	
  to	
  the	
  
requirement	
  to	
  a:ribute	
  and	
  
sharealike.”	
  
	
  
(Open	
  Data	
  Handbook,	
  2012,	
  
Open	
  Knowledge	
  FoundaZon)	
  
6
“Open”	
  Data	
  DefiniZon	
  
•  Availability	
  and	
  Access	
  
–  Data	
  must	
  be	
  available	
  as	
  a	
  whole	
  and	
  at	
  no	
  more	
  than	
  a	
  reasonable	
  
reproducZon	
  cost,	
  preferably	
  by	
  downloading	
  over	
  the	
  internet	
  
–  Data	
  must	
  also	
  be	
  available	
  in	
  a	
  convenient	
  and	
  modifiable	
  form	
  
•  Reuse	
  and	
  RedistribuZon	
  
–  Data	
  must	
  be	
  provided	
  under	
  terms	
  that	
  permit	
  reuse	
  and	
  
redistribuZon	
  including	
  the	
  intermixing	
  with	
  other	
  datasets.	
  
•  Universal	
  ParZcipaZon	
  
–  Everyone	
  must	
  be	
  able	
  to	
  use,	
  reuse	
  and	
  redistribute	
  (no	
  
discriminaZon)	
  
–  No	
  ‘non-­‐commercial’	
  restricZons	
  
(hip://opendefiniZon.org/okd/)	
  
	
  
7
Open	
  Data	
  Movement	
  
8	

Source: http://www.flickr.com/photos/jamescridland/613445810/sizes/l/in/photo
QuesZons	
  
•  Why	
  should	
  the	
  open	
  data	
  principles	
  sound	
  
familiar	
  to	
  sokware	
  engineers?	
  
•  Any	
  known	
  “open	
  data”	
  examples?	
  
9
Open	
  Government	
  Data	
  Examples	
  
10
Open	
  Government	
  Data	
  Examples	
  
11
Open	
  Government	
  Data	
  Examples	
  
12
Open	
  Government	
  Data	
  Examples	
  
13
Open	
  Government	
  Data	
  Apps	
  
14
Open	
  (Government)	
  Data	
  Apps	
  
15
Open	
  Government	
  Data	
  in	
  Journalism	
  
16
(Open)	
  Data	
  Journalism	
  
17
Open	
  Data	
  in	
  Science	
  
18
Open	
  Data	
  in	
  Science	
  
19
Linked	
  Data	
  
	
  
“A	
  method	
  of	
  publishing	
  structured	
  data	
  so	
  
that	
  it	
  can	
  be	
  interlinked	
  and	
  become	
  more	
  
useful.	
  
	
  
It	
  builds	
  upon	
  standard	
  Web	
  technologies	
  
such	
  as	
  HTTP,	
  RDF	
  and	
  URIs,	
  but	
  rather	
  
than	
  using	
  them	
  to	
  serve	
  web	
  pages	
  for	
  
human	
  readers,	
  it	
  extends	
  them	
  to	
  share	
  
informaLon	
  in	
  a	
  way	
  that	
  can	
  be	
  read	
  
automaLcally	
  by	
  computers.	
  
	
  
This	
  enables	
  data	
  from	
  different	
  sources	
  to	
  
be	
  connected	
  and	
  queried”	
  
	
  
[Bizer,	
  Heath,	
  Berners-­‐Lee	
  2009]	
  
20
Linked	
  Open	
  Data	
  
21	

Open Data + Linked Data = Linked Open Data
My	
  plan	
  for	
  today…	
  
•  Linked	
  (Open)	
  Data	
  ???	
  
•  Linked	
  Data	
  –	
  Intro	
  &	
  Overview	
  
	
  
•  Linked	
  Data	
  -­‐	
  Technologies	
  
•  Recent	
  Trends	
  and	
  Developments	
  
•  QuesZons	
  /	
  Discussion	
  
22
Linked	
  Data	
  context...	
  
http://www.youtube.com/watch?v=5Cb3ik6zP2I
Why	
  Linked	
  Data?	
  
Why	
  Linked	
  Data?	
  
Why	
  Linked	
  Data?	
  
Web	
  Architecture	
  
Web	
  Architecture	
  
•  A	
  set	
  of	
  simple	
  standards	
  
– Uniform	
  global	
  addressing	
  (URI)	
  
– Uniform	
  document	
  encoding	
  (HTML)	
  
– Uniform	
  transportaZon	
  (HTTP)	
  
•  Hyperlinks	
  connecZng	
  documents	
  
•  Works	
  preiy	
  well	
  for	
  accessing	
  and	
  exchanging	
  
documents	
  
	
  
But	
  someZmes	
  we	
  need	
  to	
  access	
  the	
  
underlying	
  structured	
  data.	
  
Web	
  Services	
  and	
  Web	
  APIs	
  
Source: http://www.blogperfume.com/new-27-circular-social-media-icons-in-3-sizes/
Web	
  Services	
  and	
  Web	
  APIs	
  
•  Each	
  Web	
  API	
  has	
  a	
  proprietary	
  interface	
  
•  Datasources	
  must	
  be	
  known	
  in	
  advance	
  
•  InformaZon	
  enZZes	
  (papers,	
  authors,	
  
subjects,	
  etc.)	
  are	
  oken	
  not	
  linked	
  
32	

Social Networking Sites as Walled Gardens by David Simonds
Linked	
  Data	
  Vision	
  
•  Publish	
  and	
  link	
  structured	
  data	
  on	
  the	
  Web	
  
•  Create	
  a	
  single	
  globally	
  connected	
  data	
  space	
  
based	
  on	
  the	
  Web	
  Architecture	
  
Web	
  of	
  Linked	
  Data	
  
•  A	
  set	
  of	
  simple	
  standards	
  
– Uniform	
  global	
  addressing	
  (URI)	
  
– Uniform	
  data	
  model	
  (RDF)	
  
– Uniform	
  transportaZon	
  (HTTP)	
  
•  RDF	
  links	
  connecZng	
  enZZes	
  
•  Forms	
  a	
  global	
  data	
  space	
  and	
  facilitates	
  accessing	
  
and	
  exchanging	
  data	
  
	
  
What	
  is	
  Linked	
  Data?	
  
•  A	
  method	
  to	
  build	
  a	
  Web	
  of	
  Data	
  
•  Architectural	
  style,	
  set	
  of	
  standards	
  
Linking	
  Open	
  Data	
  Project	
  
•  A	
  W3C	
  community	
  project	
  with	
  the	
  goal	
  to	
  extend	
  the	
  Web	
  with	
  
a	
  data	
  commons	
  by	
  publishing	
  various	
  open	
  data	
  sets	
  as	
  RDF	
  on	
  
the	
  Web	
  and	
  by	
  serng	
  links	
  between	
  data	
  items	
  from	
  different	
  
sources	
  
Linked (Open) Data
Linked (Open) Data
Linked (Open) Data
Linked (Open) Data
Linked (Open) Data
~$ curl -I -H "Accept: text/turtle" http://dbpedia.org/resource/The_Shining_(film)
~$ curl -H "Accept: text/turtle" http://dbpedia.org/data/The_Shining_(film).ttl
~$ sudo apt-get install raptor (Linux)
~$ brew install raptor (Mac OSX)
~$ rapper http://dbpedia.org/resource/The_Shining_(film)
Linked (Open) Data
Linked (Open) Data
Linked (Open) Data
Linked (Open) Data
Linked (Open) Data
Linked (Open) Data
Linked (Open) Data
My	
  plan	
  for	
  today…	
  
•  Linked	
  (Open)	
  Data	
  ???	
  
•  Linked	
  Data	
  –	
  Intro	
  &	
  Overview	
  
	
  
•  Linked	
  Data	
  -­‐	
  Technologies	
  
•  Recent	
  Trends	
  and	
  Developments	
  
•  QuesZons	
  /	
  Discussion	
  
50
Web	
  /	
  REST	
  Basics	
  -­‐	
  Recap	
  
•  Key	
  Architectural	
  Web	
  Components	
  
– IdenZficaZon:	
  URI	
  
– InteracZon:	
  HTTP	
  
– Standardized	
  Document	
  Formats:	
  HTML,	
  XML,	
  
JSON,	
  etc.	
  
51
Web	
  /	
  REST	
  Basics	
  -­‐	
  Recap	
  
•  URIs	
  idenZfy	
  interesZng	
  things	
  
– documents	
  on	
  the	
  Web	
  
– relevant	
  aspects	
  of	
  a	
  data	
  set	
  
– phone	
  numbers,	
  Skype	
  usernames,	
  e-­‐mail	
  
addresses	
  
•  HTTP	
  URIs	
  name	
  and	
  address	
  resources	
  in	
  
Web-­‐based	
  systems	
  
52
Web	
  /	
  REST	
  Basics	
  -­‐	
  Recap	
  
•  A	
  resource	
  can	
  have	
  
several	
  representaZons	
  
•  RepresentaZons	
  can	
  be	
  
in	
  any	
  format	
  
–  HTML	
  
–  XML	
  
–  JSON	
  
–  …	
  
URI
Resource
Representation
Plain Text
text/plain
http://example.com/someURI
Representation
HTML
text/html
Representation
JSON
text/json
53
Web	
  /	
  REST	
  Basics	
  -­‐	
  Recap	
  
•  We	
  deal	
  with	
  resource	
  representaZons	
  
–  not	
  the	
  resources	
  themselves	
  (pass	
  by	
  value)	
  
–  representaZons	
  can	
  be	
  in	
  any	
  format	
  (defined	
  by	
  media-­‐type)	
  
•  Each	
  resource	
  implements	
  a	
  standard	
  uniform	
  interface	
  (HTTP)	
  
–  a	
  small	
  set	
  of	
  verbs	
  applied	
  to	
  a	
  large	
  set	
  of	
  nouns	
  
–  verbs	
  are	
  universal	
  and	
  not	
  invented	
  on	
  a	
  per-­‐applicaZon	
  basis	
  
Client Server
Logical
Resources
Physical
Resources
JSON
Resource Representations
Uniform
Interface
54
Web	
  /	
  REST	
  Basics	
  -­‐	
  Recap	
  
HTML,	
  
XHTML,	
  
...	
  
XML,	
  
JSON,	
  
...	
  
Transport and store data	

Display information	

55
Web	
  /	
  REST	
  Basics	
  -­‐	
  Recap	
  
•  Example	
  Web	
  Service	
  operaZons:	
  
– Publish	
  image	
  on	
  Flickr	
  
– Order	
  a	
  book	
  at	
  Amazon	
  
– Post	
  a	
  message	
  on	
  your	
  friend’s	
  Facebook	
  wall	
  
– Update	
  user	
  photo	
  on	
  foursquare	
  
Web
Application A Application B
API	

56
RDF	
  
•  A	
  data	
  model	
  for	
  represenZng	
  data	
  on	
  the	
  Web	
  
•  Several	
  statements	
  (triples)	
  form	
  a	
  graph	
  
http://dbpedia.org/resource/
The_Shining_(film)
The Shining (film)
rdfs:label
闪灵 (电影)
rdfs:label
http://dbpedia.org/ontology/
Film
rdf:type
http://dbpedia.org/resource/
Jack_Nicholson
dbpprop:starring
http://xmlns.com/foaf/0.1/
Person
rdf:type
1937-04-22 Jack Nicholson
dbpedia-owl:birthDate
foaf:name
RDF/XML,	
  N3,	
  Turtle,	
  etc.	
  
•  Data	
  formats	
  for	
  RDF	
  resource	
  
representaZons	
  
•  Used	
  to	
  transfer	
  RDF	
  data	
  between	
  apps	
  
RDFS	
  
•  A	
  language	
  for	
  describing	
  the	
  syntax	
  and	
  
semanZcs	
  of	
  schemas/vocabularies	
  in	
  a	
  
machine-­‐understandable	
  way	
  
http://dbpedia.org/ontology/
Film
http://dbpedia.org/ontology/
Work
rdfs:subClassOf
OWL	
  
•  A	
  more	
  expressive	
  (formal)	
  language	
  for	
  defining	
  the	
  
syntax	
  and	
  semanZcs	
  of	
  schemas/vocabularies	
  
•  Solves	
  RDFS	
  shortcomings	
  but	
  introduces	
  quite	
  some	
  
complexity	
  
http://dbpedia.org/ontology/
starring
http://www.w3.org/2002/07/
owl#ObjectProperty
http://dbpedia.org/ontology/
Person
http://dbpedia.org/ontology/
Work
starring
rdf:type
rdfs:range
rdfs:domain
rdfs:label
SKOS	
  
•  A	
  language	
  for	
  describing	
  controlled	
  vocabularies	
  
(taxonomies,	
  thesauri,	
  classificaZon	
  schemes)	
  
http://dbpedia.org/resource/
The_Shining_(film)
http://dbpedia.org/resource/
Category:1980s_horror_films
http://dbpedia.org/resource/
Category:1980s_films
http://www.w3.org/2004/02/
skos/core#Concept
dcterms:subject rdf:type
skos:broader
rdf:type
SPARQL	
  
•  A	
  query	
  language	
  and	
  protocol	
  for	
  
accessing	
  RDF	
  data	
  on	
  the	
  Web	
  
SELECT DISTINCT ?x!
WHERE {!
!?x dcterms:subject !
!<http://dbpedia.org/resource/Category:1980s_horror_films> .!
}!
Database	
  Systems	
  Analogy...	
  
Purpose	
   Rela,onal	
  Database	
  Management	
  
Systems	
  (RDBMS)	
  
Linked	
  Data	
  Technologies	
  
Query	
  
Schema	
  DefiniZon	
  
Language	
  
Data	
  
RepresentaZon	
  
IdenZfiers	
  
63	

?
Database	
  Systems	
  Analogy...	
  
Purpose	
   Rela,onal	
  Database	
  Management	
  
Systems	
  (RDBMS)	
  
Linked	
  Data	
  Technologies	
  
Query	
   SQL	
   SPARQL	
  
Schema	
  DefiniZon	
  
Language	
  
SQL	
  DDL	
   RDFS	
  /	
  OWL	
  
Data	
  
RepresentaZon	
  
RelaZonal	
  Model	
  /	
  Tables	
   RDF	
  /	
  Graph	
  
IdenZfiers	
   Primary	
  Keys	
  (numeric	
  sequences)	
   URI	
  
64
Publishing	
  Linked	
  Data	
  
•  DisZnguish	
  between	
  non-­‐informaZon	
  and	
  
informaZon	
  resource	
  
•  Sample	
  non-­‐informaZon	
  resource	
  
–  hip://dbpedia.org/resource/The_Shining_(film)	
  
•  Sample	
  informaZon	
  resource	
  
–  hip://dbpedia.org/page/The_Shining_(film)	
  -­‐	
  HTML	
  
–  hip://dbpedia.org/data/The_Shining_(film)	
  -­‐	
  RDF	
  
Publishing	
  Linked	
  Data	
  
GET http://dbpedia.org/resource/The_Shining_(film)
Accept: application/rdf+xml
303 See Other
Location: http://dbpedia.org/data/The_Shining_(film)
GET http://dbpedia.org/data/The_Shining_(film)
Accept: application/rdf+xml
200 OK
...
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF ...
Publishing	
  Large	
  RDF	
  Datasets	
  
•  Run	
  a	
  servlet	
  that	
  implements	
  the	
  303	
  
publishing	
  approach	
  
– for	
  non	
  informaZon	
  resources	
  
•  parse	
  Accept	
  Header	
  field	
  
•  Redirect	
  (303	
  See	
  Also)	
  to	
  corresponding	
  informaZon	
  
resource	
  
•  Generate	
  RDF	
  SerializaZon	
  dynamically	
  from	
  
underlying	
  data	
  storage	
  
My	
  plan	
  for	
  today…	
  
•  Linked	
  (Open)	
  Data	
  ???	
  
•  Linked	
  Data	
  –	
  Intro	
  &	
  Overview	
  
•  Linked	
  Data	
  -­‐	
  Technologies	
  
•  Recent	
  Trends	
  and	
  Developments	
  
•  QuesZons	
  /	
  Discussion	
  
68
Rich	
  Snippets	
  /	
  Microdata	
  
69
Microdata	
  (HTML5)	
  
•  A	
  very	
  young	
  HTML	
  5	
  proposiZon	
  that	
  extends	
  
Microformats	
  and	
  addresses	
  its	
  shortcomings	
  
•  Items	
  are	
  created	
  within	
  an	
  itemscope	
  
•  Every	
  item	
  is	
  assigned	
  an	
  arbitrary	
  number	
  of	
  
properZes	
  (itemprop)	
  and	
  relaZonships	
  (itemref)	
  
•  Uses	
  global	
  idenZfiers	
  for	
  typing	
  and	
  naming	
  items	
  
Microdata	
  Example	
  
<div itemscope itemtype="http://schema.org/Person">!
!
!<span itemprop="name">Bernhard Haslhofer</span>,!
!<span itemprop="nickname">behas</span>. !
!<div !itemprop="address”!
! !itemscope itemtype="http://schema.org/PostalAddress">!
! !<span itemprop="streetAddress">301 College Avenue</span>!
! !<span itemprop=”addressLocality">Ithaca</span>!
! !<span itemprop=”addressCountry">United States</span>!
!</div>!
</div>!
Schema.org	
  
Linked (Open) Data
schema.org	
  /	
  Microdata	
  example	
  
<h1>Pirates of the Carribean: On Stranger Tides (2011)</h1>!
Jack Sparrow and Barbossa embark on a quest to find the
elusive fountain!
of youth, only to discover that Blackbeard and his daughter
are after it too.!
!
Director: Rob Marshall!
Writers: Ted Elliott, Terry Rossio, and 7 more credits!
Stars: Johnny Depp, Penelope Cruz, Ian McShane!
8/10 stars from 200 users. Reviews: 50.!
schema.org	
  /	
  Microdata	
  example	
  
schema.org	
  
•  Defines	
  
– a	
  number	
  of	
  types	
  (e.g,	
  person),	
  organized	
  in	
  an	
  
inheritance	
  hierarchy	
  
– a	
  number	
  of	
  properZes	
  (e.g.,	
  name)	
  
•  Extension	
  mechanisms	
  to	
  extend	
  the	
  schemas	
  
•  OWL	
  representaZon:	
  
hip://schema.org/docs/schemaorg.owl	
  
•  hip://schema.rdfs.org/index.html	
  
76
Open	
  Graph	
  Protocol	
  
Linked (Open) Data
79
Linked (Open) Data
Linked (Open) Data
Google	
  Knowledge	
  Graph	
  
•  Enables	
  search	
  for	
  things	
  (people,	
  places)	
  that	
  
Google	
  knows	
  about	
  
•  Rooted	
  in	
  public	
  sources	
  such	
  as	
  Freebase,	
  
Wikipedia,	
  CIA	
  World	
  Factbook,	
  etc.	
  
– augmented	
  to	
  500M	
  objects,	
  3.5B	
  facts	
  and	
  
relaZonship	
  
•  Next	
  generaZon	
  search	
  (semanZc	
  index)	
  
82
83
84
85
86
87
Readings	
  
•  Tom	
  Heath	
  and	
  ChrisZan	
  Bizer	
  (2011)	
  Linked	
  Data:	
  
Evolving	
  the	
  Web	
  into	
  a	
  Global	
  Data	
  Space	
  (1st	
  ediZon).	
  
Synthesis	
  Lectures	
  on	
  the	
  SemanZc	
  Web:	
  Theory	
  and	
  
Technology,	
  1:1,	
  1-­‐136.	
  Morgan	
  &	
  Claypool.	
  
•  Jason	
  Ronallo:	
  HTML5	
  Microdata	
  and	
  Schema.org	
  
hip://journal.code4lib.org/arZcles/6400	
  

More Related Content

What's hot

McDanold-1-jun15
McDanold-1-jun15McDanold-1-jun15
Big Linked Data - Creating Training Curricula
Big Linked Data - Creating Training CurriculaBig Linked Data - Creating Training Curricula
Big Linked Data - Creating Training Curricula
EUCLID project
 
American Art Collaborative Linked Open Data presentation to "The Networked Cu...
American Art Collaborative Linked Open Data presentation to "The Networked Cu...American Art Collaborative Linked Open Data presentation to "The Networked Cu...
American Art Collaborative Linked Open Data presentation to "The Networked Cu...
American Art Collaborative
 
Linked Open Data at SAAM: Past, Present, and Future
Linked Open Data at SAAM: Past, Present, and FutureLinked Open Data at SAAM: Past, Present, and Future
Linked Open Data at SAAM: Past, Present, and Future
Sara Snyder
 
The Blossoming of the Semantic Web
The Blossoming of the Semantic WebThe Blossoming of the Semantic Web
The Blossoming of the Semantic Web
American Art Collaborative
 
Is Linked Open Data the way forward?
Is Linked Open Data the way forward?Is Linked Open Data the way forward?
Is Linked Open Data the way forward?
American Art Collaborative
 
Delivering Linked Data Training to Data Science Practitioners
Delivering Linked Data Training to Data Science PractitionersDelivering Linked Data Training to Data Science Practitioners
Delivering Linked Data Training to Data Science Practitioners
Marin Dimitrov
 
Linked data for Enterprise Data Integration
Linked data for Enterprise Data IntegrationLinked data for Enterprise Data Integration
Linked data for Enterprise Data Integration
Sören Auer
 
A review of the state of the art in Machine Learning on the Semantic Web
A review of the state of the art in Machine Learning on the Semantic WebA review of the state of the art in Machine Learning on the Semantic Web
A review of the state of the art in Machine Learning on the Semantic Web
Simon Price
 
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
Ana Roxin
 

What's hot (10)

McDanold-1-jun15
McDanold-1-jun15McDanold-1-jun15
McDanold-1-jun15
 
Big Linked Data - Creating Training Curricula
Big Linked Data - Creating Training CurriculaBig Linked Data - Creating Training Curricula
Big Linked Data - Creating Training Curricula
 
American Art Collaborative Linked Open Data presentation to "The Networked Cu...
American Art Collaborative Linked Open Data presentation to "The Networked Cu...American Art Collaborative Linked Open Data presentation to "The Networked Cu...
American Art Collaborative Linked Open Data presentation to "The Networked Cu...
 
Linked Open Data at SAAM: Past, Present, and Future
Linked Open Data at SAAM: Past, Present, and FutureLinked Open Data at SAAM: Past, Present, and Future
Linked Open Data at SAAM: Past, Present, and Future
 
The Blossoming of the Semantic Web
The Blossoming of the Semantic WebThe Blossoming of the Semantic Web
The Blossoming of the Semantic Web
 
Is Linked Open Data the way forward?
Is Linked Open Data the way forward?Is Linked Open Data the way forward?
Is Linked Open Data the way forward?
 
Delivering Linked Data Training to Data Science Practitioners
Delivering Linked Data Training to Data Science PractitionersDelivering Linked Data Training to Data Science Practitioners
Delivering Linked Data Training to Data Science Practitioners
 
Linked data for Enterprise Data Integration
Linked data for Enterprise Data IntegrationLinked data for Enterprise Data Integration
Linked data for Enterprise Data Integration
 
A review of the state of the art in Machine Learning on the Semantic Web
A review of the state of the art in Machine Learning on the Semantic WebA review of the state of the art in Machine Learning on the Semantic Web
A review of the state of the art in Machine Learning on the Semantic Web
 
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
 

Viewers also liked

Old Maps, Annotations, and Open Data Networks
Old Maps, Annotations, and Open Data NetworksOld Maps, Annotations, and Open Data Networks
Old Maps, Annotations, and Open Data Networks
Bernhard Haslhofer
 
Maping america
Maping americaMaping america
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Bernhard Haslhofer
 
Deep Mapping
Deep MappingDeep Mapping
Deep Mapping
gtritchroman
 
Digimap and GIS teaching at Lancaster University - Geoforum 2016 - Duncan Why...
Digimap and GIS teaching at Lancaster University - Geoforum 2016 - Duncan Why...Digimap and GIS teaching at Lancaster University - Geoforum 2016 - Duncan Why...
Digimap and GIS teaching at Lancaster University - Geoforum 2016 - Duncan Why...
EDINA, University of Edinburgh
 
New Cartography in Digimap - Geoforum 2016 - Tim Urwin
New Cartography in Digimap - Geoforum 2016 - Tim UrwinNew Cartography in Digimap - Geoforum 2016 - Tim Urwin
New Cartography in Digimap - Geoforum 2016 - Tim Urwin
EDINA, University of Edinburgh
 

Viewers also liked (6)

Old Maps, Annotations, and Open Data Networks
Old Maps, Annotations, and Open Data NetworksOld Maps, Annotations, and Open Data Networks
Old Maps, Annotations, and Open Data Networks
 
Maping america
Maping americaMaping america
Maping america
 
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
 
Deep Mapping
Deep MappingDeep Mapping
Deep Mapping
 
Digimap and GIS teaching at Lancaster University - Geoforum 2016 - Duncan Why...
Digimap and GIS teaching at Lancaster University - Geoforum 2016 - Duncan Why...Digimap and GIS teaching at Lancaster University - Geoforum 2016 - Duncan Why...
Digimap and GIS teaching at Lancaster University - Geoforum 2016 - Duncan Why...
 
New Cartography in Digimap - Geoforum 2016 - Tim Urwin
New Cartography in Digimap - Geoforum 2016 - Tim UrwinNew Cartography in Digimap - Geoforum 2016 - Tim Urwin
New Cartography in Digimap - Geoforum 2016 - Tim Urwin
 

Similar to Linked (Open) Data

Linked open data project
Linked open data projectLinked open data project
Linked open data project
Faathima Fayaza
 
The Web of Data: The W3C Semantic Web Initiative
The Web of Data: The W3C Semantic Web InitiativeThe Web of Data: The W3C Semantic Web Initiative
The Web of Data: The W3C Semantic Web Initiative
National Information Standards Organization (NISO)
 
Linked Data
Linked DataLinked Data
Linked Data
Anja Jentzsch
 
NISO Webinar: Library Linked Data: From Vision to Reality
NISO Webinar: Library Linked Data: From Vision to RealityNISO Webinar: Library Linked Data: From Vision to Reality
NISO Webinar: Library Linked Data: From Vision to Reality
National Information Standards Organization (NISO)
 
Introduction to linked data
Introduction to linked dataIntroduction to linked data
Introduction to linked data
Laura Po
 
Breaking Down Walls in Enterprise with Social Semantics
Breaking Down Walls in Enterprise with Social SemanticsBreaking Down Walls in Enterprise with Social Semantics
Breaking Down Walls in Enterprise with Social Semantics
John Breslin
 
Introduction to APIs and Linked Data
Introduction to APIs and Linked DataIntroduction to APIs and Linked Data
Introduction to APIs and Linked Data
Adrian Stevenson
 
Linked Data (1st Linked Data Meetup Malmö)
Linked Data (1st Linked Data Meetup Malmö)Linked Data (1st Linked Data Meetup Malmö)
Linked Data (1st Linked Data Meetup Malmö)
Anja Jentzsch
 
Linked Data for the Masses: The approach and the Software
Linked Data for the Masses: The approach and the SoftwareLinked Data for the Masses: The approach and the Software
Linked Data for the Masses: The approach and the Software
IMC Technologies
 
Linked Energy Data Generation
Linked Energy Data GenerationLinked Energy Data Generation
Linked Energy Data Generation
Filip Radulovic
 
Cloud-based Linked Data Management for Self-service Application Development
Cloud-based Linked Data Management for Self-service Application DevelopmentCloud-based Linked Data Management for Self-service Application Development
Cloud-based Linked Data Management for Self-service Application Development
Peter Haase
 
Linked Data at the OU - the story so far
Linked Data at the OU - the story so farLinked Data at the OU - the story so far
Linked Data at the OU - the story so far
Enrico Daga
 
Scaling up Linked Data
Scaling up Linked DataScaling up Linked Data
Scaling up Linked Data
Marin Dimitrov
 
Linked Open Data for Cultural Heritage
Linked Open Data for Cultural HeritageLinked Open Data for Cultural Heritage
Linked Open Data for Cultural Heritage
Noreen Whysel
 
Linked data 20171106
Linked data 20171106Linked data 20171106
Linked data 20171106
Synaptica, LLC
 
Linked data and the future of libraries
Linked data and the future of librariesLinked data and the future of libraries
Linked data and the future of libraries
Regan Harper
 
Hide the Stack: Toward Usable Linked Data
Hide the Stack:Toward Usable Linked DataHide the Stack:Toward Usable Linked Data
Hide the Stack: Toward Usable Linked Data
aba-sah
 
Scaling up Linked Data
Scaling up Linked DataScaling up Linked Data
Scaling up Linked Data
EUCLID project
 
Alamw15 VIVO
Alamw15 VIVOAlamw15 VIVO
Alamw15 VIVO
Kristi Holmes
 
FAIR data: LOUD for all audiences
FAIR data: LOUD for all audiencesFAIR data: LOUD for all audiences
FAIR data: LOUD for all audiences
Alessandro Adamou
 

Similar to Linked (Open) Data (20)

Linked open data project
Linked open data projectLinked open data project
Linked open data project
 
The Web of Data: The W3C Semantic Web Initiative
The Web of Data: The W3C Semantic Web InitiativeThe Web of Data: The W3C Semantic Web Initiative
The Web of Data: The W3C Semantic Web Initiative
 
Linked Data
Linked DataLinked Data
Linked Data
 
NISO Webinar: Library Linked Data: From Vision to Reality
NISO Webinar: Library Linked Data: From Vision to RealityNISO Webinar: Library Linked Data: From Vision to Reality
NISO Webinar: Library Linked Data: From Vision to Reality
 
Introduction to linked data
Introduction to linked dataIntroduction to linked data
Introduction to linked data
 
Breaking Down Walls in Enterprise with Social Semantics
Breaking Down Walls in Enterprise with Social SemanticsBreaking Down Walls in Enterprise with Social Semantics
Breaking Down Walls in Enterprise with Social Semantics
 
Introduction to APIs and Linked Data
Introduction to APIs and Linked DataIntroduction to APIs and Linked Data
Introduction to APIs and Linked Data
 
Linked Data (1st Linked Data Meetup Malmö)
Linked Data (1st Linked Data Meetup Malmö)Linked Data (1st Linked Data Meetup Malmö)
Linked Data (1st Linked Data Meetup Malmö)
 
Linked Data for the Masses: The approach and the Software
Linked Data for the Masses: The approach and the SoftwareLinked Data for the Masses: The approach and the Software
Linked Data for the Masses: The approach and the Software
 
Linked Energy Data Generation
Linked Energy Data GenerationLinked Energy Data Generation
Linked Energy Data Generation
 
Cloud-based Linked Data Management for Self-service Application Development
Cloud-based Linked Data Management for Self-service Application DevelopmentCloud-based Linked Data Management for Self-service Application Development
Cloud-based Linked Data Management for Self-service Application Development
 
Linked Data at the OU - the story so far
Linked Data at the OU - the story so farLinked Data at the OU - the story so far
Linked Data at the OU - the story so far
 
Scaling up Linked Data
Scaling up Linked DataScaling up Linked Data
Scaling up Linked Data
 
Linked Open Data for Cultural Heritage
Linked Open Data for Cultural HeritageLinked Open Data for Cultural Heritage
Linked Open Data for Cultural Heritage
 
Linked data 20171106
Linked data 20171106Linked data 20171106
Linked data 20171106
 
Linked data and the future of libraries
Linked data and the future of librariesLinked data and the future of libraries
Linked data and the future of libraries
 
Hide the Stack: Toward Usable Linked Data
Hide the Stack:Toward Usable Linked DataHide the Stack:Toward Usable Linked Data
Hide the Stack: Toward Usable Linked Data
 
Scaling up Linked Data
Scaling up Linked DataScaling up Linked Data
Scaling up Linked Data
 
Alamw15 VIVO
Alamw15 VIVOAlamw15 VIVO
Alamw15 VIVO
 
FAIR data: LOUD for all audiences
FAIR data: LOUD for all audiencesFAIR data: LOUD for all audiences
FAIR data: LOUD for all audiences
 

More from Bernhard Haslhofer

Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Bernhard Haslhofer
 
Token Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate CurrenciesToken Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate Currencies
Bernhard Haslhofer
 
Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?
Bernhard Haslhofer
 
Measurements in Cryptocurrency Networks
Measurements in Cryptocurrency NetworksMeasurements in Cryptocurrency Networks
Measurements in Cryptocurrency Networks
Bernhard Haslhofer
 
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
 Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur... Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
Bernhard Haslhofer
 
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Bernhard Haslhofer
 
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency AnalyticsO Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
Bernhard Haslhofer
 
Mind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software EngineeringMind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software Engineering
Bernhard Haslhofer
 
GraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency EcosystemsGraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency Ecosystems
Bernhard Haslhofer
 
BITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection StrategiesBITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection Strategies
Bernhard Haslhofer
 
Bitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing DevelopmentsBitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing Developments
Bernhard Haslhofer
 
The value of open data and the OpenGLAM network
The value of open data and the OpenGLAM networkThe value of open data and the OpenGLAM network
The value of open data and the OpenGLAM network
Bernhard Haslhofer
 
Offene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische PerspektiveOffene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische Perspektive
Bernhard Haslhofer
 
Semantic Tagging on Historical Maps
Semantic Tagging on Historical MapsSemantic Tagging on Historical Maps
Semantic Tagging on Historical Maps
Bernhard Haslhofer
 
The Story behind Maphub
The Story behind MaphubThe Story behind Maphub
The Story behind Maphub
Bernhard Haslhofer
 
OpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup GrazOpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup Graz
Bernhard Haslhofer
 
Semantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the WebSemantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the Web
Bernhard Haslhofer
 
ResourceSync: Leveraging Sitemaps for Resource Synchronization
ResourceSync: Leveraging Sitemaps for Resource SynchronizationResourceSync: Leveraging Sitemaps for Resource Synchronization
ResourceSync: Leveraging Sitemaps for Resource Synchronization
Bernhard Haslhofer
 
Using SKOS Vocabularies for Improving Web Search
Using SKOS Vocabularies for Improving Web SearchUsing SKOS Vocabularies for Improving Web Search
Using SKOS Vocabularies for Improving Web Search
Bernhard Haslhofer
 

More from Bernhard Haslhofer (20)

Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
 
Token Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate CurrenciesToken Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate Currencies
 
Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?
 
Measurements in Cryptocurrency Networks
Measurements in Cryptocurrency NetworksMeasurements in Cryptocurrency Networks
Measurements in Cryptocurrency Networks
 
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
 Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur... Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
 
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
 
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency AnalyticsO Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
 
Mind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software EngineeringMind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software Engineering
 
GraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency EcosystemsGraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency Ecosystems
 
BITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection StrategiesBITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection Strategies
 
Bitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing DevelopmentsBitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing Developments
 
The value of open data and the OpenGLAM network
The value of open data and the OpenGLAM networkThe value of open data and the OpenGLAM network
The value of open data and the OpenGLAM network
 
Things, not Strings
Things, not StringsThings, not Strings
Things, not Strings
 
Offene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische PerspektiveOffene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische Perspektive
 
Semantic Tagging on Historical Maps
Semantic Tagging on Historical MapsSemantic Tagging on Historical Maps
Semantic Tagging on Historical Maps
 
The Story behind Maphub
The Story behind MaphubThe Story behind Maphub
The Story behind Maphub
 
OpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup GrazOpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup Graz
 
Semantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the WebSemantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the Web
 
ResourceSync: Leveraging Sitemaps for Resource Synchronization
ResourceSync: Leveraging Sitemaps for Resource SynchronizationResourceSync: Leveraging Sitemaps for Resource Synchronization
ResourceSync: Leveraging Sitemaps for Resource Synchronization
 
Using SKOS Vocabularies for Improving Web Search
Using SKOS Vocabularies for Improving Web SearchUsing SKOS Vocabularies for Improving Web Search
Using SKOS Vocabularies for Improving Web Search
 

Recently uploaded

Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Nicolás Lopéz
 
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdfAcumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
BrainSell Technologies
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
Zilliz
 
Google I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged SlidesGoogle I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged Slides
Google Developer Group - Harare
 
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and CitiesThe Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
Arpan Buwa
 
Semantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software DevelopmentSemantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software Development
Baishakhi Ray
 
It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...
Zilliz
 
Step-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From ScratchStep-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From Scratch
softsuave
 
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Zilliz
 
Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)
Debmalya Biswas
 
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
alexjohnson7307
 
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python CodebaseEuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
Jimmy Lai
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
Matthias Neugebauer
 
Acumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptxAcumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptx
BrainSell Technologies
 
The History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal EmbeddingsThe History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal Embeddings
Zilliz
 
Use Cases & Benefits of RPA in Manufacturing in 2024.pptx
Use Cases & Benefits of RPA in Manufacturing in 2024.pptxUse Cases & Benefits of RPA in Manufacturing in 2024.pptx
Use Cases & Benefits of RPA in Manufacturing in 2024.pptx
SynapseIndia
 
Feature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptxFeature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptx
ssuser1915fe1
 
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
FIDO Alliance
 
Integrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecaseIntegrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecase
shyamraj55
 
Communications Mining Series - Zero to Hero - Session 3
Communications Mining Series - Zero to Hero - Session 3Communications Mining Series - Zero to Hero - Session 3
Communications Mining Series - Zero to Hero - Session 3
DianaGray10
 

Recently uploaded (20)

Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024
 
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdfAcumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
 
Google I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged SlidesGoogle I/O Extended Harare Merged Slides
Google I/O Extended Harare Merged Slides
 
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and CitiesThe Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
 
Semantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software DevelopmentSemantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software Development
 
It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...
 
Step-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From ScratchStep-By-Step Process to Develop a Mobile App From Scratch
Step-By-Step Process to Develop a Mobile App From Scratch
 
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
 
Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)
 
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
 
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python CodebaseEuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
 
Acumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptxAcumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptx
 
The History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal EmbeddingsThe History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal Embeddings
 
Use Cases & Benefits of RPA in Manufacturing in 2024.pptx
Use Cases & Benefits of RPA in Manufacturing in 2024.pptxUse Cases & Benefits of RPA in Manufacturing in 2024.pptx
Use Cases & Benefits of RPA in Manufacturing in 2024.pptx
 
Feature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptxFeature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptx
 
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
 
Integrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecaseIntegrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecase
 
Communications Mining Series - Zero to Hero - Session 3
Communications Mining Series - Zero to Hero - Session 3Communications Mining Series - Zero to Hero - Session 3
Communications Mining Series - Zero to Hero - Session 3
 

Linked (Open) Data

  • 1. Linked  (Open)  Data   VU  Web  Engineering  /  TU  Wien   May  27th  2013     -­‐  Bernhard  Haslhofer  -­‐    
  • 2. About  me   •  Since  03/2013  Postdoc  @  University  of  Vienna   •  Previously   –  Lecturer  &  Postdoc  @  Cornell  University,  NY,  USA   –  Univ.  Ass  @  University  of  Vienna   –  …   –  WINF  TU  Wien  2003,  INF  TU  Wien  2006   2
  • 3. About  me   •  Research  Interests   – Web  informaZon  systems   – Globally  connected,  Web-­‐based  data  networks   •  Structured  Web  Data  (Linked  Data,  schema.org,   (FB)  Open  Graph  Protocol,  etc.)   •  Knowledge  Graphs  (e.g.,  DBpedia,  Freebase)   •  AnnotaZons  /  SemanZc  Tagging   •  Quality  in  Open  Data  Networks   •  ….   3
  • 4. My  teaching  philosophy   •  A  course  is  a  collaboraZve   experience   •  Instructor  provides   –  Structure   –  FoundaZon  for  learning   •  Students   –  Engage,  contribute,   challenge   –  Ask  quesZons!   –  Think  criZcally!   –  Disagree  if  appropriate!   4 Aren’t we beyond that?
  • 5. My  plan  for  today…   •  Linked  (Open)  Data  ???     •  Linked  Data  –  Intro  &  Overview     •  Linked  Data  -­‐  Technologies   •  Recent  Trends  and  Developments   •  QuesZons  /  Discussion   5
  • 6. Open  Data     “Open  data  is  data  that  can   be  freely  used,  reused  and   redistributed  by  anyone  -­‐   subject  only,  at  most,  to  the   requirement  to  a:ribute  and   sharealike.”     (Open  Data  Handbook,  2012,   Open  Knowledge  FoundaZon)   6
  • 7. “Open”  Data  DefiniZon   •  Availability  and  Access   –  Data  must  be  available  as  a  whole  and  at  no  more  than  a  reasonable   reproducZon  cost,  preferably  by  downloading  over  the  internet   –  Data  must  also  be  available  in  a  convenient  and  modifiable  form   •  Reuse  and  RedistribuZon   –  Data  must  be  provided  under  terms  that  permit  reuse  and   redistribuZon  including  the  intermixing  with  other  datasets.   •  Universal  ParZcipaZon   –  Everyone  must  be  able  to  use,  reuse  and  redistribute  (no   discriminaZon)   –  No  ‘non-­‐commercial’  restricZons   (hip://opendefiniZon.org/okd/)     7
  • 8. Open  Data  Movement   8 Source: http://www.flickr.com/photos/jamescridland/613445810/sizes/l/in/photo
  • 9. QuesZons   •  Why  should  the  open  data  principles  sound   familiar  to  sokware  engineers?   •  Any  known  “open  data”  examples?   9
  • 10. Open  Government  Data  Examples   10
  • 11. Open  Government  Data  Examples   11
  • 12. Open  Government  Data  Examples   12
  • 13. Open  Government  Data  Examples   13
  • 14. Open  Government  Data  Apps   14
  • 16. Open  Government  Data  in  Journalism   16
  • 18. Open  Data  in  Science   18
  • 19. Open  Data  in  Science   19
  • 20. Linked  Data     “A  method  of  publishing  structured  data  so   that  it  can  be  interlinked  and  become  more   useful.     It  builds  upon  standard  Web  technologies   such  as  HTTP,  RDF  and  URIs,  but  rather   than  using  them  to  serve  web  pages  for   human  readers,  it  extends  them  to  share   informaLon  in  a  way  that  can  be  read   automaLcally  by  computers.     This  enables  data  from  different  sources  to   be  connected  and  queried”     [Bizer,  Heath,  Berners-­‐Lee  2009]   20
  • 21. Linked  Open  Data   21 Open Data + Linked Data = Linked Open Data
  • 22. My  plan  for  today…   •  Linked  (Open)  Data  ???   •  Linked  Data  –  Intro  &  Overview     •  Linked  Data  -­‐  Technologies   •  Recent  Trends  and  Developments   •  QuesZons  /  Discussion   22
  • 23. Linked  Data  context...   http://www.youtube.com/watch?v=5Cb3ik6zP2I
  • 28. Web  Architecture   •  A  set  of  simple  standards   – Uniform  global  addressing  (URI)   – Uniform  document  encoding  (HTML)   – Uniform  transportaZon  (HTTP)   •  Hyperlinks  connecZng  documents   •  Works  preiy  well  for  accessing  and  exchanging   documents    
  • 29. But  someZmes  we  need  to  access  the   underlying  structured  data.  
  • 30. Web  Services  and  Web  APIs   Source: http://www.blogperfume.com/new-27-circular-social-media-icons-in-3-sizes/
  • 31. Web  Services  and  Web  APIs   •  Each  Web  API  has  a  proprietary  interface   •  Datasources  must  be  known  in  advance   •  InformaZon  enZZes  (papers,  authors,   subjects,  etc.)  are  oken  not  linked  
  • 32. 32 Social Networking Sites as Walled Gardens by David Simonds
  • 33. Linked  Data  Vision   •  Publish  and  link  structured  data  on  the  Web   •  Create  a  single  globally  connected  data  space   based  on  the  Web  Architecture  
  • 34. Web  of  Linked  Data   •  A  set  of  simple  standards   – Uniform  global  addressing  (URI)   – Uniform  data  model  (RDF)   – Uniform  transportaZon  (HTTP)   •  RDF  links  connecZng  enZZes   •  Forms  a  global  data  space  and  facilitates  accessing   and  exchanging  data    
  • 35. What  is  Linked  Data?   •  A  method  to  build  a  Web  of  Data   •  Architectural  style,  set  of  standards  
  • 36. Linking  Open  Data  Project   •  A  W3C  community  project  with  the  goal  to  extend  the  Web  with   a  data  commons  by  publishing  various  open  data  sets  as  RDF  on   the  Web  and  by  serng  links  between  data  items  from  different   sources  
  • 42. ~$ curl -I -H "Accept: text/turtle" http://dbpedia.org/resource/The_Shining_(film) ~$ curl -H "Accept: text/turtle" http://dbpedia.org/data/The_Shining_(film).ttl ~$ sudo apt-get install raptor (Linux) ~$ brew install raptor (Mac OSX) ~$ rapper http://dbpedia.org/resource/The_Shining_(film)
  • 50. My  plan  for  today…   •  Linked  (Open)  Data  ???   •  Linked  Data  –  Intro  &  Overview     •  Linked  Data  -­‐  Technologies   •  Recent  Trends  and  Developments   •  QuesZons  /  Discussion   50
  • 51. Web  /  REST  Basics  -­‐  Recap   •  Key  Architectural  Web  Components   – IdenZficaZon:  URI   – InteracZon:  HTTP   – Standardized  Document  Formats:  HTML,  XML,   JSON,  etc.   51
  • 52. Web  /  REST  Basics  -­‐  Recap   •  URIs  idenZfy  interesZng  things   – documents  on  the  Web   – relevant  aspects  of  a  data  set   – phone  numbers,  Skype  usernames,  e-­‐mail   addresses   •  HTTP  URIs  name  and  address  resources  in   Web-­‐based  systems   52
  • 53. Web  /  REST  Basics  -­‐  Recap   •  A  resource  can  have   several  representaZons   •  RepresentaZons  can  be   in  any  format   –  HTML   –  XML   –  JSON   –  …   URI Resource Representation Plain Text text/plain http://example.com/someURI Representation HTML text/html Representation JSON text/json 53
  • 54. Web  /  REST  Basics  -­‐  Recap   •  We  deal  with  resource  representaZons   –  not  the  resources  themselves  (pass  by  value)   –  representaZons  can  be  in  any  format  (defined  by  media-­‐type)   •  Each  resource  implements  a  standard  uniform  interface  (HTTP)   –  a  small  set  of  verbs  applied  to  a  large  set  of  nouns   –  verbs  are  universal  and  not  invented  on  a  per-­‐applicaZon  basis   Client Server Logical Resources Physical Resources JSON Resource Representations Uniform Interface 54
  • 55. Web  /  REST  Basics  -­‐  Recap   HTML,   XHTML,   ...   XML,   JSON,   ...   Transport and store data Display information 55
  • 56. Web  /  REST  Basics  -­‐  Recap   •  Example  Web  Service  operaZons:   – Publish  image  on  Flickr   – Order  a  book  at  Amazon   – Post  a  message  on  your  friend’s  Facebook  wall   – Update  user  photo  on  foursquare   Web Application A Application B API 56
  • 57. RDF   •  A  data  model  for  represenZng  data  on  the  Web   •  Several  statements  (triples)  form  a  graph   http://dbpedia.org/resource/ The_Shining_(film) The Shining (film) rdfs:label 闪灵 (电影) rdfs:label http://dbpedia.org/ontology/ Film rdf:type http://dbpedia.org/resource/ Jack_Nicholson dbpprop:starring http://xmlns.com/foaf/0.1/ Person rdf:type 1937-04-22 Jack Nicholson dbpedia-owl:birthDate foaf:name
  • 58. RDF/XML,  N3,  Turtle,  etc.   •  Data  formats  for  RDF  resource   representaZons   •  Used  to  transfer  RDF  data  between  apps  
  • 59. RDFS   •  A  language  for  describing  the  syntax  and   semanZcs  of  schemas/vocabularies  in  a   machine-­‐understandable  way   http://dbpedia.org/ontology/ Film http://dbpedia.org/ontology/ Work rdfs:subClassOf
  • 60. OWL   •  A  more  expressive  (formal)  language  for  defining  the   syntax  and  semanZcs  of  schemas/vocabularies   •  Solves  RDFS  shortcomings  but  introduces  quite  some   complexity   http://dbpedia.org/ontology/ starring http://www.w3.org/2002/07/ owl#ObjectProperty http://dbpedia.org/ontology/ Person http://dbpedia.org/ontology/ Work starring rdf:type rdfs:range rdfs:domain rdfs:label
  • 61. SKOS   •  A  language  for  describing  controlled  vocabularies   (taxonomies,  thesauri,  classificaZon  schemes)   http://dbpedia.org/resource/ The_Shining_(film) http://dbpedia.org/resource/ Category:1980s_horror_films http://dbpedia.org/resource/ Category:1980s_films http://www.w3.org/2004/02/ skos/core#Concept dcterms:subject rdf:type skos:broader rdf:type
  • 62. SPARQL   •  A  query  language  and  protocol  for   accessing  RDF  data  on  the  Web   SELECT DISTINCT ?x! WHERE {! !?x dcterms:subject ! !<http://dbpedia.org/resource/Category:1980s_horror_films> .! }!
  • 63. Database  Systems  Analogy...   Purpose   Rela,onal  Database  Management   Systems  (RDBMS)   Linked  Data  Technologies   Query   Schema  DefiniZon   Language   Data   RepresentaZon   IdenZfiers   63 ?
  • 64. Database  Systems  Analogy...   Purpose   Rela,onal  Database  Management   Systems  (RDBMS)   Linked  Data  Technologies   Query   SQL   SPARQL   Schema  DefiniZon   Language   SQL  DDL   RDFS  /  OWL   Data   RepresentaZon   RelaZonal  Model  /  Tables   RDF  /  Graph   IdenZfiers   Primary  Keys  (numeric  sequences)   URI   64
  • 65. Publishing  Linked  Data   •  DisZnguish  between  non-­‐informaZon  and   informaZon  resource   •  Sample  non-­‐informaZon  resource   –  hip://dbpedia.org/resource/The_Shining_(film)   •  Sample  informaZon  resource   –  hip://dbpedia.org/page/The_Shining_(film)  -­‐  HTML   –  hip://dbpedia.org/data/The_Shining_(film)  -­‐  RDF  
  • 66. Publishing  Linked  Data   GET http://dbpedia.org/resource/The_Shining_(film) Accept: application/rdf+xml 303 See Other Location: http://dbpedia.org/data/The_Shining_(film) GET http://dbpedia.org/data/The_Shining_(film) Accept: application/rdf+xml 200 OK ... <?xml version="1.0" encoding="utf-8"?> <rdf:RDF ...
  • 67. Publishing  Large  RDF  Datasets   •  Run  a  servlet  that  implements  the  303   publishing  approach   – for  non  informaZon  resources   •  parse  Accept  Header  field   •  Redirect  (303  See  Also)  to  corresponding  informaZon   resource   •  Generate  RDF  SerializaZon  dynamically  from   underlying  data  storage  
  • 68. My  plan  for  today…   •  Linked  (Open)  Data  ???   •  Linked  Data  –  Intro  &  Overview   •  Linked  Data  -­‐  Technologies   •  Recent  Trends  and  Developments   •  QuesZons  /  Discussion   68
  • 69. Rich  Snippets  /  Microdata   69
  • 70. Microdata  (HTML5)   •  A  very  young  HTML  5  proposiZon  that  extends   Microformats  and  addresses  its  shortcomings   •  Items  are  created  within  an  itemscope   •  Every  item  is  assigned  an  arbitrary  number  of   properZes  (itemprop)  and  relaZonships  (itemref)   •  Uses  global  idenZfiers  for  typing  and  naming  items  
  • 71. Microdata  Example   <div itemscope itemtype="http://schema.org/Person">! ! !<span itemprop="name">Bernhard Haslhofer</span>,! !<span itemprop="nickname">behas</span>. ! !<div !itemprop="address”! ! !itemscope itemtype="http://schema.org/PostalAddress">! ! !<span itemprop="streetAddress">301 College Avenue</span>! ! !<span itemprop=”addressLocality">Ithaca</span>! ! !<span itemprop=”addressCountry">United States</span>! !</div>! </div>!
  • 74. schema.org  /  Microdata  example   <h1>Pirates of the Carribean: On Stranger Tides (2011)</h1>! Jack Sparrow and Barbossa embark on a quest to find the elusive fountain! of youth, only to discover that Blackbeard and his daughter are after it too.! ! Director: Rob Marshall! Writers: Ted Elliott, Terry Rossio, and 7 more credits! Stars: Johnny Depp, Penelope Cruz, Ian McShane! 8/10 stars from 200 users. Reviews: 50.!
  • 76. schema.org   •  Defines   – a  number  of  types  (e.g,  person),  organized  in  an   inheritance  hierarchy   – a  number  of  properZes  (e.g.,  name)   •  Extension  mechanisms  to  extend  the  schemas   •  OWL  representaZon:   hip://schema.org/docs/schemaorg.owl   •  hip://schema.rdfs.org/index.html   76
  • 79. 79
  • 82. Google  Knowledge  Graph   •  Enables  search  for  things  (people,  places)  that   Google  knows  about   •  Rooted  in  public  sources  such  as  Freebase,   Wikipedia,  CIA  World  Factbook,  etc.   – augmented  to  500M  objects,  3.5B  facts  and   relaZonship   •  Next  generaZon  search  (semanZc  index)   82
  • 83. 83
  • 84. 84
  • 85. 85
  • 86. 86
  • 87. 87
  • 88. Readings   •  Tom  Heath  and  ChrisZan  Bizer  (2011)  Linked  Data:   Evolving  the  Web  into  a  Global  Data  Space  (1st  ediZon).   Synthesis  Lectures  on  the  SemanZc  Web:  Theory  and   Technology,  1:1,  1-­‐136.  Morgan  &  Claypool.   •  Jason  Ronallo:  HTML5  Microdata  and  Schema.org   hip://journal.code4lib.org/arZcles/6400