SlideShare a Scribd company logo
TTooppiiccss
 DDyynnaammiicc CCMMOOSS
 SSeeqquueennttiiaall DDeessiiggnn
 MMeemmoorryy aanndd CCoonnttrrooll
DDyynnaammiicc CCMMOOSS
 IInn ssttaattiicc cciirrccuuiittss aatt eevveerryy ppooiinntt iinn ttiimmee ((eexxcceepptt wwhheenn
sswwiittcchhiinngg)) tthhee oouuttppuutt iiss ccoonnnneecctteedd ttoo eeiitthheerr GGNNDD oorr VVDDDD
vviiaa aa llooww rreessiissttaannccee ppaatthh..
–– ffaann--iinn ooff nn rreeqquuiirreess 22nn ((nn NN--ttyyppee ++ nn PP--ttyyppee)) ddeevviicceess
 DDyynnaammiicc cciirrccuuiittss rreellyy oonn tthhee tteemmppoorraarryy ssttoorraaggee ooff ssiiggnnaall
vvaalluueess oonn tthhee ccaappaacciittaannccee ooff hhiigghh iimmppeeddaannccee nnooddeess..
–– rreeqquuiirreess oonnllyy nn++22 ((nn++11 NN--ttyyppee ++ 11 PP--ttyyppee)) ttrraannssiissttoorrss
DDyynnaammiicc CCMMOOSS
N
logic
 nnMMOOSS llooggiicc ssttrruuccttuurree wwiitthh pprreecchhaarrggeedd
ppuulllluupp
INPUTS
•Precharge to VDD when clock is low
•Evaluate when clock is high
CLK
DDyynnaammiicc GGaattee
Clk Mp
In1
In2
In3
Out
CL
Clk
A
B
on
Mp
off 1
Out
((AB)+C)
C
Clk Me
Clk
off
Me on
Two phase operation
Precharge (Clk = 0)
Evaluate (Clk = 1)
PDN
CCoonnddiittiioonnss oonn OOuuttppuutt
 OOnnccee tthhee oouuttppuutt ooff aa ddyynnaammiicc ggaattee iiss ddiisscchhaarrggeedd,, iitt
ccaannnnoott bbee cchhaarrggeedd aaggaaiinn uunnttiill tthhee nneexxtt pprreecchhaarrggee
ooppeerraattiioonn..
 IInnppuuttss ttoo tthhee ggaattee ccaann mmaakkee aatt mmoosstt oonnee ttrraannssiittiioonn
dduurriinngg eevvaalluuaattiioonn..
 OOuuttppuutt ccaann bbee iinn tthhee hhiigghh iimmppeeddaannccee ssttaattee dduurriinngg aanndd
aafftteerr eevvaalluuaattiioonn ((PPDDNN ooffff)),, ssttaattee iiss ssttoorreedd oonn CCLL
PPrrooppeerrttiieess ooff DDyynnaammiicc GGaatteess
LLooggiicc ffuunnccttiioonn iiss iimmpplleemmeenntteedd bbyy tthhee PPDDNN oonnllyy
–– nnuummbbeerr ooff ttrraannssiissttoorrss iiss NN ++ 22 ((vveerrssuuss 22NN ffoorr ssttaattiicc ccoommpplleemmeennttaarryy CCMMOOSS))
FFuullll sswwiinngg oouuttppuuttss ((VVOOLL == GGNNDD aanndd VVOOHH ==VVDDDD))
NNoonn--rraattiiooeedd -- ssiizziinngg ooff tthhee ddeevviicceess ddooeess nnoott aaffffeecctt tthhee llooggiicc
lleevveellss
FFaasstteerr sswwiittcchhiinngg ssppeeeeddss
–– rreedduucceedd llooaadd ccaappaacciittaannccee dduuee ttoo lloowweerr iinnppuutt ccaappaacciittaannccee ((CCiinn))
–– rreedduucceedd llooaadd ccaappaacciittaannccee dduuee ttoo ssmmaalllleerr oouuttppuutt llooaaddiinngg ((CCoouutt))
–– nnoo IIsscc,, ssoo aallll tthhee ccuurrrreenntt pprroovviiddeedd bbyy PPDDNN ggooeess iinnttoo ddiisscchhaarrggiinngg CCLL
PPrrooppeerrttiieess ooff DDyynnaammiicc GGaatteess
OOvveerraallll ppoowweerr ddiissssiippaattiioonn uussuuaallllyy hhiigghheerr tthhaann ssttaattiicc CCMMOOSS
–– nnoo ssttaattiicc ccuurrrreenntt ppaatthh eevveerr eexxiissttss bbeettwweeeenn VVDDDD aanndd GGNNDD ((iinncclluuddiinngg
PPsscc))
–– nnoo gglliittcchhiinngg
–– hhiigghheerr ttrraannssiittiioonn pprroobbaabbiilliittiieess
–– eexxttrraa llooaadd oonn CCllkk
PPDDNN ssttaarrttss ttoo wwoorrkk aass ssoooonn aass tthhee iinnppuutt ssiiggnnaallss eexxcceeeedd VVTTnn,, ssoo
VVMM,, VVIIHH aanndd VVIILL eeqquuaall ttoo VVTTnn
–– llooww nnooiissee mmaarrggiinn ((NNMMLL))
NNeeeeddss aa pprreecchhaarrggee//eevvaalluuaattee cclloocckk
DDyynnaammiicc CCMMOOSS
AAddvvaannttaaggeess
–– FFeewweerr ttrraannssiissttoorrss tthhaann CCMMOOSS -- oonn tthhee ssaammee oorrddeerr aass
ppsseeuuddoo--nnMMOOSS
–– SSmmaalllleerr llooaadd ccaappaacciittaanncceess -- ffaasstteerr ssppeeeedd
DDiissaaddvvaannttaaggeess
–– IInnppuuttss mmuusstt bbee ssttaabbllee dduurriinngg eevvaalluuaattee pphhaassee
–– CCaann nnoott bbee ccaassccaaddeedd
–– CChhaarrggee sshhaarriinngg
Mp
O
CL
Me
IIssssuueess iinn DDyynnaammiicc DDeessiiggnn 11::
CChhaarrggee LLeeaakkaaggee
Clk
ut
A
Clk
Leakage sources
CLK
VOut
Precharge
Evaluate
Dominant component is subthreshold current
SSoolluuttiioonn ttoo CChhaarrggee LLeeaakkaaggee
Keeper
Clk
A
B
Clk
•Same approach as level restorer for pass-transistor logic
•Increase size of inverter to increase capacitance
CL
Out
Me
MkpMp
Mp
O
CL
CA
Me CB
IIssssuueess iinn DDyynnaammiicc DDeessiiggnn 22::
CChhaarrggee SShhaarriinngg
Clk
B=0
Clk
Charge stored originally on
CL is redistributed (shared)
ut over CL and CA leading to
reduced robustnessA
o i
DDyynnaammiicc CCMMOOSS
CChhaarrggee SShhaarriinngg
Co
Ci •Assume that the internal capacitances have beendischarged
•In the precharge phase, the output capacitance gets charged
C •During evaluation, if all the inputs are high exceptthe bottom
i
one, the output capacitance gets distributed to the internal
capacitance
C
•The output voltage will dropto
V
Co
DD
C  2C
CLK
i
•This could be low enough to trigger the inverter, causing a
wrong value on the output
Ci
SSoolluuttiioonn ttoo CChhaarrggee
RReeddiissttrriibbuuttiioonn
Clk Clk
Out
A
B
Clk
Precharge internal nodes using a clock-driven transistor
(at the cost of increased area and power)
Me
MkpMp
DDyynnaammiicc CCMMOOSS
 CCaassccaaddee pprroobblleemm
INPUTS N
logic
CLK
Since the evaluation from the first stage takes some time, the
second stage will start evaluating with the precharged input
rather than the evaluated input
N
logic
CCaassccaaddiinngg DDyynnaammiicc GGaatteess
Clk
In
Clk
V
Mp
Out2
Me
V
t
Only 0  1 transitions allowed at inputs!
M
Clk
p
Out1
Me
Clk
Clk
In
Out1
VTn
Out2
DDoommiinnoo LLooggiicc
 SSoollvveess ccaassccaaddee pprroobblleemm
INPUTS N
logic
CLK
Since the precharged output from the first stage is 0, it will
never activate the pulldown network in the second stage until
the first stage evaluation has completed.
N
logic
NNPP DDoommiinnoo ((ZZiippppeerr)) CCMMOOSS
N
logic
INPUTS
CLK
Since the second stage is build from p-logic, the precharged
output from the first stage will not activate the inputs of the
second stage
CLK
P
logic
SSeeqquueennttiiaall LLooggiicc
 IInn oouurr tteexxtt::
–– aa llaattcchh iiss lleevveell sseennssiittiivvee
–– aa rreeggiisstteerr iiss eeddggee--ttrriiggggeerreedd
–– aa fflliipp--fflloopp iiss bbiissttaabbllee
 TThheerree aarree mmaannyy ddiiffffeerreenntt nnaammiinngg ccoonnvveennttiioonnss
–– FFoorr iinnssttaannccee,, mmaannyy bbooookkss ccaallll eeddggee--ttrriiggggeerreedd
rreeggiisstteerrss fflliipp--ffllooppss aass wweellll
LLaattcchh vveerrssuuss RReeggiisstteerr
 Latch
stores data when
clock is low
RReeggiisstteerr
ssttoorreess ddaattaa wwhheenn
cclloocckk rriisseess
Clk
D
Clk
D
Q Q
Clk
D Q
Clk
D Q
LLaattcchheess
CLK
G
QD
G
QD
Positive Latch Negative Latch
In Out In Out
CLK
clk
In
Out
clk
In
Out
Out
stable
Out
follows In
Out
stable
Out
follows In
LLaattcchh--BBaasseedd DDeessiiggnn
• N latch is transparent
when  = 0

• P latch is transparent
when  = 1
Logic
Logic
P
Latch
N
Latch
TTiimmiinngg DDeeffiinniittiioonnss
CLK
D
Q
t
tsu thold
DATA
STABLE t
tc 2 q
DATA
STABLE t
CLK
Register
D Q
CChhaarraacctteerriizziinngg TTiimmiinngg
Clk
QD
Clk
QD
tD 2 Q
tC 2 Q tC 2 Q
Register Latch
MMaaxxiimmuumm CClloocckk FFrreeqquueennccyy

















tclk-Q + tp,comb + tsetup = T
Also:
tcdreg + tcdlogic > thold
tcd: contamination delay =
minimum delay
LOGIC
tp,comb
F
F
s’
PPoossiittiivvee FFeeeeddbbaacckk:: BBii--SSttaabbiilliittyy
Vo1
Vo1 = Vi 2
Vo2 = Vi 1
Vi 1 = Vo2
Vi 1
Vi2
Vi1 Vo2
A
Vi 2 =Vo1
C
B
Vo2
MMeettaa--SSttaabbiilliittyy
Vi 15 Vo2 Vi1 5Vo2
Gain should be larger than 1 in the transition region
A
C
B
A
C
B
WWrriittiinngg iinnttoo aa SSttaattiicc LLaattcchh
Use the clock as a decouplingsignal,
that distinguishes between the transparent and opaque states
CLK
Q D D
CLK
D
CLK
Convertinginto a MUX
Forcing the state
(can implement as NMOS-only)
CLK
CLK
MMuuxx--BBaasseedd LLaattcchheess
1 Q
0
CLK
Negative latch
(transparent when CLK= 0)
Positive latch
(transparent when CLK= 1)
D D
Q  Clk Q  Clk In Q  Clk Q  Clk In
0 Q
1
CLK
MMuuxx--BBaasseedd LLaattcchh
Q
D
CLK
CLK
CLK
MMuuxx--BBaasseedd LLaattcchh
CLK
Q M
CLK
Q M
CLK
NMOS only Non-overlappingclocks
CLK
Master
0
1
1
0
QM
CLK
MMaasstteerr--SSllaavvee ((EEddggee--TTrriiggggeerreedd))
RReeggiisstteerr
Slave
Q D
QM
D Q
CLK
Two opposite latches trigger on edge
Also called master-slave latch pair
I 2 I 3 I5 I6
D
QM
I 1 I4
T 3
T 4
T1
T2
MMaasstteerr--SSllaavvee RReeggiisstteerr
Multiplexer-based latch pair
Q
CLK
SSeemmiiccoonndduuccttoorr MMeemmoorryy CCllaassssiiffiiccaattiioonn
Read-Write Memory
Non-Volatile
Read-Write
Memory
Read-Only Memory
Random
Access
SRAM
DRAM
Non-Random
Access
FIFO
LIFO
Shift Register
CAM
EPROM
E
2
PROM
FLASH
Mask-Programmed
Programmable (PROM)
MMeemmoorryy DDeessiiggnn
n-1:k
k-1:0
Sense Amplifier
Column Decoder
RRaannddoomm AAcccceessss MMeemmoorryy
Row decoder
n bit address
2m+k memory cells wide
m bit data word
MMeemmoorryy DDeessiiggnn
SSttaattiicc RRAAMM CCeellll
Word select
bit bit
MMeemmoorryy DDeessiiggnn
RReeaaddss aarree ssttrraaiigghhttffoorrwwaarrdd
–– MMaayy nneeeedd pprreecchhaarrggee cciirrccuuiittrryy ttoo ppuullll uupp bbiitt
lliinnee
WWrriitteess aarree ttrriicckkiieerr
–– UUssee ddrriivveerr ttrraannssiissttoorrss tthhaatt wwiillll ppuullll--uupp oorr ppuullll--
ddoowwnn bbiitt lliinnee aass nneecceessssaarryy
MMeemmoorryy DDeessiiggnn
SSttaattiicc RRAAMM CCeellll wwiitthh pprreecchhaarrggee
Word select
bit bit
precharge
MMeemmoorryy DDeessiiggnn
precharge
SSttaattiicc RRAAMM CCeellll wwrriittee cciirrccuuiittrryy
Word select
Write enable
Write data
WWL
RWL
33--TTrraannssiissttoorr DDRRAAMM CCeellll
BL1 BL2
X
BL 1
BL 2
VDD
VDD 2 VT
VDD 2 VT
DV
No constraints on device ratios
Reads are non-destructive
Value stored at node X when writing a “1” = VWWL-VTn
WWL
RWL
M 3
M 1 X
M2
CS
BL2 BL1 GND
RWL
M3
M2
WWL
M1
33TT--DDRRAAMM —— LLaayyoouutt
DDRRAAMM CCeellll
Write 1 Read 1
WL
X GND VDD 2 VT
BL
VDD /2
VDD
V
sensing
Write: CS is charged or discharged by asserting WL and BL.
Read: Charge redistribution takes places between bit line and storage capacitance
CS
V = VBL – VPRE = VBIT – VPRE
------------
CS + CBL
Voltage swing is small; typically around 250 mV.
11--TTrraaBL nnssiissttoorr
WL
M1
CS
CBL
DDRRAAMM CCeellll OObbsseerrvvaattiioonnss
 1T DRAM requires a sense amplifier for each bit line, due
to charge redistribution read-out.
 DRAM memory cells are single ended in contrast to
SRAM cells.
The read-out of the 1T DRAM cell is destructive; read
and refresh operations are necessary for correct
operation.
 Unlike 3T cell, 1T cell requires presence of an extra
capacitance that must be explicitly included in the design.
 When writing a “1” into a DRAM cell, a threshold voltage
is lost. This charge loss can be circumvented by
bootstrapping the word lines to a higher value than VDD
SSeennssee AAmmpp OOppeerraattiioonn
VBL V(1)
VPRE
DV(1)
V(0)
Sense amp activated
Word line activated
t
DDRRAAMM CCeellll
Capacitor
Metal word line
n+ n+
Poly
Poly
Inversion layer
induced by
plate bias
SiO2
Field Oxide Diffused
bit line
Polysilicon
gate
M1 word
line
Polysilicon
plate
Cross-section Layout
Uses Polysilicon-Diffusion Capacitance
Expensive in Area
MMeemmoorryy DDeessiiggnn
RRAAMMss
–– SSttaattiicc RRAAMM iiss ffaasstteerr,, ddooeess nnoott nneeeedd ttoo bbee
rreeffrreesshheedd
–– DDyynnaammiicc RRAAMM iiss mmoorree ccoommppaacctt
NNeexxtt ccllaassss
MMoorree aabboouutt mmeemmoorryy
CCoonnttrrooll llooggiicc

More Related Content

Similar to VLSI14

Tutorial final dic
Tutorial final dicTutorial final dic
Tutorial final dicizhar fatima
 
VLSI3
VLSI3VLSI3
Getting to know the cbc - it's about time!
Getting to know the cbc - it's about time!Getting to know the cbc - it's about time!
Getting to know the cbc - it's about time!
Mia Lesaca-Medina
 
Staging and management of genital prolapse
 Staging and management of genital    prolapse  Staging and management of genital    prolapse
Staging and management of genital prolapse
Kawita Bapat
 
VLSI10
VLSI10VLSI10
VLSI10
Prakash Rao
 
Choosing the Components of your PC
Choosing the Components of your PCChoosing the Components of your PC
Choosing the Components of your PC
Hazel Anne Quirao
 
Circular motion2
Circular motion2Circular motion2
Circular motion2
wawanut13
 
Slides tci inss.pdf 2
Slides    tci inss.pdf 2Slides    tci inss.pdf 2
Slides tci inss.pdf 2
patricia_moxoto
 
Night vision Technology
Night vision TechnologyNight vision Technology
Night vision Technology
hetaldobariya
 
Software engineering
Software engineeringSoftware engineering
Software engineeringOdin Onyenk
 
Process scheduling
Process schedulingProcess scheduling
Process scheduling
Atish Kedia
 
Ground Penetration Radar as a Tool for Pavement Condition Diagnostics
Ground Penetration Radar as a Tool for Pavement Condition DiagnosticsGround Penetration Radar as a Tool for Pavement Condition Diagnostics
Ground Penetration Radar as a Tool for Pavement Condition Diagnostics
Desh Sonyok
 
AKASH
AKASHAKASH
AKASHadsrg
 
14827 8 a d converter
14827 8 a d converter14827 8 a d converter
14827 8 a d converter
Sandeep Kumar
 
VLSI12
VLSI12VLSI12
VLSI12
Prakash Rao
 
VLSI2
VLSI2VLSI2
Puoti C. Terapia delle Epatiti Virali: tempo di scelte. ASMaD 2014
Puoti C. Terapia delle Epatiti Virali: tempo di scelte. ASMaD 2014Puoti C. Terapia delle Epatiti Virali: tempo di scelte. ASMaD 2014
Puoti C. Terapia delle Epatiti Virali: tempo di scelte. ASMaD 2014Gianfranco Tammaro
 
18 Hash tables and sets
18 Hash tables and sets18 Hash tables and sets
18 Hash tables and sets
maznabili
 
3 computer network - basic concepts
3   computer network - basic concepts3   computer network - basic concepts
3 computer network - basic conceptsabdulaasmi
 

Similar to VLSI14 (20)

Tutorial final dic
Tutorial final dicTutorial final dic
Tutorial final dic
 
VLSI3
VLSI3VLSI3
VLSI3
 
Getting to know the cbc - it's about time!
Getting to know the cbc - it's about time!Getting to know the cbc - it's about time!
Getting to know the cbc - it's about time!
 
The complement system
The complement systemThe complement system
The complement system
 
Staging and management of genital prolapse
 Staging and management of genital    prolapse  Staging and management of genital    prolapse
Staging and management of genital prolapse
 
VLSI10
VLSI10VLSI10
VLSI10
 
Choosing the Components of your PC
Choosing the Components of your PCChoosing the Components of your PC
Choosing the Components of your PC
 
Circular motion2
Circular motion2Circular motion2
Circular motion2
 
Slides tci inss.pdf 2
Slides    tci inss.pdf 2Slides    tci inss.pdf 2
Slides tci inss.pdf 2
 
Night vision Technology
Night vision TechnologyNight vision Technology
Night vision Technology
 
Software engineering
Software engineeringSoftware engineering
Software engineering
 
Process scheduling
Process schedulingProcess scheduling
Process scheduling
 
Ground Penetration Radar as a Tool for Pavement Condition Diagnostics
Ground Penetration Radar as a Tool for Pavement Condition DiagnosticsGround Penetration Radar as a Tool for Pavement Condition Diagnostics
Ground Penetration Radar as a Tool for Pavement Condition Diagnostics
 
AKASH
AKASHAKASH
AKASH
 
14827 8 a d converter
14827 8 a d converter14827 8 a d converter
14827 8 a d converter
 
VLSI12
VLSI12VLSI12
VLSI12
 
VLSI2
VLSI2VLSI2
VLSI2
 
Puoti C. Terapia delle Epatiti Virali: tempo di scelte. ASMaD 2014
Puoti C. Terapia delle Epatiti Virali: tempo di scelte. ASMaD 2014Puoti C. Terapia delle Epatiti Virali: tempo di scelte. ASMaD 2014
Puoti C. Terapia delle Epatiti Virali: tempo di scelte. ASMaD 2014
 
18 Hash tables and sets
18 Hash tables and sets18 Hash tables and sets
18 Hash tables and sets
 
3 computer network - basic concepts
3   computer network - basic concepts3   computer network - basic concepts
3 computer network - basic concepts
 

More from Prakash Rao

PAL
PALPAL
Digital Signal Processing by Dr. R. Prakash Rao
Digital Signal Processing by Dr. R. Prakash Rao Digital Signal Processing by Dr. R. Prakash Rao
Digital Signal Processing by Dr. R. Prakash Rao
Prakash Rao
 
Electromagnetic Theory and Transmission Lines by Dr. R. Prakash Rao
Electromagnetic Theory and Transmission Lines  by Dr. R. Prakash RaoElectromagnetic Theory and Transmission Lines  by Dr. R. Prakash Rao
Electromagnetic Theory and Transmission Lines by Dr. R. Prakash Rao
Prakash Rao
 
VLSI15
VLSI15VLSI15
VLSI15
Prakash Rao
 
VLSI9
VLSI9VLSI9
VLSI7
VLSI7VLSI7
VLSI6
VLSI6VLSI6
VLSI5
VLSI5VLSI5
VLSI4
VLSI4VLSI4
VLSI DESIGN
VLSI DESIGN VLSI DESIGN
VLSI DESIGN
Prakash Rao
 
BIASING OF BJT
BIASING OF BJT BIASING OF BJT
BIASING OF BJT
Prakash Rao
 
Diode and its Applications
Diode and its Applications Diode and its Applications
Diode and its Applications
Prakash Rao
 

More from Prakash Rao (20)

PAL
PALPAL
PAL
 
Digital Signal Processing by Dr. R. Prakash Rao
Digital Signal Processing by Dr. R. Prakash Rao Digital Signal Processing by Dr. R. Prakash Rao
Digital Signal Processing by Dr. R. Prakash Rao
 
Electromagnetic Theory and Transmission Lines by Dr. R. Prakash Rao
Electromagnetic Theory and Transmission Lines  by Dr. R. Prakash RaoElectromagnetic Theory and Transmission Lines  by Dr. R. Prakash Rao
Electromagnetic Theory and Transmission Lines by Dr. R. Prakash Rao
 
VLSI15
VLSI15VLSI15
VLSI15
 
VLSI9
VLSI9VLSI9
VLSI9
 
VLSI7
VLSI7VLSI7
VLSI7
 
VLSI6
VLSI6VLSI6
VLSI6
 
VLSI5
VLSI5VLSI5
VLSI5
 
VLSI4
VLSI4VLSI4
VLSI4
 
VLSI DESIGN
VLSI DESIGN VLSI DESIGN
VLSI DESIGN
 
Fet
FetFet
Fet
 
BIASING OF BJT
BIASING OF BJT BIASING OF BJT
BIASING OF BJT
 
Diode and its Applications
Diode and its Applications Diode and its Applications
Diode and its Applications
 
Hd10
Hd10Hd10
Hd10
 
Hd9
Hd9Hd9
Hd9
 
Hd8
Hd8Hd8
Hd8
 
Hd7
Hd7Hd7
Hd7
 
Hd5
Hd5Hd5
Hd5
 
Hd4
Hd4Hd4
Hd4
 
Hd3
Hd3Hd3
Hd3
 

VLSI14

  • 1. TTooppiiccss  DDyynnaammiicc CCMMOOSS  SSeeqquueennttiiaall DDeessiiggnn  MMeemmoorryy aanndd CCoonnttrrooll
  • 2. DDyynnaammiicc CCMMOOSS  IInn ssttaattiicc cciirrccuuiittss aatt eevveerryy ppooiinntt iinn ttiimmee ((eexxcceepptt wwhheenn sswwiittcchhiinngg)) tthhee oouuttppuutt iiss ccoonnnneecctteedd ttoo eeiitthheerr GGNNDD oorr VVDDDD vviiaa aa llooww rreessiissttaannccee ppaatthh.. –– ffaann--iinn ooff nn rreeqquuiirreess 22nn ((nn NN--ttyyppee ++ nn PP--ttyyppee)) ddeevviicceess  DDyynnaammiicc cciirrccuuiittss rreellyy oonn tthhee tteemmppoorraarryy ssttoorraaggee ooff ssiiggnnaall vvaalluueess oonn tthhee ccaappaacciittaannccee ooff hhiigghh iimmppeeddaannccee nnooddeess.. –– rreeqquuiirreess oonnllyy nn++22 ((nn++11 NN--ttyyppee ++ 11 PP--ttyyppee)) ttrraannssiissttoorrss
  • 3. DDyynnaammiicc CCMMOOSS N logic  nnMMOOSS llooggiicc ssttrruuccttuurree wwiitthh pprreecchhaarrggeedd ppuulllluupp INPUTS •Precharge to VDD when clock is low •Evaluate when clock is high CLK
  • 4. DDyynnaammiicc GGaattee Clk Mp In1 In2 In3 Out CL Clk A B on Mp off 1 Out ((AB)+C) C Clk Me Clk off Me on Two phase operation Precharge (Clk = 0) Evaluate (Clk = 1) PDN
  • 5. CCoonnddiittiioonnss oonn OOuuttppuutt  OOnnccee tthhee oouuttppuutt ooff aa ddyynnaammiicc ggaattee iiss ddiisscchhaarrggeedd,, iitt ccaannnnoott bbee cchhaarrggeedd aaggaaiinn uunnttiill tthhee nneexxtt pprreecchhaarrggee ooppeerraattiioonn..  IInnppuuttss ttoo tthhee ggaattee ccaann mmaakkee aatt mmoosstt oonnee ttrraannssiittiioonn dduurriinngg eevvaalluuaattiioonn..  OOuuttppuutt ccaann bbee iinn tthhee hhiigghh iimmppeeddaannccee ssttaattee dduurriinngg aanndd aafftteerr eevvaalluuaattiioonn ((PPDDNN ooffff)),, ssttaattee iiss ssttoorreedd oonn CCLL
  • 6. PPrrooppeerrttiieess ooff DDyynnaammiicc GGaatteess LLooggiicc ffuunnccttiioonn iiss iimmpplleemmeenntteedd bbyy tthhee PPDDNN oonnllyy –– nnuummbbeerr ooff ttrraannssiissttoorrss iiss NN ++ 22 ((vveerrssuuss 22NN ffoorr ssttaattiicc ccoommpplleemmeennttaarryy CCMMOOSS)) FFuullll sswwiinngg oouuttppuuttss ((VVOOLL == GGNNDD aanndd VVOOHH ==VVDDDD)) NNoonn--rraattiiooeedd -- ssiizziinngg ooff tthhee ddeevviicceess ddooeess nnoott aaffffeecctt tthhee llooggiicc lleevveellss FFaasstteerr sswwiittcchhiinngg ssppeeeeddss –– rreedduucceedd llooaadd ccaappaacciittaannccee dduuee ttoo lloowweerr iinnppuutt ccaappaacciittaannccee ((CCiinn)) –– rreedduucceedd llooaadd ccaappaacciittaannccee dduuee ttoo ssmmaalllleerr oouuttppuutt llooaaddiinngg ((CCoouutt)) –– nnoo IIsscc,, ssoo aallll tthhee ccuurrrreenntt pprroovviiddeedd bbyy PPDDNN ggooeess iinnttoo ddiisscchhaarrggiinngg CCLL
  • 7. PPrrooppeerrttiieess ooff DDyynnaammiicc GGaatteess OOvveerraallll ppoowweerr ddiissssiippaattiioonn uussuuaallllyy hhiigghheerr tthhaann ssttaattiicc CCMMOOSS –– nnoo ssttaattiicc ccuurrrreenntt ppaatthh eevveerr eexxiissttss bbeettwweeeenn VVDDDD aanndd GGNNDD ((iinncclluuddiinngg PPsscc)) –– nnoo gglliittcchhiinngg –– hhiigghheerr ttrraannssiittiioonn pprroobbaabbiilliittiieess –– eexxttrraa llooaadd oonn CCllkk PPDDNN ssttaarrttss ttoo wwoorrkk aass ssoooonn aass tthhee iinnppuutt ssiiggnnaallss eexxcceeeedd VVTTnn,, ssoo VVMM,, VVIIHH aanndd VVIILL eeqquuaall ttoo VVTTnn –– llooww nnooiissee mmaarrggiinn ((NNMMLL)) NNeeeeddss aa pprreecchhaarrggee//eevvaalluuaattee cclloocckk
  • 8. DDyynnaammiicc CCMMOOSS AAddvvaannttaaggeess –– FFeewweerr ttrraannssiissttoorrss tthhaann CCMMOOSS -- oonn tthhee ssaammee oorrddeerr aass ppsseeuuddoo--nnMMOOSS –– SSmmaalllleerr llooaadd ccaappaacciittaanncceess -- ffaasstteerr ssppeeeedd DDiissaaddvvaannttaaggeess –– IInnppuuttss mmuusstt bbee ssttaabbllee dduurriinngg eevvaalluuaattee pphhaassee –– CCaann nnoott bbee ccaassccaaddeedd –– CChhaarrggee sshhaarriinngg
  • 9. Mp O CL Me IIssssuueess iinn DDyynnaammiicc DDeessiiggnn 11:: CChhaarrggee LLeeaakkaaggee Clk ut A Clk Leakage sources CLK VOut Precharge Evaluate Dominant component is subthreshold current
  • 10. SSoolluuttiioonn ttoo CChhaarrggee LLeeaakkaaggee Keeper Clk A B Clk •Same approach as level restorer for pass-transistor logic •Increase size of inverter to increase capacitance CL Out Me MkpMp
  • 11. Mp O CL CA Me CB IIssssuueess iinn DDyynnaammiicc DDeessiiggnn 22:: CChhaarrggee SShhaarriinngg Clk B=0 Clk Charge stored originally on CL is redistributed (shared) ut over CL and CA leading to reduced robustnessA
  • 12. o i DDyynnaammiicc CCMMOOSS CChhaarrggee SShhaarriinngg Co Ci •Assume that the internal capacitances have beendischarged •In the precharge phase, the output capacitance gets charged C •During evaluation, if all the inputs are high exceptthe bottom i one, the output capacitance gets distributed to the internal capacitance C •The output voltage will dropto V Co DD C  2C CLK i •This could be low enough to trigger the inverter, causing a wrong value on the output Ci
  • 13. SSoolluuttiioonn ttoo CChhaarrggee RReeddiissttrriibbuuttiioonn Clk Clk Out A B Clk Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power) Me MkpMp
  • 14. DDyynnaammiicc CCMMOOSS  CCaassccaaddee pprroobblleemm INPUTS N logic CLK Since the evaluation from the first stage takes some time, the second stage will start evaluating with the precharged input rather than the evaluated input N logic
  • 15. CCaassccaaddiinngg DDyynnaammiicc GGaatteess Clk In Clk V Mp Out2 Me V t Only 0  1 transitions allowed at inputs! M Clk p Out1 Me Clk Clk In Out1 VTn Out2
  • 16. DDoommiinnoo LLooggiicc  SSoollvveess ccaassccaaddee pprroobblleemm INPUTS N logic CLK Since the precharged output from the first stage is 0, it will never activate the pulldown network in the second stage until the first stage evaluation has completed. N logic
  • 17. NNPP DDoommiinnoo ((ZZiippppeerr)) CCMMOOSS N logic INPUTS CLK Since the second stage is build from p-logic, the precharged output from the first stage will not activate the inputs of the second stage CLK P logic
  • 18. SSeeqquueennttiiaall LLooggiicc  IInn oouurr tteexxtt:: –– aa llaattcchh iiss lleevveell sseennssiittiivvee –– aa rreeggiisstteerr iiss eeddggee--ttrriiggggeerreedd –– aa fflliipp--fflloopp iiss bbiissttaabbllee  TThheerree aarree mmaannyy ddiiffffeerreenntt nnaammiinngg ccoonnvveennttiioonnss –– FFoorr iinnssttaannccee,, mmaannyy bbooookkss ccaallll eeddggee--ttrriiggggeerreedd rreeggiisstteerrss fflliipp--ffllooppss aass wweellll
  • 19. LLaattcchh vveerrssuuss RReeggiisstteerr  Latch stores data when clock is low RReeggiisstteerr ssttoorreess ddaattaa wwhheenn cclloocckk rriisseess Clk D Clk D Q Q Clk D Q Clk D Q
  • 20. LLaattcchheess CLK G QD G QD Positive Latch Negative Latch In Out In Out CLK clk In Out clk In Out Out stable Out follows In Out stable Out follows In
  • 21. LLaattcchh--BBaasseedd DDeessiiggnn • N latch is transparent when  = 0  • P latch is transparent when  = 1 Logic Logic P Latch N Latch
  • 24. MMaaxxiimmuumm CClloocckk FFrreeqquueennccyy                  tclk-Q + tp,comb + tsetup = T Also: tcdreg + tcdlogic > thold tcd: contamination delay = minimum delay LOGIC tp,comb F F s’
  • 25. PPoossiittiivvee FFeeeeddbbaacckk:: BBii--SSttaabbiilliittyy Vo1 Vo1 = Vi 2 Vo2 = Vi 1 Vi 1 = Vo2 Vi 1 Vi2 Vi1 Vo2 A Vi 2 =Vo1 C B Vo2
  • 26. MMeettaa--SSttaabbiilliittyy Vi 15 Vo2 Vi1 5Vo2 Gain should be larger than 1 in the transition region A C B A C B
  • 27. WWrriittiinngg iinnttoo aa SSttaattiicc LLaattcchh Use the clock as a decouplingsignal, that distinguishes between the transparent and opaque states CLK Q D D CLK D CLK Convertinginto a MUX Forcing the state (can implement as NMOS-only) CLK CLK
  • 28. MMuuxx--BBaasseedd LLaattcchheess 1 Q 0 CLK Negative latch (transparent when CLK= 0) Positive latch (transparent when CLK= 1) D D Q  Clk Q  Clk In Q  Clk Q  Clk In 0 Q 1 CLK
  • 30. MMuuxx--BBaasseedd LLaattcchh CLK Q M CLK Q M CLK NMOS only Non-overlappingclocks CLK
  • 31. Master 0 1 1 0 QM CLK MMaasstteerr--SSllaavvee ((EEddggee--TTrriiggggeerreedd)) RReeggiisstteerr Slave Q D QM D Q CLK Two opposite latches trigger on edge Also called master-slave latch pair
  • 32. I 2 I 3 I5 I6 D QM I 1 I4 T 3 T 4 T1 T2 MMaasstteerr--SSllaavvee RReeggiisstteerr Multiplexer-based latch pair Q CLK
  • 33. SSeemmiiccoonndduuccttoorr MMeemmoorryy CCllaassssiiffiiccaattiioonn Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access SRAM DRAM Non-Random Access FIFO LIFO Shift Register CAM EPROM E 2 PROM FLASH Mask-Programmed Programmable (PROM)
  • 34. MMeemmoorryy DDeessiiggnn n-1:k k-1:0 Sense Amplifier Column Decoder RRaannddoomm AAcccceessss MMeemmoorryy Row decoder n bit address 2m+k memory cells wide m bit data word
  • 35. MMeemmoorryy DDeessiiggnn SSttaattiicc RRAAMM CCeellll Word select bit bit
  • 36. MMeemmoorryy DDeessiiggnn RReeaaddss aarree ssttrraaiigghhttffoorrwwaarrdd –– MMaayy nneeeedd pprreecchhaarrggee cciirrccuuiittrryy ttoo ppuullll uupp bbiitt lliinnee WWrriitteess aarree ttrriicckkiieerr –– UUssee ddrriivveerr ttrraannssiissttoorrss tthhaatt wwiillll ppuullll--uupp oorr ppuullll-- ddoowwnn bbiitt lliinnee aass nneecceessssaarryy
  • 37. MMeemmoorryy DDeessiiggnn SSttaattiicc RRAAMM CCeellll wwiitthh pprreecchhaarrggee Word select bit bit precharge
  • 38. MMeemmoorryy DDeessiiggnn precharge SSttaattiicc RRAAMM CCeellll wwrriittee cciirrccuuiittrryy Word select Write enable Write data
  • 39. WWL RWL 33--TTrraannssiissttoorr DDRRAAMM CCeellll BL1 BL2 X BL 1 BL 2 VDD VDD 2 VT VDD 2 VT DV No constraints on device ratios Reads are non-destructive Value stored at node X when writing a “1” = VWWL-VTn WWL RWL M 3 M 1 X M2 CS
  • 41. DDRRAAMM CCeellll Write 1 Read 1 WL X GND VDD 2 VT BL VDD /2 VDD V sensing Write: CS is charged or discharged by asserting WL and BL. Read: Charge redistribution takes places between bit line and storage capacitance CS V = VBL – VPRE = VBIT – VPRE ------------ CS + CBL Voltage swing is small; typically around 250 mV. 11--TTrraaBL nnssiissttoorr WL M1 CS CBL
  • 42. DDRRAAMM CCeellll OObbsseerrvvaattiioonnss  1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out.  DRAM memory cells are single ended in contrast to SRAM cells. The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation.  Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design.  When writing a “1” into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than VDD
  • 43. SSeennssee AAmmpp OOppeerraattiioonn VBL V(1) VPRE DV(1) V(0) Sense amp activated Word line activated t
  • 44. DDRRAAMM CCeellll Capacitor Metal word line n+ n+ Poly Poly Inversion layer induced by plate bias SiO2 Field Oxide Diffused bit line Polysilicon gate M1 word line Polysilicon plate Cross-section Layout Uses Polysilicon-Diffusion Capacitance Expensive in Area
  • 45. MMeemmoorryy DDeessiiggnn RRAAMMss –– SSttaattiicc RRAAMM iiss ffaasstteerr,, ddooeess nnoott nneeeedd ttoo bbee rreeffrreesshheedd –– DDyynnaammiicc RRAAMM iiss mmoorree ccoommppaacctt
  • 46. NNeexxtt ccllaassss MMoorree aabboouutt mmeemmoorryy CCoonnttrrooll llooggiicc