SlideShare a Scribd company logo
Venture capital valuation of
small life science companies
Salim Gabro, Robert Harju-Jeanty
Stockholm Business School
Master’s Degree Thesis (one year) 15 HE credits
Subject: Business Administration
Spring semester 2014
Supervisor: Lars Vigerland
2
Summary
Life science companies are research-intense companies with a high level of unpredictability of the
product development. This is due to high dependency on the success of clinical studies, regulatory
affairs, and immaterial property, which makes the industry special in comparison with most other
industries. Valuation becomes challenging looking at companies that are not publicly listed. What is
the value of a company with no established market price and a high level of future uncertainty?
This study focused on the valuation of small life science companies applicable for characteristics
typical in venture capital, exemplified by a case study company with negative earnings.
Within this scope, a literature study was performed and the best suitable valuation methods were
chosen. The methodology was deductive with predominantly a qualitative approach, however the
case study gave some quantitative features. This private company has a new promising technology
for the treatment of hard to heal wounds, such as severe burns and chronic wounds. The
development of the know-how has all in all taken more than 10 years in the hands of several
companies and with investments of around 30 million €. Since a few years this know-how is
concentrated to this small company that yet has not been able to create product sales.
Looking at the past costs and projecting the future sales potential, three valuation methods were
applied to estimate the fair value. The cost-based valuation took into account only historical costs,
considered to estimate the costs for copying the technology. However, copying the technology in
the hands of another organization, for instance a potential buyer’s probably more powerful research
and development organization, may be more cost-efficient, and therefore not directly comparable.
The total development time may also be very different, depending on the copier’s capabilities.
The two other valuation methods used, directly speculated in the future potential. A discounted cash
flow (DCF) valuation was calculated from estimated future cash flows and corrected to a present
value using a hurdle rate reflecting the uncertainty of the future. The DCF value was also adjusted
taking into account probabilities to succeed certain milestones in the development process, creating
a so called “probability-weighted DCF value”. A binominal real option method to stage investments
was created and presented. The real option valuation added a flexibility in the valuation by
estimating the probability for success of important future milestones, and taking into account the
investments needed. The discussion considered also latest share issue and relative valuation, which
were not used because of limitations of the case study company. Since the results of the applied
methods are not in the same range, they varied between 10,3 M€ and 14,9 M€, it is advisable to use
more than just one method for the valuation. The simplified real option method presented in this
study could be useful not only for valuation but also in strategic planning.
3
Contents
1. Background and problem statement .......................................................4
1.1. Objectives and research question ....................................................6
1.2. Limitations....................................................................................6
2. Theory................................................................................................7
2.1. Net assets valuation.......................................................................8
2.2. Latest share issue valuation............................................................8
2.3. Cost-based valuation .....................................................................9
2.4. DCF valuation ...............................................................................9
2.5. Relative valuation........................................................................ 11
2.6. Real option valuation ................................................................... 12
2.6.1. Theoretical case ....................................................................... 13
2.6.2. Binomial option pricing model .................................................... 14
3. Methods............................................................................................ 17
3.1. Positivism, quantitative and qualitative .......................................... 17
3.2. Case study and sample ................................................................ 17
3.3. Deductivism versus inductivism..................................................... 17
3.4. Ethics and intrinsic value .............................................................. 18
3.5. Reliability and validity .................................................................. 18
4. Empirical case: Analysis and results ..................................................... 20
4.1. Wound care technology company .................................................. 20
4.2. Net assets valuation..................................................................... 20
4.3. Latest share issue valuation.......................................................... 21
4.4. Cost-based valuation ................................................................... 21
4.5. Relative valuation........................................................................ 22
4.6. Discounted cash flow valuation...................................................... 22
4.6.1. Probability-weighted DCF value.................................................. 23
4.7. Real option valuation ................................................................... 24
5. Discussion and conclusions.................................................................. 29
6. Suggested further research ................................................................. 33
References............................................................................................... 34
Appendix 1: Wound care technology company .............................................. 36
Appendix 2: The wound care market ........................................................... 37
Appendix 3: DCF prognosis ........................................................................ 38
Appendix 4: Gross value ............................................................................ 39
Appendix 5: 10 year governmental bond average ......................................... 40
Appendix 6: Real option............................................................................. 41
4
1.Background and problem statement
Valuation of smaller, such as early stage, private companies, not yet generating profit, is a
challenge in private equity. For the venture capitalist the main objective is to make a successful
exit, in the best case, making a ”home run” giving returns of more than 25 times its capital (Fraser-
Sampson, 2011).
During the last three decades, there have been more than a handful global financial crises, mainly
due to short-term loans given by banks and companies to finance illiquid assets (Koller et al.,
2010). This means the valuation of the assets have failed, and the borrower’s assets and liabilities
were mismatched. To have an effect on global scale, the fiascos have been done with major
corporations on going-concern policy. If the world has repeatedly failed in valuation of major
going-concern companies, what about companies with negative cash flow and no profit, to be
classified as high risk investments? This segment should be especially demanding to valuate.
Moreover, common financial ratios or multiples used for stock market listed companies, like the
capital asset pricing model (CAPM) are not applicable to small companies in an early life cycle
stage (Bogdan & Villiger, 2008).
Fundaments to keep the society in continuous high economic development and sustain
competitiveness are to facilitate innovation and maintain an efficient financial market. In Europe,
the countries having the highest competitiveness scores, are firstly developed in institutional
excellence, such as giving financial support to research and development projects, secondly they
have a strong skill base through good high education and training, and thirdly, they maintain an
increased innovation capacity (Schwab, 2013). To create radical innovations firms needs to
generate ground-breaking ideas and be able to convert them into commercially competitive
advantage (Zhou & Li, 2012). In financial theory, value is created particularly if the growth strategy
is based on product innovation (Koller et al., 2010). High-tech technology companies in an early
stage usually represent a high level of innovation. One of the high-tech industries highly
represented within venture capital investments is the life science sector (Fraser-Sampson, 2011).
Fund raising, licensing, mergers & acquisitions, and portfolio management are examples of
situations were valuation is needed (Bogdan & Villiger, 2008). The high barriers in form of long
and costly R&D processes make it difficult for venture capitalist to valuate high tech companies.
There are a lot of investment opportunities currently uncharted. There is a need for valuation
methods that are suitable to these circumstances (Schneider, 2009). When it comes to healthcare
companies there is even a higher level of risk, mainly due to regulatory requirements. For
pharmaceutical products only one out of 10 000 drug candidates make it to the market, which
5
shows the high level of investment and risk that comes to hand in the industry (PhRMA, 2014;
DiMasi & Grabowski, 2007).
Figure 1: The Pharmaceutical Research and Manufacturers of America, shows in the figure above the 10 to 15
years long process of developing a drug until launch on the US market (PhRMA, 2014).
In the pharmaceutical industry, increase in shareholder wealth does not only happen when new
drugs are approved by regulatory authorities, but this is also true for just an application for an
improvement of an existing drug (Hamill et al., 2013). Simpler life science products within medical
technology, also have to be approved by regulatory bodies, and even though the approval process
might by shorter and faster, this also affects the value of the company. The approvals will often
require complicated empirical clinical studies that are very costly to perform. Lately, the economic
aspects in health care have increased importance, and therefore health economic studies is required
to show, not only the clinical benefits of a new treatment or diagnostic procedure, but also cost-
savings for society. Health care products do not only have one regulatory process to go through,
most markets have their own regulatory authorities, such as USA, European Union, Japan and
China. Since the regulatory affairs often represent a high cost for any life science company, in
practice, this means that small companies have to focus on certain markets due to limitations in
financial capability and expertise. These are special features in the healthcare industry that makes
valuation different in comparison to other research intense technology sectors.
Traditional valuation methods are considered limited in the life science field, due to long and
uncertain product development cycles with high failure rates, and undefined product and market
profiles of assets (Mayhew, 2010). There is no current established consensus of valuation methods
in life science (Bogdan & Villiger, 2008; Mayhew, 2010). In Sweden, during the last few years,
both the number of life science companies, as well as the employees working in this industry have
decreased (Sandström, 2014). This reflects the ongoing global recession in which estimating the fair
value of an investment becomes even more important.
6
This study will focus on the valuation of life science companies, exemplified by a case study
company with a new medical technology based on biomaterials. This subsector of life sciences is
sometimes called “white” biotechnology, and considered a new investment opportunity, with the
big challenge of adequate valuation of the investment (Schneider, 2009).
1.1. Objectives and research question
The aim of the study is to find suitable valuation models for small, private life science companies
with negative earnings.
The study aims to answer following questions:
 Which valuation models are relevant for small life science companies with negative
earnings?
 Which ones should be used in the valuation of the case study company?
 What challenges will the different valuation methods bring in the case study company, such
as, which input parameters should be used?
1.2. Limitations
The focus is on the life science industry, which is defined in the scope of this study as small,
research and development intensive companies focused on healthcare.
The study is within venture capital, which means private firms, often early in the life cycle, and if
the firm itself already has many years of age, it will have a new technology or significant new
products in an early development phase with a potentially high economic impact considering the
size of the company.
A wound care technology company is used as a case study to test different valuation methods,
because it is a small life science company with a new medical technology in development. The
company came into current ownership in 2009, and has had an accumulative positive cash flow, but
recently the earnings are negative. The company has a distribution-business as a way to survive, but
in other ways it is representative to a small research-intense company with a new product in
development. The case study company is giving all its hopes to a new in-licensed wound care
technology that combines with the know-how the company already has from before. The current
earnings are negative and the company is looking for financing to be able to continue with the
product development. These are reasons why the chosen case company can serve as an example
within the scope of this study. The company is located in the European Union, and all the data are
real, as given by the President, however, the name of the company is kept confidential.
7
2.Theory
What is value? Value may be very subjective. Oscar Wilde said (Wilde, 1892):
”A cynic is a man who knows the price of everything but the value of nothing.”
This could be the description of an investor meaning the value is irrelevant, as long as a bigger fool
is willing to pay more for the asset. The value of something could be a lot for one person and
nothing for another. In finance, it is crucial not to pay more for an asset than it is worth
(Damodaran, 2002). Value and valuation is an important part of today’s market economy. With
valuation we can measure and manage a company’s performance, and thereby see if value is
created. It also gives a long term view in contrast to only looking at accounting revenues (Copeland
et al., 2005).
The International Private Equity and Venture Capital Valuation Guidelines, IPEV defines the
process of valuation in the following way (IPEV, 2012):
“In estimating Fair Value for an Investment,
the Valuer should apply a technique or techniques
that is/are appropriate in light of the nature, facts
and circumstances of the Investment in the context
of the total Investment portfolio and should
use reasonable current market data and inputs
combined with Market Participant assumptions.”
In this chapter, different valuation methods are presented that may be of interest in valuation of not
listed, small life science companies. IPEV lists these valuation methods: price of recent investment
(compare to “latest share issue” in table below), multiples, net assets, discounted cash flows (DCF),
industry valuation benchmarks (compare to “relative” in table below), and available market prices
(also comparable to “latest share issue” in table below). In a literature search, the following
valuation methods have been mentioned in relevant references:
Valuation method
(Mayhew,
2010)
(Bogdan &
Villiger, 2008)
(Ixora,
2013)
(Damodaran,
2006)
(Sammut,
2012)
(Brantic et
al., 2014)
Net Assets X X
Latest Share Issue X
Cost-Based X
DCF X X X X X X
Relative X X X X
Real Option X X X
8
2.1. Net assets valuation
When valuing a firm, all assets will be listed, the value is estimated and also the degree of
uncertainty should be determined. Fixed assets, are long-term assets, such as plant, equipment
subject to depreciation, and buildings, and short-term assets, such as inventory, receivables and
cash. Additionally, in the balance sheet there may be assets in other firms, called financial
investments. These assets are in accounting basically valued according to historical costs or book
values. Finally, intangible assets, such as patents and trademarks, and goodwill arouse from
acquisitions, are valued. These, also called growth assets, are more difficult to value since they are
valued according to potential future earnings and cash flows created. (Damodaran, 2001)
To get the net assets value, all liabilities or debts will be subtracted from the total assets. An
adjusted net assets method values the assets and liabilities to current market values, thereby valuing
historical costs to current values.
2.2. Latest share issue valuation
Also called “price of recent investment”, the valuation of a company based on the latest share issue
in which external investors have invested new capital of a significant amount, or recent share
transactions of significant amount are commonly used in private equity and venture capital. During
the limited time following the date of the relevant transaction, the new valuation must be adjusted
according to changes or events that may influence the fair value. (IPEV, 2012)
Latest share issue valuation is frequent in valuation of life science companies (Ixora, 2013). For not
listed companies this is the only way to get a real historical price of the company, and therefore it
can be used as the base line for the current fair value of the company. However, it has to be adjusted
to significant events in time. The longer the time period since last share issue, the higher the
uncertainty of the valuation. For research intensive companies, the difficulty comes in valuing the
impact of the research and development on future cash flows since last share issue. An important
accounting effect is if the R&D has been capitalized, which means the costs have been placed in the
balance sheet as an asset. Here are different practices used within the life science industry,
pharmaceutical companies do rarely capitalize the R&D, because of the great uncertainty before
market launch, while medical technology companies may apply capitalization of R&D costs. For
small companies, not yet making profit, this may be a problem, since the assets may grow to
become very high in comparison to equity.
For a company with negative earnings, the current financial status may influence the valuation. The
more urgent the cash situation is for the company, the bigger the risk is it will be undervalued. In
venture capital the dilution of old shareholders is a typical part of the valuation game for smaller
companies in crisis.
9
2.3. Cost-based valuation
The crucial question in cost-based valuation is how much would the buyer have to invest to
reproduce the asset it is buying? What are the accumulated costs incurred? These should include all
research costs, but also licensing costs, regulatory, legal and intellectual property costs, as well as
non-recoverable taxes. In accounting terms these are book values. How long development time is
needed for copying the asset? Therefore these values may be adjusted for inflation, depreciation or
exchange-rate fluctuation (Mayhew, 2010). To conclude, this valuation is looking at the history, not
taking into account the future potential.
This study is focused on research-intense values with a high innovation level. It is probable that
these innovations should give a premium price, and therefore the future income is an important
factor. Even the time itself may have significant importance, for instance, considering time to
market in comparison to competitors, and then also potential revenue loss might be calculated as a
value. Taking these considerations into account, the cost-based valuation, or the sum of book
values, serve more as a base line, the lowest value of the asset in question. Any other values, such
as, human, market, reputation or innovation values should be added to the book values (Mayhew,
2010). From the potential buyer’s side, precaution has to be taken to count in all investments a
small life science company has invested in a certain project. Many times small companies have
inefficient organisations and the valuation should be done from the buyer’s, normally a bigger
company’s more cost-efficient organization.
2.4. DCF valuation
Discounted cash flow valuation methods value an asset by the present value of its expected cash
flows, with a discount rate that estimates the risk or these cash flows.
The enterprise DCF model uses four steps (Koller et al., 2010):
1) Discounting of free cash flow with the cost of capital.
2) Identifying and valuing non-operating assets.
3) Identifying and valuing debt and non-equity claims.
4) Subtracting the value of non-equity financial claims.
In venture capital the discount rates are of a complete different magnitude compared listed public
companies, and therefore the choice of discount rate has a fundamental influence on the valuation.
The future cash flows (CF) are estimated and discounted (kc) year by year (t), ending with an
eternal value, the so called terminal value (TV). Usually, the discounted cash flow is estimated
during the following ten years, and then adding the terminal value.
10
Formula for valuing the firm with annual cash flows plus terminal value (Damodaran, 2006):
There are several ways of calculating the terminal value, assuming a stable growth, the multiple
approach, or the liquidation value. The last one assumes the company will end the operations and it
is sold to the highest bidder. The first and second alternatives, calculate the terminal value assuming
the company will grow at a certain perpetual stable rate (g) with a certain cost of capital (r).
Formula for calculation of terminal value (Damodaran, 2006):
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 =
𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤𝑡+1
𝑟 − 𝑔𝑠𝑡𝑎𝑏𝑙𝑒
When a company’s life-cycle goes from high to stable growth, the features of the company changes.
A mature firm with a stable growth will have other expectations. It will be assumed to reinvest less,
be less risky, increase debts, etc. Concerning listed companies, Damodaran recommends using betas
closer to one when calculating required return for the terminal value (Damodaran, 2006).
Figure 2: For a products life cycle, if the terminal value is chosen in an earlier stage (A) the value will be higher
than if it is chosen in a later stage (B) (Bogdan & Villiger, 2008).
The terminal value can have a major effect on the total value of the firm; therefore it is important
that the estimations are accurate. How early you calculate the terminal value also has an impact. As
figure 2 shows, the earlier the terminal value is applied the bigger the effect on the total value it will
have. (Bogdan & Villiger, 2008)
The value of a firm according to the discounted cash flow methodology is the present value of
expected cash flows from assets-in-place and growth assets (Damodaran, 2001; Damodaran, 2002).
To create value, there is a selection of four actions for the management to choose from
(Damodaran, 2002):
1. Increase the cash flow coming from existing investments
2. Increase the expected growth rate in earnings
3. Increase the length of the high growth period
4. Reduce the cost of capital that is used to discount the cash flows
Company and Stock Valuation 197
Feed Rate and Terminal Value
The feed rate represents the ability of the company to generate or to license
projects. The feed rates correspond in a way to the terminal value in standard
valuation. Like terminal value, the feed rate is a very sensitive variable that
can have a major impact on the value. A feed rate is however a more imag-
inable parameter than a constant cash flow in 20 years from now. Imagine a
company that has one extraordinary product responsible for most of its reve-
nues like in the figure below. If we apply the terminal value principle at a
moment when this project still strongly contributes to the company’s reve-
nues (A), this implies that we assume that the company can replace this
product by another of the same economic power. We can only use this as-
sumption when there is an indicator that the company can indeed replace the
product with a similar one. If on the other hand we apply the terminal value
only once the project is off-market (B), then most other projects’ life cycles
might have ended as well and the terminal value becomes too low. The ter-
minal value this way might misguide and give a much too high or low value.
We therefore propose to use the feed rate approach.
Fig. 4.46. Where to start assuming constant cash flows for the terminal value?
Taxes
The calculation of taxes first requires annual net cash flows. Second, we
have to keep track of the accumulated losses; only once these are offset by
earnings, the company starts to pay taxes. Applying the tax rate to project
valuation is not a clean solution, because taxes are assessed on a company
level. Earnings from one project can be used up by investments in another
project. Calculating the tax value on a risk-adjusted basis is also not cor-
rect as displayed in the following example: Assume a one-project com-
pany. If one day it has to pay taxes, i.e. if its product reaches market, it can
A
B
CFt
(1 + kc
)
t =1
t = n
å +
TV
(1 + kc
)
n
= Firm Value
11
Revenue Growth Target Operating Margin
Applying the DCF on research intensive, small life science companies, it is easy to understand that
the value growth potential will normally be in the growth assets, that is, the new innovation coming
from research and development. Damodaran (Damodaran, 2002) concludes: “As long as the
projects, no matter how risky they are, have a marginal return on capital that exceeds their cost of
capital, they will create value.”
Damodaran (Damodaran, 2002) makes also some remarks for negative earnings firms. He says the
cash flow is dependent on three variables:
- the expected growth rate in revenues,
- the target operating margin, and
- the sales to capital ratio.
Free Cash Flow to Firm (FCFF) = EBIT (t - tax rate) – Reinvestment Needs
Figure 3: The parameters affecting the future value of a company with negative earnings (Damodaran, 2002).
The major concern with the discounted cash flow method in life science is the uncertainty, the first
being the accuracy of the estimates, for instance the unknown impact of competitor actions, and the
second is the technical uncertainty, which in worst case means the product will never be launched
on the market, for instance, due to failing of regulatory requirements (Bogdan & Villiger, 2008).
The numerous assumptions of key valuation parameters for which actual information is as yet
unknown, make DCF valuations especially controversial in the valuation of early-stage life science
companies (Mayhew, 2010). One method to give a more justified estimation is to correct the value
with probabilities to succeed in different milestones (Shockley et al., 2003).
2.5. Relative valuation
In relative valuation, like the name says, the value of an asset is estimated as relative to the market
prices of similar assets. One of the simplest examples would be to value a car, for instance a Volvo
V70, year model 2008. In this case it would be quite easy to find the current average selling price of
all cars of this year model on a specific market. This would be a good estimation of this particular
car’s value.
When talking about valuation of companies, relative valuation would mean comparing similar or
comparable companies in the same industry, and more specifically with the same type of products,
similar cash flows, company size, risks, growth, and so forth.
Sales to Capital
Ratio
12
According to Damodaran (Damodaran, 2006), there are three types of relative valuation:
1. Direct comparison: Find a company (or several) that are very much alike the company to be
valued, and comparing the market value of this (these) to the analysed one.
2. Peer group average: Compare a multiple of the analysed company to a peer group of same type
of companies. The average of a sector, for instance life science, is assumed to be representative of a
typical company of that same sector.
3. Peer group average adjusted for differences: While there can be big differences between
companies of the same sector, the comparative peer group average value can be narrowed, for
instance a company with higher expected growth than the industry will be valued higher than the
industry average. For instance, by using PEG ratios, dividing PE ratios by expected growth rates,
the companies can be compared also when they have different growth rates.
Mayhew (Mayhew, 2010) calls relative valuation marked-based valuation, which he defines as the
determination of the value of an asset in comparison to a similar asset.
In publicly listed companies, relative valuation is much easier because different multiples are easily
available and they can be used to calculate averages and make comparisons.
In private equity, it is much more difficult to collect data, and therefore the comparisons may be
used with a statistically insignificant number of similar firms, therefore increasing the insecurity of
the valuation. Since the private companies are not publically traded, the valuation of them will be a
challenge.
With small research-intense companies, the relative valuation will most often be very subjective,
since finding other innovative comparable companies will be difficult. Earlier mentioned “direct
comparison” might be difficult to make. To find a recently sold, same sized, innovative life science
company within the same research field may many times be impossible. Intellectual property and
portfolios of assets represent more challenges in market-based comparisons within life sciences
(Mayhew, 2010).
Market-based comparisons or industry benchmarks are more likely to be useful as a sanity check of
other valuation methods (IPEV, 2012).
2.6. Real option valuation
A financial option is a tool that gives the holder a future right to buy or sell an asset for a certain
price. Real option is an analogy of financial options, defined as the right, but no obligation to
purchase an underlying asset during a certain period (Verdu et al., 2012). The biggest difference
13
between real options and financial options are the underlying asset. In real options, the underlying
asset doesn’t have to be financial, but could for instance be intellectual property (Cotropia, 2009).
Real options are a lot more complex in contrast to DCF valuations (Villiger & Bogdan, 2006). The
value that real option brings in contrast to NPV is the ”flexibility value” see figure 4 (Koller et al.,
2010). The flexibility value include different components that affect the asset value. One of the
components is risk free interest where the possibility to postpone investments might increase the
value because of the time value of money. Although another consequence with the interest rate is
the negative value effect of future cash flows. Another component that create value is the
uncertainty about present value of future cash flow. The more volatile the future cash flows are, the
more increases the option value. The present value of cash flows also has an effect where higher
value on the cash flows gives higher flexibility value. The ability to diverge the investment at any
given point also gives a time effect where you have more time to reflect the decisions. Finally,
Koller et al. present investment cost as a value reducer, when using real option valuation (Koller et
al., 2010). When the investment cost increases the flexibility value decreases.
Figure 4: The flexibility value include different drivers that affect value for the investment (Koller et al., 2010).
2.6.1. Theoretical case
To exemplify real option, here is presented a constructed theoretical case based on the definitions of
real options by Verdu et al., Cotropia and Trigeorgis (Verdu et al., 2012; Cotropia, 2009;
Trigeorgis, 2002).
The tire manufacturing company Empirical Tires have the possibility to launch a new revolutionary
product to the market. The predicament is, there is some insecurity on how the market will respond
to the product. There is a risk that people will not be interested and the demand will be low. On the
14
other hand there is likelihood that people will adopt the product and that will generate a high
demand.
One option Empirical Tires has, to reduce the risk, is to patent the product for a year. During the
year they can do a market analysis on how the market will respond. Later a decision, depending on
what the feasibility report shows, can be made. In this case the cost of the option is the cost of the
patent and market analysis.
As the theoretical case above exemplifies, real options give the project manager the possibility and
flexibility to adapt to different factors in the environment that affects the project. This gives the
possibility to limit loss and expenses. In other words real options give you different decision
options (Trigeorgis, 2002).
2.6.2. Binomial option pricing model
There are several option pricing models with different complexities. Here is presented a basic,
fundamental option-pricing model. The implementation of other more complex option pricing
models are unnecessary and will not bring significance to our study. The objective is to study if real
option valuation is applicable to the case study.
The option-pricing model looks at the market as binominal. The outcomes are like a coin toss game,
where it can wither go one way or another, success of failure. The price of the coupon can either go
up or down. There are a lot of assumptions for the model to be valid. The capital market has to be
frictionless, competitive, and no risk-free arbitrage opportunities can exist. There have to be
continuous trading opportunities. Stock price, needs to obey a multiplicative binomial generating
process, this implies that the stock prices can’t be below zero, no matter how many periods there
are. The pay-off for a one period call option is described as:
𝑓 = 𝑒−𝑟∆𝑡
(𝑝𝑓𝑢 + (1 − 𝑝)𝑓𝑑 Where 𝑝 =
𝑒 𝑟∆𝑡−𝑑
𝑢−𝑑
(Hull, 2012)
When adapting Hull’s formula to real options, f is the same as the expected net present value
(ENPV). To calculate the value needed to know how to estimate the inputs d and u. Hull gives the
definition𝑠 𝑢 = 𝑒ℴ√∆𝑡
and 𝑑 = 𝑒−ℴ√∆𝑡
where the standard deviation is of the price in the underlying
asset during the period (Hull, 2012).
S = The current value of the underlying asset, usually the current stock price.
K = Strike price of the option is the price that the buyer needs to pay to exercise the option.
rf = The risk free rate of return, usually a 10-year government bond.
σ = The volatility of the underlying asset, which means the fluctuations of its price.
ENPV
fu =Max[0,uS−k]
fd =Max[0,dS−k]
15
T = The time to maturity. The time until the option can be exercised.
𝑓 = The option value of the company in the period.
p = The probability for an upward movement, where 1-p is the probability for an downward
movement.
Another model for estimating the value of an option is the Black & Scholes model. The
assumptions are similar of the binominal option-pricing model based on a portfolio consistent of the
underlying asset and a risk free asset with the same cash flows. Black & Scholes use a couple of
assumptions that limit the model. For instance stock price follows a Geometric Brownian Motion
with the population mean and standard deviation being constant. Another assumption is that the
risk-free interest rate is constant and the same for all maturities. The model also assumes that there
are no transaction costs or taxes. Finally the model is designed to measure the value of an option
that can only be exercised on the time of expiration and where the underlying asset do not pay any
dividends. (Damodaran, 2006)
When valuing the flexibility value in a real option, there are different alternative approaches
depending on each situation and the options of the company. Bogdan & Villiger (Bogdan &
Villiger, 2008) present a summary:
Option to defer – The option to postpone an investment. If an investment is uncertain, waiting for
indications that the investment will succeed on the market could bring an added value.
Option to expand or contract – The company’s ability to adapt to the market expectations adds a
value. If the production exceeds the expected demand, the ability to meet the expectations by e.g.
having larger plants adds a value.
Option to abandon or license – If a project is not succeeded, the company may have the option to
abandon the project. “The more reversible the investments, the higher the salvation.”
Option to switch – The flexibility to switch location or switch production have an effect on the
production cost or revenue.
Option to stage investments – In each time step the investment is evaluated and a decision is made
to either continue or abandon the investment, depending on the new learned facts at each stage. This
is a common method used in R&D projects and start-ups (Bogdan & Villiger, 2008).
Option to grow – A company who has the possibility to expand into new markets or geographical
areas. The structure is similar to stage investments, where the option is evaluated from the facts
given from previous stage. While staged investments is considered as a multi-stage, growth options
are usually based on a single-stage option.
16
A company can have several options and each option adds a value to the net present value of the
company. The value of the company with the option is called the expected net present value, ENPV
(Damodaran, 2006).
17
3.Methods
3.1. Positivism, quantitative and qualitative
The human’s learning capacity and ability to reason has given rise to science. Modern science was
developed through scientists like Galileo Galilei (1564-1642) and Isaac Newton (1642-1727), and
from the natural sciences evolved social sciences. Starting with Voltaire’s claim that the tiny human
being has to follow the universal laws also in his thoughts, August Compte developed the
philosophy that is called positivism. In a simplified form it means that social science studies use
natural scientific methods, like quantification, to measure results and use logical reasoning to
establish conclusions. This study is using mathematics for creating values, these are compared with
each other, and logical conclusions are made, making the methodology positivistic. (Williams,
1999)
This study is principally quantitative, but since the research contains a case study, where data is
collected through interviews, a part of the study may also be considered qualitative.
3.2. Case study and sample
According to Robert Yin, the case study is a suitable research strategy when:
“a `how´ or `why´ question is being asked about a contemporary set of events over which the
investigator has little or no control.” (Yin, 1994)
In chapter 1.1 a few research questions have been asked. If we try to rephrase them to fit Yin’s
definition they would be:
- How can a small life science company be valuated?
- Why should we choose a certain venture capital valuation technique?
It seems these questions fits very well to the objectives of this study, and while the investigators are
only observing, not influencing on-going events, hence, it is possible to use a case study approach.
However, using more than one case study would increase the validity of the conclusions.
A common concern about case studies is how you may make generalizations, especially in this case
where only one “experiment” is used? According to Yin (Yin, 1994), the case study, like the
experiment, does not represent a “sample”, and the reserachers’ purpose is to make an analytic
generalization, to expand and generalize theories, and not to make a statistical generalization, such
as enumerate frequencies.
3.3. Deductivism versus inductivism
Deductivism means that a certain theory is used as a basis, an analysis is done and the results give
logical conclusions of the theory. A theoretical hypothesis can be confirmed or abandoned through
adapted experiments, calculations or observations. The opposite methodology is called inductivism,
where a lot of observations or measurements are collected and based on the results and an analysis,
18
a theory will be developed. This study uses a deductive approach. Based on the knowledge and
experience of the researchers and literature studies, a number of theoretical models are chosen that
will be tested on a real case, and the results will be discussed leading to conclusions of the validity
of the theory.
3.4. Ethics and intrinsic value
G. E. Moore was one of the greater philosophers in Anglo-American moral philosophy in the first
half of the 20th
century. In his works about ethics, Moore rebutted egoism and claimed that it is
always our duty to perform that action, of the various ones open to us, the total consequences of
which will have the greatest intrinsic value (Moore & Shaw, 2005). In the world of finance,
intrinsic value means the extra value of a company or an asset taking into account both tangible and
intangible factors, and comparing them to current market value. Taking a call option as an example,
the intrinsic value is the difference between the price of the option and the current stock’s price. If
the call options strike price is 100 and the stock’s price is 150, then the intrinsic value of the call
option is 50. A correct valuation will reveal if this is true or not. Going back to Moore, it can be
claimed that the company’s duty is to perform all those actions that lead to the highest possible
intrinsic value.
Research ethics is not a clearly defined area, but an obvious part deals with following current laws.
In any research, special consideration is put into not harming any individual, physically,
psychologically or legally. In this research a case study company is used, and on the request of the
company’s owner, the company and the owner are anonymous. This is ethical. However, a problem
rises if anyone wants to check the data, because this will not be possible (Gustafsson et al., 2011).
Anyhow, the company is registered within the European Union, and the accounting follows national
laws. Yet, some of the data comes from companies not existing any more, and therefore not
checked by the researchers, and here the resource, the owner of the case study company is trusted.
3.5. Reliability and validity
When using a qualitative approach it is important that the study is reliable and valid. This affect the
study´s generalizability and to avoid being biased (Hammersly, 1992). With reliability means how
reliable the data is and how it has been collected and processed (Holme & Solvang, 1997). By
having direct contact with the President of the company, this primary source increases the reliability
of the study. However, it has to be taken into account that by using the company itself as a source,
the collected data on the estimated earnings could be subjectively biased.
Is this study really studying what it says it is, that is, different relevant valuation methods? The
reliability is increased by referring to earlier peer-reviewed studies. The more research has been
done on the subject, the more reliable should the use of the same methods be. By creating a new
19
model that has the properties it can be repeated by other researchers, the reliability can be
confirmed in the future.
Validity means a stable logical consequence, in its absolute form, a universal truth. Internal validity
means how stable a causal relation is between two variables, in this study how truthful the different
valuations are. This becomes a problem, since we do not know the truth, which in this case would
be the price someone would pay for the case study company. There is no stock market price for the
shares of the company, so in these terms the results of the valuations can not be compared to a
“truth”. External validity means how general the internal validity can be in other similar situations.
The internal validity in the scope of this study could mean how valid the valuation models are in
small life science companies in venture capital. The external validity could mean how valid the
valuation models are for similar small research-intense companies, still in a venture capital setting,
but in another industry, for instance other technology sectors. In this study the validity lies in the
discussion and its comparison to theory.
The study contains a lot of data based on subjective assumptions, and should these be changed, the
results would be different. However, the theoretical study in combination with an analysis of a real
case, and the following discussion should give conclusions ethically defendable, as long as,
wherever uncertainty can be suspected, it is spelled out. The conclusions of the case study are
generalizable to theoretical propositions and not to populations (Yin, 1994). The final validity is in
the eyes and the judgement of the reader, in relation to what the reader is investigating. The authors
hope this study will give valuable insight in the chosen subject.
20
4.Empirical case: Analysis and results
The case study company will be valued using the most appropriate valuation methods identified in
the theory chapter (IPEV, 2012).
4.1. Wound care technology company
As a case study, a small life science company is used. See also appendixes 1 and 2. The name of the
company is confidential. The history of the company goes back to a larger international corporation
focused on a biodegradable polymer technology with a large number of patents. The case study
company was originally a subsidiary of the mother company, however, after the owners decided to
close down the mother company, the President of the daughter company was offered to make a
management buy-out of the daughter company. This happened in 2009, and this company is now in
many ways comparable to a start-up company within the life science field. It has a new technology
that is not yet launched on the market, and the current earnings are negative.
The company has two principal competence and know-how areas:
- Biodegradable polymers, originally the mother company’s know-how.
- Medical cellulose, a new technology fitting into the field of polymers, licenced in 2012
from the owners of a bankrupt company that was developing this technology during many
years.
Additionally, the company has a distribution activity, which is merely for financing the
development of the new technologies. However, this is not enough, and the company is looking for
external financing to be able to speed up the development process. The first product is based on a
material the company calls medical cellulose that is shown through clinical studies to be very good
for the treatment of severe wounds. The first indication would be for the treatment of 3rd
degree
burns. The second product would be for the treatment of chronic wounds. The projected sales of
both these products are included in the prognosis presented in appendix 3. In the prognosis, no
financial figures concerning the distribution business is taken into consideration, the calculations
only include figures related to revenues and costs for the new technologies in development, as
presented in appendix 1.
4.2. Net assets valuation
For any small company with negative earnings the net assets will probably be low. The value in the
company will not be in current assets, but in the future earnings. This will be especially true for a
research-intense life science company, where future milestones, like regulatory approvals and
clinical studies will give a high future value. An adjusted net assets method that values the assets
21
and liabilities to current market values is doubtfully more appropriate, since still the impact of
future research and development results will not be taken into account. The particular case study
company does not have any current intellectual property with book values, nor are there any
goodwill. Therefore, other valuation methods will give a more accurate result and net assets
valuation will not be used for the valuation of the case study.
4.3. Latest share issue valuation
Latest share issue valuation is not used for the valuation of the particular case study in the scope of
this study, because the case study company is privately owned and it has been owned by the same
owner during its whole history, and therefore there are no share issues done.
4.4. Cost-based valuation
The President of the Wound care technology company says:
“It will be difficult and very time consuming to try to copy the present technology. For a
competitor to copy our material, both time consuming development work, as well as even more
time consuming clinical testing, will be required for approval of a new product. It would be much
more efficient to acquire a license to the production recipes from us.”
A valuation based on historical costs is one way of valuing the company. The challenge is to find
information of the actual costs incurred for the development of the technology that has been done in
several companies not existing anymore. Best estimates have been done in collaboration with the
President of the case study company. The estimates are considered as quite accurate.
The R&D costs for the polymer part, 2004-2013: 3,18 M€.
EU and governmental support, 2002-2011: 0,9 M€. However, these are already included in the
R&D costs and should not be included once more.
The least exact estimate in the cost-based valuation is the R&D costs for the development of the
medical cellulose technology before licensing of the product: 3,0 M€.
Earlier in the history, the case study company had a mother company, in which approximately
30 M€ was invested. Of this sum 12 M€ was invested in a pilot factory and its equipment, leaving
18 M€ for the development of the biodegradable polymer technology.
In the analysis, it seems reasonable to take into account all direct R&D costs of the Wound Care
Company itself, both for the polymer technology and the cellulose technology, since the company
claims there is a combined value, despite the fact that the first product will be based only on the
medical cellulose. The mother company´s pilot factory and the production process know-how
derived from there, certainly has also a value, but 18 M€ seems too high. Because this mother
company is no longer registered, there are no figures available for analyse the total costs in more
detail. An estimate is to value the know-how to 20% of the total value, which gives 3,6 M€.
22
The patents are all expired, and there is certainly immaterial value in the company’s know-how.
However, since there are no immaterial values in the balance sheet, the value of the know-how is
estimated to be included in the R&D costs. This becomes a weakness of the valuation.
The values may be adjusted for inflation, depreciation or exchange-rate fluctuation. Exchange rates
have no significance in this case. Concerning the inflation, an average of EURIBOR 2008-2013 of
1,9% is used. The present value of the historical costs have been adjusted for a time period of five
years. All costs have already been depreciated. This gives a total cost-based valuation according to
the table below.
Cost-based valuation Million €
Historical costs Adjusted for inflation
R&D Polymers 3,2 3,5
R&D Cellulose 3 3,3
Production know-how 3,6 4
Patents 0 0
Total value 9,8 10,8
Figure 5: Cost-based valuation with historical and present values of the case study company.
Referring to the discussion in the theory part, any company interested in buying this wound care
technology, the company, the know-how or a licence, has to put the development costs in
perspective of its own organization’s capabilities. Since there are no valid patents any more, the
company has freedom to operate with the know-how it has. The value of this know-how is very
hard to measure, however, the cost-based valuation gives an approximation of what it would cost to
reproduce this know-how.
4.5. Relative valuation
Even though comparables or benchmarking valuation practices are very common in life science
(Mayhew, 2010), a market-based comparison is not considered appropriate for the valuation of the
particular case study in the scope of this study, because it is not possible to find a direct comparison
company. The case study company is very particular.
4.6. Discounted cash flow valuation
When assessing the discounted cash flow value of the company, Damodoran’s firm and terminal
value models are used. The challenges in the DCF valuation are the choice of discount rate, which
parameters to used, and the estimation of the evolution of the parameters to determine the future
cash flow to firm. The future development of the revenues and costs have been received from the
case study company. Please see appendix 3 for the prognosis of the case study company. The
prognosis is done as long as for ten years with terminal value calculated after that, because the
products are very early in the life cycle, and the technology is assumed to generate new innovations
23
and products also after that time period. The present value of the sum of the free cash flows (FCF)
for the next ten years is 3,24 M€. The cost of capital, also called required rate of return, or hurdle
rate, is difficult to estimate due to the lack of data. Therefore a sensitivity analysis is presented in
figure 6.
Company Value in Million €
Sensitivity Analysis Required Rate of Return
Terminal Growth 10% 20% 30%
0% 61,7 14,5 4,5
4,5% 85,7 14,9 4,3
9% 432 19,6 5,0
Figure 6: DCF valuation showing the effects of different hurdle rates and growth rates used for calculating the
terminal value. The difference between lowest and highest values is close to 100 times.
The required rate of return has a big impact on the valuation of the company, especially when
changing another parameter, the assumed growth for the terminal value, which means what stable
growth is expected during a longer period after the last projected year. The value of the company
reaches very high levels with a low hurdle rate and high expected terminal value growth. The case
study company belongs to the Medtech industry sector, which have had a historical annual growth
rate of around 9% (Koller et al., 2010), and the future growth is estimated to be 4,5%
(EvaluateMedtech, 2013). This value is chosen for the valuation since there will be more products
launched later, than just two used in the prognosis.
Major stock market listed corporations have returns of around 10% (Koller et al., 2010). Within
venture capital, due to the higher risks, the hurdle rates are higher, even up to 35% (Damodaran,
2006). In Stockholm, private equity investors with young life science growth companies in the
portfolio are currently aiming at a return on equity of 20% (Ixora, 2013; CapMan, 2014). A 20%
hurdle rate is chosen as most representative for the case study company’s valuation. With the 4,5%
“eternal” growth rate the terminal value becomes:
70,8 M€ =
10,9 M€
(20% − 4,5%)
With a 20% discount rate, the present value becomes 11,43 M€. Finally, summing the present value
of the free cash flow for the next ten years and the present value of the terminal value, the case
study company’s discounted cash flow value becomes: 3,45 + 11,43 = 14,89 M€
4.6.1. Probability-weighted DCF value
The DCF value is calculated with the assumption of successful development process, registrations
and market launch. However, the probability of success in reaching the cash flows may be included
in the DCF valuation itself, and as we later will see, can be used in the real option valuation. This
was also done by Shockley et al. (Shockley et al., 2003), who corrected the net present value with a
24
probability-adjusted cash flow calculation in comparison to the “standard” net present value
conditional upon actually going to market. The probability-weighted DCF value is calculated taking
into account the probability to succeed in each milestone multiplied with the free cash flow
(Shockley et al., 2003). The probability of a successful CE Class IIB registration of the product for
treatment of burns is 90%, and it is 80% for the same type of registration for a new indication, the
treatment of chronic wounds. After correcting the FCF with the accumulated probability year by
year, later discounting it using the same discount rate of 20% as before, the probability-weighted
DCF value of the company becomes: 10,3 M€. See also appendix 3.
DCF Valuation Million €
Not adjusted, “standard” DCF 14,9
Probability-weighted DCF 10,3
Figure 7: Taking into account probabilities of successful future milestones, lowers the ”standard” DCF value.
4.7. Real option valuation
For start-up R&D companies, with limited capital, it is particularly important to find out the
outcome of each investment in the different steps of the development. In the real option method to
stage investments, the option to gradually invest capital, means being able to decide to continue or
abandon the development project at different milestones or tollgates. Being able to take this
flexibility into account in the valuation, will increase the value of the company (Koller et al., 2010).
When estimating the flexibility value to stage investments, the binominal option-pricing model is
used. There are several more complicated models. It is suggested in the literature that the binominal
model is preferred to, for instance the Black & Scholes model, since the binominal method provides
a more flexible framework suitable for real option valuation of medical research and development
projects with tollgates or milestones (Andersson & Arenroth, 2006; Chrissanthopoulos &
Svanström, 2010; Shockley et al., 2003). The binominal option type to stage investments is
therefore suitable for this case study.
The binominal model used is similar to a compound option, where the option is built as multiple
stage options and the project is evaluated after every development stage. Because of the fact that the
model is structured as a financial option-pricing model, the most important step is to identify and
decide the input variables to be used.
S: Value of the underlying asset. The expected net value of the underlying asset is difficult to
estimate in private equity. The gross value is used to estimate the expected value. The estimated
future earnings are discounted, without taking investments or costs into account, that is gross
present value of expected cash flows (Trigeorgis, 1996; Chrissanthopoulos & Svanström, 2010).
25
The same discount factor as in the DCF-model of 20% is used to make comparison easier. The
gross value is estimated to 20 M€. See appendix 4.
σ: Volatility: The volatility of the asset, in this case based on the future earnings, is another
variable that is difficult to estimate. This has been criticized against using real options in valuation
(Amram & Kulatilaka, 2000). Villiger & Bogdan (Villiger & Bogdan, 2006) suggest that the
volatility should be between 30-40% for biomedical companies. In this study, 30% is chosen.
Nonetheless, the final result is not sensitive to changes in volatility (Shockley et al., 2003).
K: Strike price: The strike price in real option is the total new capital investments to reach the
milestones successfully (Damodaran, 2002). In this case, 2,7 M€ is needed to invest in the CE
registrations, including clinical trials needed and the automation of the production. This total
investment is divided in three parts and invested at different stages in time.
Time to maturity: The time for expiration is the period until the final milestone. In this case the
product hits the market at a very early stage as a bandage for burn wounds. To achieve the total
estimated earnings, the product needs to be approved for chronic wounds in year five. This is
important for the whole prognosis, since the new indication, treatment of chronic wounds, will
reach at least double the sales compared to the first indication, treatment of severe burns. Time to
maturity in this calculation is until the 5:th year when both CE Class IIB approvals are made for
both indications, which coincides with automation of the small-scale production and a positive cash
flow. After this point in time, the risk for failure of the whole project, and in worst case bankruptcy
of the company, is much smaller.
∆𝑡: Time step: The time is divided in steps according to when the value may go up or down. For a
listed company, this may be every day the stock can be bought or sold. However, in private equity
the period may follow events in the scenario, such as milestones, investments and/or sales. One
time step is the time between two nodes in the binominal tree (Bogdan & Villiger, 2008). In this
study, one time step equals to one year. However, the number of periods or the length of the time
steps do not affect much the final option value (Shockley et al., 2003).
r: Risk free rate: 10 year governmental bond average of the EU countries: 3,25% is used as the risk
free rate, since the case study company is registered within the EU and inside the Euro monetary
system. See appendix 5.
26
EPNV: Expected present net value is the value of the probability weighted net present value plus
the option value.
After deciding the variables, the probability and the structure of the binominal option tree is
calculated. The up and down movements of the binominal tree with the chosen volatility and time
to expiration is: 𝑢 = 𝑒30%√1
≈ 1,35 and 𝑑 =
1
𝑢
=
1
1,35
≈ 0,74
The movement of the binominal tree is later multiplied with the value of the underlying asset. This
give a binominal tree with the possible outcomes of future gross value. See figure 8.
Figure 8: Gross value calculation gives a theoretical future value depending on the volatility, time and number
of periods or nodes, in this case each node is equal to one year.
After the calculation of the possible outcomes, we calculate the statistical probability that the
certain outcome will happen, and later multiple it with our own estimated probability that the
product will be approved in the certain phase.
For the total value we need to value each period separately. We use the model, presented in the
theory, for calculating the value of an option for one period. The valuation starts from the final year
and moves period by period until we reach the present value.
2014 2015 2016 2017 2018 2019
Probability to succeed 100% 90% 80%
Investments 1 MEUR 1 MEUR 0,7 MEUR
66 MEUR 89 MEUR
49 MEUR 49 MEUR
36 MEUR 49 MEUR
36 MEUR 27 MEUR
27 * 1,35 = 39 36 MEUR 49 MEUR
27 MEUR 27 MEUR
20 MEUR 27 MEUR
27 MEUR 15 MEUR
36 MEUR 49 MEUR
S * u = Su 27 MEUR 27 MEUR
20 * 1,35 = 27 27 * 0,74 = 20 20 MEUR 27 MEUR
20 MEUR 15 MEUR
20 MEUR 27 MEUR
15 MEUR 15 MEUR
11 MEUR 15 MEUR
20 MEUR 8 MEUR
36 MEUR 49 MEUR
27 MEUR 27 MEUR
20 MEUR 28 MEUR
20 MEUR 14 MEUR
27 * 1,35 = 20 20 MEUR 27 MEUR
S * (1/u) = Sd 15 MEUR 15 MEUR
20 * 0,74 = 14 11 MEUR 15 MEUR
15 MEUR 8 MEUR
20 MEUR 27 MEUR
15 MEUR 15 MEUR
15 * 0,74 = 11 11 MEUR 15 MEUR
11 MEUR 8 MEUR
11 MEUR 15 MEUR
8 MEUR 8 MEUR
6 MEUR 8 MEUR
4 MEUR
Node Milestones
Burns CE Class I
Patent application
Burns CE Class
IIB
Chronic wounds
CE Class IIB
27
𝑝 =
(𝑒 𝑟∆𝑡 –𝑑)
(𝑢−𝑑)
𝑝 𝑢 =
(𝑒3,25%∗1−0,74)
(1,35−0,74)
≈ 0,48 𝑝 𝑑 = 1 − (
(𝑒3,25%∗1−0,74)
(1,35−0,74)
) =0,52
When the probability of each outcome is calculated we subtract the investment needed for the
project to take place. Later we add our estimated probability that the clinical testing and registration
will be successful. For instance, for 2018 we have no investment to subtract but we need to take
account for the CE Class IIB for Chronic wounds which is estimated to have 80% chance of
success. For 2017 on the other hand we also have 0,7 M€ to subtract from the total value,
additionally taking into account the 90% probability to succeed with the node milestone. The
expected net present value is calculated (Chrissanthopoulos & Svanström, 2010):
𝐸𝑁𝑃𝑉 = 𝑒−𝑟∆𝑡
[(𝑝𝑢 + (1 − 𝑝)𝑑] ∗ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑜 𝑠𝑢𝑐𝑐𝑒𝑒𝑑 − 𝐾
The highest value in 2018 will be:
53 = 𝑒−3,25%∗1
∗ [(0,48 ∗ 89) + (0,52 ∗ 49)] ∗ 80% − 0
In the same way the value for each outcome in 2017 is calculated. Consequently, the value for each
period is then calculated for all the years with the basis from the previous year. See also appendix 6.
Figure 9: Starting from the future gross value of 89 M€, the final expected net present value is received after all
milestones taking into account the probabilities of up and down going time steps, as well as the probability of
success in each milestone.
2014 2015 2016 2017 2018 2019
Probability to succeed 100% 90% 80%
Investments 1 MEUR 1 MEUR 0,7MEUR 53 EUR
0,968*((0,48*89)+(0,52*49))*80%-0= 53 MEUR
0,968*((0,48*53)+(0,52*29))*90%-0,7= 34 MEUR 53 MEUR 89 MEUR
34 MEUR 49 MEUR
29 MEUR 49 MEUR
25 MEUR 27 MEUR
29 MEUR 49 MEUR
19 MEUR 27 MEUR
16 MEUR 27 MEUR
18 MEUR 15 MEUR
29 MEUR 49 MEUR
19 MEUR 27 MEUR
16 MEUR 27 MEUR
14 MEUR 15 MEUR
16 MEUR 27 MEUR
10 MEUR 15 MEUR
9 MEUR 15 MEUR
11,5 MEUR 8 MEUR
29 MEUR 49 MEUR
19 MEUR 27 MEUR
16 MEUR 28 MEUR
14 MEUR 14 MEUR
16 MEUR 27 MEUR
10 MEUR 15 MEUR
9 MEUR 15 MEUR
9 MEUR 8 MEUR
16 MEUR 27 MEUR
10 MEUR 15 MEUR
9 MEUR 15 MEUR
7 MEUR 8 MEUR
9 MEUR 15 MEUR
5 MEUR 8 MEUR
5 MEUR 8 MEUR
0,968*((0,48*8)+(0,52*4))*80%-0= 5 MEUR 4 MEUR
Chronic wounds
CE Class IIB
Node Milestones
Burns CE Class I
Patent application
Burns CE Class
IIB
28
The final value is the expected net present value of 11,5 M€. To find out the option value, we need
to subtract the net present value of the company. Since this is a private equity firm, there is no
official value. The probability-weighted DCF, 10,3 M€ is used as the NPV. The added value from
the option to stage investments is the difference between the ENPV of 11,5 M€ and the NPV of
10,3 M€, which gives the option value of 1,2 M€.
Real Option Valuation Million €
Probability-weighted NPV 10,3
Value of option to stage investments 1,2
Total value (ENPV) 11,5
Figure 10: NPV + Option value = ENPV
29
5.Discussion and conclusions
Four valuation methods were applied on the case study company, cost-based, DCF, probability-
weighted DCF and real option valuations. Are they all good valuation methods for a small life
science companies with negative earnings? Is anyone preferable?
Figure 11: Results of the four different valuation methods used for the case study company.
The cost-based valuation gives a present value of 10,8 M€. An important criticism of the cost-based
valuation is not taking into account the effects of future cash flows and profits (Bogdan & Villiger,
2008). The cost-based valuation is a simplistic valuation and could be considered as a base-line.
However, like commented before, within life sciences, where R&D and innovation is a special
challenge in valuation, the efficiency of the research and development should be given extra
consideration. The R&D processes in a small life science company may be more inefficient
compared to a new potential buyer, a larger corporation. The value may be lower than the total
R&D costs for the smaller company with negative earnings, where in certain situations the lack of
capital and/or competence will make the development work more inefficient.
According to Mayhew, other values, such as, human, market, reputation, or innovation values
should be added to the book values (Mayhew, 2010). The management itself is considered of great
value in most acquisitions, and this holds true also among venture capitalists (Ixora, 2013). This
value is not included in the cost-based valuation. Neither is the risk of the development of a
corresponding technology in the hands of another organization (the buyer’s).
On the upside is the fact that the former owners had invested more than 22 M€ in a mother
company, indicating that the former owners considered the know-how and the future potential value
higher than this. Hence, it can be speculated that the cost-based valuation could be higher.
The DCF valuation gave a value of 14,9 M€. This was the highest value of all methods used. A
sensitivity analysis showed what effect the choice of expected rate of return and the terminal value
growth rate had on the valuation. This shows a weakness of the DCF valuation, since the value is
easily manipulated. To use a DCF valuation correctly, the ingoing parameters have to be relevant,
but in the case of an innovative, high risk, life science company this can lead to a lot of debate.
What is relevant? In the scope of this study, the current hurdle rate commonly used in venture
capital in Northern Europe, and the expected growth rate for the industry sector was chosen as
relevant. At a hurdle rate of 20%, the terminal value was not sensitive in the interval 0-5%, which
Value million € 10,8 14,9 11,5
Cost-based
valuation
Discounted cash
flow (DCF)
valuation
Real option
valuation
Probability-
weighted DCF
valuation
10,3
30
gives confidence to the final valuation of 14,9 M€. However, it must be emphasized that if the
expected rate of return is 30%, the value of the company drops to 4-5 M€. If the case study
company is for sale, a large corporation within the industry that has a lot of competence and capital,
will probably require a lower hurdle rate, since the share size and capabilities of the buyer will
lower the risks for the acquisition. In this case a 20% hurdle is reasonable, some might even
consider it high.
Another issue with the DCF valuation is the estimation of the future cash flows and revenues. In
this case study there was no historical data to be beneficial for the prognosis. Usually the historical
sales development is the starting point of the estimation. The new technology is yet not in a life
cycle stage to create revenues. The uncertainty of DCF valuation is particularly questioned within
an industry where unsuccessful clinical trials can suddenly lead to abandonment of the project
(Villiger & Bogdan, 2006). In discussion with the President, the future revenue and earnings margin
were estimated. As the future earnings have a big effect on the value of the company, the
estimations need to be accurate and could also be influenced by biased and subjective assumptions.
For a bigger company with a long history of different product life-cycles, the future projections will
be more trustworthy. On the other hand, the increased risk of the correctness of the prognosis is
reflected in the hurdle rate.
It may seem starling that the DCF value is higher than the real option value. However, the two
should not be directly compared, due to the fact that the DCF valuation is conditional upon going to
market. Since the “standard” DCF model is composed of revenues generated with the assumption of
successfully getting through the development and regulatory obstacles, an additional risk factor was
added to create a probability-weighted DCF value (Shockley et al., 2003). Two milestones in the
development process where the before mentioned uncertainty of registration as a consequence of
clinical trials were mathematically taken into account. This calculation lowered the “standard” DCF
value with over 30%. The results are similar to Shockley, who used the same method and also got a
“standard” DCF value higher than the real option value (Shockley et al., 2003). The probability-
weighted DCF value of 10,3 M€ is very close to the cost-based value of 10,8 M€.
The real option valuation gave a value of 11,5 M€. This value is 1,2 M€ higher than the value of
the probability-weighted DCF method. Note that if the future development of the company would
include more types of options, such as the value to delay, the value to expand, the value to product
patents, and the value to financial flexibility, these real options would add more value. The DCF
method, a simple straight-forward method has a major flaw, especially important for the life science
industry. Because of the high level of uncertainty, the DCF model does not take into account
possible changes in market conditions (Bogdan & Villiger, 2008). The DCF model makes some
31
assumptions as the whole truth, and the risk is estimated in the discount factor. If this is done for a
certain project, and this fails, the value becomes zero (or negative). Real option valuation, on the
other hand, includes one important additional factor, the probability that something happens in the
future. This gives a welcome flexibility, and includes future uncertainty into the valuation.
As biotech companies usually have a higher market value than a DCF valuation shows, the real
option approach may help discover the extra value (Kellog & Charnes, 2000). However, not all
agree that it is appropriate to implement real option valuation to health care industries, as the risk
and uncertainty of the volatility in the underlying products is hard to estimate (Amram &
Kulatilaka, 2000).
Real option valuation is the most complicated valuation method that was used for the case study,
but the use of probabilities in predicting future value depending on future milestones seems to be
very relevant for estimation of fair value of the case study’s most important asset, the new medical
technology. Andersson & Arenroth (Andersson & Arenroth, 2006), chose the option to stage
investments, and the option to expand for the valuation of a life science company, in this case a
publicly listed company. It is reassuring that three research groups selected the same method used
in this study, real option to stage investments, as suitable for valuation of life science companies
(Andersson & Arenroth, 2006; Chrissanthopoulos & Svanström, 2010; Shockley et al., 2003). If the
real option valuation is performed with a lot of insight and expertise, it may give good extra
perspectives to a valuation, especially significant for the life science industry, where important
milestones certainly contribute significantly to the value of a company or a technology. However,
the option-based methods for life science companies are still not established, and can make the
valuation a time consuming ad hoc process (Shockley et al., 2003). Even the International Private
Equity and Venture Capital Valuation Guidelines, as presented in chapter 2, do not consider real
option as an established method, and this valuation is not listed in the guidelines (IPEV, 2012).
The conclusions are that for the case study company, all three methods used, cost-based, discounted
cash flow and real option valuations gave results that are defendable, even though some of the
results are far from each other. The probability-weighted DCF valuation gives a welcome extra risk
adjustment to correct one of the features criticized in the normal DCF method. Looking at all
valuation methods presented in the theory, three were not applicable for the case study company,
net assets, latest share issue and relative valuations. Latest share issue valuation method is the only
one actually giving a company’s true price, but it is historical. The latest share issue valuation is
more accurate the closer in time, and the fewer significant events have occurred since latest share
issue. It is also commonly used in venture capital (Ixora, 2013). Concerning the relative valuation,
this method may be useful, only if there is a very similar company found for comparison. Finally,
32
net assets are not considered reflecting a fair value in small research-intense life science companies,
especially with negative earnings, since creation of immaterial property and future earnings are
crucial and not valued in the net assets.
The simplified real option approach presented in this study could not only be very useful in
valuation, but also convenient in strategic planning and estimating the effects of different
investments, the probabilities of the milestones to succeed and the influence these parameters have
on the real option value. This can easily be illustrated by referring to the chart in appendix 6. For
example, assuming an extra investment of 100 000 € in clinical studies year 3, will increase the
probability from 80% to 90% of CE Class IIB approval of the chronic wounds treatment indication
in year 5. When these new values, and not forgetting that the probability-weighted DCF also
increases to 11,8 M€, the real option value increases from 1,2 to 1,4 M€. The conclusion is that
with an extra investment of 0,1 M€, the value of the company increases with 0,2 M€. This shows
the utility of the real option method also in planning investments and understanding the influence of
future probabilities to succeed with milestones on the value of the company.
Venture capital valuation of small life science companies, especially for those with negative
earnings, which means in practice that there is probably no reliable historical sales data available, is
a big challenge due to the uncertainty of the future development. To use more than one valuation
model will decrease the risks of wrong estimation of the fair value. Therefore, the recommendation
is to use at least two of the most suitable valuation methods, latest share issue, relative, cost-based,
DCF, probability-weighted DCF and real option, depending on the characteristics of the small life
science company. A simplified real option method, based on the binominal option to stage
investments, was created, and this can be used or further developed in the valuation of projects or
companies involving the staging of capital expenditures around milestones in life science.
33
6.Suggested further research
Future research could include an alternative approach to improve the cost-based valuation by taking
into account the risk of development of the know-how. By calculating the future value of the cost-
based valuation, using a certain hurdle rate, the future value gives a possibility to compare
alternative investments (Damodaran, 2001).
Future Value = Current Value (1+discount rate)t
The same discount rate as used in the DCF-valuation can be chosen, 20%. The years of
development is depending on the capability of the other organization, so below is presented the
value of the cost-based valuation, adjusted with value of the risk of developing the know-how over
3, 5 and 10 years (t).
Discount rate: 20% Value today Value 3 years Value 5 years Value 10 years
M€ 10,8 18,7 26,9 66,9
Figure 12: Future value calculation of the cost-based valuation to estimate risk.
So, if a potential buyer would like to compare what another investment with the same value as the
cost-based valuation would be worth after a certain number of years with a discount rate of 20%,
the future value can give an estimation of this. Say the potential buyer estimates the development
time to five years to copy the technology, this gives a future value of 26,9 M€ for the case study
company. However, the development’s total cost might be lower than 10,8 M€ because of the
increased efficiency of the buyer’s organisation, so the future value might not be directly
comparable using the historical costs for a less efficient organisation. For instance, if the buyer
considers the new technology’s development cost to be just the half, 5,4 M€, this gives a five year
future value of 13,4 M€. When a potential buyer is able to give quite an accurate estimate of its own
capability, thereby estimating the total costs and the time of development, this alternative approach
might be very useful.
The simplified real option valuation method developed in this study to use probabilities and
investments in relation to milestones could be an excellent tool in strategic planning. Complicated
models giving seemingly exact results may give a false image that the results are trustworthy. The
simplified method with just six nodes seems completely sufficient in valuation of assets with high
uncertainty. This should be studied further, not only for the life science industry but also for other
sectors with uncertain, critical milestones in the product development.
This study has used only one case study company. To increase the validity of the conclusions, it is
suggested that a larger number of small life science companies should be studied and valuated.
34
References
Amram, M. & Kulatilaka, N., 2000. Strategy and shareholder value creation: The real options
frontier. Journal of Applied Corporate Finance, 13(2), pp. 8-21.
Andersson, D. & Arenroth, N., 2006. Valuation of biotechnology firms with real options.
Magisteruppsats i Internationella Ekonomprogrammet LIU-EKI/IEP-D--06/012—SE.
Bogdan, B. & Villiger, R., 2008. Valuation in Life Sciences: A Practical Guide. Berlin, Germany:
Springer Verlag.
Bratic, W., Blok, J. & Gostola, M., 2014. Valuation of early-stage companies in the biotechnology
industry. Journal of Commercial Biotechnology, 20(2), pp. 51-58.
CapMan, 2014. www.capman.com. [Online, Accessed 11 April 2014].
Carver, L., 2011. Venture Capital Valuation: Case Studies and Methodology. Hoboken, USA: John
Wiley & Sons.
Chrissanthopoulos, N. & Svanström, R., 2010. Utvärdering av värderingsmodell som hanterar
osäkerhet och tid. Stockholm, Sweden: Stockholm University.
Copeland, T., Weston, F. & Shastri, K., 2005. Financial Theory and Corporate Policy. 4 ed.
Boston, USA: Pearson Addison-Wesley.
Cotropia, C., 2009. Describing Patents as Real Options. The Journal of Coproration Law, 34(4), pp.
1127-1149.
Damodaran, A., 2001. Coprorate Finance - Theory and Practice. 2 ed. Hoboken, USA: John Wiley
& Sons.
Damodaran, A., 2002. Investment valuation. 2 ed. Hoboken, USA: John Wiley & Sons.
Damodaran, A., 2006. Damodaran on Valuation - Security Analysis for Investment and Corporate
Finance. 2 ed. Hoboken, USA: John Wiley & Sons.
DiMasi, J. & Grabowski, H., 2007. The Cost of Biopharmaceutical R&D: Is Biotech Different?
Managerial and Decision Economics, Volume 28, pp. 469-479.
EvaluateMedtech, 2013. www.evaluategroup.com. [Online, Accessed 10 April 2014].
Fraser-Sampson, G., 2011. Private Equity as an Asset Class. 2 ed. Hoboken, USA: John Wiley &
Sons.
Gustafsson, B., Göran, H. & Petterson, B., 2011. God forskningssed. Vetenskapsrådet.
Hamill, P., McIlkenny, P. & Opong, K., 2013. Valuation implications of pharmaceutical
companies’ R&D regulatory approval notifications. The British Accounting Review, 45(Elsevier),
pp. 99-111.
Hull, J. C., 2012. Options, futures and other derivatives. 8 ed. Upper Saddle River, USA: Prentice
Hall.
IPEV, 2012. www.privateequityvaluation.com. [Online, Accessed 19 March 2014].
Ixora, S., 2013. Investment Summary - Portfolio of leading innovative growth companies.
Stockholm: Serendipity.
Kellog, D. & Charnes, J., 2000. Real-Options Valuation for a Biotechnology Company. Association
for investment management and research.
Koller, T., Goedhart, M. & Wessel, D., 2010. Valuation. 5 ed. Hoboken, USA: (McKinsey &
Company) John Wiley & Sons.
Mayhew, S., 2010. Practical approaches to early stage life sciences technology valuations. Journal
of commercial biotechnology. 16(2) pp. 120-134.
Moore, E. G. & Shaw, W. H., 2005. Ethics: and "The Nature of Moral Philosophy". Oxford
Scholarship Online.
Penman, S. H., 2013. Financial Statement Analysis and Security Valuation. 5 ed. Singapore:
McGraw-Hill.
PhRMA, 2014. www.phrma.org. [Online, Accessed 19 March 2014].
Sammut, S., 2012. Valuation methods in early-stage biotechnology enterprises: The "Venture
Capital Method" at work. Journal of Commercial Biotechnology, 18(2), pp. 78-82.
Sandström, A., 2014. Global trends with local effects - The Swedish Life Science Industry 1998-
2012, Sweden: Vinnova Analysis, VA 2014:03.
35
Schneider, B., 2009. A capital market's view on Industrial Biotechnology - proper valuation is the
key for picking the right investment opportunities in stormy times. Journal of Business Chemistry,
6(3), pp. 108-110.
Schwab, K., 2013. www3.weforum.org. [Online, Accessed 11 February 2014].
Shockley, R. L., Curtis, J. S., Jafari, J. & Tibbs, K., 2003. The Option Value of an Early-Stage
Biotechnology Investment. Journal of Applied Corporate Finance, Volume 15.2, pp. 44-55.
Trigeorgis, L., 1996. Real Options: Managerial Flexibility and Strategy in Resource Allocation.
Cambridge, USA: MIT Press.
Trigeorgis, L., 2002. Real options and uncertainty - What do we know?, Working paper No. 22,
May 2002: National Bank of Belgium.
Verdu, A., Tamayo, I. & Ruiz-Moreno, A., 2012. The moderating effect of environmental
uncertainty on the relationship between real options and technological innovation in high-tech
firms. Technovation, Volume 32, pp. 579-590.
Wilde, O., 1892. Lady Windermere's Fan - A Play About a Good Woman. [Art].
Williams, M., 1999. Science and Social Science : An Introduction. London: Routledge.
Villiger, R. & Bogdan, B., 2006. Pitfalls of valuation in biotech. journal of Commercial
Biotechnology, 12(3), pp. 175-181.
Yin, R., 1994. Case study research - Design and methods. 2 ed. Thousand Oaks, USA: SAGE
Publications.
Zhou, K. Z. & Li, C. B., 2012. How knowledge affects radical innovation: Knowledge base, market
knowledge acquisition, and internal knowledge sharing. Strategic Management Journal, Volume
33, pp. 1090-1102.
36
Cellulose
Building
blocks
Polymers
Appendix 1: Wound care technology company
 The case study company is a wound care technology company, specialized in
biopolymers and biomaterials for the high value life science and medical
device markets.
o Developing and manufacturing regenerative tissue engineering
materials with bioactive properties and structure, suitable for wound
care, implant and pharmaceutical applications.
o Two proven platform technologies, biodegradable polymers and
bioactive ultrapure natural fibre matrix, a type of cellulose.
 The wound care technology company was founded in 2004, with a 100% management buy-out
in 2009. In 2012, the company acquired technologies for production of medical cellulose,
fitting the company’s focus and know-how.
 The company has had years with positive cash flow, but currently it is not making profit.
 According to the company, 22 M€ (30 M$ or 270 MSEK) has been invested in developing
technology. Close to one million € is received as governmental support or from the European
Union. All development costs are depreciated, which means the company has no debts for the
technology.
 First product is for treatment of severe burns, 3rd
class and deeper, by regeneration of new
tissue. After further clinical tests, indications can be added for chronic wounds, such as,
diabetic foot ulcer, venous leg ulcer, and hard to heal wounds.
3rd
degree burn
At 7 days 12 months later
Medical cellulose material is white, in the centre.
 The global wound care market is approximately 11 billion € (15 bn$ or 130 bnSEK), of which
100 M€ (140 M$ or 890 MSEK) in sales could be reached by year 2026 with the wound care
products in question.
 Final product for treatment of burns will have very high margin, > 95%.
References: Case company’s internal information.
37
Appendix 2: The wound care market
 A wound is an injury or break in the skin, generally a dissection of tissue or rupture of a
membrane. Traditional wound care products are dry dressings, bandages, etc. Advanced wound
care product constitutes of alginates, hydrogels, hydrocolloids and collagen, skin substitutes
and biological growth factors. The most sophisticated treatments are regenerative medicine.
 The global wound care market reached revenues of 11 billion € (15 bn$ or 130 bnSEK), in
2010, with a growth of 6%. One third is so called Advanced Wound Care. Of this share 3
billion $ is wet products, and to this segment belong artificial skin products.
 Major general wound care companies are Smith and Nephew, Kinetic Concepts, Convatec,
Systagenix, and Mölnlycke Healthcare.
 Major players in regenerative medicine and extremity reconstruction are Johnson & Johnson,
Pfizer, Sanofi, Roche, GlaxoSmithKline, Wright Medical Group and Integra Lifesciences.
 A few examples of product specific sales, and product prices:
o Dermagraft (treatment of diabetic foot ulcer); 147 M$, 2010.
o Apligraf (treatment of diabetic foot ulcer and venous leg ulcer); >100 M$, 2010.
o The artificial skin’s (treatment of burns) product price is around 10 € per cm2
.
o For chronic wounds are both expensive artificial skin products, as well as cheaper
dressings used. A cheaper bandage is sold for around 0,05 € per cm2
.
 The wound care market is driven by rise in chronic diseases, such as diabetes and hypertension,
increase in the ageing population, and technological advancements. The demand for mobile,
user-friendly devices is expected to grow the wound care market in the coming years. In a more
long term perspective, biological growth factors, and tissue-engineered products like skin
substitutes will become market-drivers.
 15% of diabetes patients develop one or more diabetic foot ulcer (DFU) during their lifetime. In
USA, 26 million people have diabetes. 2% of diabetes patients develop DFU annually.
 In USA, 500 000 patients annually seek medical treatment for venous leg ulcer.
 In USA, 15% of elderly patients develop pressure ulcers during hospitalisation.
 Rapid breakthrough in wound-healing technologies to develop cost effective treatment is
expected to drive the growth of the market. Companies are now focusing on the introduction of
advanced materials, methods, and active substances for the treatment of wounds.
 Regenerative medicine has become increasingly popular in recent years, with the number of
deals announced growing steadily. In years 2009-2012, there have been 570 regenerative
medicine / stem cell deals.
References: Case company’s internal information, originally collected from market research companies, such as Kalorama
information, MarketsandMarkets 2012, and GlobalData 2010, and Duodecim 2009; 125:457-65.
38
Appendix 3: DCF prognosis
€ 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Revenue - 20 000 140 000 450 000 1 100 000 2 200 000 3 900 000 6 800 000 10 500 000 15 800 000
Annual Growth % 600% 221% 144% 100% 77% 74% 54% 50%
Expenses
COGS (cost of gods), production and lab 65 000 46 000 50 000 75 000 113 000 195 000 302 000 515 000 780 000 1 149 000
Personnel costs 527 144 591 440 609 224 671 624 671 624 734 024 734 024 734 024 734 024 734 024
Other costs (IPR, marketing, royalties, QA, clinical studies, etc.) 160 000 120 800 145 600 148 000 174 000 218 000 286 000 402 000 550 000 130 000
Depreciation 10 000 14 000 18 000 22 000 26 000 70 000 70 000 70 000 70 000 70 000
Net operating Income -752 144 -738 240 -664 824 -444 624 141 376 1 052 976 2 577 976 5 148 976 8 435 976 13 786 976
Taxable Income -762 144 -752 240 -682 824 -466 624 115 376 982 976 2 507 976 5 078 976 8 365 976 13 716 976
EBITA -margin -3761% -488% -104% 10% 45% 64% 75% 80% 87%
Tax -152 429 -150 448 -136 565 -93 325 23 075 196 595 501 595 1 015 795 1 673 195 2 743 395
FCF -609 715 -601 792 -546 259 -373 299 92 301 786 381 2 006 381 4 063 181 6 692 781 10 973 581
Probability for succesful milestone 100% 100% 100% 90% 80% 100% 100% 100% 100% 100%
Cumulative probability 100% 100% 100% 90% 72% 72% 72% 72% 72% 72%
Probability weighted FCF -609 715 -601 792 -546 259 -335 969 66 457 566 194 1 444 594 2 925 490 4 818 802 7 900 978
39
Appendix 4: Gross value
€ Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10
Net turnover
Sales from wound care product for treatment of burns 20 000 100 000 250 000 600 000 1 000 000 1 900 000 3 000 000 4 500 000 6 800 000
Sales from wound care product for treatment of chronic wounds 40 000 200 000 500 000 1 200 000 2 000 000 3 800 000 6 000 000 9 000 000
Annual growth % 600% 221% 144% 100% 77% 74% 54% 50%
Total Revenue - 20 000 140 000 450 000 1 100 000 2 200 000 3 900 000 6 800 000 10 500 000 15 800 000
Total financing need 1 000 000 1 000 000 700 000
Gross Value
Corp tax rate 20% 20% 20% 20% 20% 20% 20% 20% 20% 20%
Year 1 2 3 4 5 6 7 8 9 10
PV Factor 0,83 0,69 0,58 0,48 0,40 0,33 0,28 0,23 0,19 0,16
Required rate of return 20% 20% 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2
- 13 889 81 019 217 014 442 065 736 776 1 088 418 1 581 463 2 034 970 2 551 788
Discounted Gross Value 8 747 402
PV of Terminal Value 11 076 841
Total Gross Value 19 824 243
40
Appendix 5: 10 year governmental bond average
Belgium 2,25 2,04 2,06 2,44 2,54 2,65 2,75 2,57 2,42 2,43 2,45 2,4 2,26
Germany 1,35 1,2 1,29 1,53 1,56 1,73 1,89 1,76 1,68 1,8 1,76 1,56 1,51
Ireland 3,83 3,78 3,48 4,02 3,88 3,92 3,95 3,65 3,53 3,48 3,39 3,24 3,05
Greece 11,38 11,58 9,07 10,07 10,53 10,01 10,15 8,74 8,41 8,66 8,18 7,7 6,9
Spain 4,92 4,59 4,25 4,67 4,67 4,5 4,42 4,22 4,1 4,13 3,79 3,56 3,31
France 2,07 1,8 1,87 2,21 2,25 2,36 2,49 2,39 2,27 2,33 2,38 2,25 2,15
Italy 4,64 4,28 3,96 4,38 4,42 4,42 4,54 4,25 4,1 4,11 3,87 3,65 3,4
Cyprus 7 7 7 7 6 6 6 6 6 6 6 6 6
Latvia 3,17 3,15 3,1 3,17 3,25 3,25 3,45 3,78 3,71 3,62 3,48 3,07 2,87
Luxembourg ( 3 ) 1,55 1,41 1,47 1,76 2,02 2,2 2,27 2,14 2,01 2,1 2,06 1,87 1,8
Malta 3,56 3,37 3,31 3,35 3,21 3,23 3,28 3,25 3,18 3,19 3,05 2,96 3,02
Netherlands 1,67 1,66 1,69 2 2,03 2,2 2,32 2,18 2,06 2,16 2,09 1,89 1,81
Austria 1,75 1,64 1,75 2,04 2,06 2,22 2,34 2,19 2,08 2,17 2,13 1,95 1,87
Portugal 6,1 6,15 5,46 6,3 6,87 6,6 7,06 6,33 5,98 6,04 5,21 4,94 4,43
Slovenia 5,09 5,93 5,35 6,38 6,58 6,51 6,56 6,47 5,91 5,27 4,73 4,43 3,85
Slovakia 3,95 3,01 2,52 2,45 3,15 3,15 3,15 3,15 3,15 2,69 2,53 2,48 2,47
Finland 1,61 1,51 1,6 1,88 1,91 2,07 2,19 2,04 1,94 2,03 1,99 1,92 1,91
Bulgaria 3,54 3,47 3,36 3,4 3,46 3,51 3,64 3,71 3,64 3,43 3,56 3,58 3,54
Czech Republic 1,98 1,82 1,67 2,14 2,23 2,4 2,42 2,33 2,18 2,2 2,43 2,28 2,2
Denmark 1,59 1,42 1,45 1,72 1,77 1,94 2,1 1,93 1,8 1,89 1,86 1,67 1,61
Croatia 4,32 4,34 4,38 4,63 4,91 5,04 4,92 4,99 4,97 5,1 5,11 4,78 4,51
Lithuania 4,15 3,95 3,54 3,54 3,54 3,65 3,89 4,01 3,99 3,69 3,42 3,33 3,33
Hungary 6,38 5,65 5,08 6,02 5,78 6,31 6,16 5,58 5,82 5,78 5,6 6,03 5,83
Poland 3,93 3,5 3,28 3,95 3,97 4,3 4,49 4,28 4,38 4,42 4,42 4,47 4,25
Romania 5,86 5,46 5,23 5,43 5,26 5,04 5,27 5,22 5,29 5,29 5,22 5,35 5,31
Sweden 1,92 1,66 1,79 2,05 2,16 2,34 2,6 2,44 2,3 2,39 2,37 2,23 2,16
United Kingdom 1,65 1,46 1,62 1,96 2,09 2,29 2,44 2,26 2,31 2,5 2,48 2,37 2,34
87,69
Average 3,25
41
Appendix 6: Real option
Real Option Calculation © Salim Gabro, Robert Harju-Jeanty, 2014
Volatility V 30% Fill in yellow boxes.
Time step Δt 1
square root Δt 1
Node upstep u= e^(V * square root Δt) 1,350 19 824 243 €
Node downstep d= 1/u 0,741 11 510 751 € 11 511
numerator for p 0,292 10 338 271 € 10 338
Risk-free rate r 3,25% 1 172 480 € 1 172
Exponent of natural logarithm r * delta t 0,0325
Probability downstep p 0,480
Probability upstep 1-p 0,520
e^-r sqrΔt 0,968
Investments 1000 1000 0 700 0 0 2700
Probability 100% 100% 100% 90% 80% 100%
Year 1 2 3 4 5 6
88846
65819 48760
48760 36122 48760
36122 26760 36122 26760
26760 19824 26760 19824 26760
14686 19824 14686 19824 14686
10880 14686 10880 14686
8060 10880 8060
5971 8060
4423
88846
52655 48760
34407 28898 48760
25330 18567 28898 26760
17611 13596 18567 15859 26760
8601 13161 9874 15859 14686
6927 9874 8704 14686
5103 4777 8060
4777 8060
4423
EPNV
Total
investments
Production
automation
19 824
11 511
Burns CE Class I +
Patent application
Burns CE Class IIB
Chronic wounds
CE Class IIB
Expected present net value
Probability-weighted DCF value
Option value
Gross Value
Gross value
Node Milestones
42
Stockholm University
SE-106 91 Stockholm
Tel: 08 – 16 20 00
www.sbs.su.se

More Related Content

What's hot

Mtm1 white paper bcg portfolio matrix
Mtm1 white paper   bcg portfolio matrixMtm1 white paper   bcg portfolio matrix
Mtm1 white paper bcg portfolio matrix
IntelCollab.com
 
Capital budgeting practices in emerging market economies
Capital budgeting practices in emerging market economiesCapital budgeting practices in emerging market economies
Capital budgeting practices in emerging market economies
Alexander Decker
 
3946545
39465453946545
3946545
akita_1610
 
Valuing a Bank
Valuing a BankValuing a Bank
Sustainable Reality: Understanding the Performance of Sustainable Investment ...
Sustainable Reality: Understanding the Performance of Sustainable Investment ...Sustainable Reality: Understanding the Performance of Sustainable Investment ...
Sustainable Reality: Understanding the Performance of Sustainable Investment ...
Sustainable Brands
 
Thesis final bilal n saif 222 (2010 2011)
Thesis final bilal n saif 222 (2010 2011)Thesis final bilal n saif 222 (2010 2011)
Thesis final bilal n saif 222 (2010 2011)
Saifullah Malik
 
Presentation on equity research
Presentation on equity researchPresentation on equity research
Presentation on equity research
Varsha-sharma
 
fundamental equity valuation of stocks
fundamental equity valuation of stocks fundamental equity valuation of stocks
fundamental equity valuation of stocks
Guruprasad Upadhya
 
corporate valuation of ultra tech cement company
corporate valuation of ultra tech cement company corporate valuation of ultra tech cement company
corporate valuation of ultra tech cement company
shalini ilavarapu
 
Investment Decision Making for Small Individual Investors – A Study with Spec...
Investment Decision Making for Small Individual Investors – A Study with Spec...Investment Decision Making for Small Individual Investors – A Study with Spec...
Investment Decision Making for Small Individual Investors – A Study with Spec...
IRJET Journal
 
Company analysis
Company analysis Company analysis
Company analysis
Richard Gomez
 
What does a Portfolio Business Analyst look like?
What does a Portfolio Business Analyst look like?What does a Portfolio Business Analyst look like?
What does a Portfolio Business Analyst look like?
Louise Worsley
 
Fundamental analysis and technical analysis
Fundamental analysis and technical analysisFundamental analysis and technical analysis
Fundamental analysis and technical analysis
Mohammed Umair
 
Introduction to fundamental analysis project
Introduction to fundamental analysis   projectIntroduction to fundamental analysis   project
Introduction to fundamental analysis project
Afzalshah Sayed
 
Mercer Capital's Value Focus: Medical Technology | Mid-Year 2016
Mercer Capital's Value Focus: Medical Technology | Mid-Year 2016Mercer Capital's Value Focus: Medical Technology | Mid-Year 2016
Mercer Capital's Value Focus: Medical Technology | Mid-Year 2016
Mercer Capital
 
Sub1574
Sub1574Sub1574
A study on empherical testing of capital asset pricing model
A  study on empherical testing of capital asset pricing modelA  study on empherical testing of capital asset pricing model
A study on empherical testing of capital asset pricing model
Projects Kart
 
Behavioral CEOs
Behavioral CEOsBehavioral CEOs
Behavioral CEOs
Dr. Larry Pino
 
Fundamental Technical analysis
Fundamental Technical analysisFundamental Technical analysis
Fundamental Technical analysis
Olufemi Feyisitan
 

What's hot (19)

Mtm1 white paper bcg portfolio matrix
Mtm1 white paper   bcg portfolio matrixMtm1 white paper   bcg portfolio matrix
Mtm1 white paper bcg portfolio matrix
 
Capital budgeting practices in emerging market economies
Capital budgeting practices in emerging market economiesCapital budgeting practices in emerging market economies
Capital budgeting practices in emerging market economies
 
3946545
39465453946545
3946545
 
Valuing a Bank
Valuing a BankValuing a Bank
Valuing a Bank
 
Sustainable Reality: Understanding the Performance of Sustainable Investment ...
Sustainable Reality: Understanding the Performance of Sustainable Investment ...Sustainable Reality: Understanding the Performance of Sustainable Investment ...
Sustainable Reality: Understanding the Performance of Sustainable Investment ...
 
Thesis final bilal n saif 222 (2010 2011)
Thesis final bilal n saif 222 (2010 2011)Thesis final bilal n saif 222 (2010 2011)
Thesis final bilal n saif 222 (2010 2011)
 
Presentation on equity research
Presentation on equity researchPresentation on equity research
Presentation on equity research
 
fundamental equity valuation of stocks
fundamental equity valuation of stocks fundamental equity valuation of stocks
fundamental equity valuation of stocks
 
corporate valuation of ultra tech cement company
corporate valuation of ultra tech cement company corporate valuation of ultra tech cement company
corporate valuation of ultra tech cement company
 
Investment Decision Making for Small Individual Investors – A Study with Spec...
Investment Decision Making for Small Individual Investors – A Study with Spec...Investment Decision Making for Small Individual Investors – A Study with Spec...
Investment Decision Making for Small Individual Investors – A Study with Spec...
 
Company analysis
Company analysis Company analysis
Company analysis
 
What does a Portfolio Business Analyst look like?
What does a Portfolio Business Analyst look like?What does a Portfolio Business Analyst look like?
What does a Portfolio Business Analyst look like?
 
Fundamental analysis and technical analysis
Fundamental analysis and technical analysisFundamental analysis and technical analysis
Fundamental analysis and technical analysis
 
Introduction to fundamental analysis project
Introduction to fundamental analysis   projectIntroduction to fundamental analysis   project
Introduction to fundamental analysis project
 
Mercer Capital's Value Focus: Medical Technology | Mid-Year 2016
Mercer Capital's Value Focus: Medical Technology | Mid-Year 2016Mercer Capital's Value Focus: Medical Technology | Mid-Year 2016
Mercer Capital's Value Focus: Medical Technology | Mid-Year 2016
 
Sub1574
Sub1574Sub1574
Sub1574
 
A study on empherical testing of capital asset pricing model
A  study on empherical testing of capital asset pricing modelA  study on empherical testing of capital asset pricing model
A study on empherical testing of capital asset pricing model
 
Behavioral CEOs
Behavioral CEOsBehavioral CEOs
Behavioral CEOs
 
Fundamental Technical analysis
Fundamental Technical analysisFundamental Technical analysis
Fundamental Technical analysis
 

Similar to Venture capital valuation of small life science companies by Salim Gabro & Robert Harju-Jeanty

Ey beyondborders: unlocking value
Ey beyondborders: unlocking valueEy beyondborders: unlocking value
Ey beyondborders: unlocking value
Frédéric Barillet
 
A. What is the main goal of the paper What motivates the author.docx
A. What is the main goal of the paper What motivates the author.docxA. What is the main goal of the paper What motivates the author.docx
A. What is the main goal of the paper What motivates the author.docx
daniahendric
 
capital budgeting at bsnl
capital budgeting at bsnlcapital budgeting at bsnl
capital budgeting at bsnl
Peda Babu Vadiyala
 
Product Development and Market Expansion: a Valuation Approach Based on Real ...
Product Development and Market Expansion: a Valuation Approach Based on Real ...Product Development and Market Expansion: a Valuation Approach Based on Real ...
Product Development and Market Expansion: a Valuation Approach Based on Real ...
Alberto Micalizzi
 
Product Development and Market Expansion: A Real Options Model
Product Development and Market Expansion: A Real Options ModelProduct Development and Market Expansion: A Real Options Model
Product Development and Market Expansion: A Real Options Model
Alberto Micalizzi
 
MA831 EZEKIEL PEETA-IMOUDU DISSO
MA831 EZEKIEL PEETA-IMOUDU DISSOMA831 EZEKIEL PEETA-IMOUDU DISSO
MA831 EZEKIEL PEETA-IMOUDU DISSO
Ezekiel Peeta-Imoudu
 
The Validity of Company Valuation Using Dis.docx
The Validity of Company Valuation  Using Dis.docxThe Validity of Company Valuation  Using Dis.docx
The Validity of Company Valuation Using Dis.docx
christalgrieg
 
Advertising and Campaign planning
Advertising and Campaign planningAdvertising and Campaign planning
Advertising and Campaign planning
Dr. Anupama S. Kotur (Kaddi)
 
The evaluation of enterprise value based on partial information
The evaluation of enterprise value based on partial informationThe evaluation of enterprise value based on partial information
The evaluation of enterprise value based on partial information
International Journal of Business Marketing and Management (IJBMM)
 
Measure What Matters - New Perspectives on Portfolio Selection
Measure What Matters - New Perspectives on Portfolio SelectionMeasure What Matters - New Perspectives on Portfolio Selection
Measure What Matters - New Perspectives on Portfolio Selection
UMT
 
Entreprenure presentation.pptx
Entreprenure presentation.pptxEntreprenure presentation.pptx
Entreprenure presentation.pptx
AyizaKhan1
 
Ignacio Velez-Pareja : From the Slide Rule to the Black Berry
Ignacio Velez-Pareja : From the Slide Rule to the Black BerryIgnacio Velez-Pareja : From the Slide Rule to the Black Berry
Ignacio Velez-Pareja : From the Slide Rule to the Black Berry
Futurum2
 
'Blue Ocean Strategy' book review
'Blue Ocean Strategy' book review'Blue Ocean Strategy' book review
'Blue Ocean Strategy' book review
Walid Saafan
 
Problem Set 71. Calculating Net Asset Value. Given the info.docx
Problem Set 71.    Calculating Net Asset Value. Given the info.docxProblem Set 71.    Calculating Net Asset Value. Given the info.docx
Problem Set 71. Calculating Net Asset Value. Given the info.docx
wkyra78
 
Fundamental Analysis of securities
Fundamental Analysis of securitiesFundamental Analysis of securities
Fundamental Analysis of securities
Rajat Jain
 
Portfolio Management for New Product Development
Portfolio Management for New Product DevelopmentPortfolio Management for New Product Development
Portfolio Management for New Product Development
Hiba shaikh & Varda shaikh
 
corporate foresight - an introduction
corporate foresight - an introductioncorporate foresight - an introduction
corporate foresight - an introduction
Ian Miles
 
Mutual funds [www.writekraft.com]
Mutual funds  [www.writekraft.com]Mutual funds  [www.writekraft.com]
Mutual funds [www.writekraft.com]
WriteKraft Dissertations
 
Mutual funds [www.writekraft.com]
Mutual funds [www.writekraft.com]Mutual funds [www.writekraft.com]
Mutual funds [www.writekraft.com]
WriteKraft Dissertations
 
Mutual funds [www.writekraft.com]
Mutual funds [www.writekraft.com]Mutual funds [www.writekraft.com]
Mutual funds [www.writekraft.com]
WriteKraft Dissertations
 

Similar to Venture capital valuation of small life science companies by Salim Gabro & Robert Harju-Jeanty (20)

Ey beyondborders: unlocking value
Ey beyondborders: unlocking valueEy beyondborders: unlocking value
Ey beyondborders: unlocking value
 
A. What is the main goal of the paper What motivates the author.docx
A. What is the main goal of the paper What motivates the author.docxA. What is the main goal of the paper What motivates the author.docx
A. What is the main goal of the paper What motivates the author.docx
 
capital budgeting at bsnl
capital budgeting at bsnlcapital budgeting at bsnl
capital budgeting at bsnl
 
Product Development and Market Expansion: a Valuation Approach Based on Real ...
Product Development and Market Expansion: a Valuation Approach Based on Real ...Product Development and Market Expansion: a Valuation Approach Based on Real ...
Product Development and Market Expansion: a Valuation Approach Based on Real ...
 
Product Development and Market Expansion: A Real Options Model
Product Development and Market Expansion: A Real Options ModelProduct Development and Market Expansion: A Real Options Model
Product Development and Market Expansion: A Real Options Model
 
MA831 EZEKIEL PEETA-IMOUDU DISSO
MA831 EZEKIEL PEETA-IMOUDU DISSOMA831 EZEKIEL PEETA-IMOUDU DISSO
MA831 EZEKIEL PEETA-IMOUDU DISSO
 
The Validity of Company Valuation Using Dis.docx
The Validity of Company Valuation  Using Dis.docxThe Validity of Company Valuation  Using Dis.docx
The Validity of Company Valuation Using Dis.docx
 
Advertising and Campaign planning
Advertising and Campaign planningAdvertising and Campaign planning
Advertising and Campaign planning
 
The evaluation of enterprise value based on partial information
The evaluation of enterprise value based on partial informationThe evaluation of enterprise value based on partial information
The evaluation of enterprise value based on partial information
 
Measure What Matters - New Perspectives on Portfolio Selection
Measure What Matters - New Perspectives on Portfolio SelectionMeasure What Matters - New Perspectives on Portfolio Selection
Measure What Matters - New Perspectives on Portfolio Selection
 
Entreprenure presentation.pptx
Entreprenure presentation.pptxEntreprenure presentation.pptx
Entreprenure presentation.pptx
 
Ignacio Velez-Pareja : From the Slide Rule to the Black Berry
Ignacio Velez-Pareja : From the Slide Rule to the Black BerryIgnacio Velez-Pareja : From the Slide Rule to the Black Berry
Ignacio Velez-Pareja : From the Slide Rule to the Black Berry
 
'Blue Ocean Strategy' book review
'Blue Ocean Strategy' book review'Blue Ocean Strategy' book review
'Blue Ocean Strategy' book review
 
Problem Set 71. Calculating Net Asset Value. Given the info.docx
Problem Set 71.    Calculating Net Asset Value. Given the info.docxProblem Set 71.    Calculating Net Asset Value. Given the info.docx
Problem Set 71. Calculating Net Asset Value. Given the info.docx
 
Fundamental Analysis of securities
Fundamental Analysis of securitiesFundamental Analysis of securities
Fundamental Analysis of securities
 
Portfolio Management for New Product Development
Portfolio Management for New Product DevelopmentPortfolio Management for New Product Development
Portfolio Management for New Product Development
 
corporate foresight - an introduction
corporate foresight - an introductioncorporate foresight - an introduction
corporate foresight - an introduction
 
Mutual funds [www.writekraft.com]
Mutual funds  [www.writekraft.com]Mutual funds  [www.writekraft.com]
Mutual funds [www.writekraft.com]
 
Mutual funds [www.writekraft.com]
Mutual funds [www.writekraft.com]Mutual funds [www.writekraft.com]
Mutual funds [www.writekraft.com]
 
Mutual funds [www.writekraft.com]
Mutual funds [www.writekraft.com]Mutual funds [www.writekraft.com]
Mutual funds [www.writekraft.com]
 

Recently uploaded

Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
nimaruinazawa258
 
Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)
AntoniaOwensDetwiler
 
Does teamwork really matter? Looking beyond the job posting to understand lab...
Does teamwork really matter? Looking beyond the job posting to understand lab...Does teamwork really matter? Looking beyond the job posting to understand lab...
Does teamwork really matter? Looking beyond the job posting to understand lab...
Labour Market Information Council | Conseil de l’information sur le marché du travail
 
FCCS Basic Accounts Outline and Hierarchy.pptx
FCCS Basic Accounts Outline and Hierarchy.pptxFCCS Basic Accounts Outline and Hierarchy.pptx
FCCS Basic Accounts Outline and Hierarchy.pptx
nalamynandan
 
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
nexop1
 
falcon-invoice-discounting-a-strategic-approach-to-optimize-investments
falcon-invoice-discounting-a-strategic-approach-to-optimize-investmentsfalcon-invoice-discounting-a-strategic-approach-to-optimize-investments
falcon-invoice-discounting-a-strategic-approach-to-optimize-investments
Falcon Invoice Discounting
 
Bridging the gap: Online job postings, survey data and the assessment of job ...
Bridging the gap: Online job postings, survey data and the assessment of job ...Bridging the gap: Online job postings, survey data and the assessment of job ...
Bridging the gap: Online job postings, survey data and the assessment of job ...
Labour Market Information Council | Conseil de l’information sur le marché du travail
 
1. Elemental Economics - Introduction to mining.pdf
1. Elemental Economics - Introduction to mining.pdf1. Elemental Economics - Introduction to mining.pdf
1. Elemental Economics - Introduction to mining.pdf
Neal Brewster
 
快速制作美国迈阿密大学牛津分校毕业证文凭证书英文原版一模一样
快速制作美国迈阿密大学牛津分校毕业证文凭证书英文原版一模一样快速制作美国迈阿密大学牛津分校毕业证文凭证书英文原版一模一样
快速制作美国迈阿密大学牛津分校毕业证文凭证书英文原版一模一样
rlo9fxi
 
The Impact of GST Payments on Loan Approvals
The Impact of GST Payments on Loan ApprovalsThe Impact of GST Payments on Loan Approvals
The Impact of GST Payments on Loan Approvals
Vighnesh Shashtri
 
BONKMILLON Unleashes Its Bonkers Potential on Solana.pdf
BONKMILLON Unleashes Its Bonkers Potential on Solana.pdfBONKMILLON Unleashes Its Bonkers Potential on Solana.pdf
BONKMILLON Unleashes Its Bonkers Potential on Solana.pdf
coingabbar
 
Seminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership NetworksSeminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership Networks
GRAPE
 
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
obyzuk
 
What's a worker’s market? Job quality and labour market tightness
What's a worker’s market? Job quality and labour market tightnessWhat's a worker’s market? Job quality and labour market tightness
What's a worker’s market? Job quality and labour market tightness
Labour Market Information Council | Conseil de l’information sur le marché du travail
 
Instant Issue Debit Cards
Instant Issue Debit CardsInstant Issue Debit Cards
Instant Issue Debit Cards
egoetzinger
 
2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf
Neal Brewster
 
一比一原版美国新罕布什尔大学(unh)毕业证学历认证真实可查
一比一原版美国新罕布什尔大学(unh)毕业证学历认证真实可查一比一原版美国新罕布什尔大学(unh)毕业证学历认证真实可查
一比一原版美国新罕布什尔大学(unh)毕业证学历认证真实可查
taqyea
 
5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports
EasyReports
 
一比一原版(IC毕业证)帝国理工大学毕业证如何办理
一比一原版(IC毕业证)帝国理工大学毕业证如何办理一比一原版(IC毕业证)帝国理工大学毕业证如何办理
一比一原版(IC毕业证)帝国理工大学毕业证如何办理
conose1
 
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
Donc Test
 

Recently uploaded (20)

Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
 
Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)
 
Does teamwork really matter? Looking beyond the job posting to understand lab...
Does teamwork really matter? Looking beyond the job posting to understand lab...Does teamwork really matter? Looking beyond the job posting to understand lab...
Does teamwork really matter? Looking beyond the job posting to understand lab...
 
FCCS Basic Accounts Outline and Hierarchy.pptx
FCCS Basic Accounts Outline and Hierarchy.pptxFCCS Basic Accounts Outline and Hierarchy.pptx
FCCS Basic Accounts Outline and Hierarchy.pptx
 
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
 
falcon-invoice-discounting-a-strategic-approach-to-optimize-investments
falcon-invoice-discounting-a-strategic-approach-to-optimize-investmentsfalcon-invoice-discounting-a-strategic-approach-to-optimize-investments
falcon-invoice-discounting-a-strategic-approach-to-optimize-investments
 
Bridging the gap: Online job postings, survey data and the assessment of job ...
Bridging the gap: Online job postings, survey data and the assessment of job ...Bridging the gap: Online job postings, survey data and the assessment of job ...
Bridging the gap: Online job postings, survey data and the assessment of job ...
 
1. Elemental Economics - Introduction to mining.pdf
1. Elemental Economics - Introduction to mining.pdf1. Elemental Economics - Introduction to mining.pdf
1. Elemental Economics - Introduction to mining.pdf
 
快速制作美国迈阿密大学牛津分校毕业证文凭证书英文原版一模一样
快速制作美国迈阿密大学牛津分校毕业证文凭证书英文原版一模一样快速制作美国迈阿密大学牛津分校毕业证文凭证书英文原版一模一样
快速制作美国迈阿密大学牛津分校毕业证文凭证书英文原版一模一样
 
The Impact of GST Payments on Loan Approvals
The Impact of GST Payments on Loan ApprovalsThe Impact of GST Payments on Loan Approvals
The Impact of GST Payments on Loan Approvals
 
BONKMILLON Unleashes Its Bonkers Potential on Solana.pdf
BONKMILLON Unleashes Its Bonkers Potential on Solana.pdfBONKMILLON Unleashes Its Bonkers Potential on Solana.pdf
BONKMILLON Unleashes Its Bonkers Potential on Solana.pdf
 
Seminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership NetworksSeminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership Networks
 
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
 
What's a worker’s market? Job quality and labour market tightness
What's a worker’s market? Job quality and labour market tightnessWhat's a worker’s market? Job quality and labour market tightness
What's a worker’s market? Job quality and labour market tightness
 
Instant Issue Debit Cards
Instant Issue Debit CardsInstant Issue Debit Cards
Instant Issue Debit Cards
 
2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf
 
一比一原版美国新罕布什尔大学(unh)毕业证学历认证真实可查
一比一原版美国新罕布什尔大学(unh)毕业证学历认证真实可查一比一原版美国新罕布什尔大学(unh)毕业证学历认证真实可查
一比一原版美国新罕布什尔大学(unh)毕业证学历认证真实可查
 
5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports
 
一比一原版(IC毕业证)帝国理工大学毕业证如何办理
一比一原版(IC毕业证)帝国理工大学毕业证如何办理一比一原版(IC毕业证)帝国理工大学毕业证如何办理
一比一原版(IC毕业证)帝国理工大学毕业证如何办理
 
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
 

Venture capital valuation of small life science companies by Salim Gabro & Robert Harju-Jeanty

  • 1. Venture capital valuation of small life science companies Salim Gabro, Robert Harju-Jeanty Stockholm Business School Master’s Degree Thesis (one year) 15 HE credits Subject: Business Administration Spring semester 2014 Supervisor: Lars Vigerland
  • 2. 2 Summary Life science companies are research-intense companies with a high level of unpredictability of the product development. This is due to high dependency on the success of clinical studies, regulatory affairs, and immaterial property, which makes the industry special in comparison with most other industries. Valuation becomes challenging looking at companies that are not publicly listed. What is the value of a company with no established market price and a high level of future uncertainty? This study focused on the valuation of small life science companies applicable for characteristics typical in venture capital, exemplified by a case study company with negative earnings. Within this scope, a literature study was performed and the best suitable valuation methods were chosen. The methodology was deductive with predominantly a qualitative approach, however the case study gave some quantitative features. This private company has a new promising technology for the treatment of hard to heal wounds, such as severe burns and chronic wounds. The development of the know-how has all in all taken more than 10 years in the hands of several companies and with investments of around 30 million €. Since a few years this know-how is concentrated to this small company that yet has not been able to create product sales. Looking at the past costs and projecting the future sales potential, three valuation methods were applied to estimate the fair value. The cost-based valuation took into account only historical costs, considered to estimate the costs for copying the technology. However, copying the technology in the hands of another organization, for instance a potential buyer’s probably more powerful research and development organization, may be more cost-efficient, and therefore not directly comparable. The total development time may also be very different, depending on the copier’s capabilities. The two other valuation methods used, directly speculated in the future potential. A discounted cash flow (DCF) valuation was calculated from estimated future cash flows and corrected to a present value using a hurdle rate reflecting the uncertainty of the future. The DCF value was also adjusted taking into account probabilities to succeed certain milestones in the development process, creating a so called “probability-weighted DCF value”. A binominal real option method to stage investments was created and presented. The real option valuation added a flexibility in the valuation by estimating the probability for success of important future milestones, and taking into account the investments needed. The discussion considered also latest share issue and relative valuation, which were not used because of limitations of the case study company. Since the results of the applied methods are not in the same range, they varied between 10,3 M€ and 14,9 M€, it is advisable to use more than just one method for the valuation. The simplified real option method presented in this study could be useful not only for valuation but also in strategic planning.
  • 3. 3 Contents 1. Background and problem statement .......................................................4 1.1. Objectives and research question ....................................................6 1.2. Limitations....................................................................................6 2. Theory................................................................................................7 2.1. Net assets valuation.......................................................................8 2.2. Latest share issue valuation............................................................8 2.3. Cost-based valuation .....................................................................9 2.4. DCF valuation ...............................................................................9 2.5. Relative valuation........................................................................ 11 2.6. Real option valuation ................................................................... 12 2.6.1. Theoretical case ....................................................................... 13 2.6.2. Binomial option pricing model .................................................... 14 3. Methods............................................................................................ 17 3.1. Positivism, quantitative and qualitative .......................................... 17 3.2. Case study and sample ................................................................ 17 3.3. Deductivism versus inductivism..................................................... 17 3.4. Ethics and intrinsic value .............................................................. 18 3.5. Reliability and validity .................................................................. 18 4. Empirical case: Analysis and results ..................................................... 20 4.1. Wound care technology company .................................................. 20 4.2. Net assets valuation..................................................................... 20 4.3. Latest share issue valuation.......................................................... 21 4.4. Cost-based valuation ................................................................... 21 4.5. Relative valuation........................................................................ 22 4.6. Discounted cash flow valuation...................................................... 22 4.6.1. Probability-weighted DCF value.................................................. 23 4.7. Real option valuation ................................................................... 24 5. Discussion and conclusions.................................................................. 29 6. Suggested further research ................................................................. 33 References............................................................................................... 34 Appendix 1: Wound care technology company .............................................. 36 Appendix 2: The wound care market ........................................................... 37 Appendix 3: DCF prognosis ........................................................................ 38 Appendix 4: Gross value ............................................................................ 39 Appendix 5: 10 year governmental bond average ......................................... 40 Appendix 6: Real option............................................................................. 41
  • 4. 4 1.Background and problem statement Valuation of smaller, such as early stage, private companies, not yet generating profit, is a challenge in private equity. For the venture capitalist the main objective is to make a successful exit, in the best case, making a ”home run” giving returns of more than 25 times its capital (Fraser- Sampson, 2011). During the last three decades, there have been more than a handful global financial crises, mainly due to short-term loans given by banks and companies to finance illiquid assets (Koller et al., 2010). This means the valuation of the assets have failed, and the borrower’s assets and liabilities were mismatched. To have an effect on global scale, the fiascos have been done with major corporations on going-concern policy. If the world has repeatedly failed in valuation of major going-concern companies, what about companies with negative cash flow and no profit, to be classified as high risk investments? This segment should be especially demanding to valuate. Moreover, common financial ratios or multiples used for stock market listed companies, like the capital asset pricing model (CAPM) are not applicable to small companies in an early life cycle stage (Bogdan & Villiger, 2008). Fundaments to keep the society in continuous high economic development and sustain competitiveness are to facilitate innovation and maintain an efficient financial market. In Europe, the countries having the highest competitiveness scores, are firstly developed in institutional excellence, such as giving financial support to research and development projects, secondly they have a strong skill base through good high education and training, and thirdly, they maintain an increased innovation capacity (Schwab, 2013). To create radical innovations firms needs to generate ground-breaking ideas and be able to convert them into commercially competitive advantage (Zhou & Li, 2012). In financial theory, value is created particularly if the growth strategy is based on product innovation (Koller et al., 2010). High-tech technology companies in an early stage usually represent a high level of innovation. One of the high-tech industries highly represented within venture capital investments is the life science sector (Fraser-Sampson, 2011). Fund raising, licensing, mergers & acquisitions, and portfolio management are examples of situations were valuation is needed (Bogdan & Villiger, 2008). The high barriers in form of long and costly R&D processes make it difficult for venture capitalist to valuate high tech companies. There are a lot of investment opportunities currently uncharted. There is a need for valuation methods that are suitable to these circumstances (Schneider, 2009). When it comes to healthcare companies there is even a higher level of risk, mainly due to regulatory requirements. For pharmaceutical products only one out of 10 000 drug candidates make it to the market, which
  • 5. 5 shows the high level of investment and risk that comes to hand in the industry (PhRMA, 2014; DiMasi & Grabowski, 2007). Figure 1: The Pharmaceutical Research and Manufacturers of America, shows in the figure above the 10 to 15 years long process of developing a drug until launch on the US market (PhRMA, 2014). In the pharmaceutical industry, increase in shareholder wealth does not only happen when new drugs are approved by regulatory authorities, but this is also true for just an application for an improvement of an existing drug (Hamill et al., 2013). Simpler life science products within medical technology, also have to be approved by regulatory bodies, and even though the approval process might by shorter and faster, this also affects the value of the company. The approvals will often require complicated empirical clinical studies that are very costly to perform. Lately, the economic aspects in health care have increased importance, and therefore health economic studies is required to show, not only the clinical benefits of a new treatment or diagnostic procedure, but also cost- savings for society. Health care products do not only have one regulatory process to go through, most markets have their own regulatory authorities, such as USA, European Union, Japan and China. Since the regulatory affairs often represent a high cost for any life science company, in practice, this means that small companies have to focus on certain markets due to limitations in financial capability and expertise. These are special features in the healthcare industry that makes valuation different in comparison to other research intense technology sectors. Traditional valuation methods are considered limited in the life science field, due to long and uncertain product development cycles with high failure rates, and undefined product and market profiles of assets (Mayhew, 2010). There is no current established consensus of valuation methods in life science (Bogdan & Villiger, 2008; Mayhew, 2010). In Sweden, during the last few years, both the number of life science companies, as well as the employees working in this industry have decreased (Sandström, 2014). This reflects the ongoing global recession in which estimating the fair value of an investment becomes even more important.
  • 6. 6 This study will focus on the valuation of life science companies, exemplified by a case study company with a new medical technology based on biomaterials. This subsector of life sciences is sometimes called “white” biotechnology, and considered a new investment opportunity, with the big challenge of adequate valuation of the investment (Schneider, 2009). 1.1. Objectives and research question The aim of the study is to find suitable valuation models for small, private life science companies with negative earnings. The study aims to answer following questions:  Which valuation models are relevant for small life science companies with negative earnings?  Which ones should be used in the valuation of the case study company?  What challenges will the different valuation methods bring in the case study company, such as, which input parameters should be used? 1.2. Limitations The focus is on the life science industry, which is defined in the scope of this study as small, research and development intensive companies focused on healthcare. The study is within venture capital, which means private firms, often early in the life cycle, and if the firm itself already has many years of age, it will have a new technology or significant new products in an early development phase with a potentially high economic impact considering the size of the company. A wound care technology company is used as a case study to test different valuation methods, because it is a small life science company with a new medical technology in development. The company came into current ownership in 2009, and has had an accumulative positive cash flow, but recently the earnings are negative. The company has a distribution-business as a way to survive, but in other ways it is representative to a small research-intense company with a new product in development. The case study company is giving all its hopes to a new in-licensed wound care technology that combines with the know-how the company already has from before. The current earnings are negative and the company is looking for financing to be able to continue with the product development. These are reasons why the chosen case company can serve as an example within the scope of this study. The company is located in the European Union, and all the data are real, as given by the President, however, the name of the company is kept confidential.
  • 7. 7 2.Theory What is value? Value may be very subjective. Oscar Wilde said (Wilde, 1892): ”A cynic is a man who knows the price of everything but the value of nothing.” This could be the description of an investor meaning the value is irrelevant, as long as a bigger fool is willing to pay more for the asset. The value of something could be a lot for one person and nothing for another. In finance, it is crucial not to pay more for an asset than it is worth (Damodaran, 2002). Value and valuation is an important part of today’s market economy. With valuation we can measure and manage a company’s performance, and thereby see if value is created. It also gives a long term view in contrast to only looking at accounting revenues (Copeland et al., 2005). The International Private Equity and Venture Capital Valuation Guidelines, IPEV defines the process of valuation in the following way (IPEV, 2012): “In estimating Fair Value for an Investment, the Valuer should apply a technique or techniques that is/are appropriate in light of the nature, facts and circumstances of the Investment in the context of the total Investment portfolio and should use reasonable current market data and inputs combined with Market Participant assumptions.” In this chapter, different valuation methods are presented that may be of interest in valuation of not listed, small life science companies. IPEV lists these valuation methods: price of recent investment (compare to “latest share issue” in table below), multiples, net assets, discounted cash flows (DCF), industry valuation benchmarks (compare to “relative” in table below), and available market prices (also comparable to “latest share issue” in table below). In a literature search, the following valuation methods have been mentioned in relevant references: Valuation method (Mayhew, 2010) (Bogdan & Villiger, 2008) (Ixora, 2013) (Damodaran, 2006) (Sammut, 2012) (Brantic et al., 2014) Net Assets X X Latest Share Issue X Cost-Based X DCF X X X X X X Relative X X X X Real Option X X X
  • 8. 8 2.1. Net assets valuation When valuing a firm, all assets will be listed, the value is estimated and also the degree of uncertainty should be determined. Fixed assets, are long-term assets, such as plant, equipment subject to depreciation, and buildings, and short-term assets, such as inventory, receivables and cash. Additionally, in the balance sheet there may be assets in other firms, called financial investments. These assets are in accounting basically valued according to historical costs or book values. Finally, intangible assets, such as patents and trademarks, and goodwill arouse from acquisitions, are valued. These, also called growth assets, are more difficult to value since they are valued according to potential future earnings and cash flows created. (Damodaran, 2001) To get the net assets value, all liabilities or debts will be subtracted from the total assets. An adjusted net assets method values the assets and liabilities to current market values, thereby valuing historical costs to current values. 2.2. Latest share issue valuation Also called “price of recent investment”, the valuation of a company based on the latest share issue in which external investors have invested new capital of a significant amount, or recent share transactions of significant amount are commonly used in private equity and venture capital. During the limited time following the date of the relevant transaction, the new valuation must be adjusted according to changes or events that may influence the fair value. (IPEV, 2012) Latest share issue valuation is frequent in valuation of life science companies (Ixora, 2013). For not listed companies this is the only way to get a real historical price of the company, and therefore it can be used as the base line for the current fair value of the company. However, it has to be adjusted to significant events in time. The longer the time period since last share issue, the higher the uncertainty of the valuation. For research intensive companies, the difficulty comes in valuing the impact of the research and development on future cash flows since last share issue. An important accounting effect is if the R&D has been capitalized, which means the costs have been placed in the balance sheet as an asset. Here are different practices used within the life science industry, pharmaceutical companies do rarely capitalize the R&D, because of the great uncertainty before market launch, while medical technology companies may apply capitalization of R&D costs. For small companies, not yet making profit, this may be a problem, since the assets may grow to become very high in comparison to equity. For a company with negative earnings, the current financial status may influence the valuation. The more urgent the cash situation is for the company, the bigger the risk is it will be undervalued. In venture capital the dilution of old shareholders is a typical part of the valuation game for smaller companies in crisis.
  • 9. 9 2.3. Cost-based valuation The crucial question in cost-based valuation is how much would the buyer have to invest to reproduce the asset it is buying? What are the accumulated costs incurred? These should include all research costs, but also licensing costs, regulatory, legal and intellectual property costs, as well as non-recoverable taxes. In accounting terms these are book values. How long development time is needed for copying the asset? Therefore these values may be adjusted for inflation, depreciation or exchange-rate fluctuation (Mayhew, 2010). To conclude, this valuation is looking at the history, not taking into account the future potential. This study is focused on research-intense values with a high innovation level. It is probable that these innovations should give a premium price, and therefore the future income is an important factor. Even the time itself may have significant importance, for instance, considering time to market in comparison to competitors, and then also potential revenue loss might be calculated as a value. Taking these considerations into account, the cost-based valuation, or the sum of book values, serve more as a base line, the lowest value of the asset in question. Any other values, such as, human, market, reputation or innovation values should be added to the book values (Mayhew, 2010). From the potential buyer’s side, precaution has to be taken to count in all investments a small life science company has invested in a certain project. Many times small companies have inefficient organisations and the valuation should be done from the buyer’s, normally a bigger company’s more cost-efficient organization. 2.4. DCF valuation Discounted cash flow valuation methods value an asset by the present value of its expected cash flows, with a discount rate that estimates the risk or these cash flows. The enterprise DCF model uses four steps (Koller et al., 2010): 1) Discounting of free cash flow with the cost of capital. 2) Identifying and valuing non-operating assets. 3) Identifying and valuing debt and non-equity claims. 4) Subtracting the value of non-equity financial claims. In venture capital the discount rates are of a complete different magnitude compared listed public companies, and therefore the choice of discount rate has a fundamental influence on the valuation. The future cash flows (CF) are estimated and discounted (kc) year by year (t), ending with an eternal value, the so called terminal value (TV). Usually, the discounted cash flow is estimated during the following ten years, and then adding the terminal value.
  • 10. 10 Formula for valuing the firm with annual cash flows plus terminal value (Damodaran, 2006): There are several ways of calculating the terminal value, assuming a stable growth, the multiple approach, or the liquidation value. The last one assumes the company will end the operations and it is sold to the highest bidder. The first and second alternatives, calculate the terminal value assuming the company will grow at a certain perpetual stable rate (g) with a certain cost of capital (r). Formula for calculation of terminal value (Damodaran, 2006): 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 = 𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤𝑡+1 𝑟 − 𝑔𝑠𝑡𝑎𝑏𝑙𝑒 When a company’s life-cycle goes from high to stable growth, the features of the company changes. A mature firm with a stable growth will have other expectations. It will be assumed to reinvest less, be less risky, increase debts, etc. Concerning listed companies, Damodaran recommends using betas closer to one when calculating required return for the terminal value (Damodaran, 2006). Figure 2: For a products life cycle, if the terminal value is chosen in an earlier stage (A) the value will be higher than if it is chosen in a later stage (B) (Bogdan & Villiger, 2008). The terminal value can have a major effect on the total value of the firm; therefore it is important that the estimations are accurate. How early you calculate the terminal value also has an impact. As figure 2 shows, the earlier the terminal value is applied the bigger the effect on the total value it will have. (Bogdan & Villiger, 2008) The value of a firm according to the discounted cash flow methodology is the present value of expected cash flows from assets-in-place and growth assets (Damodaran, 2001; Damodaran, 2002). To create value, there is a selection of four actions for the management to choose from (Damodaran, 2002): 1. Increase the cash flow coming from existing investments 2. Increase the expected growth rate in earnings 3. Increase the length of the high growth period 4. Reduce the cost of capital that is used to discount the cash flows Company and Stock Valuation 197 Feed Rate and Terminal Value The feed rate represents the ability of the company to generate or to license projects. The feed rates correspond in a way to the terminal value in standard valuation. Like terminal value, the feed rate is a very sensitive variable that can have a major impact on the value. A feed rate is however a more imag- inable parameter than a constant cash flow in 20 years from now. Imagine a company that has one extraordinary product responsible for most of its reve- nues like in the figure below. If we apply the terminal value principle at a moment when this project still strongly contributes to the company’s reve- nues (A), this implies that we assume that the company can replace this product by another of the same economic power. We can only use this as- sumption when there is an indicator that the company can indeed replace the product with a similar one. If on the other hand we apply the terminal value only once the project is off-market (B), then most other projects’ life cycles might have ended as well and the terminal value becomes too low. The ter- minal value this way might misguide and give a much too high or low value. We therefore propose to use the feed rate approach. Fig. 4.46. Where to start assuming constant cash flows for the terminal value? Taxes The calculation of taxes first requires annual net cash flows. Second, we have to keep track of the accumulated losses; only once these are offset by earnings, the company starts to pay taxes. Applying the tax rate to project valuation is not a clean solution, because taxes are assessed on a company level. Earnings from one project can be used up by investments in another project. Calculating the tax value on a risk-adjusted basis is also not cor- rect as displayed in the following example: Assume a one-project com- pany. If one day it has to pay taxes, i.e. if its product reaches market, it can A B CFt (1 + kc ) t =1 t = n å + TV (1 + kc ) n = Firm Value
  • 11. 11 Revenue Growth Target Operating Margin Applying the DCF on research intensive, small life science companies, it is easy to understand that the value growth potential will normally be in the growth assets, that is, the new innovation coming from research and development. Damodaran (Damodaran, 2002) concludes: “As long as the projects, no matter how risky they are, have a marginal return on capital that exceeds their cost of capital, they will create value.” Damodaran (Damodaran, 2002) makes also some remarks for negative earnings firms. He says the cash flow is dependent on three variables: - the expected growth rate in revenues, - the target operating margin, and - the sales to capital ratio. Free Cash Flow to Firm (FCFF) = EBIT (t - tax rate) – Reinvestment Needs Figure 3: The parameters affecting the future value of a company with negative earnings (Damodaran, 2002). The major concern with the discounted cash flow method in life science is the uncertainty, the first being the accuracy of the estimates, for instance the unknown impact of competitor actions, and the second is the technical uncertainty, which in worst case means the product will never be launched on the market, for instance, due to failing of regulatory requirements (Bogdan & Villiger, 2008). The numerous assumptions of key valuation parameters for which actual information is as yet unknown, make DCF valuations especially controversial in the valuation of early-stage life science companies (Mayhew, 2010). One method to give a more justified estimation is to correct the value with probabilities to succeed in different milestones (Shockley et al., 2003). 2.5. Relative valuation In relative valuation, like the name says, the value of an asset is estimated as relative to the market prices of similar assets. One of the simplest examples would be to value a car, for instance a Volvo V70, year model 2008. In this case it would be quite easy to find the current average selling price of all cars of this year model on a specific market. This would be a good estimation of this particular car’s value. When talking about valuation of companies, relative valuation would mean comparing similar or comparable companies in the same industry, and more specifically with the same type of products, similar cash flows, company size, risks, growth, and so forth. Sales to Capital Ratio
  • 12. 12 According to Damodaran (Damodaran, 2006), there are three types of relative valuation: 1. Direct comparison: Find a company (or several) that are very much alike the company to be valued, and comparing the market value of this (these) to the analysed one. 2. Peer group average: Compare a multiple of the analysed company to a peer group of same type of companies. The average of a sector, for instance life science, is assumed to be representative of a typical company of that same sector. 3. Peer group average adjusted for differences: While there can be big differences between companies of the same sector, the comparative peer group average value can be narrowed, for instance a company with higher expected growth than the industry will be valued higher than the industry average. For instance, by using PEG ratios, dividing PE ratios by expected growth rates, the companies can be compared also when they have different growth rates. Mayhew (Mayhew, 2010) calls relative valuation marked-based valuation, which he defines as the determination of the value of an asset in comparison to a similar asset. In publicly listed companies, relative valuation is much easier because different multiples are easily available and they can be used to calculate averages and make comparisons. In private equity, it is much more difficult to collect data, and therefore the comparisons may be used with a statistically insignificant number of similar firms, therefore increasing the insecurity of the valuation. Since the private companies are not publically traded, the valuation of them will be a challenge. With small research-intense companies, the relative valuation will most often be very subjective, since finding other innovative comparable companies will be difficult. Earlier mentioned “direct comparison” might be difficult to make. To find a recently sold, same sized, innovative life science company within the same research field may many times be impossible. Intellectual property and portfolios of assets represent more challenges in market-based comparisons within life sciences (Mayhew, 2010). Market-based comparisons or industry benchmarks are more likely to be useful as a sanity check of other valuation methods (IPEV, 2012). 2.6. Real option valuation A financial option is a tool that gives the holder a future right to buy or sell an asset for a certain price. Real option is an analogy of financial options, defined as the right, but no obligation to purchase an underlying asset during a certain period (Verdu et al., 2012). The biggest difference
  • 13. 13 between real options and financial options are the underlying asset. In real options, the underlying asset doesn’t have to be financial, but could for instance be intellectual property (Cotropia, 2009). Real options are a lot more complex in contrast to DCF valuations (Villiger & Bogdan, 2006). The value that real option brings in contrast to NPV is the ”flexibility value” see figure 4 (Koller et al., 2010). The flexibility value include different components that affect the asset value. One of the components is risk free interest where the possibility to postpone investments might increase the value because of the time value of money. Although another consequence with the interest rate is the negative value effect of future cash flows. Another component that create value is the uncertainty about present value of future cash flow. The more volatile the future cash flows are, the more increases the option value. The present value of cash flows also has an effect where higher value on the cash flows gives higher flexibility value. The ability to diverge the investment at any given point also gives a time effect where you have more time to reflect the decisions. Finally, Koller et al. present investment cost as a value reducer, when using real option valuation (Koller et al., 2010). When the investment cost increases the flexibility value decreases. Figure 4: The flexibility value include different drivers that affect value for the investment (Koller et al., 2010). 2.6.1. Theoretical case To exemplify real option, here is presented a constructed theoretical case based on the definitions of real options by Verdu et al., Cotropia and Trigeorgis (Verdu et al., 2012; Cotropia, 2009; Trigeorgis, 2002). The tire manufacturing company Empirical Tires have the possibility to launch a new revolutionary product to the market. The predicament is, there is some insecurity on how the market will respond to the product. There is a risk that people will not be interested and the demand will be low. On the
  • 14. 14 other hand there is likelihood that people will adopt the product and that will generate a high demand. One option Empirical Tires has, to reduce the risk, is to patent the product for a year. During the year they can do a market analysis on how the market will respond. Later a decision, depending on what the feasibility report shows, can be made. In this case the cost of the option is the cost of the patent and market analysis. As the theoretical case above exemplifies, real options give the project manager the possibility and flexibility to adapt to different factors in the environment that affects the project. This gives the possibility to limit loss and expenses. In other words real options give you different decision options (Trigeorgis, 2002). 2.6.2. Binomial option pricing model There are several option pricing models with different complexities. Here is presented a basic, fundamental option-pricing model. The implementation of other more complex option pricing models are unnecessary and will not bring significance to our study. The objective is to study if real option valuation is applicable to the case study. The option-pricing model looks at the market as binominal. The outcomes are like a coin toss game, where it can wither go one way or another, success of failure. The price of the coupon can either go up or down. There are a lot of assumptions for the model to be valid. The capital market has to be frictionless, competitive, and no risk-free arbitrage opportunities can exist. There have to be continuous trading opportunities. Stock price, needs to obey a multiplicative binomial generating process, this implies that the stock prices can’t be below zero, no matter how many periods there are. The pay-off for a one period call option is described as: 𝑓 = 𝑒−𝑟∆𝑡 (𝑝𝑓𝑢 + (1 − 𝑝)𝑓𝑑 Where 𝑝 = 𝑒 𝑟∆𝑡−𝑑 𝑢−𝑑 (Hull, 2012) When adapting Hull’s formula to real options, f is the same as the expected net present value (ENPV). To calculate the value needed to know how to estimate the inputs d and u. Hull gives the definition𝑠 𝑢 = 𝑒ℴ√∆𝑡 and 𝑑 = 𝑒−ℴ√∆𝑡 where the standard deviation is of the price in the underlying asset during the period (Hull, 2012). S = The current value of the underlying asset, usually the current stock price. K = Strike price of the option is the price that the buyer needs to pay to exercise the option. rf = The risk free rate of return, usually a 10-year government bond. σ = The volatility of the underlying asset, which means the fluctuations of its price. ENPV fu =Max[0,uS−k] fd =Max[0,dS−k]
  • 15. 15 T = The time to maturity. The time until the option can be exercised. 𝑓 = The option value of the company in the period. p = The probability for an upward movement, where 1-p is the probability for an downward movement. Another model for estimating the value of an option is the Black & Scholes model. The assumptions are similar of the binominal option-pricing model based on a portfolio consistent of the underlying asset and a risk free asset with the same cash flows. Black & Scholes use a couple of assumptions that limit the model. For instance stock price follows a Geometric Brownian Motion with the population mean and standard deviation being constant. Another assumption is that the risk-free interest rate is constant and the same for all maturities. The model also assumes that there are no transaction costs or taxes. Finally the model is designed to measure the value of an option that can only be exercised on the time of expiration and where the underlying asset do not pay any dividends. (Damodaran, 2006) When valuing the flexibility value in a real option, there are different alternative approaches depending on each situation and the options of the company. Bogdan & Villiger (Bogdan & Villiger, 2008) present a summary: Option to defer – The option to postpone an investment. If an investment is uncertain, waiting for indications that the investment will succeed on the market could bring an added value. Option to expand or contract – The company’s ability to adapt to the market expectations adds a value. If the production exceeds the expected demand, the ability to meet the expectations by e.g. having larger plants adds a value. Option to abandon or license – If a project is not succeeded, the company may have the option to abandon the project. “The more reversible the investments, the higher the salvation.” Option to switch – The flexibility to switch location or switch production have an effect on the production cost or revenue. Option to stage investments – In each time step the investment is evaluated and a decision is made to either continue or abandon the investment, depending on the new learned facts at each stage. This is a common method used in R&D projects and start-ups (Bogdan & Villiger, 2008). Option to grow – A company who has the possibility to expand into new markets or geographical areas. The structure is similar to stage investments, where the option is evaluated from the facts given from previous stage. While staged investments is considered as a multi-stage, growth options are usually based on a single-stage option.
  • 16. 16 A company can have several options and each option adds a value to the net present value of the company. The value of the company with the option is called the expected net present value, ENPV (Damodaran, 2006).
  • 17. 17 3.Methods 3.1. Positivism, quantitative and qualitative The human’s learning capacity and ability to reason has given rise to science. Modern science was developed through scientists like Galileo Galilei (1564-1642) and Isaac Newton (1642-1727), and from the natural sciences evolved social sciences. Starting with Voltaire’s claim that the tiny human being has to follow the universal laws also in his thoughts, August Compte developed the philosophy that is called positivism. In a simplified form it means that social science studies use natural scientific methods, like quantification, to measure results and use logical reasoning to establish conclusions. This study is using mathematics for creating values, these are compared with each other, and logical conclusions are made, making the methodology positivistic. (Williams, 1999) This study is principally quantitative, but since the research contains a case study, where data is collected through interviews, a part of the study may also be considered qualitative. 3.2. Case study and sample According to Robert Yin, the case study is a suitable research strategy when: “a `how´ or `why´ question is being asked about a contemporary set of events over which the investigator has little or no control.” (Yin, 1994) In chapter 1.1 a few research questions have been asked. If we try to rephrase them to fit Yin’s definition they would be: - How can a small life science company be valuated? - Why should we choose a certain venture capital valuation technique? It seems these questions fits very well to the objectives of this study, and while the investigators are only observing, not influencing on-going events, hence, it is possible to use a case study approach. However, using more than one case study would increase the validity of the conclusions. A common concern about case studies is how you may make generalizations, especially in this case where only one “experiment” is used? According to Yin (Yin, 1994), the case study, like the experiment, does not represent a “sample”, and the reserachers’ purpose is to make an analytic generalization, to expand and generalize theories, and not to make a statistical generalization, such as enumerate frequencies. 3.3. Deductivism versus inductivism Deductivism means that a certain theory is used as a basis, an analysis is done and the results give logical conclusions of the theory. A theoretical hypothesis can be confirmed or abandoned through adapted experiments, calculations or observations. The opposite methodology is called inductivism, where a lot of observations or measurements are collected and based on the results and an analysis,
  • 18. 18 a theory will be developed. This study uses a deductive approach. Based on the knowledge and experience of the researchers and literature studies, a number of theoretical models are chosen that will be tested on a real case, and the results will be discussed leading to conclusions of the validity of the theory. 3.4. Ethics and intrinsic value G. E. Moore was one of the greater philosophers in Anglo-American moral philosophy in the first half of the 20th century. In his works about ethics, Moore rebutted egoism and claimed that it is always our duty to perform that action, of the various ones open to us, the total consequences of which will have the greatest intrinsic value (Moore & Shaw, 2005). In the world of finance, intrinsic value means the extra value of a company or an asset taking into account both tangible and intangible factors, and comparing them to current market value. Taking a call option as an example, the intrinsic value is the difference between the price of the option and the current stock’s price. If the call options strike price is 100 and the stock’s price is 150, then the intrinsic value of the call option is 50. A correct valuation will reveal if this is true or not. Going back to Moore, it can be claimed that the company’s duty is to perform all those actions that lead to the highest possible intrinsic value. Research ethics is not a clearly defined area, but an obvious part deals with following current laws. In any research, special consideration is put into not harming any individual, physically, psychologically or legally. In this research a case study company is used, and on the request of the company’s owner, the company and the owner are anonymous. This is ethical. However, a problem rises if anyone wants to check the data, because this will not be possible (Gustafsson et al., 2011). Anyhow, the company is registered within the European Union, and the accounting follows national laws. Yet, some of the data comes from companies not existing any more, and therefore not checked by the researchers, and here the resource, the owner of the case study company is trusted. 3.5. Reliability and validity When using a qualitative approach it is important that the study is reliable and valid. This affect the study´s generalizability and to avoid being biased (Hammersly, 1992). With reliability means how reliable the data is and how it has been collected and processed (Holme & Solvang, 1997). By having direct contact with the President of the company, this primary source increases the reliability of the study. However, it has to be taken into account that by using the company itself as a source, the collected data on the estimated earnings could be subjectively biased. Is this study really studying what it says it is, that is, different relevant valuation methods? The reliability is increased by referring to earlier peer-reviewed studies. The more research has been done on the subject, the more reliable should the use of the same methods be. By creating a new
  • 19. 19 model that has the properties it can be repeated by other researchers, the reliability can be confirmed in the future. Validity means a stable logical consequence, in its absolute form, a universal truth. Internal validity means how stable a causal relation is between two variables, in this study how truthful the different valuations are. This becomes a problem, since we do not know the truth, which in this case would be the price someone would pay for the case study company. There is no stock market price for the shares of the company, so in these terms the results of the valuations can not be compared to a “truth”. External validity means how general the internal validity can be in other similar situations. The internal validity in the scope of this study could mean how valid the valuation models are in small life science companies in venture capital. The external validity could mean how valid the valuation models are for similar small research-intense companies, still in a venture capital setting, but in another industry, for instance other technology sectors. In this study the validity lies in the discussion and its comparison to theory. The study contains a lot of data based on subjective assumptions, and should these be changed, the results would be different. However, the theoretical study in combination with an analysis of a real case, and the following discussion should give conclusions ethically defendable, as long as, wherever uncertainty can be suspected, it is spelled out. The conclusions of the case study are generalizable to theoretical propositions and not to populations (Yin, 1994). The final validity is in the eyes and the judgement of the reader, in relation to what the reader is investigating. The authors hope this study will give valuable insight in the chosen subject.
  • 20. 20 4.Empirical case: Analysis and results The case study company will be valued using the most appropriate valuation methods identified in the theory chapter (IPEV, 2012). 4.1. Wound care technology company As a case study, a small life science company is used. See also appendixes 1 and 2. The name of the company is confidential. The history of the company goes back to a larger international corporation focused on a biodegradable polymer technology with a large number of patents. The case study company was originally a subsidiary of the mother company, however, after the owners decided to close down the mother company, the President of the daughter company was offered to make a management buy-out of the daughter company. This happened in 2009, and this company is now in many ways comparable to a start-up company within the life science field. It has a new technology that is not yet launched on the market, and the current earnings are negative. The company has two principal competence and know-how areas: - Biodegradable polymers, originally the mother company’s know-how. - Medical cellulose, a new technology fitting into the field of polymers, licenced in 2012 from the owners of a bankrupt company that was developing this technology during many years. Additionally, the company has a distribution activity, which is merely for financing the development of the new technologies. However, this is not enough, and the company is looking for external financing to be able to speed up the development process. The first product is based on a material the company calls medical cellulose that is shown through clinical studies to be very good for the treatment of severe wounds. The first indication would be for the treatment of 3rd degree burns. The second product would be for the treatment of chronic wounds. The projected sales of both these products are included in the prognosis presented in appendix 3. In the prognosis, no financial figures concerning the distribution business is taken into consideration, the calculations only include figures related to revenues and costs for the new technologies in development, as presented in appendix 1. 4.2. Net assets valuation For any small company with negative earnings the net assets will probably be low. The value in the company will not be in current assets, but in the future earnings. This will be especially true for a research-intense life science company, where future milestones, like regulatory approvals and clinical studies will give a high future value. An adjusted net assets method that values the assets
  • 21. 21 and liabilities to current market values is doubtfully more appropriate, since still the impact of future research and development results will not be taken into account. The particular case study company does not have any current intellectual property with book values, nor are there any goodwill. Therefore, other valuation methods will give a more accurate result and net assets valuation will not be used for the valuation of the case study. 4.3. Latest share issue valuation Latest share issue valuation is not used for the valuation of the particular case study in the scope of this study, because the case study company is privately owned and it has been owned by the same owner during its whole history, and therefore there are no share issues done. 4.4. Cost-based valuation The President of the Wound care technology company says: “It will be difficult and very time consuming to try to copy the present technology. For a competitor to copy our material, both time consuming development work, as well as even more time consuming clinical testing, will be required for approval of a new product. It would be much more efficient to acquire a license to the production recipes from us.” A valuation based on historical costs is one way of valuing the company. The challenge is to find information of the actual costs incurred for the development of the technology that has been done in several companies not existing anymore. Best estimates have been done in collaboration with the President of the case study company. The estimates are considered as quite accurate. The R&D costs for the polymer part, 2004-2013: 3,18 M€. EU and governmental support, 2002-2011: 0,9 M€. However, these are already included in the R&D costs and should not be included once more. The least exact estimate in the cost-based valuation is the R&D costs for the development of the medical cellulose technology before licensing of the product: 3,0 M€. Earlier in the history, the case study company had a mother company, in which approximately 30 M€ was invested. Of this sum 12 M€ was invested in a pilot factory and its equipment, leaving 18 M€ for the development of the biodegradable polymer technology. In the analysis, it seems reasonable to take into account all direct R&D costs of the Wound Care Company itself, both for the polymer technology and the cellulose technology, since the company claims there is a combined value, despite the fact that the first product will be based only on the medical cellulose. The mother company´s pilot factory and the production process know-how derived from there, certainly has also a value, but 18 M€ seems too high. Because this mother company is no longer registered, there are no figures available for analyse the total costs in more detail. An estimate is to value the know-how to 20% of the total value, which gives 3,6 M€.
  • 22. 22 The patents are all expired, and there is certainly immaterial value in the company’s know-how. However, since there are no immaterial values in the balance sheet, the value of the know-how is estimated to be included in the R&D costs. This becomes a weakness of the valuation. The values may be adjusted for inflation, depreciation or exchange-rate fluctuation. Exchange rates have no significance in this case. Concerning the inflation, an average of EURIBOR 2008-2013 of 1,9% is used. The present value of the historical costs have been adjusted for a time period of five years. All costs have already been depreciated. This gives a total cost-based valuation according to the table below. Cost-based valuation Million € Historical costs Adjusted for inflation R&D Polymers 3,2 3,5 R&D Cellulose 3 3,3 Production know-how 3,6 4 Patents 0 0 Total value 9,8 10,8 Figure 5: Cost-based valuation with historical and present values of the case study company. Referring to the discussion in the theory part, any company interested in buying this wound care technology, the company, the know-how or a licence, has to put the development costs in perspective of its own organization’s capabilities. Since there are no valid patents any more, the company has freedom to operate with the know-how it has. The value of this know-how is very hard to measure, however, the cost-based valuation gives an approximation of what it would cost to reproduce this know-how. 4.5. Relative valuation Even though comparables or benchmarking valuation practices are very common in life science (Mayhew, 2010), a market-based comparison is not considered appropriate for the valuation of the particular case study in the scope of this study, because it is not possible to find a direct comparison company. The case study company is very particular. 4.6. Discounted cash flow valuation When assessing the discounted cash flow value of the company, Damodoran’s firm and terminal value models are used. The challenges in the DCF valuation are the choice of discount rate, which parameters to used, and the estimation of the evolution of the parameters to determine the future cash flow to firm. The future development of the revenues and costs have been received from the case study company. Please see appendix 3 for the prognosis of the case study company. The prognosis is done as long as for ten years with terminal value calculated after that, because the products are very early in the life cycle, and the technology is assumed to generate new innovations
  • 23. 23 and products also after that time period. The present value of the sum of the free cash flows (FCF) for the next ten years is 3,24 M€. The cost of capital, also called required rate of return, or hurdle rate, is difficult to estimate due to the lack of data. Therefore a sensitivity analysis is presented in figure 6. Company Value in Million € Sensitivity Analysis Required Rate of Return Terminal Growth 10% 20% 30% 0% 61,7 14,5 4,5 4,5% 85,7 14,9 4,3 9% 432 19,6 5,0 Figure 6: DCF valuation showing the effects of different hurdle rates and growth rates used for calculating the terminal value. The difference between lowest and highest values is close to 100 times. The required rate of return has a big impact on the valuation of the company, especially when changing another parameter, the assumed growth for the terminal value, which means what stable growth is expected during a longer period after the last projected year. The value of the company reaches very high levels with a low hurdle rate and high expected terminal value growth. The case study company belongs to the Medtech industry sector, which have had a historical annual growth rate of around 9% (Koller et al., 2010), and the future growth is estimated to be 4,5% (EvaluateMedtech, 2013). This value is chosen for the valuation since there will be more products launched later, than just two used in the prognosis. Major stock market listed corporations have returns of around 10% (Koller et al., 2010). Within venture capital, due to the higher risks, the hurdle rates are higher, even up to 35% (Damodaran, 2006). In Stockholm, private equity investors with young life science growth companies in the portfolio are currently aiming at a return on equity of 20% (Ixora, 2013; CapMan, 2014). A 20% hurdle rate is chosen as most representative for the case study company’s valuation. With the 4,5% “eternal” growth rate the terminal value becomes: 70,8 M€ = 10,9 M€ (20% − 4,5%) With a 20% discount rate, the present value becomes 11,43 M€. Finally, summing the present value of the free cash flow for the next ten years and the present value of the terminal value, the case study company’s discounted cash flow value becomes: 3,45 + 11,43 = 14,89 M€ 4.6.1. Probability-weighted DCF value The DCF value is calculated with the assumption of successful development process, registrations and market launch. However, the probability of success in reaching the cash flows may be included in the DCF valuation itself, and as we later will see, can be used in the real option valuation. This was also done by Shockley et al. (Shockley et al., 2003), who corrected the net present value with a
  • 24. 24 probability-adjusted cash flow calculation in comparison to the “standard” net present value conditional upon actually going to market. The probability-weighted DCF value is calculated taking into account the probability to succeed in each milestone multiplied with the free cash flow (Shockley et al., 2003). The probability of a successful CE Class IIB registration of the product for treatment of burns is 90%, and it is 80% for the same type of registration for a new indication, the treatment of chronic wounds. After correcting the FCF with the accumulated probability year by year, later discounting it using the same discount rate of 20% as before, the probability-weighted DCF value of the company becomes: 10,3 M€. See also appendix 3. DCF Valuation Million € Not adjusted, “standard” DCF 14,9 Probability-weighted DCF 10,3 Figure 7: Taking into account probabilities of successful future milestones, lowers the ”standard” DCF value. 4.7. Real option valuation For start-up R&D companies, with limited capital, it is particularly important to find out the outcome of each investment in the different steps of the development. In the real option method to stage investments, the option to gradually invest capital, means being able to decide to continue or abandon the development project at different milestones or tollgates. Being able to take this flexibility into account in the valuation, will increase the value of the company (Koller et al., 2010). When estimating the flexibility value to stage investments, the binominal option-pricing model is used. There are several more complicated models. It is suggested in the literature that the binominal model is preferred to, for instance the Black & Scholes model, since the binominal method provides a more flexible framework suitable for real option valuation of medical research and development projects with tollgates or milestones (Andersson & Arenroth, 2006; Chrissanthopoulos & Svanström, 2010; Shockley et al., 2003). The binominal option type to stage investments is therefore suitable for this case study. The binominal model used is similar to a compound option, where the option is built as multiple stage options and the project is evaluated after every development stage. Because of the fact that the model is structured as a financial option-pricing model, the most important step is to identify and decide the input variables to be used. S: Value of the underlying asset. The expected net value of the underlying asset is difficult to estimate in private equity. The gross value is used to estimate the expected value. The estimated future earnings are discounted, without taking investments or costs into account, that is gross present value of expected cash flows (Trigeorgis, 1996; Chrissanthopoulos & Svanström, 2010).
  • 25. 25 The same discount factor as in the DCF-model of 20% is used to make comparison easier. The gross value is estimated to 20 M€. See appendix 4. σ: Volatility: The volatility of the asset, in this case based on the future earnings, is another variable that is difficult to estimate. This has been criticized against using real options in valuation (Amram & Kulatilaka, 2000). Villiger & Bogdan (Villiger & Bogdan, 2006) suggest that the volatility should be between 30-40% for biomedical companies. In this study, 30% is chosen. Nonetheless, the final result is not sensitive to changes in volatility (Shockley et al., 2003). K: Strike price: The strike price in real option is the total new capital investments to reach the milestones successfully (Damodaran, 2002). In this case, 2,7 M€ is needed to invest in the CE registrations, including clinical trials needed and the automation of the production. This total investment is divided in three parts and invested at different stages in time. Time to maturity: The time for expiration is the period until the final milestone. In this case the product hits the market at a very early stage as a bandage for burn wounds. To achieve the total estimated earnings, the product needs to be approved for chronic wounds in year five. This is important for the whole prognosis, since the new indication, treatment of chronic wounds, will reach at least double the sales compared to the first indication, treatment of severe burns. Time to maturity in this calculation is until the 5:th year when both CE Class IIB approvals are made for both indications, which coincides with automation of the small-scale production and a positive cash flow. After this point in time, the risk for failure of the whole project, and in worst case bankruptcy of the company, is much smaller. ∆𝑡: Time step: The time is divided in steps according to when the value may go up or down. For a listed company, this may be every day the stock can be bought or sold. However, in private equity the period may follow events in the scenario, such as milestones, investments and/or sales. One time step is the time between two nodes in the binominal tree (Bogdan & Villiger, 2008). In this study, one time step equals to one year. However, the number of periods or the length of the time steps do not affect much the final option value (Shockley et al., 2003). r: Risk free rate: 10 year governmental bond average of the EU countries: 3,25% is used as the risk free rate, since the case study company is registered within the EU and inside the Euro monetary system. See appendix 5.
  • 26. 26 EPNV: Expected present net value is the value of the probability weighted net present value plus the option value. After deciding the variables, the probability and the structure of the binominal option tree is calculated. The up and down movements of the binominal tree with the chosen volatility and time to expiration is: 𝑢 = 𝑒30%√1 ≈ 1,35 and 𝑑 = 1 𝑢 = 1 1,35 ≈ 0,74 The movement of the binominal tree is later multiplied with the value of the underlying asset. This give a binominal tree with the possible outcomes of future gross value. See figure 8. Figure 8: Gross value calculation gives a theoretical future value depending on the volatility, time and number of periods or nodes, in this case each node is equal to one year. After the calculation of the possible outcomes, we calculate the statistical probability that the certain outcome will happen, and later multiple it with our own estimated probability that the product will be approved in the certain phase. For the total value we need to value each period separately. We use the model, presented in the theory, for calculating the value of an option for one period. The valuation starts from the final year and moves period by period until we reach the present value. 2014 2015 2016 2017 2018 2019 Probability to succeed 100% 90% 80% Investments 1 MEUR 1 MEUR 0,7 MEUR 66 MEUR 89 MEUR 49 MEUR 49 MEUR 36 MEUR 49 MEUR 36 MEUR 27 MEUR 27 * 1,35 = 39 36 MEUR 49 MEUR 27 MEUR 27 MEUR 20 MEUR 27 MEUR 27 MEUR 15 MEUR 36 MEUR 49 MEUR S * u = Su 27 MEUR 27 MEUR 20 * 1,35 = 27 27 * 0,74 = 20 20 MEUR 27 MEUR 20 MEUR 15 MEUR 20 MEUR 27 MEUR 15 MEUR 15 MEUR 11 MEUR 15 MEUR 20 MEUR 8 MEUR 36 MEUR 49 MEUR 27 MEUR 27 MEUR 20 MEUR 28 MEUR 20 MEUR 14 MEUR 27 * 1,35 = 20 20 MEUR 27 MEUR S * (1/u) = Sd 15 MEUR 15 MEUR 20 * 0,74 = 14 11 MEUR 15 MEUR 15 MEUR 8 MEUR 20 MEUR 27 MEUR 15 MEUR 15 MEUR 15 * 0,74 = 11 11 MEUR 15 MEUR 11 MEUR 8 MEUR 11 MEUR 15 MEUR 8 MEUR 8 MEUR 6 MEUR 8 MEUR 4 MEUR Node Milestones Burns CE Class I Patent application Burns CE Class IIB Chronic wounds CE Class IIB
  • 27. 27 𝑝 = (𝑒 𝑟∆𝑡 –𝑑) (𝑢−𝑑) 𝑝 𝑢 = (𝑒3,25%∗1−0,74) (1,35−0,74) ≈ 0,48 𝑝 𝑑 = 1 − ( (𝑒3,25%∗1−0,74) (1,35−0,74) ) =0,52 When the probability of each outcome is calculated we subtract the investment needed for the project to take place. Later we add our estimated probability that the clinical testing and registration will be successful. For instance, for 2018 we have no investment to subtract but we need to take account for the CE Class IIB for Chronic wounds which is estimated to have 80% chance of success. For 2017 on the other hand we also have 0,7 M€ to subtract from the total value, additionally taking into account the 90% probability to succeed with the node milestone. The expected net present value is calculated (Chrissanthopoulos & Svanström, 2010): 𝐸𝑁𝑃𝑉 = 𝑒−𝑟∆𝑡 [(𝑝𝑢 + (1 − 𝑝)𝑑] ∗ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑜 𝑠𝑢𝑐𝑐𝑒𝑒𝑑 − 𝐾 The highest value in 2018 will be: 53 = 𝑒−3,25%∗1 ∗ [(0,48 ∗ 89) + (0,52 ∗ 49)] ∗ 80% − 0 In the same way the value for each outcome in 2017 is calculated. Consequently, the value for each period is then calculated for all the years with the basis from the previous year. See also appendix 6. Figure 9: Starting from the future gross value of 89 M€, the final expected net present value is received after all milestones taking into account the probabilities of up and down going time steps, as well as the probability of success in each milestone. 2014 2015 2016 2017 2018 2019 Probability to succeed 100% 90% 80% Investments 1 MEUR 1 MEUR 0,7MEUR 53 EUR 0,968*((0,48*89)+(0,52*49))*80%-0= 53 MEUR 0,968*((0,48*53)+(0,52*29))*90%-0,7= 34 MEUR 53 MEUR 89 MEUR 34 MEUR 49 MEUR 29 MEUR 49 MEUR 25 MEUR 27 MEUR 29 MEUR 49 MEUR 19 MEUR 27 MEUR 16 MEUR 27 MEUR 18 MEUR 15 MEUR 29 MEUR 49 MEUR 19 MEUR 27 MEUR 16 MEUR 27 MEUR 14 MEUR 15 MEUR 16 MEUR 27 MEUR 10 MEUR 15 MEUR 9 MEUR 15 MEUR 11,5 MEUR 8 MEUR 29 MEUR 49 MEUR 19 MEUR 27 MEUR 16 MEUR 28 MEUR 14 MEUR 14 MEUR 16 MEUR 27 MEUR 10 MEUR 15 MEUR 9 MEUR 15 MEUR 9 MEUR 8 MEUR 16 MEUR 27 MEUR 10 MEUR 15 MEUR 9 MEUR 15 MEUR 7 MEUR 8 MEUR 9 MEUR 15 MEUR 5 MEUR 8 MEUR 5 MEUR 8 MEUR 0,968*((0,48*8)+(0,52*4))*80%-0= 5 MEUR 4 MEUR Chronic wounds CE Class IIB Node Milestones Burns CE Class I Patent application Burns CE Class IIB
  • 28. 28 The final value is the expected net present value of 11,5 M€. To find out the option value, we need to subtract the net present value of the company. Since this is a private equity firm, there is no official value. The probability-weighted DCF, 10,3 M€ is used as the NPV. The added value from the option to stage investments is the difference between the ENPV of 11,5 M€ and the NPV of 10,3 M€, which gives the option value of 1,2 M€. Real Option Valuation Million € Probability-weighted NPV 10,3 Value of option to stage investments 1,2 Total value (ENPV) 11,5 Figure 10: NPV + Option value = ENPV
  • 29. 29 5.Discussion and conclusions Four valuation methods were applied on the case study company, cost-based, DCF, probability- weighted DCF and real option valuations. Are they all good valuation methods for a small life science companies with negative earnings? Is anyone preferable? Figure 11: Results of the four different valuation methods used for the case study company. The cost-based valuation gives a present value of 10,8 M€. An important criticism of the cost-based valuation is not taking into account the effects of future cash flows and profits (Bogdan & Villiger, 2008). The cost-based valuation is a simplistic valuation and could be considered as a base-line. However, like commented before, within life sciences, where R&D and innovation is a special challenge in valuation, the efficiency of the research and development should be given extra consideration. The R&D processes in a small life science company may be more inefficient compared to a new potential buyer, a larger corporation. The value may be lower than the total R&D costs for the smaller company with negative earnings, where in certain situations the lack of capital and/or competence will make the development work more inefficient. According to Mayhew, other values, such as, human, market, reputation, or innovation values should be added to the book values (Mayhew, 2010). The management itself is considered of great value in most acquisitions, and this holds true also among venture capitalists (Ixora, 2013). This value is not included in the cost-based valuation. Neither is the risk of the development of a corresponding technology in the hands of another organization (the buyer’s). On the upside is the fact that the former owners had invested more than 22 M€ in a mother company, indicating that the former owners considered the know-how and the future potential value higher than this. Hence, it can be speculated that the cost-based valuation could be higher. The DCF valuation gave a value of 14,9 M€. This was the highest value of all methods used. A sensitivity analysis showed what effect the choice of expected rate of return and the terminal value growth rate had on the valuation. This shows a weakness of the DCF valuation, since the value is easily manipulated. To use a DCF valuation correctly, the ingoing parameters have to be relevant, but in the case of an innovative, high risk, life science company this can lead to a lot of debate. What is relevant? In the scope of this study, the current hurdle rate commonly used in venture capital in Northern Europe, and the expected growth rate for the industry sector was chosen as relevant. At a hurdle rate of 20%, the terminal value was not sensitive in the interval 0-5%, which Value million € 10,8 14,9 11,5 Cost-based valuation Discounted cash flow (DCF) valuation Real option valuation Probability- weighted DCF valuation 10,3
  • 30. 30 gives confidence to the final valuation of 14,9 M€. However, it must be emphasized that if the expected rate of return is 30%, the value of the company drops to 4-5 M€. If the case study company is for sale, a large corporation within the industry that has a lot of competence and capital, will probably require a lower hurdle rate, since the share size and capabilities of the buyer will lower the risks for the acquisition. In this case a 20% hurdle is reasonable, some might even consider it high. Another issue with the DCF valuation is the estimation of the future cash flows and revenues. In this case study there was no historical data to be beneficial for the prognosis. Usually the historical sales development is the starting point of the estimation. The new technology is yet not in a life cycle stage to create revenues. The uncertainty of DCF valuation is particularly questioned within an industry where unsuccessful clinical trials can suddenly lead to abandonment of the project (Villiger & Bogdan, 2006). In discussion with the President, the future revenue and earnings margin were estimated. As the future earnings have a big effect on the value of the company, the estimations need to be accurate and could also be influenced by biased and subjective assumptions. For a bigger company with a long history of different product life-cycles, the future projections will be more trustworthy. On the other hand, the increased risk of the correctness of the prognosis is reflected in the hurdle rate. It may seem starling that the DCF value is higher than the real option value. However, the two should not be directly compared, due to the fact that the DCF valuation is conditional upon going to market. Since the “standard” DCF model is composed of revenues generated with the assumption of successfully getting through the development and regulatory obstacles, an additional risk factor was added to create a probability-weighted DCF value (Shockley et al., 2003). Two milestones in the development process where the before mentioned uncertainty of registration as a consequence of clinical trials were mathematically taken into account. This calculation lowered the “standard” DCF value with over 30%. The results are similar to Shockley, who used the same method and also got a “standard” DCF value higher than the real option value (Shockley et al., 2003). The probability- weighted DCF value of 10,3 M€ is very close to the cost-based value of 10,8 M€. The real option valuation gave a value of 11,5 M€. This value is 1,2 M€ higher than the value of the probability-weighted DCF method. Note that if the future development of the company would include more types of options, such as the value to delay, the value to expand, the value to product patents, and the value to financial flexibility, these real options would add more value. The DCF method, a simple straight-forward method has a major flaw, especially important for the life science industry. Because of the high level of uncertainty, the DCF model does not take into account possible changes in market conditions (Bogdan & Villiger, 2008). The DCF model makes some
  • 31. 31 assumptions as the whole truth, and the risk is estimated in the discount factor. If this is done for a certain project, and this fails, the value becomes zero (or negative). Real option valuation, on the other hand, includes one important additional factor, the probability that something happens in the future. This gives a welcome flexibility, and includes future uncertainty into the valuation. As biotech companies usually have a higher market value than a DCF valuation shows, the real option approach may help discover the extra value (Kellog & Charnes, 2000). However, not all agree that it is appropriate to implement real option valuation to health care industries, as the risk and uncertainty of the volatility in the underlying products is hard to estimate (Amram & Kulatilaka, 2000). Real option valuation is the most complicated valuation method that was used for the case study, but the use of probabilities in predicting future value depending on future milestones seems to be very relevant for estimation of fair value of the case study’s most important asset, the new medical technology. Andersson & Arenroth (Andersson & Arenroth, 2006), chose the option to stage investments, and the option to expand for the valuation of a life science company, in this case a publicly listed company. It is reassuring that three research groups selected the same method used in this study, real option to stage investments, as suitable for valuation of life science companies (Andersson & Arenroth, 2006; Chrissanthopoulos & Svanström, 2010; Shockley et al., 2003). If the real option valuation is performed with a lot of insight and expertise, it may give good extra perspectives to a valuation, especially significant for the life science industry, where important milestones certainly contribute significantly to the value of a company or a technology. However, the option-based methods for life science companies are still not established, and can make the valuation a time consuming ad hoc process (Shockley et al., 2003). Even the International Private Equity and Venture Capital Valuation Guidelines, as presented in chapter 2, do not consider real option as an established method, and this valuation is not listed in the guidelines (IPEV, 2012). The conclusions are that for the case study company, all three methods used, cost-based, discounted cash flow and real option valuations gave results that are defendable, even though some of the results are far from each other. The probability-weighted DCF valuation gives a welcome extra risk adjustment to correct one of the features criticized in the normal DCF method. Looking at all valuation methods presented in the theory, three were not applicable for the case study company, net assets, latest share issue and relative valuations. Latest share issue valuation method is the only one actually giving a company’s true price, but it is historical. The latest share issue valuation is more accurate the closer in time, and the fewer significant events have occurred since latest share issue. It is also commonly used in venture capital (Ixora, 2013). Concerning the relative valuation, this method may be useful, only if there is a very similar company found for comparison. Finally,
  • 32. 32 net assets are not considered reflecting a fair value in small research-intense life science companies, especially with negative earnings, since creation of immaterial property and future earnings are crucial and not valued in the net assets. The simplified real option approach presented in this study could not only be very useful in valuation, but also convenient in strategic planning and estimating the effects of different investments, the probabilities of the milestones to succeed and the influence these parameters have on the real option value. This can easily be illustrated by referring to the chart in appendix 6. For example, assuming an extra investment of 100 000 € in clinical studies year 3, will increase the probability from 80% to 90% of CE Class IIB approval of the chronic wounds treatment indication in year 5. When these new values, and not forgetting that the probability-weighted DCF also increases to 11,8 M€, the real option value increases from 1,2 to 1,4 M€. The conclusion is that with an extra investment of 0,1 M€, the value of the company increases with 0,2 M€. This shows the utility of the real option method also in planning investments and understanding the influence of future probabilities to succeed with milestones on the value of the company. Venture capital valuation of small life science companies, especially for those with negative earnings, which means in practice that there is probably no reliable historical sales data available, is a big challenge due to the uncertainty of the future development. To use more than one valuation model will decrease the risks of wrong estimation of the fair value. Therefore, the recommendation is to use at least two of the most suitable valuation methods, latest share issue, relative, cost-based, DCF, probability-weighted DCF and real option, depending on the characteristics of the small life science company. A simplified real option method, based on the binominal option to stage investments, was created, and this can be used or further developed in the valuation of projects or companies involving the staging of capital expenditures around milestones in life science.
  • 33. 33 6.Suggested further research Future research could include an alternative approach to improve the cost-based valuation by taking into account the risk of development of the know-how. By calculating the future value of the cost- based valuation, using a certain hurdle rate, the future value gives a possibility to compare alternative investments (Damodaran, 2001). Future Value = Current Value (1+discount rate)t The same discount rate as used in the DCF-valuation can be chosen, 20%. The years of development is depending on the capability of the other organization, so below is presented the value of the cost-based valuation, adjusted with value of the risk of developing the know-how over 3, 5 and 10 years (t). Discount rate: 20% Value today Value 3 years Value 5 years Value 10 years M€ 10,8 18,7 26,9 66,9 Figure 12: Future value calculation of the cost-based valuation to estimate risk. So, if a potential buyer would like to compare what another investment with the same value as the cost-based valuation would be worth after a certain number of years with a discount rate of 20%, the future value can give an estimation of this. Say the potential buyer estimates the development time to five years to copy the technology, this gives a future value of 26,9 M€ for the case study company. However, the development’s total cost might be lower than 10,8 M€ because of the increased efficiency of the buyer’s organisation, so the future value might not be directly comparable using the historical costs for a less efficient organisation. For instance, if the buyer considers the new technology’s development cost to be just the half, 5,4 M€, this gives a five year future value of 13,4 M€. When a potential buyer is able to give quite an accurate estimate of its own capability, thereby estimating the total costs and the time of development, this alternative approach might be very useful. The simplified real option valuation method developed in this study to use probabilities and investments in relation to milestones could be an excellent tool in strategic planning. Complicated models giving seemingly exact results may give a false image that the results are trustworthy. The simplified method with just six nodes seems completely sufficient in valuation of assets with high uncertainty. This should be studied further, not only for the life science industry but also for other sectors with uncertain, critical milestones in the product development. This study has used only one case study company. To increase the validity of the conclusions, it is suggested that a larger number of small life science companies should be studied and valuated.
  • 34. 34 References Amram, M. & Kulatilaka, N., 2000. Strategy and shareholder value creation: The real options frontier. Journal of Applied Corporate Finance, 13(2), pp. 8-21. Andersson, D. & Arenroth, N., 2006. Valuation of biotechnology firms with real options. Magisteruppsats i Internationella Ekonomprogrammet LIU-EKI/IEP-D--06/012—SE. Bogdan, B. & Villiger, R., 2008. Valuation in Life Sciences: A Practical Guide. Berlin, Germany: Springer Verlag. Bratic, W., Blok, J. & Gostola, M., 2014. Valuation of early-stage companies in the biotechnology industry. Journal of Commercial Biotechnology, 20(2), pp. 51-58. CapMan, 2014. www.capman.com. [Online, Accessed 11 April 2014]. Carver, L., 2011. Venture Capital Valuation: Case Studies and Methodology. Hoboken, USA: John Wiley & Sons. Chrissanthopoulos, N. & Svanström, R., 2010. Utvärdering av värderingsmodell som hanterar osäkerhet och tid. Stockholm, Sweden: Stockholm University. Copeland, T., Weston, F. & Shastri, K., 2005. Financial Theory and Corporate Policy. 4 ed. Boston, USA: Pearson Addison-Wesley. Cotropia, C., 2009. Describing Patents as Real Options. The Journal of Coproration Law, 34(4), pp. 1127-1149. Damodaran, A., 2001. Coprorate Finance - Theory and Practice. 2 ed. Hoboken, USA: John Wiley & Sons. Damodaran, A., 2002. Investment valuation. 2 ed. Hoboken, USA: John Wiley & Sons. Damodaran, A., 2006. Damodaran on Valuation - Security Analysis for Investment and Corporate Finance. 2 ed. Hoboken, USA: John Wiley & Sons. DiMasi, J. & Grabowski, H., 2007. The Cost of Biopharmaceutical R&D: Is Biotech Different? Managerial and Decision Economics, Volume 28, pp. 469-479. EvaluateMedtech, 2013. www.evaluategroup.com. [Online, Accessed 10 April 2014]. Fraser-Sampson, G., 2011. Private Equity as an Asset Class. 2 ed. Hoboken, USA: John Wiley & Sons. Gustafsson, B., Göran, H. & Petterson, B., 2011. God forskningssed. Vetenskapsrådet. Hamill, P., McIlkenny, P. & Opong, K., 2013. Valuation implications of pharmaceutical companies’ R&D regulatory approval notifications. The British Accounting Review, 45(Elsevier), pp. 99-111. Hull, J. C., 2012. Options, futures and other derivatives. 8 ed. Upper Saddle River, USA: Prentice Hall. IPEV, 2012. www.privateequityvaluation.com. [Online, Accessed 19 March 2014]. Ixora, S., 2013. Investment Summary - Portfolio of leading innovative growth companies. Stockholm: Serendipity. Kellog, D. & Charnes, J., 2000. Real-Options Valuation for a Biotechnology Company. Association for investment management and research. Koller, T., Goedhart, M. & Wessel, D., 2010. Valuation. 5 ed. Hoboken, USA: (McKinsey & Company) John Wiley & Sons. Mayhew, S., 2010. Practical approaches to early stage life sciences technology valuations. Journal of commercial biotechnology. 16(2) pp. 120-134. Moore, E. G. & Shaw, W. H., 2005. Ethics: and "The Nature of Moral Philosophy". Oxford Scholarship Online. Penman, S. H., 2013. Financial Statement Analysis and Security Valuation. 5 ed. Singapore: McGraw-Hill. PhRMA, 2014. www.phrma.org. [Online, Accessed 19 March 2014]. Sammut, S., 2012. Valuation methods in early-stage biotechnology enterprises: The "Venture Capital Method" at work. Journal of Commercial Biotechnology, 18(2), pp. 78-82. Sandström, A., 2014. Global trends with local effects - The Swedish Life Science Industry 1998- 2012, Sweden: Vinnova Analysis, VA 2014:03.
  • 35. 35 Schneider, B., 2009. A capital market's view on Industrial Biotechnology - proper valuation is the key for picking the right investment opportunities in stormy times. Journal of Business Chemistry, 6(3), pp. 108-110. Schwab, K., 2013. www3.weforum.org. [Online, Accessed 11 February 2014]. Shockley, R. L., Curtis, J. S., Jafari, J. & Tibbs, K., 2003. The Option Value of an Early-Stage Biotechnology Investment. Journal of Applied Corporate Finance, Volume 15.2, pp. 44-55. Trigeorgis, L., 1996. Real Options: Managerial Flexibility and Strategy in Resource Allocation. Cambridge, USA: MIT Press. Trigeorgis, L., 2002. Real options and uncertainty - What do we know?, Working paper No. 22, May 2002: National Bank of Belgium. Verdu, A., Tamayo, I. & Ruiz-Moreno, A., 2012. The moderating effect of environmental uncertainty on the relationship between real options and technological innovation in high-tech firms. Technovation, Volume 32, pp. 579-590. Wilde, O., 1892. Lady Windermere's Fan - A Play About a Good Woman. [Art]. Williams, M., 1999. Science and Social Science : An Introduction. London: Routledge. Villiger, R. & Bogdan, B., 2006. Pitfalls of valuation in biotech. journal of Commercial Biotechnology, 12(3), pp. 175-181. Yin, R., 1994. Case study research - Design and methods. 2 ed. Thousand Oaks, USA: SAGE Publications. Zhou, K. Z. & Li, C. B., 2012. How knowledge affects radical innovation: Knowledge base, market knowledge acquisition, and internal knowledge sharing. Strategic Management Journal, Volume 33, pp. 1090-1102.
  • 36. 36 Cellulose Building blocks Polymers Appendix 1: Wound care technology company  The case study company is a wound care technology company, specialized in biopolymers and biomaterials for the high value life science and medical device markets. o Developing and manufacturing regenerative tissue engineering materials with bioactive properties and structure, suitable for wound care, implant and pharmaceutical applications. o Two proven platform technologies, biodegradable polymers and bioactive ultrapure natural fibre matrix, a type of cellulose.  The wound care technology company was founded in 2004, with a 100% management buy-out in 2009. In 2012, the company acquired technologies for production of medical cellulose, fitting the company’s focus and know-how.  The company has had years with positive cash flow, but currently it is not making profit.  According to the company, 22 M€ (30 M$ or 270 MSEK) has been invested in developing technology. Close to one million € is received as governmental support or from the European Union. All development costs are depreciated, which means the company has no debts for the technology.  First product is for treatment of severe burns, 3rd class and deeper, by regeneration of new tissue. After further clinical tests, indications can be added for chronic wounds, such as, diabetic foot ulcer, venous leg ulcer, and hard to heal wounds. 3rd degree burn At 7 days 12 months later Medical cellulose material is white, in the centre.  The global wound care market is approximately 11 billion € (15 bn$ or 130 bnSEK), of which 100 M€ (140 M$ or 890 MSEK) in sales could be reached by year 2026 with the wound care products in question.  Final product for treatment of burns will have very high margin, > 95%. References: Case company’s internal information.
  • 37. 37 Appendix 2: The wound care market  A wound is an injury or break in the skin, generally a dissection of tissue or rupture of a membrane. Traditional wound care products are dry dressings, bandages, etc. Advanced wound care product constitutes of alginates, hydrogels, hydrocolloids and collagen, skin substitutes and biological growth factors. The most sophisticated treatments are regenerative medicine.  The global wound care market reached revenues of 11 billion € (15 bn$ or 130 bnSEK), in 2010, with a growth of 6%. One third is so called Advanced Wound Care. Of this share 3 billion $ is wet products, and to this segment belong artificial skin products.  Major general wound care companies are Smith and Nephew, Kinetic Concepts, Convatec, Systagenix, and Mölnlycke Healthcare.  Major players in regenerative medicine and extremity reconstruction are Johnson & Johnson, Pfizer, Sanofi, Roche, GlaxoSmithKline, Wright Medical Group and Integra Lifesciences.  A few examples of product specific sales, and product prices: o Dermagraft (treatment of diabetic foot ulcer); 147 M$, 2010. o Apligraf (treatment of diabetic foot ulcer and venous leg ulcer); >100 M$, 2010. o The artificial skin’s (treatment of burns) product price is around 10 € per cm2 . o For chronic wounds are both expensive artificial skin products, as well as cheaper dressings used. A cheaper bandage is sold for around 0,05 € per cm2 .  The wound care market is driven by rise in chronic diseases, such as diabetes and hypertension, increase in the ageing population, and technological advancements. The demand for mobile, user-friendly devices is expected to grow the wound care market in the coming years. In a more long term perspective, biological growth factors, and tissue-engineered products like skin substitutes will become market-drivers.  15% of diabetes patients develop one or more diabetic foot ulcer (DFU) during their lifetime. In USA, 26 million people have diabetes. 2% of diabetes patients develop DFU annually.  In USA, 500 000 patients annually seek medical treatment for venous leg ulcer.  In USA, 15% of elderly patients develop pressure ulcers during hospitalisation.  Rapid breakthrough in wound-healing technologies to develop cost effective treatment is expected to drive the growth of the market. Companies are now focusing on the introduction of advanced materials, methods, and active substances for the treatment of wounds.  Regenerative medicine has become increasingly popular in recent years, with the number of deals announced growing steadily. In years 2009-2012, there have been 570 regenerative medicine / stem cell deals. References: Case company’s internal information, originally collected from market research companies, such as Kalorama information, MarketsandMarkets 2012, and GlobalData 2010, and Duodecim 2009; 125:457-65.
  • 38. 38 Appendix 3: DCF prognosis € 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Revenue - 20 000 140 000 450 000 1 100 000 2 200 000 3 900 000 6 800 000 10 500 000 15 800 000 Annual Growth % 600% 221% 144% 100% 77% 74% 54% 50% Expenses COGS (cost of gods), production and lab 65 000 46 000 50 000 75 000 113 000 195 000 302 000 515 000 780 000 1 149 000 Personnel costs 527 144 591 440 609 224 671 624 671 624 734 024 734 024 734 024 734 024 734 024 Other costs (IPR, marketing, royalties, QA, clinical studies, etc.) 160 000 120 800 145 600 148 000 174 000 218 000 286 000 402 000 550 000 130 000 Depreciation 10 000 14 000 18 000 22 000 26 000 70 000 70 000 70 000 70 000 70 000 Net operating Income -752 144 -738 240 -664 824 -444 624 141 376 1 052 976 2 577 976 5 148 976 8 435 976 13 786 976 Taxable Income -762 144 -752 240 -682 824 -466 624 115 376 982 976 2 507 976 5 078 976 8 365 976 13 716 976 EBITA -margin -3761% -488% -104% 10% 45% 64% 75% 80% 87% Tax -152 429 -150 448 -136 565 -93 325 23 075 196 595 501 595 1 015 795 1 673 195 2 743 395 FCF -609 715 -601 792 -546 259 -373 299 92 301 786 381 2 006 381 4 063 181 6 692 781 10 973 581 Probability for succesful milestone 100% 100% 100% 90% 80% 100% 100% 100% 100% 100% Cumulative probability 100% 100% 100% 90% 72% 72% 72% 72% 72% 72% Probability weighted FCF -609 715 -601 792 -546 259 -335 969 66 457 566 194 1 444 594 2 925 490 4 818 802 7 900 978
  • 39. 39 Appendix 4: Gross value € Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Net turnover Sales from wound care product for treatment of burns 20 000 100 000 250 000 600 000 1 000 000 1 900 000 3 000 000 4 500 000 6 800 000 Sales from wound care product for treatment of chronic wounds 40 000 200 000 500 000 1 200 000 2 000 000 3 800 000 6 000 000 9 000 000 Annual growth % 600% 221% 144% 100% 77% 74% 54% 50% Total Revenue - 20 000 140 000 450 000 1 100 000 2 200 000 3 900 000 6 800 000 10 500 000 15 800 000 Total financing need 1 000 000 1 000 000 700 000 Gross Value Corp tax rate 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% Year 1 2 3 4 5 6 7 8 9 10 PV Factor 0,83 0,69 0,58 0,48 0,40 0,33 0,28 0,23 0,19 0,16 Required rate of return 20% 20% 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 - 13 889 81 019 217 014 442 065 736 776 1 088 418 1 581 463 2 034 970 2 551 788 Discounted Gross Value 8 747 402 PV of Terminal Value 11 076 841 Total Gross Value 19 824 243
  • 40. 40 Appendix 5: 10 year governmental bond average Belgium 2,25 2,04 2,06 2,44 2,54 2,65 2,75 2,57 2,42 2,43 2,45 2,4 2,26 Germany 1,35 1,2 1,29 1,53 1,56 1,73 1,89 1,76 1,68 1,8 1,76 1,56 1,51 Ireland 3,83 3,78 3,48 4,02 3,88 3,92 3,95 3,65 3,53 3,48 3,39 3,24 3,05 Greece 11,38 11,58 9,07 10,07 10,53 10,01 10,15 8,74 8,41 8,66 8,18 7,7 6,9 Spain 4,92 4,59 4,25 4,67 4,67 4,5 4,42 4,22 4,1 4,13 3,79 3,56 3,31 France 2,07 1,8 1,87 2,21 2,25 2,36 2,49 2,39 2,27 2,33 2,38 2,25 2,15 Italy 4,64 4,28 3,96 4,38 4,42 4,42 4,54 4,25 4,1 4,11 3,87 3,65 3,4 Cyprus 7 7 7 7 6 6 6 6 6 6 6 6 6 Latvia 3,17 3,15 3,1 3,17 3,25 3,25 3,45 3,78 3,71 3,62 3,48 3,07 2,87 Luxembourg ( 3 ) 1,55 1,41 1,47 1,76 2,02 2,2 2,27 2,14 2,01 2,1 2,06 1,87 1,8 Malta 3,56 3,37 3,31 3,35 3,21 3,23 3,28 3,25 3,18 3,19 3,05 2,96 3,02 Netherlands 1,67 1,66 1,69 2 2,03 2,2 2,32 2,18 2,06 2,16 2,09 1,89 1,81 Austria 1,75 1,64 1,75 2,04 2,06 2,22 2,34 2,19 2,08 2,17 2,13 1,95 1,87 Portugal 6,1 6,15 5,46 6,3 6,87 6,6 7,06 6,33 5,98 6,04 5,21 4,94 4,43 Slovenia 5,09 5,93 5,35 6,38 6,58 6,51 6,56 6,47 5,91 5,27 4,73 4,43 3,85 Slovakia 3,95 3,01 2,52 2,45 3,15 3,15 3,15 3,15 3,15 2,69 2,53 2,48 2,47 Finland 1,61 1,51 1,6 1,88 1,91 2,07 2,19 2,04 1,94 2,03 1,99 1,92 1,91 Bulgaria 3,54 3,47 3,36 3,4 3,46 3,51 3,64 3,71 3,64 3,43 3,56 3,58 3,54 Czech Republic 1,98 1,82 1,67 2,14 2,23 2,4 2,42 2,33 2,18 2,2 2,43 2,28 2,2 Denmark 1,59 1,42 1,45 1,72 1,77 1,94 2,1 1,93 1,8 1,89 1,86 1,67 1,61 Croatia 4,32 4,34 4,38 4,63 4,91 5,04 4,92 4,99 4,97 5,1 5,11 4,78 4,51 Lithuania 4,15 3,95 3,54 3,54 3,54 3,65 3,89 4,01 3,99 3,69 3,42 3,33 3,33 Hungary 6,38 5,65 5,08 6,02 5,78 6,31 6,16 5,58 5,82 5,78 5,6 6,03 5,83 Poland 3,93 3,5 3,28 3,95 3,97 4,3 4,49 4,28 4,38 4,42 4,42 4,47 4,25 Romania 5,86 5,46 5,23 5,43 5,26 5,04 5,27 5,22 5,29 5,29 5,22 5,35 5,31 Sweden 1,92 1,66 1,79 2,05 2,16 2,34 2,6 2,44 2,3 2,39 2,37 2,23 2,16 United Kingdom 1,65 1,46 1,62 1,96 2,09 2,29 2,44 2,26 2,31 2,5 2,48 2,37 2,34 87,69 Average 3,25
  • 41. 41 Appendix 6: Real option Real Option Calculation © Salim Gabro, Robert Harju-Jeanty, 2014 Volatility V 30% Fill in yellow boxes. Time step Δt 1 square root Δt 1 Node upstep u= e^(V * square root Δt) 1,350 19 824 243 € Node downstep d= 1/u 0,741 11 510 751 € 11 511 numerator for p 0,292 10 338 271 € 10 338 Risk-free rate r 3,25% 1 172 480 € 1 172 Exponent of natural logarithm r * delta t 0,0325 Probability downstep p 0,480 Probability upstep 1-p 0,520 e^-r sqrΔt 0,968 Investments 1000 1000 0 700 0 0 2700 Probability 100% 100% 100% 90% 80% 100% Year 1 2 3 4 5 6 88846 65819 48760 48760 36122 48760 36122 26760 36122 26760 26760 19824 26760 19824 26760 14686 19824 14686 19824 14686 10880 14686 10880 14686 8060 10880 8060 5971 8060 4423 88846 52655 48760 34407 28898 48760 25330 18567 28898 26760 17611 13596 18567 15859 26760 8601 13161 9874 15859 14686 6927 9874 8704 14686 5103 4777 8060 4777 8060 4423 EPNV Total investments Production automation 19 824 11 511 Burns CE Class I + Patent application Burns CE Class IIB Chronic wounds CE Class IIB Expected present net value Probability-weighted DCF value Option value Gross Value Gross value Node Milestones
  • 42. 42 Stockholm University SE-106 91 Stockholm Tel: 08 – 16 20 00 www.sbs.su.se