SlideShare a Scribd company logo
1 of 23
Download to read offline
www.osram-os.com
Infrared sensors for ADAS and beyond –
LIDAR / Infrared camera
Rajeev Thakur| 4th October 2016| Novi
Light is OSRAM
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
2
Content
Page
1. OSRAM Overview 03
2. Sensing challenges 06
3. LIDAR 12
4. Infrared Camera 19
5. Sensor Fusion 21
6. Collaboration & Competition in the self driving car business 22
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
3
Global Market Leader in LED & Laser
LIDAR – Infrared Lasers - AEB
Consumer
Industry
General Lighting
Laser front light
Xenon front light Laser front light
OLED rear light
Matrix LED light
Automotive Lighting
Source: OSRAM, excluding LAMPS
1) at the end of the fiscal year
2) countries where OSRAM had operations at the end of the fiscal year
Employees1) : 20,300
Worldwide Presence2) : >120 countries
Revenue1): 3,571.9 m €
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
4
Key Automotive Trends
Exterior , Interior & IR
Safety
Design
Visualization &
Connectivity
Comfort &
Safety
Key Automotive Trends
ExteriorInterior
• µAFS
• High Luminance
LEDs
Dynamic
Lighting
Projection
HuD
Full Digital Cluster
LED Applications New LED
Development
• Display Portfolio
• HuD Portfolio
BLU Displays
High ResolutionADB/Matrix
ProjectionUltra slim HL
LIDAR / ADB
Gesture
Wireless
Connectivity
Driver Monitoring
Night Vision
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
5
OSRAM Infrared & Laser Automotive Applications
Existing Applications / New Applications
Rain Light
Tunnel Sensors
Ambient light sensors for dimming
and illumination
• Dashboard
• Car radio
• Displays
Immobilizer
Steering wheel
angle sensor
Blue Lasers for
Headlamps
Driver monitoring
Gesture Recognition
IRED based Night vision
Blind spot detection
Lane departure warning
Family Entertainment
System
LIDAR sensing
AEB & ADAS
Laser HuD
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
6
Sensing Needs for Vehicle Environment
Continue
Brake
Steer to safety Prepare for crash
Steering is
best option Cannot avoid
crash
Braking is
best option
NO
YES
Current Sensing Range
Upper limit
(For Large Objects)
RADAR : 50 - 250m
Camera : 50 - 70m
LIDAR : 50 – 200m
Braking Distance / Minimum Sensing Range
(Assumptions : Dry Road, µ = 0.7, 1 sec reaction time)
@100mph (161kph/44.7m/s) : > 190 meters
@74mph (119kph,33 m/s) : > 112 meters
@45mph (72.4kph/20.1 m/s) : > 50 meters
@25mph (40kph/11.1 m/s) : > 20 meters
If the closing speed is less than ~ 45mph , current sensing technology can mitigate
collision to large objects under normal daylight dry conditions (distance < 70 meters)
Challenge 1 : Sensing Range
Is projected vehicle
trajectory safe for next
XX meters?
Calculate Time
to Crash
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
7
Sensing Needs for Vehicle Environment
• Who decides ?
• Ignore objects at own risk ..
Challenge 2 : Angular Sensing Resolution
• Standard object list for detection does not exist (ignore / standardize with risk)
• LIDAR is capable of < 0.5° resolution at > 100 m (with small form factor)
• RADAR size for 0.5° resolution not practical (~ 0.5 m for 76 GHz RADAR)
• Camera range needs to improve & image quality in lowlight (or infrared)
1 Bosch Multi Purpose Camera (MPC2) , 1280 x 960 pixels, 50° HFOV, 28° VFOV 2 Velodyne VLP16 (0.1° – 0.4°) 3 RADAR equation
What objects should be detected to avoid collision ?
Typical Angular Resolution
1 Camera : 25 pixels / °
2 LIDAR : 0.3°
3 RADAR : 2.6° (76 GHz, 10 cm aperture)
1.5m 0.25m 0.4m 0.2m 0.1m 0.2m
tire
piece
potholedog Resolution Size (m)
1° @ 100 m = > 1.7 m
1° @ 200 m = > 3.4 m
0.1° @ 200 m = > 0.4 m
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
8
Sensing Needs for Vehicle Environment
Challenge 3 : Field of View
Winding Roads
Need Wide FOV
Traffic Lights & Overhead Signs Need High FOV Up & Down Ramps Need High FOV
FOV – Field Of View
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
9
Sensing Needs for Vehicle Environment
Challenge 4 : Computational challenges
• Time Needed = Sensing time + Reaction Time + Safety Margin
• Sensing Time per Sensor = (Points/Frame x # of Frames in Buffer x
compute time/point)
• Finer resolution => More data points => more time (or faster
computation)
• Redundancy / sensor fusion needed prior to reaction
• Reaction Time = (Human delay) + latency in steering or braking
system
• Safety Margin : To accommodate environment conditions (road /
temperature) , sensing and computational delays and tolerances
1 Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs? : Department of Electronics, UAH. Alcala de ´
Henares, Madrid, Spain ; IEEE Workshop in June 2016 on Intelligent Vehicles
1
Sensor / Processor / environment / algorithm .. affects
computational time and accuracy
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
10
Sensing Needs for Vehicle Environment
Other Challenges
• Form factor – small and compatible to vehicle styling & materials
• Increasing noise from surrounding vehicle RADAR/LIDAR ..
• Dealing with satellite signal / GPS loss in real time
• Harsh environment – Snow/rain/dust/dirt/shock and vibrations
• Power / EMC / ESD / ..
• Service
• Cost
• ..
• Tremendous innovation currently in sensing field
• OSRAM working with multiple startups / Tier1 and OEM’s
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
11
RADAR / Camera / LIDAR Comparison
Sensor Typical
Range
Horizontal
FOV
Vertical
FOV
2020
Price Range
Comments
24 GHz
RADAR
60 m 1 56° 1 ~ ± 20° < $100
USA Bandwidth 100 -250 MHz 2
Robust for Rain/snow ;
People Detection / Angular Resolution
77 GHz
RADAR
200 m 1 18° 1 ~ ± 5° < $100
USA Bandwidth 600 MHz 2
Robust for Rain/snow ;
People Detection / Angular Resolution
Front Mono
Camera
50 m 1 36° 1 ~ ± 14 ° < $100
Versatile Sensor (Applications)
Limited depth perception ; affected by rain / fog
Needs illumination (Visible/IR)
LIDAR
(Flash)
75 m 140° ~ ± 5° < $100
Concerns for Rain/Snow;
Good reflection off people w/ angular resolution
Range & S/N limited by eye safety
LIDAR
(Scanning)
200 m 360° ~ ± 14° < $500
Concerns for Rain/Snow;
Typically higher price for angular resolution
Range & S/N limited by eye safety
1 : Vehicle-to-Vehicle Communications: readiness of V2V technology for application – DOT HS 812014 ; Table V-7
2 : Millimeter Wave Receiver concepts for 77 GHz automotive radar in silicon Germanium Technology – D.Kissenger (SpringerBrief’s 2012)
• False positives  Nuisance to consumer  Turns feature off (if possible)
• False negatives  did not meet spec / expectations
• Optimum combination of sensors will be a learning process
• Sensor fusion …can be done at best on common subset in field of view
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
12
Flash LIDAR – Design Overview
start
stop
Δt
Laser
Photodiode
Array
Emitter
Lens
Receiving
Lens
Target
FOV
Working principle : Laser beam spread into field of view and received on photodiode array. Range
determined by eye safe laser power , resolution determined by number of photodiode pixels
Why use : Mature low cost sensor that can be integrated into headlamp / Tail lamp / behind windshield / ..
Range : ~ 30 - 60 meters @ 24 HFOV
Resolution : 3 deg or less
Wavelength : 905 nm has proven sufficient for short range
Laser : OSRAM lasers with peak power 75 – 120W , with & without drivers , bare die to SMT w/ < 5ns pulse
width (2019 SOP) , also with multiple emitters in one SMT package
Photodiode : OSRAM PD array concepts of various sizes planned for SOP 2018
Why not as popular as RADAR yet in NAFTA?: 2019 NCAP upgrade will incentivize market , more room
for creativity lower cost than RADAR ; market waiting for low cost scanning LIDAR …
R – Distance
C – speed of light
Δt – time between start - stop of pulse
HFOV – Horizontal Field Of View
SOP – Start of Production
PD – Photo Diode
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
13
LIDAR Head Lamp Integration – LeddarTech Concept
Leddartech Video link
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
14
LIDAR Tail Lamp Integration – LeddarTech Concept
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
15
Phantom Intelligence : Guardian Flash LIDAR
The Guardian
BY PHANTOM INTELLIGENCE
Fully customizable
2x8 Pixels (1x16 also available)
Field of View 9°x36° – Customizable up to 2°x120°
Range limited to 30 meters (for cost optimization)
Connectivity: USB, CAN, GPIO
Programmable alarms/triggers
Power Consumption less than 3 Watts
Laser Output of 70 Watts
Eye Safe (Class 1M)
Price: ~ 100$ in 10k units volume production
Engineering Samples  December 2016
AWL Video link
YOU CAN AFFORD THE SAFEST JOURNEY !
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
16
LIDAR – Low Cost Concept (Reference Design)
• 30m range
• ~1cm accuracy
• 16 pixel array
• 24°H x 6°V FOV : 2 x 8 array (3° x 3°per pixel)
• Arrangement of pixels and field of view can be customized in future products.
• Multiple targets in each pixel can be resolved
• Targets ~1m apart (range) can be separated
• Differentiating through performance, small size,
scalability, and low power consumption
• No moving (scanning) parts
• Sun blinding can affect no more than a single pixel
• Estimated BOM ~ $25 @ High Volume
• Functional sample Q1 2017
• Target SOP 2019
Distance (m) Area (m²)
1 0.003
2 0.011
5 0.069
10 0.274
20 1.097
30 2.469
Field Of View Per Pixel
FOV – Horizontal Field Of View
SOP – Start of Production
BOM – Bill of Material (For Hard Ware)
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
17
Scanning LIDAR Technologies
Mechanical - Velodyne
Principle: Matched pair of laser &
detectors rotating with a motor at 5
to 20 Hz
Range : 200 m (VLP 32A)
Resolution : 0.1 - 0.4° (VLP 16)
Vertical FOV: 28° (VLP 32A)
Price Target : < $500 ~ 2020
Pro : Proven technology
Con: Mechanical integration / price
Principle: Laser scanned with
OPA (& received on SPAD array )
Range : > 150 m
Resolution : 0.1°
FOV: 120° (HFOV & VFOV ; S3)
Price Target : <$100 ~ 2020
Pro : small size (1” x 1.5” , S3-Qi)
Con: OPA scanning is relatively
new technology
1 Velodyne.com 2 Quanergy.com 3 Innoluce.com
OPA - Quanergy MEMS – Innoluce
Principle: Laser scanned with 1D
MEMS Mirror (& received on APD
array )
Range : > 200 m
Resolution : < 0.5°
HFOV: 80°
VFOV: 16°
Price Target : <$100 ~ 2020
Pro : MEMS scanning is proven
Con: Working demo not shown
yet…
MEMS – Micro Electro Mechanical Systems
APD – Avalanche Photo Diode
OPA – Optical Phase Array
SPAD – Single Photon Avalanche Diodes
FOV – Field Of View
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
18
MEMS LIDAR – Innoluce – OSRAM : Concept Proof
Principle: 1 25W OSRAM laser scanned with 1 Innoluce MEMS Mirror and received on an APD array
Range : ~ 60 m
Resolution : 0.1° Horizontal and 0.2° Vertical
HFOV: 10°
VFOV: 3°
Next Steps :
• Show progressively improved reference design demos in next few months
• Targets : >200 m/car ; > 60m/Ped ; 80° HFOV ; 16° VFOV ; < 0.5° Resolution (High power multiple emitter lasers)
High resolution concept proof
MEMS LIDAR Video Link
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
19
Infrared Camera - Interior
Mature applications transitioning to mainstream
• Why IR Camera : Works in day & night without visible illumination
• Moving to Mainstream : Driver monitoring (Drowsy/Distracted)
• Catching speed : Gesture recognition
• Mobile to Automotive : Iris recognition
• Technology frontiers: NIR sensitivity (15 – 35%), > 2Mp Global shutter
, increasing IRED o/p & efficiency
• Concern/Tradeoffs: Privacy Vs App. value , Redglow (850  940 nm)
• Future applications : Optimum airbag deployment, Mood lighting ..
Driver Monitoring
1 Deltaid.com
Gesture Control
Iris Recognition
1
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
20
Infrared Camera - Exterior
Forward Camera
Surround View
Camera
Rearview
Camera
Cars have to be autonomous at night also …Cameras need to work with IR also ..
• Why IR Exterior Camera : Need to see adjacent lanes at night w/o visible light
• What’s the problem : Visible cameras block IR for better image / use of color information
• Options : Use mechanical or SW filter to switch between IR & visible spectrums
• Challenges : Modify camera / Illumination / SW for wider FOV and range
• Things to watch out for : Laser beam headlamps (Dynamic range of oncoming camera) /
Use of matrix beam lighting (adaptive beams ..)
IR emitters in headlamp
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
21
Sensor Fusion – Fuse Information of high quality which overlap
• Objective of Sensor Fusion : Determine environment around vehicle trajectory
with enough resolution, confidence and speed - to navigate efficiently.
Object_list RADAR Camera LIDAR Sensor Fusion
Car@150m
Don’t See it
(Noise)
Not_Classified@100
m & low light
Evaluate TTC &
brake if unresolved ?
@50m Person on bicycle
Not classified Don’t see it (Noise) Brake or ignore ?
Potholes & stuff
What can be safely
ignored ?
• Object Identification & Classification in range & FOV of interest must be comparable.
• LIDAR + Camera fusion potentially better (Due to angular resolution)
• Camera improvements : Range (~ 70 m); speed (30 – 60 Hz) & Low light sensitivity
IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive – ADAS & Autonomous | 10/04/2016
22
Collaboration & Competition - Self Driving Cars
• Why collaborate :
• Need NHTSA support  Regulations / Testing / Infrastructure / ..
• Combine R&D resources & strengths
• Be / be with a technology leader to gain market share
• Why Compete?
• Branding / Technology Leadership (Intangible $ Value)
• ADAS technology has shown real market value ($1500 - $3000/car)
• Prepare for future market changes (Self driving cars occupy significant share)
• What more could/should be done ?
• Use Silicon Valley playbook more – open source development
• Example : Provide raw data from all sensors in a drive ; show me object
identification / classification & tracking .. (Buy the best solution..)
• Make sensor requirements and roadmap open
• Small startups have very creative solutions & fast development
• Why be more open ?
• 1 year after a new gadget is shown  3 more appear next year (Benefit/Cost)
• Will enable faster development of SDC technology for community & save lives !
www.osram-os.com
Thank you !
Contact :
Rajeev.Thakur@osram-os.com

More Related Content

What's hot

Night vision technology in automobile
Night vision technology in automobileNight vision technology in automobile
Night vision technology in automobileAnusha Chethana
 
Applications of lidar technology
Applications of lidar technologyApplications of lidar technology
Applications of lidar technologySourabh Jain
 
night vision in automobiles
night vision in automobilesnight vision in automobiles
night vision in automobilesAyush Sharma
 
Night vision Technology in Automobiles
Night vision Technology in AutomobilesNight vision Technology in Automobiles
Night vision Technology in Automobilesrakeshmanthu
 
Night vision system in automobiles
Night  vision system  in automobilesNight  vision system  in automobiles
Night vision system in automobilesRohit Raj
 
Night Vision System in Automobiles BY Sum!!T
Night Vision System in Automobiles BY Sum!!TNight Vision System in Automobiles BY Sum!!T
Night Vision System in Automobiles BY Sum!!TM Sangam Subudhi
 
Night vision technology
Night vision technologyNight vision technology
Night vision technologypravin. r.k
 
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...MicroVision
 
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...MicroVision
 
NIGHT VISION IN CARS
NIGHT VISION IN CARSNIGHT VISION IN CARS
NIGHT VISION IN CARSPraveen Yadav
 
510MRF42-44_22P_IndustryTRENDS
510MRF42-44_22P_IndustryTRENDS510MRF42-44_22P_IndustryTRENDS
510MRF42-44_22P_IndustryTRENDSSuresh Ram
 
"Understanding Automotive Radar: Present and Future," a Presentation from NXP...
"Understanding Automotive Radar: Present and Future," a Presentation from NXP..."Understanding Automotive Radar: Present and Future," a Presentation from NXP...
"Understanding Automotive Radar: Present and Future," a Presentation from NXP...Edge AI and Vision Alliance
 
Night vision technology in cars (automotives)
Night vision  technology  in  cars (automotives)Night vision  technology  in  cars (automotives)
Night vision technology in cars (automotives)Kumar Manikantan T
 
Robots for Industrial Inspection
Robots for Industrial InspectionRobots for Industrial Inspection
Robots for Industrial Inspectionmarshallbutler
 
Intelligent Traffic light detection for individuals with CVD
Intelligent Traffic light detection for individuals with CVDIntelligent Traffic light detection for individuals with CVD
Intelligent Traffic light detection for individuals with CVDSwaroop Aradhya M C
 
SPZ marketing brochure[1]
SPZ marketing brochure[1]SPZ marketing brochure[1]
SPZ marketing brochure[1]Paul Gillespie
 
Smart Enabling Technologies for Automated Driving
Smart Enabling Technologies for Automated DrivingSmart Enabling Technologies for Automated Driving
Smart Enabling Technologies for Automated DrivingST_World
 
NIGHT VISION SYSTEM IN AUTOMOBILES
 NIGHT VISION SYSTEM IN AUTOMOBILES NIGHT VISION SYSTEM IN AUTOMOBILES
NIGHT VISION SYSTEM IN AUTOMOBILESAnjali Yadav
 

What's hot (19)

Night vision technology in automobile
Night vision technology in automobileNight vision technology in automobile
Night vision technology in automobile
 
Applications of lidar technology
Applications of lidar technologyApplications of lidar technology
Applications of lidar technology
 
night vision in automobiles
night vision in automobilesnight vision in automobiles
night vision in automobiles
 
Night vision Technology in Automobiles
Night vision Technology in AutomobilesNight vision Technology in Automobiles
Night vision Technology in Automobiles
 
Night vision system in automobiles
Night  vision system  in automobilesNight  vision system  in automobiles
Night vision system in automobiles
 
Night Vision System in Automobiles BY Sum!!T
Night Vision System in Automobiles BY Sum!!TNight Vision System in Automobiles BY Sum!!T
Night Vision System in Automobiles BY Sum!!T
 
Automotive RADAR Adoption—An Overview
Automotive RADAR Adoption—An OverviewAutomotive RADAR Adoption—An Overview
Automotive RADAR Adoption—An Overview
 
Night vision technology
Night vision technologyNight vision technology
Night vision technology
 
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...
 
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...
 
NIGHT VISION IN CARS
NIGHT VISION IN CARSNIGHT VISION IN CARS
NIGHT VISION IN CARS
 
510MRF42-44_22P_IndustryTRENDS
510MRF42-44_22P_IndustryTRENDS510MRF42-44_22P_IndustryTRENDS
510MRF42-44_22P_IndustryTRENDS
 
"Understanding Automotive Radar: Present and Future," a Presentation from NXP...
"Understanding Automotive Radar: Present and Future," a Presentation from NXP..."Understanding Automotive Radar: Present and Future," a Presentation from NXP...
"Understanding Automotive Radar: Present and Future," a Presentation from NXP...
 
Night vision technology in cars (automotives)
Night vision  technology  in  cars (automotives)Night vision  technology  in  cars (automotives)
Night vision technology in cars (automotives)
 
Robots for Industrial Inspection
Robots for Industrial InspectionRobots for Industrial Inspection
Robots for Industrial Inspection
 
Intelligent Traffic light detection for individuals with CVD
Intelligent Traffic light detection for individuals with CVDIntelligent Traffic light detection for individuals with CVD
Intelligent Traffic light detection for individuals with CVD
 
SPZ marketing brochure[1]
SPZ marketing brochure[1]SPZ marketing brochure[1]
SPZ marketing brochure[1]
 
Smart Enabling Technologies for Automated Driving
Smart Enabling Technologies for Automated DrivingSmart Enabling Technologies for Automated Driving
Smart Enabling Technologies for Automated Driving
 
NIGHT VISION SYSTEM IN AUTOMOBILES
 NIGHT VISION SYSTEM IN AUTOMOBILES NIGHT VISION SYSTEM IN AUTOMOBILES
NIGHT VISION SYSTEM IN AUTOMOBILES
 

Similar to Infrared sensors and LIDAR for ADAS and autonomous vehicles

Growth of Infrared Opto-semiconductor Components in ADAS Sensors - Rajeev Thakur
Growth of Infrared Opto-semiconductor Components in ADAS Sensors - Rajeev ThakurGrowth of Infrared Opto-semiconductor Components in ADAS Sensors - Rajeev Thakur
Growth of Infrared Opto-semiconductor Components in ADAS Sensors - Rajeev ThakurRajeev Thakur, P.E.
 
Autonomous vehicles: becoming economically feasible through improvements in l...
Autonomous vehicles: becoming economically feasible through improvements in l...Autonomous vehicles: becoming economically feasible through improvements in l...
Autonomous vehicles: becoming economically feasible through improvements in l...Jeffrey Funk
 
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...Jari Honkanen
 
LiDAR, ADAS and the Autonomous Shuttles of Tomorrow
LiDAR, ADAS and the Autonomous Shuttles of TomorrowLiDAR, ADAS and the Autonomous Shuttles of Tomorrow
LiDAR, ADAS and the Autonomous Shuttles of TomorrowHEINZ OYRER
 
Sensors Offer Infinite Opportunities for Designing Robots & Drones
Sensors Offer Infinite Opportunities for Designing Robots & DronesSensors Offer Infinite Opportunities for Designing Robots & Drones
Sensors Offer Infinite Opportunities for Designing Robots & DronesRising Media, Inc.
 
Examples Of Advanced Semiconductor Sensor Technologies Playing A Key Role In ...
Examples Of Advanced Semiconductor Sensor Technologies Playing A Key Role In ...Examples Of Advanced Semiconductor Sensor Technologies Playing A Key Role In ...
Examples Of Advanced Semiconductor Sensor Technologies Playing A Key Role In ...HEINZ OYRER
 
IRJET- Working of Autonomous Vehicles
IRJET-  	  Working of Autonomous VehiclesIRJET-  	  Working of Autonomous Vehicles
IRJET- Working of Autonomous VehiclesIRJET Journal
 
Cruise control devices
Cruise control devicesCruise control devices
Cruise control devicesShijo T Daniel
 
Automotive radar in english
Automotive radar in englishAutomotive radar in english
Automotive radar in englishMoh Ali Fauzi
 
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...Jari Honkanen
 
Copy of LiDAR for Autonomous Driving _20231011_084847_0000.pdf
Copy of LiDAR for Autonomous Driving _20231011_084847_0000.pdfCopy of LiDAR for Autonomous Driving _20231011_084847_0000.pdf
Copy of LiDAR for Autonomous Driving _20231011_084847_0000.pdfNanDhu551039
 
Sensors and Data Management for Autonomous Vehicles report 2015 by Yole Devel...
Sensors and Data Management for Autonomous Vehicles report 2015 by Yole Devel...Sensors and Data Management for Autonomous Vehicles report 2015 by Yole Devel...
Sensors and Data Management for Autonomous Vehicles report 2015 by Yole Devel...Yole Developpement
 
Lithography technology and trends for « Semiconductor frontier » held by Aman...
Lithography technology and trends for « Semiconductor frontier » held by Aman...Lithography technology and trends for « Semiconductor frontier » held by Aman...
Lithography technology and trends for « Semiconductor frontier » held by Aman...Yole Developpement
 
Autonomous Vehicles
Autonomous VehiclesAutonomous Vehicles
Autonomous VehiclesYamini Verma
 
Adaptive cruise control
Adaptive cruise controlAdaptive cruise control
Adaptive cruise controlVIBHOR RATHI
 
Controlling and Reducing of Speed for Vehicles Automatically By Using Rf Tech...
Controlling and Reducing of Speed for Vehicles Automatically By Using Rf Tech...Controlling and Reducing of Speed for Vehicles Automatically By Using Rf Tech...
Controlling and Reducing of Speed for Vehicles Automatically By Using Rf Tech...IJERA Editor
 

Similar to Infrared sensors and LIDAR for ADAS and autonomous vehicles (20)

Growth of Infrared Opto-semiconductor Components in ADAS Sensors - Rajeev Thakur
Growth of Infrared Opto-semiconductor Components in ADAS Sensors - Rajeev ThakurGrowth of Infrared Opto-semiconductor Components in ADAS Sensors - Rajeev Thakur
Growth of Infrared Opto-semiconductor Components in ADAS Sensors - Rajeev Thakur
 
Autonomous vehicles: becoming economically feasible through improvements in l...
Autonomous vehicles: becoming economically feasible through improvements in l...Autonomous vehicles: becoming economically feasible through improvements in l...
Autonomous vehicles: becoming economically feasible through improvements in l...
 
ADAS.pptx
ADAS.pptxADAS.pptx
ADAS.pptx
 
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...
Laser Beam Scanning LiDAR: MEMS-Driven 3D Sensing Automotive Applications fro...
 
LiDAR, ADAS and the Autonomous Shuttles of Tomorrow
LiDAR, ADAS and the Autonomous Shuttles of TomorrowLiDAR, ADAS and the Autonomous Shuttles of Tomorrow
LiDAR, ADAS and the Autonomous Shuttles of Tomorrow
 
Sensors Offer Infinite Opportunities for Designing Robots & Drones
Sensors Offer Infinite Opportunities for Designing Robots & DronesSensors Offer Infinite Opportunities for Designing Robots & Drones
Sensors Offer Infinite Opportunities for Designing Robots & Drones
 
Collision avoidance system tony napier
Collision avoidance system   tony napierCollision avoidance system   tony napier
Collision avoidance system tony napier
 
Examples Of Advanced Semiconductor Sensor Technologies Playing A Key Role In ...
Examples Of Advanced Semiconductor Sensor Technologies Playing A Key Role In ...Examples Of Advanced Semiconductor Sensor Technologies Playing A Key Role In ...
Examples Of Advanced Semiconductor Sensor Technologies Playing A Key Role In ...
 
IRJET- Working of Autonomous Vehicles
IRJET-  	  Working of Autonomous VehiclesIRJET-  	  Working of Autonomous Vehicles
IRJET- Working of Autonomous Vehicles
 
Cruise control devices
Cruise control devicesCruise control devices
Cruise control devices
 
Automotive radar in english
Automotive radar in englishAutomotive radar in english
Automotive radar in english
 
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...
MEMS and Sensors in Automotive Applications on the Road to Autonomous Vehicle...
 
Copy of LiDAR for Autonomous Driving _20231011_084847_0000.pdf
Copy of LiDAR for Autonomous Driving _20231011_084847_0000.pdfCopy of LiDAR for Autonomous Driving _20231011_084847_0000.pdf
Copy of LiDAR for Autonomous Driving _20231011_084847_0000.pdf
 
Sensors and Data Management for Autonomous Vehicles report 2015 by Yole Devel...
Sensors and Data Management for Autonomous Vehicles report 2015 by Yole Devel...Sensors and Data Management for Autonomous Vehicles report 2015 by Yole Devel...
Sensors and Data Management for Autonomous Vehicles report 2015 by Yole Devel...
 
Lithography technology and trends for « Semiconductor frontier » held by Aman...
Lithography technology and trends for « Semiconductor frontier » held by Aman...Lithography technology and trends for « Semiconductor frontier » held by Aman...
Lithography technology and trends for « Semiconductor frontier » held by Aman...
 
Interferometria
InterferometriaInterferometria
Interferometria
 
Autonomous Vehicles
Autonomous VehiclesAutonomous Vehicles
Autonomous Vehicles
 
Sistema alerta colisión
Sistema alerta colisiónSistema alerta colisión
Sistema alerta colisión
 
Adaptive cruise control
Adaptive cruise controlAdaptive cruise control
Adaptive cruise control
 
Controlling and Reducing of Speed for Vehicles Automatically By Using Rf Tech...
Controlling and Reducing of Speed for Vehicles Automatically By Using Rf Tech...Controlling and Reducing of Speed for Vehicles Automatically By Using Rf Tech...
Controlling and Reducing of Speed for Vehicles Automatically By Using Rf Tech...
 

Infrared sensors and LIDAR for ADAS and autonomous vehicles

  • 1. www.osram-os.com Infrared sensors for ADAS and beyond – LIDAR / Infrared camera Rajeev Thakur| 4th October 2016| Novi Light is OSRAM
  • 2. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 2 Content Page 1. OSRAM Overview 03 2. Sensing challenges 06 3. LIDAR 12 4. Infrared Camera 19 5. Sensor Fusion 21 6. Collaboration & Competition in the self driving car business 22
  • 3. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 3 Global Market Leader in LED & Laser LIDAR – Infrared Lasers - AEB Consumer Industry General Lighting Laser front light Xenon front light Laser front light OLED rear light Matrix LED light Automotive Lighting Source: OSRAM, excluding LAMPS 1) at the end of the fiscal year 2) countries where OSRAM had operations at the end of the fiscal year Employees1) : 20,300 Worldwide Presence2) : >120 countries Revenue1): 3,571.9 m €
  • 4. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 4 Key Automotive Trends Exterior , Interior & IR Safety Design Visualization & Connectivity Comfort & Safety Key Automotive Trends ExteriorInterior • µAFS • High Luminance LEDs Dynamic Lighting Projection HuD Full Digital Cluster LED Applications New LED Development • Display Portfolio • HuD Portfolio BLU Displays High ResolutionADB/Matrix ProjectionUltra slim HL LIDAR / ADB Gesture Wireless Connectivity Driver Monitoring Night Vision
  • 5. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 5 OSRAM Infrared & Laser Automotive Applications Existing Applications / New Applications Rain Light Tunnel Sensors Ambient light sensors for dimming and illumination • Dashboard • Car radio • Displays Immobilizer Steering wheel angle sensor Blue Lasers for Headlamps Driver monitoring Gesture Recognition IRED based Night vision Blind spot detection Lane departure warning Family Entertainment System LIDAR sensing AEB & ADAS Laser HuD
  • 6. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 6 Sensing Needs for Vehicle Environment Continue Brake Steer to safety Prepare for crash Steering is best option Cannot avoid crash Braking is best option NO YES Current Sensing Range Upper limit (For Large Objects) RADAR : 50 - 250m Camera : 50 - 70m LIDAR : 50 – 200m Braking Distance / Minimum Sensing Range (Assumptions : Dry Road, µ = 0.7, 1 sec reaction time) @100mph (161kph/44.7m/s) : > 190 meters @74mph (119kph,33 m/s) : > 112 meters @45mph (72.4kph/20.1 m/s) : > 50 meters @25mph (40kph/11.1 m/s) : > 20 meters If the closing speed is less than ~ 45mph , current sensing technology can mitigate collision to large objects under normal daylight dry conditions (distance < 70 meters) Challenge 1 : Sensing Range Is projected vehicle trajectory safe for next XX meters? Calculate Time to Crash
  • 7. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 7 Sensing Needs for Vehicle Environment • Who decides ? • Ignore objects at own risk .. Challenge 2 : Angular Sensing Resolution • Standard object list for detection does not exist (ignore / standardize with risk) • LIDAR is capable of < 0.5° resolution at > 100 m (with small form factor) • RADAR size for 0.5° resolution not practical (~ 0.5 m for 76 GHz RADAR) • Camera range needs to improve & image quality in lowlight (or infrared) 1 Bosch Multi Purpose Camera (MPC2) , 1280 x 960 pixels, 50° HFOV, 28° VFOV 2 Velodyne VLP16 (0.1° – 0.4°) 3 RADAR equation What objects should be detected to avoid collision ? Typical Angular Resolution 1 Camera : 25 pixels / ° 2 LIDAR : 0.3° 3 RADAR : 2.6° (76 GHz, 10 cm aperture) 1.5m 0.25m 0.4m 0.2m 0.1m 0.2m tire piece potholedog Resolution Size (m) 1° @ 100 m = > 1.7 m 1° @ 200 m = > 3.4 m 0.1° @ 200 m = > 0.4 m
  • 8. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 8 Sensing Needs for Vehicle Environment Challenge 3 : Field of View Winding Roads Need Wide FOV Traffic Lights & Overhead Signs Need High FOV Up & Down Ramps Need High FOV FOV – Field Of View
  • 9. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 9 Sensing Needs for Vehicle Environment Challenge 4 : Computational challenges • Time Needed = Sensing time + Reaction Time + Safety Margin • Sensing Time per Sensor = (Points/Frame x # of Frames in Buffer x compute time/point) • Finer resolution => More data points => more time (or faster computation) • Redundancy / sensor fusion needed prior to reaction • Reaction Time = (Human delay) + latency in steering or braking system • Safety Margin : To accommodate environment conditions (road / temperature) , sensing and computational delays and tolerances 1 Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs? : Department of Electronics, UAH. Alcala de ´ Henares, Madrid, Spain ; IEEE Workshop in June 2016 on Intelligent Vehicles 1 Sensor / Processor / environment / algorithm .. affects computational time and accuracy
  • 10. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 10 Sensing Needs for Vehicle Environment Other Challenges • Form factor – small and compatible to vehicle styling & materials • Increasing noise from surrounding vehicle RADAR/LIDAR .. • Dealing with satellite signal / GPS loss in real time • Harsh environment – Snow/rain/dust/dirt/shock and vibrations • Power / EMC / ESD / .. • Service • Cost • .. • Tremendous innovation currently in sensing field • OSRAM working with multiple startups / Tier1 and OEM’s
  • 11. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 11 RADAR / Camera / LIDAR Comparison Sensor Typical Range Horizontal FOV Vertical FOV 2020 Price Range Comments 24 GHz RADAR 60 m 1 56° 1 ~ ± 20° < $100 USA Bandwidth 100 -250 MHz 2 Robust for Rain/snow ; People Detection / Angular Resolution 77 GHz RADAR 200 m 1 18° 1 ~ ± 5° < $100 USA Bandwidth 600 MHz 2 Robust for Rain/snow ; People Detection / Angular Resolution Front Mono Camera 50 m 1 36° 1 ~ ± 14 ° < $100 Versatile Sensor (Applications) Limited depth perception ; affected by rain / fog Needs illumination (Visible/IR) LIDAR (Flash) 75 m 140° ~ ± 5° < $100 Concerns for Rain/Snow; Good reflection off people w/ angular resolution Range & S/N limited by eye safety LIDAR (Scanning) 200 m 360° ~ ± 14° < $500 Concerns for Rain/Snow; Typically higher price for angular resolution Range & S/N limited by eye safety 1 : Vehicle-to-Vehicle Communications: readiness of V2V technology for application – DOT HS 812014 ; Table V-7 2 : Millimeter Wave Receiver concepts for 77 GHz automotive radar in silicon Germanium Technology – D.Kissenger (SpringerBrief’s 2012) • False positives  Nuisance to consumer  Turns feature off (if possible) • False negatives  did not meet spec / expectations • Optimum combination of sensors will be a learning process • Sensor fusion …can be done at best on common subset in field of view
  • 12. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 12 Flash LIDAR – Design Overview start stop Δt Laser Photodiode Array Emitter Lens Receiving Lens Target FOV Working principle : Laser beam spread into field of view and received on photodiode array. Range determined by eye safe laser power , resolution determined by number of photodiode pixels Why use : Mature low cost sensor that can be integrated into headlamp / Tail lamp / behind windshield / .. Range : ~ 30 - 60 meters @ 24 HFOV Resolution : 3 deg or less Wavelength : 905 nm has proven sufficient for short range Laser : OSRAM lasers with peak power 75 – 120W , with & without drivers , bare die to SMT w/ < 5ns pulse width (2019 SOP) , also with multiple emitters in one SMT package Photodiode : OSRAM PD array concepts of various sizes planned for SOP 2018 Why not as popular as RADAR yet in NAFTA?: 2019 NCAP upgrade will incentivize market , more room for creativity lower cost than RADAR ; market waiting for low cost scanning LIDAR … R – Distance C – speed of light Δt – time between start - stop of pulse HFOV – Horizontal Field Of View SOP – Start of Production PD – Photo Diode
  • 13. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 13 LIDAR Head Lamp Integration – LeddarTech Concept Leddartech Video link
  • 14. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 14 LIDAR Tail Lamp Integration – LeddarTech Concept
  • 15. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 15 Phantom Intelligence : Guardian Flash LIDAR The Guardian BY PHANTOM INTELLIGENCE Fully customizable 2x8 Pixels (1x16 also available) Field of View 9°x36° – Customizable up to 2°x120° Range limited to 30 meters (for cost optimization) Connectivity: USB, CAN, GPIO Programmable alarms/triggers Power Consumption less than 3 Watts Laser Output of 70 Watts Eye Safe (Class 1M) Price: ~ 100$ in 10k units volume production Engineering Samples  December 2016 AWL Video link YOU CAN AFFORD THE SAFEST JOURNEY !
  • 16. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 16 LIDAR – Low Cost Concept (Reference Design) • 30m range • ~1cm accuracy • 16 pixel array • 24°H x 6°V FOV : 2 x 8 array (3° x 3°per pixel) • Arrangement of pixels and field of view can be customized in future products. • Multiple targets in each pixel can be resolved • Targets ~1m apart (range) can be separated • Differentiating through performance, small size, scalability, and low power consumption • No moving (scanning) parts • Sun blinding can affect no more than a single pixel • Estimated BOM ~ $25 @ High Volume • Functional sample Q1 2017 • Target SOP 2019 Distance (m) Area (m²) 1 0.003 2 0.011 5 0.069 10 0.274 20 1.097 30 2.469 Field Of View Per Pixel FOV – Horizontal Field Of View SOP – Start of Production BOM – Bill of Material (For Hard Ware)
  • 17. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 17 Scanning LIDAR Technologies Mechanical - Velodyne Principle: Matched pair of laser & detectors rotating with a motor at 5 to 20 Hz Range : 200 m (VLP 32A) Resolution : 0.1 - 0.4° (VLP 16) Vertical FOV: 28° (VLP 32A) Price Target : < $500 ~ 2020 Pro : Proven technology Con: Mechanical integration / price Principle: Laser scanned with OPA (& received on SPAD array ) Range : > 150 m Resolution : 0.1° FOV: 120° (HFOV & VFOV ; S3) Price Target : <$100 ~ 2020 Pro : small size (1” x 1.5” , S3-Qi) Con: OPA scanning is relatively new technology 1 Velodyne.com 2 Quanergy.com 3 Innoluce.com OPA - Quanergy MEMS – Innoluce Principle: Laser scanned with 1D MEMS Mirror (& received on APD array ) Range : > 200 m Resolution : < 0.5° HFOV: 80° VFOV: 16° Price Target : <$100 ~ 2020 Pro : MEMS scanning is proven Con: Working demo not shown yet… MEMS – Micro Electro Mechanical Systems APD – Avalanche Photo Diode OPA – Optical Phase Array SPAD – Single Photon Avalanche Diodes FOV – Field Of View
  • 18. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 18 MEMS LIDAR – Innoluce – OSRAM : Concept Proof Principle: 1 25W OSRAM laser scanned with 1 Innoluce MEMS Mirror and received on an APD array Range : ~ 60 m Resolution : 0.1° Horizontal and 0.2° Vertical HFOV: 10° VFOV: 3° Next Steps : • Show progressively improved reference design demos in next few months • Targets : >200 m/car ; > 60m/Ped ; 80° HFOV ; 16° VFOV ; < 0.5° Resolution (High power multiple emitter lasers) High resolution concept proof MEMS LIDAR Video Link
  • 19. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 19 Infrared Camera - Interior Mature applications transitioning to mainstream • Why IR Camera : Works in day & night without visible illumination • Moving to Mainstream : Driver monitoring (Drowsy/Distracted) • Catching speed : Gesture recognition • Mobile to Automotive : Iris recognition • Technology frontiers: NIR sensitivity (15 – 35%), > 2Mp Global shutter , increasing IRED o/p & efficiency • Concern/Tradeoffs: Privacy Vs App. value , Redglow (850  940 nm) • Future applications : Optimum airbag deployment, Mood lighting .. Driver Monitoring 1 Deltaid.com Gesture Control Iris Recognition 1
  • 20. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 20 Infrared Camera - Exterior Forward Camera Surround View Camera Rearview Camera Cars have to be autonomous at night also …Cameras need to work with IR also .. • Why IR Exterior Camera : Need to see adjacent lanes at night w/o visible light • What’s the problem : Visible cameras block IR for better image / use of color information • Options : Use mechanical or SW filter to switch between IR & visible spectrums • Challenges : Modify camera / Illumination / SW for wider FOV and range • Things to watch out for : Laser beam headlamps (Dynamic range of oncoming camera) / Use of matrix beam lighting (adaptive beams ..) IR emitters in headlamp
  • 21. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 21 Sensor Fusion – Fuse Information of high quality which overlap • Objective of Sensor Fusion : Determine environment around vehicle trajectory with enough resolution, confidence and speed - to navigate efficiently. Object_list RADAR Camera LIDAR Sensor Fusion Car@150m Don’t See it (Noise) Not_Classified@100 m & low light Evaluate TTC & brake if unresolved ? @50m Person on bicycle Not classified Don’t see it (Noise) Brake or ignore ? Potholes & stuff What can be safely ignored ? • Object Identification & Classification in range & FOV of interest must be comparable. • LIDAR + Camera fusion potentially better (Due to angular resolution) • Camera improvements : Range (~ 70 m); speed (30 – 60 Hz) & Low light sensitivity
  • 22. IR for ADAS | OS IR NA MK | R.Thakur TU Automotive – ADAS & Autonomous | 10/04/2016 22 Collaboration & Competition - Self Driving Cars • Why collaborate : • Need NHTSA support  Regulations / Testing / Infrastructure / .. • Combine R&D resources & strengths • Be / be with a technology leader to gain market share • Why Compete? • Branding / Technology Leadership (Intangible $ Value) • ADAS technology has shown real market value ($1500 - $3000/car) • Prepare for future market changes (Self driving cars occupy significant share) • What more could/should be done ? • Use Silicon Valley playbook more – open source development • Example : Provide raw data from all sensors in a drive ; show me object identification / classification & tracking .. (Buy the best solution..) • Make sensor requirements and roadmap open • Small startups have very creative solutions & fast development • Why be more open ? • 1 year after a new gadget is shown  3 more appear next year (Benefit/Cost) • Will enable faster development of SDC technology for community & save lives !
  • 23. www.osram-os.com Thank you ! Contact : Rajeev.Thakur@osram-os.com