GMAT Geometry - Everything you need to know
This slideshow features screenshots from GMAT Prep Now’s
entire Geometry module (consisting of 42 videos).
It covers every key concept you need to know about GMAT
Geometry. It also includes 27 practice questions.
www.GMATPrepNow.com
GMAT Geometry - Everything you need to know
www.GMATPrepNow.com
Note: since these slides are just snippets of a full-length video
course, there may be times when you’re unable to glean all the
relevant information from a particular screenshot.
If, at any time, you’d like to watch the entire video on a certain
topic, just click on the link at the top of that page, and you’ll be
taken that that particular video.
GMAT Geometry - Everything you need to know
If you enjoy this unique learning format,
let us know, and we’ll add similar
resources to our SlideShare page
Lines and Angles (watch the entire video here)
Lines and Angles
l
line: a straight path that extends without
end in both directions
(watch the entire video here)
Lines and Angles
l


A
B
AB: line segment
AB: length of line segment AB (e.g., DE=7)
line: a straight path that extends without
end in both directions
(watch the entire video here)
Lines and Angles


55
A


B
C
55
55
ABC
CBA
 
 

55x 
x
angle: intersection of 2 lines
: measured in degrees or radians
(watch the entire video here)
Lines and Angles

180
Angles on a line add to 180°
a cb
180a b c  
70x
70 180
110
x
x
 

(watch the entire video here)
Lines and Angles
90
right angle: angle of 90 degrees

P
PQ is perpendicular to AB
 BA 
Q
(watch the entire video here)
Lines and Angles
bisect: cut or divide into 2 equal pieces
J
JK bisects AB
 BA


A


B
C
bisects ABC
bisectoris the of ABC
line l is the perpendicular bisector of AB
 BA
K

l
(watch the entire video here)
Lines and Angles
a
c
x
x
b
d
- a and c are vertical angles
- a and c are opposite angles
- a and c are vertically opposite angles
- b and d are opposite angles
Opposite angles are equal
y
y
Aside: 180x y 

(watch the entire video here)
Lines and Angles
w 50
yx
(watch the entire video here)
Lines and Angles
w 50
yx
50x  50 180
130
w
w
 

130y 
Opposite angles are equal
Angles on a line add to 180°
(watch the entire video here)
Lines and Angles
1
2
If two lines do not intersect, they are parallel
1 2
(watch the entire video here)
Lines and Angles
1
2
If two lines do not intersect, they are parallel
y
y
y
y
x
Note: 180x y 
x
x
x
1 2
(watch the entire video here)
Lines and Angles
Opposite angles are equal
Angles on a line add to 180°
1
2
1 2
y
y
y
y
x
x
x
x
(watch the entire video here)
Practice Question
A) 10
B) 17.5
C) 22
D) 35
E) 42.5
If l1 and l2 are parallel, then x =
1
2
 3 5x 
 15x 
Note: Figure not drawn to scale
A) 10
B) 17.5
C) 22
D) 35
E) 42.5
If l1 and l2 are parallel, then x =
1
2
 3 5x 
 15x 
 3 5x 
   15 3 5 180
4 10 180
4 170
42.5
x x
x
x
x
   
 


 
 
 
 
Note: Figure not drawn to scale
Practice Question (watch the entire video here)
Triangles – Part I (watch the entire video here)
Triangles – Part I
A
B C
w x
y
180w x y  
Angles in a triangle add to 180°
(watch the entire video here)
Triangles – Part I
A
B C
21
44
180w x y  
Angles in a triangle add to 180°
w
(watch the entire video here)
Triangles – Part I
A
B C
21
44
180w x y  
Angles in a triangle add to 180°
w
180
180
1
2 4
5
4
1
1
65
w
w
w
  
 

(watch the entire video here)
Triangles – Part I
A
B C
w x
y
The longest side is opposite the largest angle
The shortest side is opposite the smallest angle
A
B
C
a
b
c
If thena b c A B C   
(watch the entire video here)
Triangles – Part I
1
The sum of the lengths of any two sides of a
triangle must be greater than the third side.
2 4
1 2
1 42 
4
(watch the entire video here)
Triangles – Part I
If a triangle has sides with lengths 3 and 7, what lengths
are possible for the third side?
3 7
The sum of the lengths of any two sides of a
triangle must be greater than the third side.
(watch the entire video here)
Triangles – Part I
If a triangle has sides with lengths 3 and 7, what lengths
are possible for the third side?
7
third side 73 37    
3 4
rd
difference between other 2 sides 3 side sum of other 2 sides 
Given lengths of sides A and B
rd
3 sideA B A B   
(watch the entire video here)
Triangles – Part I
Given lengths of sides A and B
rd
3 sideA B A B   
Angles in a triangle add to 180°
A
B
C
a
b
c
If thena b c A B C   
The sum of the lengths of any two sides of a
triangle must be greater than the third side.
(watch the entire video here)
Is w > x? Q
P
w x
y
R
2) 3QR 
1) 6PQ 
Practice Question
A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient
B) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient
C) BOTH statements TOGETHER are sufficient, but NEITHER statement
ALONE is sufficient
D) EACH statement ALONE is sufficient
E) Statements (1) and (2) TOGETHER are NOT sufficient
Q
P
w x
y
R
1) 6PQ 
A
B
C
a
b
c
If thena b c A B C   
2) 3QR 
3
1&2)
6
Given lengths of sides A and B
rd
3 sideA B A B   
3 9PR 
E
6 3 36PR   
Is w > x?
Is ?PR PQ
Practice Question (watch the entire video here)
INSUFFICIENT
INSUFFICIENT
INSUFFICIENT
What is the value of x in terms of y ?
A) 65
B) 21
C) 22
D) 21
E) 22
y
y
y
y
y





x
y
22
43
Practice Question
(watch the entire video here)Practice Question
What is the value of x in terms of y ?
A) 65
B) 21
C) 22
D) 21
E) 22
y
y
y
y
y





x
y
22
43
a
43 180ya   
43 22 180xa    



43 22 43
43 22 43
22
22
a x y
x y
x y
x y
a     
   
 
 
Angles in a triangle add to 180°
Solution #1
Solution #2
(watch the entire video here)Practice Question
What is the value of x in terms of y ?
A) 65
B) 21
C) 22
D) 21
E) 22
y
y
y
y
y





x
y
22
43
 158 x
  180
158 18
1
0
22
22
22
58y
y x
y x
y x
y x
x 
  
 
 
 

Angles on a line add to 180°
1
22 180
1
58
58
x
x
c
c
c x
  
 
  158 180
22
y x
y x
  
 
Assumptions and Estimation (watch the entire video here)
Assumptions and Estimation
120

• Lines that appear straight can be assumed to be straight
(watch the entire video here)
Assumptions and Estimation
120

60
• Lines that appear straight can be assumed to be straight
(watch the entire video here)

• Do not make assumptions about angle measurements
x
Assumptions and Estimation (watch the entire video here)
y

• y+x =180
• Both angles are greater than zero degrees
x
Assumptions and Estimation


(watch the entire video here)
• Do not make assumptions about parallelism
1
2
1 2
Assumptions and Estimation (watch the entire video here)
Problem Solving Questions
• Figures are drawn to scale unless stated otherwise
• Estimate to confirm calculations and guide guesses

x
40
O
BE
A) 40
B) 50
C) 60
D) 70
E) 80
Assumptions and Estimation
C
DA
If is the center of the circle,
and , what is the value of ?
O
AB CD x
(watch the entire video here)
Data Sufficiency Questions
• Figure conforms to information in question
• Figure does not necessarily conform to information in statements
• Avoid visual estimation
Assumptions and Estimation (watch the entire video here)
Assumptions and Estimation
• Lines that appear straight can be assumed to be straight
• Angles are greater than zero degrees
• Do not make assumptions about angle measurements
• Do not make assumptions about parallelism
• Use visual estimation sparingly
(watch the entire video here)
Geometry Strategies – Part I (watch the entire video here)
Geometry Strategies – Part I
• Redraw figures
• Add all given information
• Add all information that can be deduced
• Add/extend lines
• Assign variables and use algebra
•
• Drawn to scale  estimate to confirm calculations and guide guesses
• Drawn to scale  estimate measurements to confirm or guess
(watch the entire video here)
Triangles – Part II (watch the entire video here)
Triangles – Part II
Isosceles triangle
• 2 equal sides, 2 equal angles
A
B
C
a
b
c
If thena b c A B C   
40 40
100
x
x
(watch the entire video here)
Triangles – Part II
38
(watch the entire video here)
Triangles – Part II
38
38
104
(watch the entire video here)
Triangles – Part II
38
38
104
40
(watch the entire video here)
Triangles – Part II
38
38
104
40
x
x
40 180
2 40 180
2 140
70
x x
x
x
x
  
 


(watch the entire video here)
Triangles – Part II
38
38
104
40
70
40 180
2 40 180
2 140
70
x x
x
x
x
  
 


70
(watch the entire video here)
Triangles – Part II
A
B
C
Equilateral triangle
• 3 equal sides, 3 equal angles
60 60
60
(watch the entire video here)
Triangles – Part II
A
B C
10
4 8
Area
- ft2
- cm2
- m2
(watch the entire video here)
Triangles – Part II
A
B C
base height
Area
2


10
4 8
Area
1
Area base height
2
 
(watch the entire video here)
Triangles – Part II
A
B C
base height
Area
2


10
Area
15
3
2



10
3
4 8
altitude height
Area
(watch the entire video here)
Triangles – Part II
10
4
8
A B
C
7.5
base height
Area
2


7
A
.
re
5
a
15
4
2



Area
(watch the entire video here)
Triangles – Part II
A
B
C
60 60
60
 
2
3 side
Area
4


(watch the entire video here)
Triangles – Part II
A
B
C
60 60
60
 
2
3 side
Area
4


6 6
6
 
2
3
Area
4
3 36
4
9 3
6




(watch the entire video here)
Triangles – Part II
60 60
60
The altitudes of isosceles triangles and
equilateral triangles bisect the base.
(watch the entire video here)
Triangles – Part II
• An isosceles triangle has 2 equal sides and 2 equal angles
• An equilateral triangle has 3 equal sides and 3 equal angles (60° each)
base height
Area
2


 
2
3 side
Area
4


• The altitudes of isosceles triangles and equilateral triangles bisect the base
(watch the entire video here)
Practice Question
A) 27.5
B) 55
C) 62.5
D) 70
E) 125
If AB and CD are parallel, and AB= BC, then x =
A
B
C
D
x
55
Note: Figure not drawn to scale
Practice Question
A) 27.5
B) 55
C) 62.5
D) 70
E) 125
If AB and CD are parallel, and AB= BC, then x =
Note: Figure not drawn to scale
A
B
C
D
x
5555
 
 
 
 
55
180
110 18
5 5
70
5 5
0
x
x
x
  
 

(watch the entire video here)
Right Triangles (watch the entire video here)
Right Triangles
leg1
• Right triangle: triangle with right (90°) angle
• The hypotenuse is the longest side
leg2
     
2 2 2
1 2leg leg hypotenuse 
2 2 2
a b c 
a
b
c
2 2 2
a b c 
a
bc 2 2 2
a b c 
a
bc
(watch the entire video here)
Right Triangles
8
6
x
(watch the entire video here)
Right Triangles
2 2 2
a b c 
a
bc
8
6
x
2 2 2
2
2
8 6
64 36
100
100
10
x
x
x
x
x
 
 



(watch the entire video here)
Right Triangles
2 2 2
a b c 
a
bc
8
6
x
2 2 2
2
2
8 6
64 36
100
100
10
x
x
x
x
x
 
 



6
4
x
(watch the entire video here)
Right Triangles
2 2 2
a b c 
a
bc
8
6
x
2 2 2
2
2
8 6
64 36
100
100
10
x
x
x
x
x
 
 



2 2 2
a b c 
a
bc
6
4
x
2 2 2
2
2
4 6
16 36
20
20
2 5
x
x
x
x
x
 
 


 4 5
2 5
x
x


(watch the entire video here)
Right Triangles
• 3-4-5
4
35
• 5-12-13
12
13
5
• 8-15-17
2 2 2
3 4 5 
2 2 2
5 12 13 
• 7-24-25
Pythagorean triples: A set of 3 integers that can be the sides of
a right triangle
(watch the entire video here)
Right Triangles
8x 17
15
• 8-15-17
2 2 2
15 17x  
2 2 2
a b c 
(watch the entire video here)
Right Triangles
• 3-4-5
• 5-12-13
• 8-15-17
• 7-24-25
6-8-10 9-12-15 12-16-20
10-24-26
4
35
  4 7 28
  5 7 35
   213 7x  
. . .
. . .
. . .
2 corresponding sides required to use Pythagorean triples
. . .
(watch the entire video here)
Right Triangles
• 3-4-5
• 5-12-13
• 8-15-17
• 7-24-25
6-8-10 9-12-15 12-16-20
10-24-26
. . .
. . .
. . .
50
4
35
Enlarged
by factor
of 10
50
24
7
25 Enlarged
by factor
of 2
40
30
48
14
2 corresponding sides required to use Pythagorean triples
. . .
(watch the entire video here)
Right Triangles
• 3-4-5
• 5-12-13
• 8-15-17
• 7-24-25
6-8-10 9-12-15 12-16-20
10-24-26
. . .
. . .
. . .
3
4
x
. . .
(watch the entire video here)
Right Triangles
• 3-4-5
• 5-12-13
• 8-15-17
• 7-24-25
6-8-10 9-12-15 12-16-20
10-24-26
. . .
. . .
. . .
3
x
4
2 2 2
a b c 
2 2 2
2
2
3 4
9 16
7
7
x
x
x
x
 
 


. . .
(watch the entire video here)
Right Triangles
2 2 2
a b c 
a
bc
• Watch out for Pythagorean triples (and their multiples)
3-4-5
5-12-13
8-15-17
7-24-25
(watch the entire video here)
Practice Question
A
A) 2 3
B) 2 5
C) 30
D) 4 3
E) 4 5
B

The height of this rectangle is twice its width. If the distance
between points A and B is , what is the rectangle’s height?60
Practice Question
A
A) 2 3
B) 2 5
C) 30
D) 4 3
E) 4 5
x
2x
   
  
22 2
2 2
2
2
2 60
4 60
5 60
12
12
4 3
2 3
x x
x x
x
x
x
x
x
 
 




B

60
2 2 2
a b c 
 2
4 3
2 2 3x 

The height of this rectangle is twice its width. If the distance
between points A and B is , what is the rectangle’s height?60
(watch the entire video here)
Practice Question
A) 21
B) 9
C) 2 21
D) 149
E) 3 21
If the rectangular box shown here is 6 inches wide, 8 inches long and 7
inches high, what is the distance, in inches, between points A and B ?
B
A


8
6
7
A) 21
B) 9
C) 2 21
D) 149
E) 3 21
B
A


8
6
7
If the rectangular box shown here is 6 inches wide, 8 inches long and 7
inches high, what is the distance, in inches, between points A and B ?
10
x
7
A
B
10
x
2 2 2
a b c 
2 2 2
2
2
10 7
100 49
149
149
x
x
x
x
 
 


Practice Question (watch the entire video here)
Solution #1
Practice Question
A) 21
B) 9
C) 2 21
D) 149
E) 3 21
If the rectangular box shown here is 6 inches wide, 8 inches long and 7
inches high, what is the distance, in inches, between points A and B ?
A
B
w
x
y
2 2 2
AB w x y  
2 2 2
8 6 7
64 36 49
149
AB   
  

B
A


8
6
7
(watch the entire video here)
Solution #2
Special Right Triangles
45-45-90 triangle
1
45
2
2 1.4
45
1
leg : leg : hypotenuse
1 : :
x : :
1
x 2x
2
30-60-90 triangle
1
30
60
2
3
3 1.7
3
leg : leg : hypotenuse
1 : : 2
3xx : : 2x
(watch the entire video here)
Special Right Triangles
12
30
x
y
(watch the entire video here)
Special Right Triangles
12
30
x
y 30
60
1
2
3
60
enlargement factor: 6
(watch the entire video here)
Special Right Triangles
12
30
x
y 30
60
1
2
3
60
enlargement factor: 6
 61
6
x 

 3
6 3
6y 

(watch the entire video here)
Special Right Triangles
5 2
x
5 2
(watch the entire video here)
Special Right Triangles
5 2
x
5 2
45
1
2
45
1
45
45
enlargement factor:
 
 
2
5 4
5
2
2
10
5x 



5 2
(watch the entire video here)
Special Right Triangles
45
45
60 60
30
Square Equilateral Triangle
Watch out for special right triangles “hiding”
in squares and equilateral triangles
(watch the entire video here)
Special Right Triangles
45
1
2
45
1
30
60
1
2
3
(watch the entire video here)
Practice Question
A) 3 2
B) 2 6
C) 4 3
D) 6 2
E) 6 3 B 
A
C
D
If , 6 and 105 , thenAD BD AB ABC x    
Note: Figure not drawn to scale
x
Practice Question
A) 3 2
B) 2 6
C) 4 3
D) 6 2
E) 6 3 B 
A
C
D
If , 6 and 105 , thenAD BD AB ABC x    
Note: Figure not drawn to scale
45
45
60
30
x
45
1
45
1
enlargement factor: ?
6
2
26
6
2
30
60 2
3
6
2
1
2
12 2
2 2
12 2
2
2
6 2
6
x 
 

 





(watch the entire video here)
Similar Triangles (watch the entire video here)
Similar Triangles
Similar triangles have the same 3 angles in common
40 20
120
40 20
120
With similar triangles, the ratio of any pair
of corresponding sides is the same
w
a
b c x y
a
w
b c
x y
 
(watch the entire video here)
Similar Triangles

*
*
x
5 7
9
6
(watch the entire video here)
Similar Triangles

*
*
 
x
5 7
9
With similar triangles, the ratio of any pair
of corresponding sides is the same
  
5
5
63
6
5
3
5
7 9
7
9
x
x
x
x




6
(watch the entire video here)
Similar Triangles
Similar triangles have the same 3 angles in common
40 20
120
40 20
120
With similar triangles, the ratio of any pair
of corresponding sides is the same
w
a
b c x y
a
w
b c
x y
 
(watch the entire video here)
Practice Question
If , thenABC BCD x   
Note: Figure not drawn to scale
BA
C D
8
10 12
5 x
E
A) 4
25
B)
6
C) 6
36
D)
5
E) 24
Practice Question
If , thenABC BCD x   
Note: Figure not drawn to scale
BA
C D
x


E


❤
❤ With similar triangles,
the ratio of any pair
of corresponding
sides is the same
  
12
5
5
12 10
12 1
50
50
12
25
6
0
x
x
x
x
x





A) 4
25
B)
6
C) 6
36
D)
5
E) 24
8
10 12
5
(watch the entire video here)
Quadrilaterals (watch the entire video here)
Quadrilaterals
Angles in a quadrilateral add to 360°
A
D C
w
x
y
360w x y z   
B
z
(watch the entire video here)
Quadrilaterals
square
rectangle
trapezoid
parallelogram
rhombus
(watch the entire video here)
Quadrilaterals
parallelogram




opposite sides parallel
rectangle
opposite sides parallel
all angles are 90


rhombus

opposite sides parallel
all sides are equal




square
opposite sides parallel
(watch the entire video here)
Quadrilaterals
trapezoid
2 sides parallel
(watch the entire video here)
Quadrilaterals
Rhombus (and square)
• diagonals are perpendicular bisectors
Rectangle (and square)
• diagonals are equal length
A
D C
B
AC BD
(watch the entire video here)
Quadrilaterals
square rectangle
trapezoid
area base height 
base base
height height
base2
base1
height
1 2base base
area height
2
average of bases height
 
  
 
 
parallelogram rhombus
base
height
base
height
(watch the entire video here)
Quadrilaterals
rhombus
1 2diagonal diagonal
area
2

4
7
area
2
28
2
14
4 7



(watch the entire video here)
Quadrilaterals
Angles in a quadrilateral add to 360°
parallelogram




opposite sides parallel
rectangle
opposite sides parallel
all angles are 90


rhombus

opposite sides parallel
all sides are equal




square
opposite sides parallel
trapezoid
2 sides parallel
area base height 
(watch the entire video here)
Polygons (watch the entire video here)
Polygons
Polygon: Closed figure formed by 3 or more line segments




(watch the entire video here)
Polygons
“polygon” “convex polygon” (all interior angles less than 180°)


(watch the entire video here)
Polygons
b
a
180a b c  
Triangle
Quadrilateral
Pentagon
c
b
a
c
d
360a b c d   
b
a
c
d 540a b c d e    
e
Hexagon
b
a
c
d 720a b c d e f     
ef
(watch the entire video here)
Polygons

 




The sum of the interior
angles in an N-sided polygon
is equal to  180 2N 
6
1
2
3
4
5
Octagon
 
 
 
sum of angles 180 2
8180 2
180
10
6
80
N 
 


(watch the entire video here)
Polygons
Regular polygon: equal sides and equal angles
regular pentagon
 


(watch the entire video here)
Polygons
• Polygon: Closed figure formed by 3 or more line segments
• “polygon” “convex polygon” (all interior angles less than 180°)
Triangle Quadrilateral
Pentagon Hexagon
• Regular polygon: equal sides and equal angles
The sum of the interior
angles in an N-sided polygon
is equal to  180 2N 
(watch the entire video here)
Circles (watch the entire video here)
Circles
Circle: set of points that are equidistant from a given point
 center

A
B

C

E
D
diameter u2 radi s 
arc
- “arc CDE ”

- “minor arc CE”


(watch the entire video here)
Circles


 circumference 2 radius
2 r


  

Circumference
3.14
3
22
7
 


circumference diameter
d


 



(watch the entire video here)
Circles


circumference 2 r
Circumference
 
 
circumference 2
16 feet
16 3
48 f
8
eet






8 ft
(watch the entire video here)
Circles
Area


2
area r
 
2
2
area
6
8
4 ft




8 ft
(watch the entire video here)
Circles
 center

A
B

C

E

circumference diameter 
 circumference 2 radius  
3.14
3
 

2
area r
arc


(watch the entire video here)
Practice Question
A) 9
B) 12
C) 15
D) 18
E) 36





If is the center, 45 , and 6,then the area of the circle isO OBC BC  
 C
B
O
Note: Figure not drawn to scale
Practice Question
A) 9
B) 12
C) 15
D) 18
E) 36





If is the center, 45 , and 6,then the area of the circle isO OBC BC  
CO
Note: Figure not drawn to scale
45
 4590
B
With similar triangles, the ratio
of any pair of corresponding
sides is the same
6
2
area r
2
area
36
2
18
6
2



 
  
 
 
  
 

r
12
6
2
6 r
r


(watch the entire video here)
Pieces of Pi (watch the entire video here)
Pieces of Pi


C
E
1
of circumference
4
90
of circumference
360
CE 

90
(watch the entire video here)
Pieces of Pi

119

C
E
119
of circumference
360
CE 
(watch the entire video here)
Pieces of Pi

x

C
E
 
of circumference
360
2
360
CE
x
x
r


 arc length 2
360
x
r
(watch the entire video here)
Pieces of Pi
O

C
E
 2
ofarea circof sect le's area
3
r
60
o
360
O
x
x
C
r
E



?
(watch the entire video here)
Pieces of Pi

x

C
E
 2
ofarea circof sect le's area
3
r
60
o
360
O
x
x
C
r
E



O
 2
sector area
360
x
r
360
x
(watch the entire video here)
Pieces of Pi
O
160
6
(watch the entire video here)
Pieces of Pi
O
160
 2
area
360
x
r
 
 
2
6area
360
4
36
9
16
160






6
(watch the entire video here)
Pieces of Pi

x

C
E
 2
360
x
CE r

x

C
EO
 2
area
360
x
r
(watch the entire video here)
Practice Question
20
A)
3
25
B)
3
25
C)
2
40
D)
3
50
E)
3





C
B
O
Note: Figure not drawn to scale
O is the center of the circle with radius 30. If x–w=20, what
is the length of arc CDE ?

A
E
D
w
x
y
20
A)
3
25
B)
3
25
C)
2
40
D)
3
50
E)
3





C
B
O
Note: Figure not drawn to scale
O is the center of the circle with radius 30. If x–w=20, what
is the length of arc CDE ?

A
E
D
x
 arc length 2
360
y
r
y
30
20x w 
180x w 
2 160
80
w
w


80 80
  
 
arc length 2
360
2
60
9
8
4
3
0
0
0
3





Practice Question (watch the entire video here)
Circle Properties (watch the entire video here)

Circle Properties
A
B
x
“x is an inscribed angle holding/containing chord AB”

“x is an inscribed angle holding/containing arc AB”
(watch the entire video here)
Circle Properties

A
B
x
x
Inscribed angles holding the
same chord/arc are equal
x
(watch the entire video here)
Circle Properties

A
B
x


C
D
x
Inscribed angles holding chords/arcs
of equal length are equal
(watch the entire video here)
Circle Properties

An inscribed angle holding
the diameter is a right angle
(watch the entire video here)
Circle Properties



A
B
x
O
“Angle AOB is a central angle holding chord AB”
2x
A central angle is twice as
large as an inscribed angle
holding the same chord/arc
(watch the entire video here)
Circle Properties


The line from the center to the
point of tangency is
perpendicular to the tangent line
“line l is tangent to the circle”
(watch the entire video here)
Circle Properties
*
*
*
*

x
2x

(watch the entire video here)
Practice Question
Note: Figure not drawn to scale

C
x
20
D
O
B
A
A) 40
B) 50
C) 60
D) 70
E) 80
If is the center and , thenO AB CD x 
E
Practice Question
Note: Figure not drawn to scale
C
x
D
O
B
A
A) 40
B) 50
C) 60
D) 70
E) 80
90
If is the center and , thenO AB CD x 

A
10
20
90
90
80
80
E
(watch the entire video here)
Volume & Surface Area (watch the entire video here)
Volume & Surface Area
1 ft
1 ft
1 ft3
1 ft 
2 ft
3 ft
5 ft
Volume length width height  
3
Volume 2 3 5
30 ft
  

Volume
(watch the entire video here)
Volume & Surface Area
 r
 height h
2
Volume r h
 3
2
Volume r h
10
 
2
3Vo 1lume
90
0



Volume
(watch the entire video here)
Volume & Surface Area
Surface Area
face
• 6 faces
• 12 edges
• 8 vertices
(watch the entire video here)
Volume & Surface Area
Surface Area
• 6 faces
• 12 edges
• 8 vertices
edge
edge
edge
edge
(watch the entire video here)
Volume & Surface Area
Surface Area
• 6 faces
• 12 edges
• 8 vertices




vertex
vertex
vertex
vertex
vertex
(watch the entire video here)
Volume & Surface Area
Surface Area
8 cm
4 cm
5 cm
2
surface area 40 40 32 32 20 20
184 cm
     

(watch the entire video here)
Volume & Surface Area
Surface Area
2
area r 2
area r
h
2 r
 area 2
2
r h
rh


 

 
2 2
2
total area 2
2 2
2
r r rh
r rh
r r h
  
 

  
 
 
 r
h
(watch the entire video here)
Volume & Surface Area
length
volume length width height  
width
height
 r
2
volume r h
 
2 2
2
surface area 2
2 2
2
r r rh
r rh
r r h
  
 

  
 
 
surface area sum of areas of all 6 sides
h
(watch the entire video here)
Units of Measurement (watch the entire video here)
Units of Measurement
• Metric: kilometers, kilograms, liters, etc.
• English: miles, pounds, gallons, etc.
What is the perimeter of this triangle?
12
13
(watch the entire video here)
Units of Measurement
• If conversion is required, relationship will be given
- e.g., (1 kilometer = 1000 meters)
- e.g., (1 mile = 5280 feet)
• Note: Relationships not given for units of time
- e.g., (1 hour = 60 minutes)
Conversions
- e.g., (1 day = 24 hours)
(watch the entire video here)
Geometry Data Sufficiency Questions (watch the entire video here)
Geometry Data Sufficiency Questions
A
B
C
x
• Do not estimate lengths and angles
(watch the entire video here)
Geometry Data Sufficiency Questions
1) 30x 
2) AD DC
What is the length of AD?
B
C
D
(watch the entire video here)
Geometry Data Sufficiency Questions
1) 30x 
2) AD DC
What is the length of AD?
A
B
C
D
x
• To find one length requires at least one other length
(watch the entire video here)
Geometry Data Sufficiency Questions
1) 30x 
2) AD DC
What is the length of AD?
INSUFFICIENT
A
B
C
D
INSUFFICIENT
1&2) 30 &x AD DC 
30
INSUFFICIENT
E
(watch the entire video here)
Geometry Data Sufficiency Questions
1) 10AC 
2) 30x 
If , what is the length of ?AE EC AB
A
B E
x
C
D
(watch the entire video here)
Geometry Data Sufficiency Questions
1) 10AC 
2) 30x 
If , what is the length of ?AE EC AB
A
B E
x
C
D
• Sketch figure and add information
(watch the entire video here)
Geometry Data Sufficiency Questions
1) 10AC 
2) 30x 
If , what is the length of ?AE EC AB
A
B E
x
• Sketch figure and add information
C
D
x
10
(watch the entire video here)
Geometry Data Sufficiency Questions
1) 10AC 
2) 30x 
If , what is the length of ?AE EC AB
A
B E
x
• Sketch figure and add information
C
D
x
10
• Mentally grab and move points and lines
(watch the entire video here)
Geometry Data Sufficiency Questions
1) 10AC 
2) 30x 
If , what is the length of ?AE EC AB
A
B E
x
• Sketch figure and add information
C
D
• Mentally grab and move points and lines
10
x
(watch the entire video here)
Geometry Data Sufficiency Questions
1) 10AC 
2) 30x 
If , what is the length of ?AE EC AB
A
B E
x
• Sketch figure and add information
C
D
• Mentally grab and move points and lines
10
x
(watch the entire video here)
Geometry Data Sufficiency Questions
1) 10AC 
2) 30x 
If , what is the length of ?AE EC AB
A
B E
• Sketch figure and add information
C
D
• Mentally grab and move points and lines
INSUFFICIENT
INSUFFICIENT
30 30
• To find one length requires at least one other length
(watch the entire video here)
Geometry Data Sufficiency Questions
1) 10AC 
2) 30x 
If , what is the length of ?AE EC AB
A
B E
C
D
10
30 30
INSUFFICIENT
INSUFFICIENT
1 & 2) 10 and 30AC x SUFFICIENT
C
(watch the entire video here)
Geometry Data Sufficiency Questions
• Do not estimate lengths and angles
• To find one length, requires at least one other length
• Sketch diagram and add information
• Mentally grab and move points and lines
(watch the entire video here)
Geometry Strategies – Part II (watch the entire video here)
• Redraw figures
• Add all given information
• Add any information that can be deduced
• Add/extend lines
• Assign variables and use algebra
• Problem solving questions drawn to scale:
• Circle:
• Break areas/volumes into manageable pieces
• Two or more triangles and length required
• Right triangle:
- use Pythagorean Theorem to relate sides
- watch for Pythagorean Triples and special triangles
- beware of circle properties (inscribed/central angles, tangent lines)
- look for isosceles triangles
- estimate to confirm calculations and guide guesses
- look for similar triangles
Geometry Strategies – Part II (watch the entire video here)
Practice Question
1 2
Are lines l1 and l2 parallel?
2) b d
a
b
c
d
e
1) 180e b 
A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient
B) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient
C) BOTH statements TOGETHER are sufficient, but NEITHER statement
ALONE is sufficient
D) EACH statement ALONE is sufficient
E) Statements (1) and (2) TOGETHER are NOT sufficient
Practice Question
2) b d
1) 180e b 
 
 
 
 
1 2
a
b
c
d
e
180 

1 2





SUFFICIENT
SUFFICIENT
D

Are lines l1 and l2 parallel?
(watch the entire video here)
Practice Question
Note: Figure not drawn to scaleA) 1
4
B)
3
3
C)
2
5
D)
3
5
E)
2
60
1x 
4 3x 
What is the value of x ?
Practice Question
Note: Figure not drawn to scaleA) 1
4
B)
3
3
C)
2
5
D)
3
5
E)
2
30
60
1
2
3
60
1x 
4 3x 
What is the value of x ?
30
With similar triangles, the ratio
of any pair of corresponding
sides is the same   
1 4 3
1 2
2 1 1 4 3
2 2 4 3
2 2 3
5 2
5
2
x x
x x
x x
x
x
x
 

  
  
 


(watch the entire video here)
Practice Question
Note: Figure not drawn to scale
If is tangent to the circle with center , thenAC O DBC 

D
O
B CA

40
A) 50°
B) 55°
C) 60°
D) 65°
E) 70°
Practice Question
Note: Figure not drawn to scale
If is tangent to the circle with center , thenAC O DBC 

D
O
B CA

40
A) 50°
B) 55°
C) 60°
D) 65°
E) 70°
50
130
25
25
65
(watch the entire video here)
Practice Question
B
A C D
2) AC CD
1) 5BC 
If 12, does 90 ?AC ACB  
A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient
B) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient
C) BOTH statements TOGETHER are sufficient, but NEITHER statement
ALONE is sufficient
D) EACH statement ALONE is sufficient
E) Statements (1) and (2) TOGETHER are NOT sufficient
Practice Question
2) AC CD
1) 5BC INSUFFICIENT
B
If 12, does 90 ?AC ACB  
A C D
12
INSUFFICIENT
1 & 2)
12
5
INSUFFICIENT
E
(watch the entire video here)
Practice Question
What is the area of triangle ?ABC
60
5
12
Note: Figure not drawn to scale
A) 15
B) 15 3
5 119
C)
2
D) 32.5
E) 36
A
BC
Practice Question
What is the area of triangle ?ABC
60
Note: Figure not drawn to scale
A) 15
B) 15 3
5 119
C)
2
D) 32.5
E) 36
enlargement factor: 6
12
 3 6 36h  
6 3
5
A
BC
base height
area
2


5 6 3
area
2
30 3
2
15 3




(watch the entire video here)
Practice Question
If is a parallelogram, then what is its perimeter?ABCD
Note: Figure not drawn to scale
A B
CD
3 3x y 
4 2 2y x 
6x y 
2 6 13x y 
A) 22
B) 24
C) 26
D) 28
E) 30
Practice Question
If is a parallelogram, then what is its perimeter?ABCD
Note: Figure not drawn to scale
A) 22
B) 24
C) 26
D) 28
E) 30
       
 
 
perimeter 3 3 2 6 13 4 2 2
1
6
4 4 18
4 18
4 18
22
x y x y y x x y
x
x
y
y
           
  
 
 


A B
CD
6 2 6 13
5 7
x y x y
x y
    
  
6x y 
2 6 13x y  3 3 4 2 2
5
1
5 5
x y y x
x
x
y
y
    




4 2 2y x 
3 3x y 
(watch the entire video here)
Practice Question
What is the value of ?x
Note: Figure not drawn to scale
 155 3x
 6 30x 
 4 70x 
A) 5
B) 7
C) 15
D) 21
E) 25
Practice Question
What is the value of ?x
Note: Figure not drawn to scale
 155 3x
 6 30x 
 4 70x 
A) 5
B) 7
C) 15
D) 21
E) 25
 180 4 70x   
 180 155 3x   
 6 30x 
     
 
180 4 70 180 155 3 6 30 180
110 4 25 3 6 30 180
105 5 180
5 75
15
x x x
x x x
x
x
x
             
           
 


(watch the entire video here)
Practice Question
K is the surface area of cylinder A. If the radius of cylinder B is
twice the radius of cylinder A, and the height of cylinder B is twice
that of cylinder A, what is the surface area of cylinder B?
A) 2K
B) 3K
C) 4K
D) 6K
E) 8K
Practice Question
K is the surface area of cylinder A. If the radius of cylinder B is
twice the radius of cylinder A, and the height of cylinder B is twice
that of cylinder A, what is the surface area of cylinder B?
A) 2K
B) 3K
C) 4K
D) 6K
E) 8K
2
surface area 2 2r rh  
1
1
    
2
2 2
2 2
1 1 1
4
 
 

 
 


2
2
2
surface area 2 2r rh  
    
2
2 2
8 8
1
2 2 2
6
 
 

 
 

A
B
K
4K
(watch the entire video here)
Practice Question
Note: Figure not drawn to scale
2) AC AB
1) 8CB 
C
B
A
x
If the circle has radius 4, is 80?x 
Practice Question
Note: Figure not drawn to scale
2) AC AB
1) 8CB 
C
B
A
x
If the circle has radius 4, is 80?x 
SUFFICIENT
INSUFFICIENT
A
(watch the entire video here)
Practice Question
2) BE EA
1) 30BCE 
If ABCD is a rectangle, is the area of ∆EBC greater
than the area of ∆AEC ?
C B
AD
E
Practice Question
2) BE EA
1) 30BCE 
C B
AD
E
If ABCD is a rectangle, is the area of ∆EBC greater
than the area of ∆AEC ?
B E A
DC
harea
2
bh

Which triangle has the
longest base?INSUFFICIENT
SUFFICIENT
B
(watch the entire video here)
Practice Question
Note: Figure not drawn to scale
2
1) 14 48 0y y  
A C
B
55
y
hat is the area of ?W ABC
2
2) 16 60 0y y  
A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient
B) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient
C) BOTH statements TOGETHER are sufficient, but NEITHER statement
ALONE is sufficient
D) EACH statement ALONE is sufficient
E) Statements (1) and (2) TOGETHER are NOT sufficient
Practice Question
Note: Figure not drawn to scale
2
1) 14 48 0y y  
A C
B
55
y
hat is the area of ?W ABC
2
2) 16 60 0y y  
  
2
1) 14 48 0
6 8 0
6, 8
y y
y y
y
  
  

area 12
area 12
SUFFICIENT
h
  
2
2) 16 60 0
6 10 0
6, 10
y y
y y
y
  
  

area 12
The sum of the lengths
of any two sides of a
triangle must be greater
than the third side.
5 5 10 

SUFFICIENT
D
(watch the entire video here)
Practice Question
Note: Figure not drawn to scale
A
B
D
C
E F
If bisects , and bisects , thenBD CBE DE BEF w  
w
50
A) 25
B) 35
C) 50
D) 55
E) 65
Practice Question
Note: Figure not drawn to scale
A
B
D
C
E F
If bisects , and bisects , thenBD CBE DE BEF w  
w
50
x
x
y
y 180 2y
 180 2x
   
 
50 180 2 180 2 180
410 2 2 180
230 2 2
23
5
0
11
2
x y
x y
x y
x
x y
y
    
  
 
 

A) 25
B) 35
C) 50
D) 55
E) 65
 
180
180
180 x
w x y
w x
y
y
w
  
  
 
 11180
65
5 

(watch the entire video here)
Practice Question
Note: Figure not drawn to scale
If is a rectangle, then what is the length of ?ABCD EC
A) 7.8
B) 8
C) 8.4
D) 9
E) 9.6
A
B
D
C
E
12
16
Practice Question
Note: Figure not drawn to scale
If is a rectangle, then what is the length of ?ABCD EC
A) 7.8
B) 8
C) 8.4
D) 9
E) 9.6
A
B
D
C
E
B
C
DE
D C
B
E
12
16
16
16
121216
20
area
2
bh

  12 16
area
9
2
6


h
area
2
bh

20
2
96 10
.6
9
9
6
h
h
h


 EC
(watch the entire video here)
Practice Question
If the both circles have radius 6, and O and P are their centers,
what is the area of the shaded region?
A) 24 18 3
B) 24 12 3
C) 18
D) 36 24 3
E) 18 12 3









 PO 
Practice Question
If the both circles have radius 6, and O and P are their centers,
what is the area of the shaded region?
A) 24 18 3
B) 24 12 3
C) 18
D) 36 24 3
E) 18 12 3









ca
b
 2
6
60
6
360
6
6
6
a b
d e
b c
d f
 



   
 
 
 
 2
sector area
360
x
r
O 
e
P
f
d






        24
24
24 24
24
24 1
9 3 3
8
9
3
b d
b d b d
a b d e b c d f
a b c d e f
a b c d e f
a b c d e f
a b c d e f


 


       
       
          
       
      
b
66
6
 
2
3 side
area
4


2
3
b 3
6
9
4

 
b d a b c d e f    
(watch the entire video here)
GMAT Geometry - Everything you need to know
For additional practice questions, see the
bottom of our Geometry module
www.GMATPrepNow.com
GMAT Geometry - Everything you need to know
If you enjoyed this unique learning format,
let us know, and we’ll add similar resources
to our SlideShare page

GMAT Geometry - everything you need to know

  • 1.
    GMAT Geometry -Everything you need to know This slideshow features screenshots from GMAT Prep Now’s entire Geometry module (consisting of 42 videos). It covers every key concept you need to know about GMAT Geometry. It also includes 27 practice questions. www.GMATPrepNow.com
  • 2.
    GMAT Geometry -Everything you need to know www.GMATPrepNow.com Note: since these slides are just snippets of a full-length video course, there may be times when you’re unable to glean all the relevant information from a particular screenshot. If, at any time, you’d like to watch the entire video on a certain topic, just click on the link at the top of that page, and you’ll be taken that that particular video.
  • 3.
    GMAT Geometry -Everything you need to know If you enjoy this unique learning format, let us know, and we’ll add similar resources to our SlideShare page
  • 4.
    Lines and Angles(watch the entire video here)
  • 5.
    Lines and Angles l line:a straight path that extends without end in both directions (watch the entire video here)
  • 6.
    Lines and Angles l   A B AB:line segment AB: length of line segment AB (e.g., DE=7) line: a straight path that extends without end in both directions (watch the entire video here)
  • 7.
    Lines and Angles   55 A   B C 55 55 ABC CBA     55x  x angle: intersection of 2 lines : measured in degrees or radians (watch the entire video here)
  • 8.
    Lines and Angles  180 Angleson a line add to 180° a cb 180a b c   70x 70 180 110 x x    (watch the entire video here)
  • 9.
    Lines and Angles 90 rightangle: angle of 90 degrees  P PQ is perpendicular to AB  BA  Q (watch the entire video here)
  • 10.
    Lines and Angles bisect:cut or divide into 2 equal pieces J JK bisects AB  BA   A   B C bisects ABC bisectoris the of ABC line l is the perpendicular bisector of AB  BA K  l (watch the entire video here)
  • 11.
    Lines and Angles a c x x b d -a and c are vertical angles - a and c are opposite angles - a and c are vertically opposite angles - b and d are opposite angles Opposite angles are equal y y Aside: 180x y   (watch the entire video here)
  • 12.
    Lines and Angles w50 yx (watch the entire video here)
  • 13.
    Lines and Angles w50 yx 50x  50 180 130 w w    130y  Opposite angles are equal Angles on a line add to 180° (watch the entire video here)
  • 14.
    Lines and Angles 1 2 Iftwo lines do not intersect, they are parallel 1 2 (watch the entire video here)
  • 15.
    Lines and Angles 1 2 Iftwo lines do not intersect, they are parallel y y y y x Note: 180x y  x x x 1 2 (watch the entire video here)
  • 16.
    Lines and Angles Oppositeangles are equal Angles on a line add to 180° 1 2 1 2 y y y y x x x x (watch the entire video here)
  • 17.
    Practice Question A) 10 B)17.5 C) 22 D) 35 E) 42.5 If l1 and l2 are parallel, then x = 1 2  3 5x   15x  Note: Figure not drawn to scale
  • 18.
    A) 10 B) 17.5 C)22 D) 35 E) 42.5 If l1 and l2 are parallel, then x = 1 2  3 5x   15x   3 5x     15 3 5 180 4 10 180 4 170 42.5 x x x x x                 Note: Figure not drawn to scale Practice Question (watch the entire video here)
  • 19.
    Triangles – PartI (watch the entire video here)
  • 20.
    Triangles – PartI A B C w x y 180w x y   Angles in a triangle add to 180° (watch the entire video here)
  • 21.
    Triangles – PartI A B C 21 44 180w x y   Angles in a triangle add to 180° w (watch the entire video here)
  • 22.
    Triangles – PartI A B C 21 44 180w x y   Angles in a triangle add to 180° w 180 180 1 2 4 5 4 1 1 65 w w w       (watch the entire video here)
  • 23.
    Triangles – PartI A B C w x y The longest side is opposite the largest angle The shortest side is opposite the smallest angle A B C a b c If thena b c A B C    (watch the entire video here)
  • 24.
    Triangles – PartI 1 The sum of the lengths of any two sides of a triangle must be greater than the third side. 2 4 1 2 1 42  4 (watch the entire video here)
  • 25.
    Triangles – PartI If a triangle has sides with lengths 3 and 7, what lengths are possible for the third side? 3 7 The sum of the lengths of any two sides of a triangle must be greater than the third side. (watch the entire video here)
  • 26.
    Triangles – PartI If a triangle has sides with lengths 3 and 7, what lengths are possible for the third side? 7 third side 73 37     3 4 rd difference between other 2 sides 3 side sum of other 2 sides  Given lengths of sides A and B rd 3 sideA B A B    (watch the entire video here)
  • 27.
    Triangles – PartI Given lengths of sides A and B rd 3 sideA B A B    Angles in a triangle add to 180° A B C a b c If thena b c A B C    The sum of the lengths of any two sides of a triangle must be greater than the third side. (watch the entire video here)
  • 28.
    Is w >x? Q P w x y R 2) 3QR  1) 6PQ  Practice Question A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient B) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient C) BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient D) EACH statement ALONE is sufficient E) Statements (1) and (2) TOGETHER are NOT sufficient
  • 29.
    Q P w x y R 1) 6PQ A B C a b c If thena b c A B C    2) 3QR  3 1&2) 6 Given lengths of sides A and B rd 3 sideA B A B    3 9PR  E 6 3 36PR    Is w > x? Is ?PR PQ Practice Question (watch the entire video here) INSUFFICIENT INSUFFICIENT INSUFFICIENT
  • 30.
    What is thevalue of x in terms of y ? A) 65 B) 21 C) 22 D) 21 E) 22 y y y y y      x y 22 43 Practice Question
  • 31.
    (watch the entirevideo here)Practice Question What is the value of x in terms of y ? A) 65 B) 21 C) 22 D) 21 E) 22 y y y y y      x y 22 43 a 43 180ya    43 22 180xa        43 22 43 43 22 43 22 22 a x y x y x y x y a              Angles in a triangle add to 180° Solution #1
  • 32.
    Solution #2 (watch theentire video here)Practice Question What is the value of x in terms of y ? A) 65 B) 21 C) 22 D) 21 E) 22 y y y y y      x y 22 43  158 x   180 158 18 1 0 22 22 22 58y y x y x y x y x x            Angles on a line add to 180° 1 22 180 1 58 58 x x c c c x        158 180 22 y x y x     
  • 33.
    Assumptions and Estimation(watch the entire video here)
  • 34.
    Assumptions and Estimation 120  •Lines that appear straight can be assumed to be straight (watch the entire video here)
  • 35.
    Assumptions and Estimation 120  60 •Lines that appear straight can be assumed to be straight (watch the entire video here)
  • 36.
     • Do notmake assumptions about angle measurements x Assumptions and Estimation (watch the entire video here)
  • 37.
    y  • y+x =180 •Both angles are greater than zero degrees x Assumptions and Estimation   (watch the entire video here)
  • 38.
    • Do notmake assumptions about parallelism 1 2 1 2 Assumptions and Estimation (watch the entire video here)
  • 39.
    Problem Solving Questions •Figures are drawn to scale unless stated otherwise • Estimate to confirm calculations and guide guesses  x 40 O BE A) 40 B) 50 C) 60 D) 70 E) 80 Assumptions and Estimation C DA If is the center of the circle, and , what is the value of ? O AB CD x (watch the entire video here)
  • 40.
    Data Sufficiency Questions •Figure conforms to information in question • Figure does not necessarily conform to information in statements • Avoid visual estimation Assumptions and Estimation (watch the entire video here)
  • 41.
    Assumptions and Estimation •Lines that appear straight can be assumed to be straight • Angles are greater than zero degrees • Do not make assumptions about angle measurements • Do not make assumptions about parallelism • Use visual estimation sparingly (watch the entire video here)
  • 42.
    Geometry Strategies –Part I (watch the entire video here)
  • 43.
    Geometry Strategies –Part I • Redraw figures • Add all given information • Add all information that can be deduced • Add/extend lines • Assign variables and use algebra • • Drawn to scale  estimate to confirm calculations and guide guesses • Drawn to scale  estimate measurements to confirm or guess (watch the entire video here)
  • 44.
    Triangles – PartII (watch the entire video here)
  • 45.
    Triangles – PartII Isosceles triangle • 2 equal sides, 2 equal angles A B C a b c If thena b c A B C    40 40 100 x x (watch the entire video here)
  • 46.
    Triangles – PartII 38 (watch the entire video here)
  • 47.
    Triangles – PartII 38 38 104 (watch the entire video here)
  • 48.
    Triangles – PartII 38 38 104 40 (watch the entire video here)
  • 49.
    Triangles – PartII 38 38 104 40 x x 40 180 2 40 180 2 140 70 x x x x x        (watch the entire video here)
  • 50.
    Triangles – PartII 38 38 104 40 70 40 180 2 40 180 2 140 70 x x x x x        70 (watch the entire video here)
  • 51.
    Triangles – PartII A B C Equilateral triangle • 3 equal sides, 3 equal angles 60 60 60 (watch the entire video here)
  • 52.
    Triangles – PartII A B C 10 4 8 Area - ft2 - cm2 - m2 (watch the entire video here)
  • 53.
    Triangles – PartII A B C base height Area 2   10 4 8 Area 1 Area base height 2   (watch the entire video here)
  • 54.
    Triangles – PartII A B C base height Area 2   10 Area 15 3 2    10 3 4 8 altitude height Area (watch the entire video here)
  • 55.
    Triangles – PartII 10 4 8 A B C 7.5 base height Area 2   7 A . re 5 a 15 4 2    Area (watch the entire video here)
  • 56.
    Triangles – PartII A B C 60 60 60   2 3 side Area 4   (watch the entire video here)
  • 57.
    Triangles – PartII A B C 60 60 60   2 3 side Area 4   6 6 6   2 3 Area 4 3 36 4 9 3 6     (watch the entire video here)
  • 58.
    Triangles – PartII 60 60 60 The altitudes of isosceles triangles and equilateral triangles bisect the base. (watch the entire video here)
  • 59.
    Triangles – PartII • An isosceles triangle has 2 equal sides and 2 equal angles • An equilateral triangle has 3 equal sides and 3 equal angles (60° each) base height Area 2     2 3 side Area 4   • The altitudes of isosceles triangles and equilateral triangles bisect the base (watch the entire video here)
  • 60.
    Practice Question A) 27.5 B)55 C) 62.5 D) 70 E) 125 If AB and CD are parallel, and AB= BC, then x = A B C D x 55 Note: Figure not drawn to scale
  • 61.
    Practice Question A) 27.5 B)55 C) 62.5 D) 70 E) 125 If AB and CD are parallel, and AB= BC, then x = Note: Figure not drawn to scale A B C D x 5555         55 180 110 18 5 5 70 5 5 0 x x x       (watch the entire video here)
  • 62.
    Right Triangles (watchthe entire video here)
  • 63.
    Right Triangles leg1 • Righttriangle: triangle with right (90°) angle • The hypotenuse is the longest side leg2       2 2 2 1 2leg leg hypotenuse  2 2 2 a b c  a b c 2 2 2 a b c  a bc 2 2 2 a b c  a bc (watch the entire video here)
  • 64.
  • 65.
    Right Triangles 2 22 a b c  a bc 8 6 x 2 2 2 2 2 8 6 64 36 100 100 10 x x x x x        (watch the entire video here)
  • 66.
    Right Triangles 2 22 a b c  a bc 8 6 x 2 2 2 2 2 8 6 64 36 100 100 10 x x x x x        6 4 x (watch the entire video here)
  • 67.
    Right Triangles 2 22 a b c  a bc 8 6 x 2 2 2 2 2 8 6 64 36 100 100 10 x x x x x        2 2 2 a b c  a bc 6 4 x 2 2 2 2 2 4 6 16 36 20 20 2 5 x x x x x        4 5 2 5 x x   (watch the entire video here)
  • 68.
    Right Triangles • 3-4-5 4 35 •5-12-13 12 13 5 • 8-15-17 2 2 2 3 4 5  2 2 2 5 12 13  • 7-24-25 Pythagorean triples: A set of 3 integers that can be the sides of a right triangle (watch the entire video here)
  • 69.
    Right Triangles 8x 17 15 •8-15-17 2 2 2 15 17x   2 2 2 a b c  (watch the entire video here)
  • 70.
    Right Triangles • 3-4-5 •5-12-13 • 8-15-17 • 7-24-25 6-8-10 9-12-15 12-16-20 10-24-26 4 35   4 7 28   5 7 35    213 7x   . . . . . . . . . 2 corresponding sides required to use Pythagorean triples . . . (watch the entire video here)
  • 71.
    Right Triangles • 3-4-5 •5-12-13 • 8-15-17 • 7-24-25 6-8-10 9-12-15 12-16-20 10-24-26 . . . . . . . . . 50 4 35 Enlarged by factor of 10 50 24 7 25 Enlarged by factor of 2 40 30 48 14 2 corresponding sides required to use Pythagorean triples . . . (watch the entire video here)
  • 72.
    Right Triangles • 3-4-5 •5-12-13 • 8-15-17 • 7-24-25 6-8-10 9-12-15 12-16-20 10-24-26 . . . . . . . . . 3 4 x . . . (watch the entire video here)
  • 73.
    Right Triangles • 3-4-5 •5-12-13 • 8-15-17 • 7-24-25 6-8-10 9-12-15 12-16-20 10-24-26 . . . . . . . . . 3 x 4 2 2 2 a b c  2 2 2 2 2 3 4 9 16 7 7 x x x x       . . . (watch the entire video here)
  • 74.
    Right Triangles 2 22 a b c  a bc • Watch out for Pythagorean triples (and their multiples) 3-4-5 5-12-13 8-15-17 7-24-25 (watch the entire video here)
  • 75.
    Practice Question A A) 23 B) 2 5 C) 30 D) 4 3 E) 4 5 B  The height of this rectangle is twice its width. If the distance between points A and B is , what is the rectangle’s height?60
  • 76.
    Practice Question A A) 23 B) 2 5 C) 30 D) 4 3 E) 4 5 x 2x        22 2 2 2 2 2 2 60 4 60 5 60 12 12 4 3 2 3 x x x x x x x x x         B  60 2 2 2 a b c   2 4 3 2 2 3x   The height of this rectangle is twice its width. If the distance between points A and B is , what is the rectangle’s height?60 (watch the entire video here)
  • 77.
    Practice Question A) 21 B)9 C) 2 21 D) 149 E) 3 21 If the rectangular box shown here is 6 inches wide, 8 inches long and 7 inches high, what is the distance, in inches, between points A and B ? B A   8 6 7
  • 78.
    A) 21 B) 9 C)2 21 D) 149 E) 3 21 B A   8 6 7 If the rectangular box shown here is 6 inches wide, 8 inches long and 7 inches high, what is the distance, in inches, between points A and B ? 10 x 7 A B 10 x 2 2 2 a b c  2 2 2 2 2 10 7 100 49 149 149 x x x x       Practice Question (watch the entire video here) Solution #1
  • 79.
    Practice Question A) 21 B)9 C) 2 21 D) 149 E) 3 21 If the rectangular box shown here is 6 inches wide, 8 inches long and 7 inches high, what is the distance, in inches, between points A and B ? A B w x y 2 2 2 AB w x y   2 2 2 8 6 7 64 36 49 149 AB        B A   8 6 7 (watch the entire video here) Solution #2
  • 80.
    Special Right Triangles 45-45-90triangle 1 45 2 2 1.4 45 1 leg : leg : hypotenuse 1 : : x : : 1 x 2x 2 30-60-90 triangle 1 30 60 2 3 3 1.7 3 leg : leg : hypotenuse 1 : : 2 3xx : : 2x (watch the entire video here)
  • 81.
  • 82.
    Special Right Triangles 12 30 x y30 60 1 2 3 60 enlargement factor: 6 (watch the entire video here)
  • 83.
    Special Right Triangles 12 30 x y30 60 1 2 3 60 enlargement factor: 6  61 6 x    3 6 3 6y   (watch the entire video here)
  • 84.
    Special Right Triangles 52 x 5 2 (watch the entire video here)
  • 85.
    Special Right Triangles 52 x 5 2 45 1 2 45 1 45 45 enlargement factor:     2 5 4 5 2 2 10 5x     5 2 (watch the entire video here)
  • 86.
    Special Right Triangles 45 45 6060 30 Square Equilateral Triangle Watch out for special right triangles “hiding” in squares and equilateral triangles (watch the entire video here)
  • 87.
  • 88.
    Practice Question A) 32 B) 2 6 C) 4 3 D) 6 2 E) 6 3 B  A C D If , 6 and 105 , thenAD BD AB ABC x     Note: Figure not drawn to scale x
  • 89.
    Practice Question A) 32 B) 2 6 C) 4 3 D) 6 2 E) 6 3 B  A C D If , 6 and 105 , thenAD BD AB ABC x     Note: Figure not drawn to scale 45 45 60 30 x 45 1 45 1 enlargement factor: ? 6 2 26 6 2 30 60 2 3 6 2 1 2 12 2 2 2 12 2 2 2 6 2 6 x            (watch the entire video here)
  • 90.
    Similar Triangles (watchthe entire video here)
  • 91.
    Similar Triangles Similar triangleshave the same 3 angles in common 40 20 120 40 20 120 With similar triangles, the ratio of any pair of corresponding sides is the same w a b c x y a w b c x y   (watch the entire video here)
  • 92.
  • 93.
    Similar Triangles  * *   x 57 9 With similar triangles, the ratio of any pair of corresponding sides is the same    5 5 63 6 5 3 5 7 9 7 9 x x x x     6 (watch the entire video here)
  • 94.
    Similar Triangles Similar triangleshave the same 3 angles in common 40 20 120 40 20 120 With similar triangles, the ratio of any pair of corresponding sides is the same w a b c x y a w b c x y   (watch the entire video here)
  • 95.
    Practice Question If ,thenABC BCD x    Note: Figure not drawn to scale BA C D 8 10 12 5 x E A) 4 25 B) 6 C) 6 36 D) 5 E) 24
  • 96.
    Practice Question If ,thenABC BCD x    Note: Figure not drawn to scale BA C D x   E   ❤ ❤ With similar triangles, the ratio of any pair of corresponding sides is the same    12 5 5 12 10 12 1 50 50 12 25 6 0 x x x x x      A) 4 25 B) 6 C) 6 36 D) 5 E) 24 8 10 12 5 (watch the entire video here)
  • 97.
    Quadrilaterals (watch theentire video here)
  • 98.
    Quadrilaterals Angles in aquadrilateral add to 360° A D C w x y 360w x y z    B z (watch the entire video here)
  • 99.
  • 100.
    Quadrilaterals parallelogram     opposite sides parallel rectangle oppositesides parallel all angles are 90   rhombus  opposite sides parallel all sides are equal     square opposite sides parallel (watch the entire video here)
  • 101.
  • 102.
    Quadrilaterals Rhombus (and square) •diagonals are perpendicular bisectors Rectangle (and square) • diagonals are equal length A D C B AC BD (watch the entire video here)
  • 103.
    Quadrilaterals square rectangle trapezoid area baseheight  base base height height base2 base1 height 1 2base base area height 2 average of bases height          parallelogram rhombus base height base height (watch the entire video here)
  • 104.
  • 105.
    Quadrilaterals Angles in aquadrilateral add to 360° parallelogram     opposite sides parallel rectangle opposite sides parallel all angles are 90   rhombus  opposite sides parallel all sides are equal     square opposite sides parallel trapezoid 2 sides parallel area base height  (watch the entire video here)
  • 106.
    Polygons (watch theentire video here)
  • 107.
    Polygons Polygon: Closed figureformed by 3 or more line segments     (watch the entire video here)
  • 108.
    Polygons “polygon” “convex polygon”(all interior angles less than 180°)   (watch the entire video here)
  • 109.
    Polygons b a 180a b c  Triangle Quadrilateral Pentagon c b a c d 360a b c d    b a c d 540a b c d e     e Hexagon b a c d 720a b c d e f      ef (watch the entire video here)
  • 110.
    Polygons        The sumof the interior angles in an N-sided polygon is equal to  180 2N  6 1 2 3 4 5 Octagon       sum of angles 180 2 8180 2 180 10 6 80 N      (watch the entire video here)
  • 111.
    Polygons Regular polygon: equalsides and equal angles regular pentagon     (watch the entire video here)
  • 112.
    Polygons • Polygon: Closedfigure formed by 3 or more line segments • “polygon” “convex polygon” (all interior angles less than 180°) Triangle Quadrilateral Pentagon Hexagon • Regular polygon: equal sides and equal angles The sum of the interior angles in an N-sided polygon is equal to  180 2N  (watch the entire video here)
  • 113.
    Circles (watch theentire video here)
  • 114.
    Circles Circle: set ofpoints that are equidistant from a given point  center  A B  C  E D diameter u2 radi s  arc - “arc CDE ”  - “minor arc CE”   (watch the entire video here)
  • 115.
    Circles    circumference 2radius 2 r       Circumference 3.14 3 22 7     circumference diameter d        (watch the entire video here)
  • 116.
    Circles   circumference 2 r Circumference    circumference 2 16 feet 16 3 48 f 8 eet       8 ft (watch the entire video here)
  • 117.
    Circles Area   2 area r   2 2 area 6 8 4ft     8 ft (watch the entire video here)
  • 118.
    Circles  center  A B  C  E  circumference diameter  circumference 2 radius   3.14 3    2 area r arc   (watch the entire video here)
  • 119.
    Practice Question A) 9 B)12 C) 15 D) 18 E) 36      If is the center, 45 , and 6,then the area of the circle isO OBC BC    C B O Note: Figure not drawn to scale
  • 120.
    Practice Question A) 9 B)12 C) 15 D) 18 E) 36      If is the center, 45 , and 6,then the area of the circle isO OBC BC   CO Note: Figure not drawn to scale 45  4590 B With similar triangles, the ratio of any pair of corresponding sides is the same 6 2 area r 2 area 36 2 18 6 2                   r 12 6 2 6 r r   (watch the entire video here)
  • 121.
    Pieces of Pi(watch the entire video here)
  • 122.
    Pieces of Pi   C E 1 ofcircumference 4 90 of circumference 360 CE   90 (watch the entire video here)
  • 123.
    Pieces of Pi  119  C E 119 ofcircumference 360 CE  (watch the entire video here)
  • 124.
    Pieces of Pi  x  C E  of circumference 360 2 360 CE x x r    arc length 2 360 x r (watch the entire video here)
  • 125.
    Pieces of Pi O  C E 2 ofarea circof sect le's area 3 r 60 o 360 O x x C r E    ? (watch the entire video here)
  • 126.
    Pieces of Pi  x  C E 2 ofarea circof sect le's area 3 r 60 o 360 O x x C r E    O  2 sector area 360 x r 360 x (watch the entire video here)
  • 127.
    Pieces of Pi O 160 6 (watchthe entire video here)
  • 128.
    Pieces of Pi O 160 2 area 360 x r     2 6area 360 4 36 9 16 160       6 (watch the entire video here)
  • 129.
    Pieces of Pi  x  C E 2 360 x CE r  x  C EO  2 area 360 x r (watch the entire video here)
  • 130.
    Practice Question 20 A) 3 25 B) 3 25 C) 2 40 D) 3 50 E) 3      C B O Note: Figurenot drawn to scale O is the center of the circle with radius 30. If x–w=20, what is the length of arc CDE ?  A E D w x y
  • 131.
    20 A) 3 25 B) 3 25 C) 2 40 D) 3 50 E) 3      C B O Note: Figure notdrawn to scale O is the center of the circle with radius 30. If x–w=20, what is the length of arc CDE ?  A E D x  arc length 2 360 y r y 30 20x w  180x w  2 160 80 w w   80 80      arc length 2 360 2 60 9 8 4 3 0 0 0 3      Practice Question (watch the entire video here)
  • 132.
    Circle Properties (watchthe entire video here)
  • 133.
     Circle Properties A B x “x isan inscribed angle holding/containing chord AB”  “x is an inscribed angle holding/containing arc AB” (watch the entire video here)
  • 134.
    Circle Properties  A B x x Inscribed anglesholding the same chord/arc are equal x (watch the entire video here)
  • 135.
    Circle Properties  A B x   C D x Inscribed anglesholding chords/arcs of equal length are equal (watch the entire video here)
  • 136.
    Circle Properties  An inscribedangle holding the diameter is a right angle (watch the entire video here)
  • 137.
    Circle Properties    A B x O “Angle AOBis a central angle holding chord AB” 2x A central angle is twice as large as an inscribed angle holding the same chord/arc (watch the entire video here)
  • 138.
    Circle Properties   The linefrom the center to the point of tangency is perpendicular to the tangent line “line l is tangent to the circle” (watch the entire video here)
  • 139.
  • 140.
    Practice Question Note: Figurenot drawn to scale  C x 20 D O B A A) 40 B) 50 C) 60 D) 70 E) 80 If is the center and , thenO AB CD x  E
  • 141.
    Practice Question Note: Figurenot drawn to scale C x D O B A A) 40 B) 50 C) 60 D) 70 E) 80 90 If is the center and , thenO AB CD x   A 10 20 90 90 80 80 E (watch the entire video here)
  • 142.
    Volume & SurfaceArea (watch the entire video here)
  • 143.
    Volume & SurfaceArea 1 ft 1 ft 1 ft3 1 ft  2 ft 3 ft 5 ft Volume length width height   3 Volume 2 3 5 30 ft     Volume (watch the entire video here)
  • 144.
    Volume & SurfaceArea  r  height h 2 Volume r h  3 2 Volume r h 10   2 3Vo 1lume 90 0    Volume (watch the entire video here)
  • 145.
    Volume & SurfaceArea Surface Area face • 6 faces • 12 edges • 8 vertices (watch the entire video here)
  • 146.
    Volume & SurfaceArea Surface Area • 6 faces • 12 edges • 8 vertices edge edge edge edge (watch the entire video here)
  • 147.
    Volume & SurfaceArea Surface Area • 6 faces • 12 edges • 8 vertices     vertex vertex vertex vertex vertex (watch the entire video here)
  • 148.
    Volume & SurfaceArea Surface Area 8 cm 4 cm 5 cm 2 surface area 40 40 32 32 20 20 184 cm        (watch the entire video here)
  • 149.
    Volume & SurfaceArea Surface Area 2 area r 2 area r h 2 r  area 2 2 r h rh        2 2 2 total area 2 2 2 2 r r rh r rh r r h               r h (watch the entire video here)
  • 150.
    Volume & SurfaceArea length volume length width height   width height  r 2 volume r h   2 2 2 surface area 2 2 2 2 r r rh r rh r r h              surface area sum of areas of all 6 sides h (watch the entire video here)
  • 151.
    Units of Measurement(watch the entire video here)
  • 152.
    Units of Measurement •Metric: kilometers, kilograms, liters, etc. • English: miles, pounds, gallons, etc. What is the perimeter of this triangle? 12 13 (watch the entire video here)
  • 153.
    Units of Measurement •If conversion is required, relationship will be given - e.g., (1 kilometer = 1000 meters) - e.g., (1 mile = 5280 feet) • Note: Relationships not given for units of time - e.g., (1 hour = 60 minutes) Conversions - e.g., (1 day = 24 hours) (watch the entire video here)
  • 154.
    Geometry Data SufficiencyQuestions (watch the entire video here)
  • 155.
    Geometry Data SufficiencyQuestions A B C x • Do not estimate lengths and angles (watch the entire video here)
  • 156.
    Geometry Data SufficiencyQuestions 1) 30x  2) AD DC What is the length of AD? B C D (watch the entire video here)
  • 157.
    Geometry Data SufficiencyQuestions 1) 30x  2) AD DC What is the length of AD? A B C D x • To find one length requires at least one other length (watch the entire video here)
  • 158.
    Geometry Data SufficiencyQuestions 1) 30x  2) AD DC What is the length of AD? INSUFFICIENT A B C D INSUFFICIENT 1&2) 30 &x AD DC  30 INSUFFICIENT E (watch the entire video here)
  • 159.
    Geometry Data SufficiencyQuestions 1) 10AC  2) 30x  If , what is the length of ?AE EC AB A B E x C D (watch the entire video here)
  • 160.
    Geometry Data SufficiencyQuestions 1) 10AC  2) 30x  If , what is the length of ?AE EC AB A B E x C D • Sketch figure and add information (watch the entire video here)
  • 161.
    Geometry Data SufficiencyQuestions 1) 10AC  2) 30x  If , what is the length of ?AE EC AB A B E x • Sketch figure and add information C D x 10 (watch the entire video here)
  • 162.
    Geometry Data SufficiencyQuestions 1) 10AC  2) 30x  If , what is the length of ?AE EC AB A B E x • Sketch figure and add information C D x 10 • Mentally grab and move points and lines (watch the entire video here)
  • 163.
    Geometry Data SufficiencyQuestions 1) 10AC  2) 30x  If , what is the length of ?AE EC AB A B E x • Sketch figure and add information C D • Mentally grab and move points and lines 10 x (watch the entire video here)
  • 164.
    Geometry Data SufficiencyQuestions 1) 10AC  2) 30x  If , what is the length of ?AE EC AB A B E x • Sketch figure and add information C D • Mentally grab and move points and lines 10 x (watch the entire video here)
  • 165.
    Geometry Data SufficiencyQuestions 1) 10AC  2) 30x  If , what is the length of ?AE EC AB A B E • Sketch figure and add information C D • Mentally grab and move points and lines INSUFFICIENT INSUFFICIENT 30 30 • To find one length requires at least one other length (watch the entire video here)
  • 166.
    Geometry Data SufficiencyQuestions 1) 10AC  2) 30x  If , what is the length of ?AE EC AB A B E C D 10 30 30 INSUFFICIENT INSUFFICIENT 1 & 2) 10 and 30AC x SUFFICIENT C (watch the entire video here)
  • 167.
    Geometry Data SufficiencyQuestions • Do not estimate lengths and angles • To find one length, requires at least one other length • Sketch diagram and add information • Mentally grab and move points and lines (watch the entire video here)
  • 168.
    Geometry Strategies –Part II (watch the entire video here)
  • 169.
    • Redraw figures •Add all given information • Add any information that can be deduced • Add/extend lines • Assign variables and use algebra • Problem solving questions drawn to scale: • Circle: • Break areas/volumes into manageable pieces • Two or more triangles and length required • Right triangle: - use Pythagorean Theorem to relate sides - watch for Pythagorean Triples and special triangles - beware of circle properties (inscribed/central angles, tangent lines) - look for isosceles triangles - estimate to confirm calculations and guide guesses - look for similar triangles Geometry Strategies – Part II (watch the entire video here)
  • 170.
    Practice Question 1 2 Arelines l1 and l2 parallel? 2) b d a b c d e 1) 180e b  A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient B) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient C) BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient D) EACH statement ALONE is sufficient E) Statements (1) and (2) TOGETHER are NOT sufficient
  • 171.
    Practice Question 2) bd 1) 180e b          1 2 a b c d e 180   1 2      SUFFICIENT SUFFICIENT D  Are lines l1 and l2 parallel? (watch the entire video here)
  • 172.
    Practice Question Note: Figurenot drawn to scaleA) 1 4 B) 3 3 C) 2 5 D) 3 5 E) 2 60 1x  4 3x  What is the value of x ?
  • 173.
    Practice Question Note: Figurenot drawn to scaleA) 1 4 B) 3 3 C) 2 5 D) 3 5 E) 2 30 60 1 2 3 60 1x  4 3x  What is the value of x ? 30 With similar triangles, the ratio of any pair of corresponding sides is the same    1 4 3 1 2 2 1 1 4 3 2 2 4 3 2 2 3 5 2 5 2 x x x x x x x x x              (watch the entire video here)
  • 174.
    Practice Question Note: Figurenot drawn to scale If is tangent to the circle with center , thenAC O DBC   D O B CA  40 A) 50° B) 55° C) 60° D) 65° E) 70°
  • 175.
    Practice Question Note: Figurenot drawn to scale If is tangent to the circle with center , thenAC O DBC   D O B CA  40 A) 50° B) 55° C) 60° D) 65° E) 70° 50 130 25 25 65 (watch the entire video here)
  • 176.
    Practice Question B A CD 2) AC CD 1) 5BC  If 12, does 90 ?AC ACB   A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient B) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient C) BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient D) EACH statement ALONE is sufficient E) Statements (1) and (2) TOGETHER are NOT sufficient
  • 177.
    Practice Question 2) ACCD 1) 5BC INSUFFICIENT B If 12, does 90 ?AC ACB   A C D 12 INSUFFICIENT 1 & 2) 12 5 INSUFFICIENT E (watch the entire video here)
  • 178.
    Practice Question What isthe area of triangle ?ABC 60 5 12 Note: Figure not drawn to scale A) 15 B) 15 3 5 119 C) 2 D) 32.5 E) 36 A BC
  • 179.
    Practice Question What isthe area of triangle ?ABC 60 Note: Figure not drawn to scale A) 15 B) 15 3 5 119 C) 2 D) 32.5 E) 36 enlargement factor: 6 12  3 6 36h   6 3 5 A BC base height area 2   5 6 3 area 2 30 3 2 15 3     (watch the entire video here)
  • 180.
    Practice Question If isa parallelogram, then what is its perimeter?ABCD Note: Figure not drawn to scale A B CD 3 3x y  4 2 2y x  6x y  2 6 13x y  A) 22 B) 24 C) 26 D) 28 E) 30
  • 181.
    Practice Question If isa parallelogram, then what is its perimeter?ABCD Note: Figure not drawn to scale A) 22 B) 24 C) 26 D) 28 E) 30             perimeter 3 3 2 6 13 4 2 2 1 6 4 4 18 4 18 4 18 22 x y x y y x x y x x y y                      A B CD 6 2 6 13 5 7 x y x y x y         6x y  2 6 13x y  3 3 4 2 2 5 1 5 5 x y y x x x y y          4 2 2y x  3 3x y  (watch the entire video here)
  • 182.
    Practice Question What isthe value of ?x Note: Figure not drawn to scale  155 3x  6 30x   4 70x  A) 5 B) 7 C) 15 D) 21 E) 25
  • 183.
    Practice Question What isthe value of ?x Note: Figure not drawn to scale  155 3x  6 30x   4 70x  A) 5 B) 7 C) 15 D) 21 E) 25  180 4 70x     180 155 3x     6 30x          180 4 70 180 155 3 6 30 180 110 4 25 3 6 30 180 105 5 180 5 75 15 x x x x x x x x x                               (watch the entire video here)
  • 184.
    Practice Question K isthe surface area of cylinder A. If the radius of cylinder B is twice the radius of cylinder A, and the height of cylinder B is twice that of cylinder A, what is the surface area of cylinder B? A) 2K B) 3K C) 4K D) 6K E) 8K
  • 185.
    Practice Question K isthe surface area of cylinder A. If the radius of cylinder B is twice the radius of cylinder A, and the height of cylinder B is twice that of cylinder A, what is the surface area of cylinder B? A) 2K B) 3K C) 4K D) 6K E) 8K 2 surface area 2 2r rh   1 1      2 2 2 2 2 1 1 1 4            2 2 2 surface area 2 2r rh        2 2 2 8 8 1 2 2 2 6           A B K 4K (watch the entire video here)
  • 186.
    Practice Question Note: Figurenot drawn to scale 2) AC AB 1) 8CB  C B A x If the circle has radius 4, is 80?x 
  • 187.
    Practice Question Note: Figurenot drawn to scale 2) AC AB 1) 8CB  C B A x If the circle has radius 4, is 80?x  SUFFICIENT INSUFFICIENT A (watch the entire video here)
  • 188.
    Practice Question 2) BEEA 1) 30BCE  If ABCD is a rectangle, is the area of ∆EBC greater than the area of ∆AEC ? C B AD E
  • 189.
    Practice Question 2) BEEA 1) 30BCE  C B AD E If ABCD is a rectangle, is the area of ∆EBC greater than the area of ∆AEC ? B E A DC harea 2 bh  Which triangle has the longest base?INSUFFICIENT SUFFICIENT B (watch the entire video here)
  • 190.
    Practice Question Note: Figurenot drawn to scale 2 1) 14 48 0y y   A C B 55 y hat is the area of ?W ABC 2 2) 16 60 0y y   A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient B) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient C) BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient D) EACH statement ALONE is sufficient E) Statements (1) and (2) TOGETHER are NOT sufficient
  • 191.
    Practice Question Note: Figurenot drawn to scale 2 1) 14 48 0y y   A C B 55 y hat is the area of ?W ABC 2 2) 16 60 0y y      2 1) 14 48 0 6 8 0 6, 8 y y y y y        area 12 area 12 SUFFICIENT h    2 2) 16 60 0 6 10 0 6, 10 y y y y y        area 12 The sum of the lengths of any two sides of a triangle must be greater than the third side. 5 5 10   SUFFICIENT D (watch the entire video here)
  • 192.
    Practice Question Note: Figurenot drawn to scale A B D C E F If bisects , and bisects , thenBD CBE DE BEF w   w 50 A) 25 B) 35 C) 50 D) 55 E) 65
  • 193.
    Practice Question Note: Figurenot drawn to scale A B D C E F If bisects , and bisects , thenBD CBE DE BEF w   w 50 x x y y 180 2y  180 2x       50 180 2 180 2 180 410 2 2 180 230 2 2 23 5 0 11 2 x y x y x y x x y y              A) 25 B) 35 C) 50 D) 55 E) 65   180 180 180 x w x y w x y y w          11180 65 5   (watch the entire video here)
  • 194.
    Practice Question Note: Figurenot drawn to scale If is a rectangle, then what is the length of ?ABCD EC A) 7.8 B) 8 C) 8.4 D) 9 E) 9.6 A B D C E 12 16
  • 195.
    Practice Question Note: Figurenot drawn to scale If is a rectangle, then what is the length of ?ABCD EC A) 7.8 B) 8 C) 8.4 D) 9 E) 9.6 A B D C E B C DE D C B E 12 16 16 16 121216 20 area 2 bh    12 16 area 9 2 6   h area 2 bh  20 2 96 10 .6 9 9 6 h h h    EC (watch the entire video here)
  • 196.
    Practice Question If theboth circles have radius 6, and O and P are their centers, what is the area of the shaded region? A) 24 18 3 B) 24 12 3 C) 18 D) 36 24 3 E) 18 12 3           PO 
  • 197.
    Practice Question If theboth circles have radius 6, and O and P are their centers, what is the area of the shaded region? A) 24 18 3 B) 24 12 3 C) 18 D) 36 24 3 E) 18 12 3          ca b  2 6 60 6 360 6 6 6 a b d e b c d f                 2 sector area 360 x r O  e P f d               24 24 24 24 24 24 1 9 3 3 8 9 3 b d b d b d a b d e b c d f a b c d e f a b c d e f a b c d e f a b c d e f                                                 b 66 6   2 3 side area 4   2 3 b 3 6 9 4    b d a b c d e f     (watch the entire video here)
  • 198.
    GMAT Geometry -Everything you need to know For additional practice questions, see the bottom of our Geometry module www.GMATPrepNow.com
  • 199.
    GMAT Geometry -Everything you need to know If you enjoyed this unique learning format, let us know, and we’ll add similar resources to our SlideShare page